659 research outputs found

    Assessment of the tradeoff between energy efficiency and transfer opportunities in an urban rail transit network

    Get PDF
    Urban rail transit (URT) in metropolitan areas consumes huge energy. Energy-efficient timetabling (EET) of URT is an essential measurement of URT management and technologies toward carbon neutralization initiatives. However, the majority EET studies focus on single URT lines ignoring passenger transfer and path choice in the entire URT network. As passenger path choice and timetabling are interdependent in a URT network, the ignorance of passenger transfers potentially results in irrelevant energy efficiency of a URT network. This paper proposes a bi-objective EET model incorporating the minimization of passenger transfer times as an objective in addition to energy efficiency. The timetabling objectives and constraints are linearized, and the bi-objective is transformed into a single objective by a linear weighting method. Utilizing the passenger demand and speed profile data of URT in the City of Xi'an (China), a case study is performed to demonstrate the effectiveness of the proposed EET model. The numerical results show that an optimized timetable solution can reduce 25.1% energy consumption and save 3.3% passenger transfer time.</p

    Urban Railway Transit Timetable Optimisation Based on Passenger-and-Trains Matching – A Case Study of Beijing Metro Line

    Get PDF
    Due to the congested scenarios of the urban railway system during peak hours, passengers are often left behind on the platform. This paper firstly brings a proposal to capture passengers matching different trains. Secondly, to reduce passengers’ total waiting time, timetable optimisation is put forward based on passengers matching different trains. This is a two-stage model. In the first stage, the aim is to obtain a match between passengers and different trains from the Automatic Fare Collection (AFC) data as well as timetable parameters. In the second stage, the objective is to reduce passengers’ total waiting time, whereby the decision variables are headway and dwelling time. Due to the complexity of our proposed model, an MCMC-GASA (Markov Chain Monte Carlo-Genetic Algorithm Simulated Annealing) hybrid method is designed to solve it. A real-world case of Line 1 in Beijing metro is employed to verify the proposed two-stage model and algorithms. The results show that several improvements have been brought by the newly designed timetable. The number of unique matching passengers increased by 37.7%, and passengers’ total waiting time decreased by 15.5%

    Timetable coordination of first trains in urban railway network: A case study of Beijing

    Get PDF
    A model of timetable coordination of first trains in urban railway networks, based on the importance of lines and transfer stations, is proposed in this paper. A sub-network connection method is developed, and a mathematical programming solver is utilized to solve the suggested model. A simple test network and a real network of Beijing urban railway network are modeled to verify the effectiveness of our suggested model. Results demonstrate that the proposed model is effective in improving the transfer performance in that they reduce the connection time significantly

    Applications of Genetic Algorithm and Its Variants in Rail Vehicle Systems: A Bibliometric Analysis and Comprehensive Review

    Get PDF
    Railway systems are time-varying and complex systems with nonlinear behaviors that require effective optimization techniques to achieve optimal performance. Evolutionary algorithms methods have emerged as a popular optimization technique in recent years due to their ability to handle complex, multi-objective issues of such systems. In this context, genetic algorithm (GA) as one of the powerful optimization techniques has been extensively used in the railway sector, and applied to various problems such as scheduling, routing, forecasting, design, maintenance, and allocation. This paper presents a review of the applications of GAs and their variants in the railway domain together with bibliometric analysis. The paper covers highly cited and recent studies that have employed GAs in the railway sector and discuss the challenges and opportunities of using GAs in railway optimization problems. Meanwhile, the most popular hybrid GAs as the combination of GA and other evolutionary algorithms methods such as particle swarm optimization (PSO), ant colony optimization (ACO), neural network (NN), fuzzy-logic control, etc with their dedicated application in the railway domain are discussed too. More than 250 publications are listed and classified to provide a comprehensive analysis and road map for experts and researchers in the field helping them to identify research gaps and opportunities

    Optimization of the Suburban Railway Train Operation Plan Based on the Zonal Mode

    Get PDF
    Traditional all-stop train operation mode cannot meet the demand of long travel distance and centralized travel of commuters very well. To meet this special travel demand, a zonal train operation mode based on “many-to-many” train stops is proposed. The coefficient of passenger exchange is used to locate suburban areas by depicting travel characteristics of commuters. Operational separating points within the suburban area are used as decision variables to analyze the combined cost components of this model, including passenger travel costs and railway operating costs. An integer programming model with the lowest overall cost is established, and the genetic algorithm is employed to solve it. The results proved good relative benefits in operation costs and travel time. And the sensitivity analysis of both coefficient of passenger exchange and passenger intensity has shown that the zonal operation mode is suitable for suburban railways with centralized travelers. However, the research also shows that when the passenger volume rose to a very high level, the number of zones would be limited by the maximized capacity of railway lines, which may cause the decline of the relative operational efficiency

    Vehicle Scheduling Optimization considering the Passenger Waiting Cost

    Get PDF
    In the operational planning process of public transport, the time a passenger spends on waiting is a very critical element for judging passenger service. Schedule synchronization is a useful strategy for reducing bus waiting time and improving service connectivity. This paper develops an extended vehicle scheduling model, taking into account the interests of passengers and operators in attaining optimization of timetable synchronization integrated with vehicle scheduling and considering the passenger waiting cost. Deficit functions at terminals are formulated. Deadheading (DH), shifting departure time (SDT), and network flow technique are used for vehicle scheduling with the consideration of passenger waiting times. An experimental study in Beijing is conducted and three important bus lines are selected as a regional bus network to demonstrate the methodology developed. Results show that both the fleet size of bus operators and the waiting cost of passengers are minimized. For example, the minimum fleet size can be reduced from 28 vehicles to 24 ones while the passenger times are less than 20 minutes in this multidepot network. Document type: Articl

    Metro scheduling to minimize travel time and operating cost considering spatial and temporal constraints on passenger boarding

    Get PDF
    Passengers on metro platforms can board a train only when the train has surplus capacity and the dwell time is sufficient, while the latter condition is omitted in previous studies. Taking into account the impacts of train capacity and dwell time on passengers boarding, this study develops a model on optimizing metro timetable to reduce passenger travel time and metro operating cost, through regulating trains’ inter-station run-time, dwell time and headway. The NSGA-II algorithm is employed to obtain the near-optimal Pareto Frontier of the proposed model. To address insufficient dwell time scheduled in the timetable, three operating strategies are proposed and compared: a. sticking to nominal timetable; b. extending dwell time only; c. extending dwell time and recovering delay as soon as possible by compressing train inter-station run-time. Case studies on real-life metro line prove that some passengers cannot board the train during peak hours due to insufficient dwell time. In this context, strategy a brings low-quality service because passengers are stranded at platform even though the train has surplus capacity. In contrast, more passengers can board the train with strategies b and c because dwell time is extended for passengers’ boarding when train has surplus capacity. Compared to strategy b, strategy c reduces the average in-vehicle time of passengers by 2.5% through compressing inter-station run-time to recover the delay. The timetable optimized based on strategy c saves total travel time of passengers by 3.1% without increasing operating cost when compared to the practical timetable

    Designing robust schedule coordination scheme for transit networks with safety control margins

    Get PDF
    We propose a robust schedule coordination scheme which combines timetable planning with a semi-flexible departure delayed control strategy in case of disruptions. The flexibility is provided by allowing holding for the late incoming bus within a safety control margin (SCM). In this way, the stochastic travel time is addressed by the integration of real-time control and slacks at the planning phase. The schedule coordination problem then jointly optimises the planning headways and slack times in the timetable subject to SCM. Analytical formulations of cost functions are derived for three types of operating modes: uncoordinated operation, departure punctual control and departure delayed control. The problem is formulated as a stochastic mixed integer programming model and solved by a branch-and-bound algorithm. Numerical results provide an insight into the interaction between SCM and slack times, and demonstrate that the proposed model leads to cost saving and higher efficiency when SCM is considered. Compared to the conventional operating modes, the proposed method also presents advantages in transfer reliability and robustness to delay and demand variation
    • …
    corecore