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ABSTRACT
Due to the congested scenarios of the urban rail-

way system during peak hours, passengers are often left 
behind on the platform. This paper firstly brings a pro-
posal to capture passengers matching different trains. 
Secondly, to reduce passengers’ total waiting time, time-
table optimisation is put forward based on passengers 
matching different trains. This is a two-stage model. 
In the first stage, the aim is to obtain a match between 
passengers and different trains from the Automatic Fare 
Collection (AFC) data as well as timetable parameters. 
In the second stage, the objective is to reduce passen-
gers’ total waiting time, whereby the decision variables 
are headway and dwelling time. Due to the complexity of 
our proposed model, an MCMC-GASA (Markov Chain 
Monte Carlo-Genetic Algorithm Simulated Annealing) 
hybrid method is designed to solve it. A real-world case 
of Line 1 in Beijing metro is employed to verify the pro-
posed two-stage model and algorithms. The results show 
that several improvements have been brought by the new-
ly designed timetable. The number of unique matching 
passengers increased by 37.7%, and passengers’ total 
waiting time decreased by 15.5%.

KEYWORDS
urban railway system; train matching; timetable 
optimisation; AFC data; machine learning.

1. INTRODUCTION 
Recent years have witnessed a tremendous in-

crease in the urban railway transit ridership. In Chi-
na, by the end of 2017, 17 billion ridership had been 
carried by urban railway transit [1] (Mao 2018). 
As for the Beijing Metro, 4.53 billion passengers 
were transported in 2019. The maximum load factor 
on Line 1 even reached 100% also in 2019. Thus, 
during the peak hours in the major metropolitan 
stations, heavy ridership remains a challenge to the 
daily regular operational schedule. Besides, a grow-
ing number of passengers will return to work after 
the COVID-19 crisis in 2020. How to deal with 
heavy ridership in metro stations to guarantee pub-
lic hygiene is the concern of many scholars. One 
of the practical approaches is travel reservation [2] 
(Han et al. 2020). Travel reservation in metro sta-
tions refers to the reservation of passenger’s depar-
ture time before travelling, which belongs to travel 
demand management (TDM). Another approach is 
the fare-reward scheme [3] (Yang et al. 2018). Pas-
sengers will be rewarded a free trip if the travelling 
period is not during peak hours. Regardless of the 
travel reservation or the fare-reward scheme, one 
primary issue is passenger-and-trains matching. 
This concept refers to providing the probabilities 
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In general, the objective of timetable optimi-
sation is heterogeneous. Yang et al. [15] (2017) 
proposed a bi-objective model to minimise passen-
gers’ total travel time and net energy consumption. 
Binder et al. [16] (2017) delivered a tri-objective 
model that considers passenger satisfaction, oper-
ational costs, and deviation from the original time-
table. Parbo et al. [17] (2014) considered transfer-
ring time minimisation in the system. Sels et al. 
[18] (2016) minimised passengers’ travel time to 
optimise the timetable. However, a limited number 
of research studies have been devoted to timeta-
ble optimisation based on each passenger’s train 
matching behaviour obtained by machine learning 
(ML). In this study, a model to minimise passen-
gers’ total waiting time considering each passen-
ger train matching is designed in the context of the 
peak hour. Additionally, due to the indeterminate 
train matching of each passenger, the formula of 
passengers’ total waiting time should be well re-
designed considering the probabilities of passen-
gers matching different trains. Unlike the formu-
la proposed by Newell [19] (1971), in this study, 
the probabilities of passengers matching different 
trains are added in the passengers’ total waiting 
time. 

In summary, the main contribution of this pa-
per is developing a two-stage model to deal with 
the passenger-and-trains matching problem and 
timetable optimisation. In detail, (1) in the first 
stage, a likelihood function of the probabilities is 
proposed to deal with passenger-and-trains match-
ing problem. (2) In the second stage, passengers’ 
total waiting time is considered as the objective to 
optimise the timetable. (3) This research fills the 
gap of timetable optimisation based on passen-
ger-and-trains matching behaviour. 

The remainder of this paper is organised as fol-
lows. The overall problem statement is presented 
in Chapter 1. Chapter 2 contains a pre-processing 
for the AFC data. Chapter 3 introduces the models 
and algorithms utilised for solving the two-stage 
model. Chapter 4 is utilised to verify the model 
and the proposed algorithm. The final chapter con-
cludes with a summary of the findings.

2. PROBLEM DESCRIPTION
Due to the overcrowding scenarios at the sta-

tion, some passengers who miss the first train 
would be categorised as left-behind passengers. A 
stampede of left-behind passengers would struggle 

of passengers matching different trains. Moreover, 
based on the passenger-and-trains matching, time-
table optimisation could become more accurate. 
Thus, the investigation of timetable optimisation 
combing passenger-and-trains matching merits 
further discussion. 

Besides passenger-and-trains matching, a well- 
designed timetable would increase passengers’ sat-
isfaction. In addition, a poorly designed timetable  
would lead to some unexpected situations, e.g., just 
missing the connecting train [4] (Guo et al. 2016), 
longer waiting time [5] (Barrena et al. 2014), etc. 
With this concern, it is essential to elaborately de-
sign an efficient, dynamic timetable for the con-
gested urban railway transit to satisfy passenger 
demands [6, 7] (Robenek et al. 2018, Wang et al. 
2015). Specifically, many efforts from literature 
might help us to better understand what the effi-
cient and dynamic timetable would bring us. An 
efficient timetable would reduce passengers’ travel 
costs in terms of passengers’ waiting time [8] (Zhu 
et al. 2017), and a dynamic timetable would be 
more efficient in balancing passenger demands and 
transit services [9] (Fu et al. 2003). Therefore, at 
present, timetable optimisation is mainly based on 
passenger demands. Indeed, passenger demands 
can be inherent in the Automatic Fare Collection 
(AFC) data. In general, the AFC data [10] (Jiang et 
al. 2016) provides detailed individual information 
including departure station, destination station, en-
try time and exit time, etc. With the help of useful 
AFC information, macroscopic and microcosmic 
statistical indicators would be easily obtained. 
From the perspective of macroscopic statistical in-
dicator, it includes passenger volume [11] (Shi et 
al. 2018) at peak hour, etc. Concerning the micro-
cosmic statistical indicator, it consists of passen-
gers’ various behaviours [12, 13] (Sun et al. 2012, 
Zhou et al. 2015), including transfer behaviour, 
train matching behaviour, walking behaviour, etc. 
How to infer these implicit macroscopic and mi-
crocosmic indicators from the AFC data remains a 
major challenge. In this line of research, emphasis 
is placed on inferring passengers matching differ-
ent trains from the massive AFC data. Similarly, 
Kusakabe et al. [14] (2010) proposed the “train 
choice behaviour” but it did not, however, reflect 
each passenger’s train choice behaviour accurate-
ly. 
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passengers should walk to the origin platform 
under their different speeds. Passenger access 
and egress walking time are approximated by the 
truncated normal distribution, where it reflects the 
fluctuations in passenger speeds. Due to different 
circumstances on the platform, the set of alterna-
tive trains which the passenger will probably pick 
up are denoted in black colour in Figure 1. Herein, 
the train that the passenger picks up is no longer 
deterministic. Correspondingly, P1

i,u and P2
i,u are 

the probabilities of this passenger matching the 
two black trains, respectively. In this example, this 
passenger would not pick up the white trains, be-
cause the departure or arrival time of these trains 
goes beyond the passenger’s journey time limit. 
Thus, the probability of this passenger matching 
the white trains would be set as zero. The sum of 
P1

i,u and P2
i,u would be equal to one. Generally, the 

advantages of the proposed passenger-and-trains 
matching lie in its ability to give better interpret-
ability in accordance with the practical experience. 

3. DATA PREPARATION 

3.1 Passenger types 
In public transport, a great amount of useful in-

formation is implicit in the data resources. In this 
paper, we only discuss passenger-and-trains match-
ing where their origins and destinations are on the 
same line. In other words, passenger routes should 
be modelled explicitly if passengers have transfer 

to board the next trains. In essence, this problem 
belongs to the train matching category, which is 
the microcosmic issue from the passengers’ per-
spective. Similarly, the passenger flow assignment 
problem in the metro network is to achieve the 
macroscopic matching between the passenger vol-
ume and the network capacity. However, complex-
ity is a common issue encountered in the tradition-
al passenger flow assignment model [20] (Sun et 
al. 2015), especially in the context of peak hours. 
Theoretically, the concept of passenger-and-trains 
matching is proposed in this paper, motivated by 
the phenomenon of passengers left behind [21] 
(Zhu et al. 2018). The probabilities of passengers 
matching different trains is gathered from the AFC 
data records and timetable parameters. 

To the best of our knowledge, each passenger’s 
journey time on train, dwelling time at each sta-
tion, and headway are fundamental factors to af-
fect the probabilities of passengers matching dif-
ferent trains. In general, passenger journey time 
consists of passenger waiting time, passenger 
walking time, and in-vehicle consuming time. A 
simplified diagram (Figure 1), which does not con-
sider passenger transfer behaviour, is applicable to 
demonstrate the probabilities of passengers match-
ing different trains. 

Schematically, passenger and train movements 
can be described as particular curves temporal-
ly and spatially. Indeed, each passenger’s depar-
ture time tin

i,u and arrival time ti,v
out are known from 

the AFC system. After entering the entry gate,  

Time

 Passenger’s arrival time

 Passenger’s departure time

Total journey time
Waiting time

Access walking time xin
i,u

The white train

The white train

The white train

The black train

The black train
Egress walking time xi,v

out

Entry gate Origin
platform

Destination
platform

Exit gate Space

tin
i,u

ti,v
out

P2
i,u

P1
i,u

Figure 1 – Possible passenger-and-trains matching
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Type 3: passengers who do not have transfer be-
haviour are represented by the chain line in Figure 2. 
Regarding this type of passengers, their origins and 
destinations are on the same line, which is why pas-
senger-and-trains matching at the original station is 
considered.

Without loss of generality, if neither the passen-
gers’ origins nor destinations are typically on Line 
1, and they would choose Line 1 to reach their des-
tinations, this type of passengers can be categorised 
as a special combination of Type 1 and Type 2. 

3.2 Determining routes by adopting BFS
According to the three types of passengers, the 

premise of calculating the probabilities of passengers 
matching different trains is to obtain the passenger’s 
route if the passenger has transfer behaviour. In our 
paper, the passenger’s route is assumed to strictly 
follow a predetermined route, which is obtained by 
the Breadth-First Search (BFS). In other words, the 
proposed BFS is not followed by the passenger and 
neither are the effects of normal deviations by the de-
terministic journey time. Then, the passenger’s deter-
mined route would be decomposed into several parts 
which belong to different lines. For descriptive con-
venience, passenger’s journey time on each decom-
posed route is approximately calculated by the pro-
portion for which the length of the decomposed route 

behaviour. In general, three types of passengers 
should be considered according to their origins and 
destinations.
Type 1: passengers who transfer from Line 1 are 
represented by the dot line in Figure 2. For this type 
of passengers, their origins are on Line 1, and in 
contrast, their destinations are on Line 2. Passen-
ger-and-trains matching at the original station on 
Line 1 is considered. 
Type 2: passengers who transfer to Line 1 are repre-
sented by the dash line in Figure 2. The destinations 
of this type of passengers are on Line 1, but their 
origins, on the other hand, are on Line 4. Passen-
ger-and-trains matching at the transfer station on 
Line 1 is considered.

Departure station

Space

Arrival station

Decomposed
route 2

Decomposed
route 1

Transfer
time

In-vehicle
consuming time

Time

Determined
route

Line 2

Line 1

Transfer station

Access walking
time + waiting

time

In-vehicle
consuming time

Egress
walking time

Egress
walking time

Access walking
time + waiting time

Journey time 1 Journey time 2

Figure 3 – The components of each decomposed journey time

Line 1

Line 2 Line 4

V1

V2

V6

V3 V7

V4 V5 V8

V9

V0

Transfer out of Line 1
Transfer into Line 1
No transfer

Figure 2 – Passengers’ different routes through Line 1
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4. METHODOLOGICAL FRAMEWORK
In this study, the passenger’s route obtained by 

the BFS is the first step to address the probabilities 
of passengers matching different trains. Moreover, 
the passenger’s journey time on each decomposed 
route is also deterministic. Thus, according to the 
passenger’s journey time and timetable parameters 
at the current stage, the probabilities of passengers 
matching different trains would be determined by 
the following proposed models and algorithms. 
Note that the timetable parameter is one of the ba-
sic factors that affect the probabilities of passengers 
matching different trains. Then, if timetable param-
eters are changed, the probabilities of passengers 
would be changed as well, which seems to be a 
domino effect. Therefore, it is significant to increase 
the probability of passengers matching the first train 
to reduce passenger waiting time by adjusting time-
table parameters. Obviously, from the perspective 
of the urban railway management, it is also useful 
to adjust timetable parameters which include dwell-
ing time of the train at each station and headway 
between two consecutive trains. With this concern, 
a two-stage model is proposed to deal with the re-
lationship between the probabilities of passengers 
matching different trains and timetable optimisa-
tion. Specifically, in stage one, the aim is to obtain 
the probabilities of passengers matching different 

accounts in the entire route. Therefore, two aspects 
should be considered. Firstly, in our paper, passen-
ger’s journey time on each decomposed route is in-
dependent. Secondly, passenger’s journey time on 
each decomposed route also comprises passenger’s 
waiting time, passenger’s access walking time, pas-
senger’s egress walking time, and in-vehicle con-
suming time. In other words, passenger’s transfer 
time at the transfer station is roughly separated into 
three parts (Figure 3), including passenger’s egress 
walking time, passenger’s access walking time, and 
passenger’s waiting time.

In general, the BFS is a basic methodological 
approach that solves graph traversal. The metro net-
work is a complex graph that involves nodes and 
edges. Specifically, the node represents the station, 
and the edge represents the traverse between two 
adjacent stations. Thus, exploring the route between 
any two stations is the extension of the graph tra-
versal. 

In the BFS, firstly, the scheduling discipline of 
the queue is set as first-in-first-out (FIFO). Sec-
ondly, three sets utilised in the BFS are defined to 
collect different nodes. Namely, W is the set whose 
nodes are still not accessed; B is the set whose nodes 
were already accessed; G is the set whose nodes are 
going to be accessed. Therefore, the algorithm flow-
chart of the BFS is depicted in Figure 4.

Initialise Beijing metro network, define three
sets: B, G, W, input passenger's origin node as Vs,

passenger's destination node as Vd

Start

Enqueue Vs to G，and remove Vs from W

According to the scheduling discipline,
dequeue Vn from G

Append Vn to B

Select nodes Vw which are adjacent to
Vn  and belong to W

Does Vw belong to Vd?
Enqueue Vw to G，and remove Vw

from W

Obtain passenger's route and transfer
station Vt

End

Y

N

Figure 4 – The flowchart of BFS
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tion 8, the headway satisfies the minimum headway 
request and it means that the number of trains oper-
ating within a timetable is also sufficient.

4.2 Notations
In this study, the following notations are defined 

to formulate the two-stage model. 
Sets/Matrix:
J    – Set of running trains;
U   – Set of stations, and one practical station is  
     separated into two bi-direction virtual  
     stations, i.e., the number of all station is  
     set as 2N;
ηu,v(t) – Trip demand matrix, i.e., the number of  
     passengers who depart at station u at å 
     time t heading to station v;
Pu   – The sum of passengers who depart at the  
     station u during the study period [t0,t0,+T];
Parameters:
t0    – Start time of the research period; 
T    – Lasting time of the research period, i.e.,  
     the study period is [t0,t0,+T];
ATj,u  – The number of passengers who match 
     train j at the station u according to the  
     corresponding probability; 
BTj,v  – The number of passengers who alight  
     from train j at the station v using corre 
     sponding probability;
xi,u,v(t) – 0-1 binary parameter, i.e., if passenger i  
     departs from the station u and his/her  
     destination station is at the station v, the  
     value is one, and vice versa;
ti,u

in   – Passage time of passenger i at an entry  
     gate of the station u; 
ti,v

out   – Passage time of passenger i at an exit gate  
     of the station v;
τi,u

in   – Access walking time of passenger i at the  
     station u; 
τi,v

out  – Egress walking time of passenger i at  
     the station v; 
ti,u

a    – The arrival time of passenger i on the plat 
     form at the station u; 
TJj,u  – The arrival time of train j at the station u;
TFj,u  – The departure time of train j from the  
     station u;
mi   – The latest alternative train for passenger i  
     to match;
mi    – The earliest alternative train for passenger    
     i to match;
TRj,u  – Running time of train j in the traverse  
     between the station u and the station u +1; 

trains. In the stage two, the objective is set to re-
duce passengers’ total waiting time by adjusting the 
timetable.

4.1 Assumptions
Before formulating the two-stage model, several 

assumptions are provided.
1) In our proposed framework, the minimum data-

set should include the AFC data and timetable 
information.

2) Passenger route is strictly followed by a predeter-
mined route, which is obtained by the BFS.

3) Each passenger’s decomposed route is indepen-
dent. 

4) Passenger’s access and egress walking time on 
each decomposed route follows the truncated 
normal distribution.

5) The number of alternative trains that the passen-
ger will probably pick up is no more than four.

6) Trains are punctual according to the scheduled 
timetable.

7) Trains follow the even schedule with a constant 
headway.

8) The number of trains operating within a timetable 
is sufficient. 
With regards to the assumption 2, two aspects 

should be considered. Firstly, the passenger’s path 
choice is another interesting research orientation, 
which provides the demand forecasting in peak 
hours. Secondly, the probabilities of which train the 
passenger will pick up should be based on a prede-
termined route. Thus, for simplicity, it is exceeding-
ly necessary to model passenger route according to 
the BFS. For assumption 3, the purpose is to split the 
passenger’s transfer time into three parts, including 
passenger’s egress walking time, passenger’s access 
walking time, and passenger’s waiting time, to uni-
fy each decomposed route. Therefore, the probabil-
ities of passengers matching different trains on each 
decomposed route would be determined according 
to the proposed model and algorithm. Regarding 
assumption 4, this assumption has been proven by 
some recent studies [22] (Zhang et al. 2015). For 
assumption 5, undoubtedly, the more alternative 
trains are set, the more accurate the result would be. 
Given that computation efficiency is related to the 
number of alternative trains, it should be noted that 
the number of alternative trains should not be too 
large. For assumption 6, the influence of the train’s 
delay on passengers is not considered. For assump-
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2) If the passenger’s egress walking time is sub-
tracted from the passage time of passenger at the 
exit gate from the AFC system, the result should 
be larger than the arrival time of the train j at the 
destination station. 
If and only if the above two conditions are satis-

fied, the probability of passenger matching the train 
j would be obtained. In other words, the process of 
calculating the probability of the passenger match-
ing the train j should typically involve three inde-
pendent parts, namely, the probability of ti,u

a ahead 
of the departure time of the earliest train j, the prob-
ability of passenger matching the train j, and the 
probability of passenger exiting from the destina-
tion station successfully by train j. 

(i) Arrival time of passenger i on the platform 
should not exceed the departure time of the earliest 
train mi  at his/her departure station:

: , , ,TN a b,i u
in 2x n vr r_ i  (1)

: , , ,TN a b,i v
out 2x n vr r_ i  (2)

t t, , ,i u
a

i u
in

i u
inx= +  (3)
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t a b b a
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In our research, passenger’s access walking time 
and egress walking time follow the truncated nor-
mal distribution (Equation 4), where μ̅ and  σ̅ are re-
spectively the mean and the standard deviation of 
the normal distribution. a and b are respectively the 
lower bound and the upper bound of the truncated 
normal distribution. ψ() is the probability density 
function (PDF) of the truncated normal distribution.  
ϕ() is the PDF of the normal distribution. Φ() is the 
cumulative density function (CDF) of the normal 
distribution.

(ii) Probability of passenger i matching the train:

P board train k TF t TF
P m k m

,
,

m i u
a

m

k
i u

i i1

, ,i u i u

m

1

i

# #

# #= - +

-`
^ h

j
 (6)

where the value of P ,
k
i u

m 1i +-  is unknown, and its 
posterior distribution would be determined in our 
research. 

Cj,u   – The number of passengers on the train j  
     when departing from the station u;
C    – Prescribed passenger loading capacity of  
     a train;
ξ    – Allowed full-loaded coefficient;
TG   – The required time of a train during a  
     u-turning operation at the terminal;
hmin  – The minimum headway between two  
     consecutive strains at the station;
TDu

j,u  – The maximum dwelling time of train j at  
     the station u;
Dl

j,u   – The minimum dwelling time of train j at  
     the station u;
Wi,u  – Waiting time of passenger i at the station u;
W   – Passengers’ total waiting time;
Lu

i(Z
u
i) – The probability of passenger i tapping-out 

     during his/her journey time at the  
     departure station u;
G(P)  – The likelihood function of the  
     probabilities of passengers matching  
     different trains;
Decision variables:
TDj,u  – Dwelling time of train j at the station u;
h    – Headway between two consecutive strains 
     at the same station;
Pn

i,u   – Probability of passenger i matching the 
     nth train at the station u, i.e., the maxi 

     mum of n is set as four, ,P 1,
n
i u

n 1

4
=

=
/  and  

     if n is one, it means that the probability of  
     passenger i matching the first train at the  
     station u is P1

i,u .

4.3 Passenger-and-trains matching 
problem

The probability of passengers matching differ-
ent trains utilised in stage two should be calculated 
in stage one. In our research, a complete passenger 
journey time contains four parts, including passen-
ger’s access walking time, passenger’s waiting time, 
in-vehicle consuming time, and passenger’s egress 
walking time. In particular, whether the passenger 
picks up the train j or not is based on two conditions 
as follows:
1) The arrival time of a passenger on the platform 

is derived by the passage time of a passenger 
at the entry gate from the AFC system plus the 
passenger’s access walking time. Moreover, the 
obtained arrival time of a passenger on the plat-
form should not exceed the departure time of the 
earliest train j at the departure station. 
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Due to the unknown PDF expression of the prob-
ability of passenger matching different trains, the 
Bayesian estimation is proposed to deal with this 
issue. According to the Bayesian framework, the 
prior distribution of Zi

u is assumed, and after train-
ing with the real AFC data, the posterior distribu-
tion of Zi

u would be learned. Since almost no further 
information would be known about the probabili-
ties in advance, then in our research, it is assumed 
that the prior distribution of Zi

u follows the broad  
distribution, such as the uniform distribution. 
Therefore, the value of G(Zi

u) would be equal to 
one. Then, Expression 11 could be obtained.

, , , , , ,
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Herein, to normalise Expression 11, a constant val-
ue Gnorm is utilised in Equation 12. Undoubtedly, it 
is conceivable that maximising the likelihood of 
Function 12 would achieve the replication of reality 
in the metro system. Then, the probabilities of each 
passenger matching different trains would be deter-
mined by the following algorithm. 

4.4 Timetable optimisation 

In stage two, the aim is to reduce passengers’ 
total waiting time by adjusting headway and dwell-
ing time at each station. Firstly, the probabilities 
of passengers matching different trains should be 
added to the objective. Secondly, microcosmic and 
macroscopic constraints should both be taken into 
accounts in our model. For the microcosmic con-
straint, it indicates how many passengers would 
be loaded without exceeding the upper bound 
of the train capacity. To better delineate passen-
ger-and-trains matching, the unit of time is in sec-
onds. For the macroscopic constraint, it illustrates 

(iii) Probability of passenger i exiting the desti-
nation station successfully by train k:
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(iv) Probability of passenger i tapping-out during 
his/her journey time at the departure station u:

, ,

, , ,

, , ,

P TJ t board train k TF t TF
P TF t TF

P board train k TF t TF
P TJ t board train k

t a t b t dt

P t a TJ b TJ dt

, , , , , ,

, ,

, , ,

, , ,

, ,

,
, ,

k v i v
out

i v
out

m u i u
a

m u

m u i u
a

m u

m u i u
a

m u

k v i v
out

i v
out

i u
in

i u
in

TF

TF u

k m
i u

k v k v
TJ

t

1

1

1

1

,

,

,

i i

i i

i i

m u

m

i

k v

i v
out

1i

i

$

$ $

$

$

$

# # #

# #

# #

#

x

x

} n v

} n v

+
=

+

= + +

+ +

-

-

-

- +

-

r r

r r

^

`
^

^

_

_

h

i

h
j

i

h

#

#

 (8)

, ,

, , ,

, , ,

ZL

P TJ t board train k TF t TF

t a t b t dt

P t a TJ b TJ dt

, , , , , ,

, ,

,
, ,

i
u

i
u

k v i v
out

i v
out

m u i u
a

m u
k m

m

i u
in

i u
in

TF

TF

k m
i u

k v k v
TJ

t

k m

m

1

,

,

,

,

i i
i

i

m u

m u

i
k v

i v
out

i

i

1

i

i

1

$

$

# # #x

} n v

} n v

= +

= + +

+ +

=

- +
=

-

-

r r

r r

^

^

_

_

h

i

i

h/

/

#

#

 (9)

Due to the independence of (i), (ii), and (iii), 
this probability (Equation 8) is derived by Equa-
tions 5–7. In Equation 9, it should be noted that  
Zi

u=[P1
i,u, P2

i,u, P3
i,u, P4

i,u]T is the vector that contains 
the probabilities of passenger i matching train at the 
departure station u.

(v) The likelihood function of the probabilities 
of passengers matching different trains: 
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Figure 5 – A simple representation of the urban railway transit line
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With the intent of reducing passengers’ total 
waiting time, the objective in stage two is designed 
to minimise passengers’ total waiting time. Due to 
the indeterminate passengers train matching, the 
probabilities of passengers matching different trains 
should be added in Objective 24, and the dwelling 
time of each station and headway are the decision 
variables.

4.5 Solution algorithm by implementing 
MCMC-GASA

In stage two, timetable optimisation considering 
capacity constraint falls in the category of the NP-
hard class [23] (Niu et al. 2013). In other words, this 
kind of problem is difficult to be solved by com-
mercial optimisation solvers within a reasonable 
amount of time. Thus, motivated by the artificial in-
telligent technique, a genetic algorithm (GA) com-
bining simulated annealing (SA) is implemented to 
optimise the timetable in our research. In general, 
the advantage of the GA [24] (Yin et al. 2019) lies in 
its ability to solve the intractable problem efficient-
ly and provide good extensity. With respect to SA 
[25] (Kang et al. 2016), it turns out that it does well 
in searching for the optimal solution. Thus, GASA 
is utilised to find the suboptimal solution for the 
stage-two model. 

Regarding stage one, the challenge is to deter-
mine the posterior distribution to obtain the proba-
bilities of passengers matching different trains. The-
oretically, Markov Chain Monte Carlo (MCMC) 
[26] (Xu et al. 2018) has been widely used in ad-
dressing this kind of problem. The step of MCMC 
is to generate the candidate samples according to 
prior distribution and to generate the next candidate 
samples by the random walk process, then to accept 
the new candidate samples or to reject them based 
on the selection rules. 

Therefore, to solve stage two successfully and 
efficiently, MCMC-GASA is implemented to deal 
with this model.

MCMC utilised for stage one
For MCMC, the Metropolis-Hastings (MH) 

technique is typically utilised for sampling. In gen-
eral, in a recent study [27] (Lee et al. 2015), cer-
tain advantages of the MH sampling from the as-
pects of its efficiency and its feasibility have been 

that train movements are strictly followed by the 
scheduled timetable, and correspondingly, the stop-
skip pattern is not considered in our research. 

Microcosmic constraints from the passenger’s 
perspective
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C C AT BT, , , ,j u j u j u j u1= + --  (15)

C C,j u # p  (16)

Passengers matching different trains are no lon-
ger deterministic. In addition, Equation 13 gives the 
formulation that the number of passengers who 
match the train j should be explicitly cumulated by 
the probability of passengers matching the train j. In 
Equation 14, 0-1 binary variable xi,u,v(t) is determined 
by the AFC data record. To summarise, the num-
ber of passengers on the train j can be calculated as 
Equation 15. In general, Constraint 16 ensures a finite 
capacity of a running train to agree with the practi-
cal experience.

Macroscopic constraints from an operation  
perspective

TJ TF TR, , ,j u j u j u1 1= +- -  (17)

T T TF J D, , ,j u j u j u= +  (18)

TF TF h h, , minj u j u1 $- =-  (19)

TJ TJ T, ,j N j N G1 - =+  (20)

TJ TJ T, ,j j N G1 2- =  (21)

TD TD TD, , ,j u
l

j u j u
u# #  (22)

The stop-skip pattern is not considered in our 
research. Thus, any two consecutive trains should 
satisfy Equations 17–21. Specifically, for Equation 20, 
it ensures a u-turning operation at the end termi-
nal station; however, for Equation 21, it ensures the 
u-turning operation at the start terminal station. 
Generally, dwelling time at each station is the de-
cision variable, and Constraint 22 gives a boundary 
condition.

The objective of the stage-two model
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Secondly, for the crossover operation, the re-
placing method is employed. Herein, the crossover 
operation indicates that a gene value of the chro-
mosome is replaced by the gene value in the same 
position of another chromosome. 

Thirdly, to coordinate the crossover operation, 
the mutation operation is adopted to enlarge the 
range of feasible solutions. Particularly, gene values 
in the chromosome are replaced by a random num-
ber to meet the boundary Constraints 19 and 22. 

With respect to the Metropolis rule for iteration, 
this is the core technique for the SA. In that sense, 
for any iteration, there are two objective values, 
namely, the new objective value Wnew and the old 
objective value Wold. Accordingly, it should be not-
ed which objective value should be selected in this 
iteration. Thus, if the difference between Wnew and   
Wold  is less than zero, then the new objective value 
Wnew is accepted with the probability ρ=1. However, 
if Wnew is larger than Wold, then the new objective 
value would be accepted with a small probability  
ρ=exp(-(Wnew-Wold)/tc), where tc is the current an-
nealing temperature.

To summarise, the detailed steps of the MC-
MC-GASA algorithm are described as follows:
Step 1: Initialisation 
1.1. Set the initial parameters: initial temperature 
Tini, lowest temperature Tend, cooling efficiency λ, 
population Npop, generation k. 
1.2. According to the timetable at the current stage, 
extract the genes, and generate an initial parent 
chromosome. 
1.3. Copy the parent chromosome in 1.2, perform 
the crossover operation to these two parent chromo-
somes, and generate two child chromosomes.
1.4. Repeat 1.3 until the population reaches Npop, 
mark the initial generation as k=1, calculate the 
probabilities of passengers matching different trains 
according to Figure 6 for each chromosome, obtain 
passengers’ total waiting time Wi for each chromo-
some i. 
Step 2: Creating new chromosomes by crossover 
operation and selecting by Metropolis rule.
2.1. If current temperature tc≤ Tend, then go to Step 
5; otherwise, go to 2.2.
2.2. For any chromosome i, conduct the crossover 
operation to obtain a new chromosome j, calculate 
the probabilities of passengers matching different 
trains according to Figure 6 for chromosome i and 
j, obtain passengers’ total waiting time Wi and Wj 
respectively.

shown. With regard to the efficiency, unlike the ba-
sic rejection rule, the MH algorithm would improve 
the efficiency of the convergence. Concerning its  
feasibility, the constant value Gnorm utilised in nor-
malisation (Equation 24) is not required to reduce the 
complexity of the calculation. Thus, it is suitable 
to use the MCMC method to address this issue in 
stage one. The detailed steps of MCMC are shown 
as follows:
Step 1: (Initialisation) Input timetable parameters, 
AFC data, and maximum iteration number M, for 
timetable parameters, including h, TJj,u, TFj,u, for 
AFC data, including ti,u

in, ti,v
out;

Step 2: (MH sampling) At the iteration t, generate the 
new candidate probabilities of passengers matching 
different trains ( ... , ... ),Z Z Z Z Z* N N

P
N

1
1

1
2

2
2 2

N2=  accord-
ing to the random walk process;
Step 3.1: (Metropolis acceptance rule) Cal-
culate the acceptance probability of 

: , ;minZ Z Z G P
G P1* *

*
t

t
1

1a =-
-_ ^

^i h
h( 2

Step 3.2: Generate a random number u0 from the 
uniform (0,1) distribution;
Step 3.3: Determine whether Z* should be accepted 
or not; if ,Z Zu < * t 1

0 a -_ i  then Z t=Z*; otherwise  
Z t=Z t-1;
Step 4: (Terminate or not) If t<M, then t=t+1, and 
return to Step 2; otherwise, go to Step 5;
Step 5: Obtain the probabilities of passengers 
matching different trains.

GASA incorporating MCMC for stage two
In general, the results obtained by the MCMC 

for stage one are added to the objective in stage two. 
Then, the main idea of timetable optimisation for 
stage two is to adjust the headway and train dwelling 
time at each station by the GASA algorithm. There-
fore, it is evident that any iterations of the GASA 
algorithm for stage two should involve a complete 
calculating process of the MCMC for stage one. For 
descriptive convenience, it is essential to specify 
some core techniques in GASA.

In the framework of GASA for solving stage two, 
the chromosome, crossover operation, mutation op-
eration, and Metropolis rule for iteration should be 
emphasised. Firstly, a chromosome involves the 
decision variables, which are called “genes.” Spe-
cifically, the following vector forms the genes of a 
chromosome:

, , , , ... , ... , ... ,
... , ,
TD TD TD TD TD TD TD
TD h j J

, , , , , , ,
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j j j j j N j N j N

j N
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Step 5: Obtain the optimal solution
5.1. Select the best chromosome from the popula-
tion as the output result. 

5. CASE STUDY OF LINE 1 IN BEIJING 
METRO

In this section, the case study of Line 1 in Bei-
jing Metro is selected to demonstrate the proposed 
models and algorithms during the morning peak 
hour (7:00–8:00) on a weekday. The snapshot of 
Line 1 is shown in Figure 6.

Specifically, Line 1 consists of ten transfer sta-
tions. To classify passengers into different types 
(Figure 2), it is necessary to determine the route for 
each passenger by using the BFS method. Some re-
sults are presented in Table 1. 

2.3. Calculate the difference between Wi and Wj, 
then, according to the Metropolis rule, determine 
whether the new chromosome is accepted or not.
2.4. Generate a new population P(k) according to 
2.2 and 2.3, then go to Step 3.
Step 3: Conduct the mutation operation to the pop-
ulation
3.1. Perform the mutation operation for 30% chro-
mosomes in the population Npop.
3.2. Replace the old genes with new genes by ran-
dom number strictly following the boundary Con-
straints 19 and 22.
3.3. Update the new population P(k) according to 
3.1 and 3.2, then set k=k+1, then go to Step 4.
Step 4: Terminate or not
4.1. If current temperature tc≤ Tend, then go to Step 
5; otherwise set the current temperature as tc=tc·λ, 
then return to Step 2.
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Figure 6 – The snapshot of Line 1 in Beijing Metro

Table 1 – Some results obtained by BFS

AFC ID number Departure station Arrival station Transfer station Passenger type

1251**21 PING GUO YUAN on 
Line 1

TAI YANG GONG on 
Line 10

Out at JUN SHI BO 
WU GUAN Type 1

6137**13 PING GUO YUAN on 
Line 1

SAN YUAN QIAO on 
Line 10

Out at JUN SHI BO 
WU GUAN Type 1

1045**20 PING GUO YUAN on 
Line 1 SU ZHOU JIE on Line 10 Out at GONG ZHU 

FEN Type 1

0405**53 FU CHENG MEN on Line 
2 XI DAN on Line 1 Into at FU XING 

MEN Type 2

1331**46 DENG SHI KOU on Line 5 SHUANG JING on Line 
10

Into at DONG DAN, 
out at GUO MAO Type 1 and Type 2

…
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train, the second train, the third train, and the fourth 
train is 0.63, 0.24, 0.09, and 0.04, respectively. The 
results correspond strictly to those in Figure 7. 

After timetable optimisation, in Figure 8, passen-
gers’ total waiting time decreased by 15.5%, more 
precisely, from 1218 hours (4387651 seconds) to 
1029 hours (3704584 seconds). Secondly, from the 
perspective of the probability of passengers match-
ing the first train, a passenger whose AFC ID is 
6185**19 is taken as an example to demonstrate the 
efficiency of the new timetable. This passenger en-
tered the station at 8:46:07, and exited at 8:56:09. 
In Figure 9, after calculations by using the MCMC, 
the train number which matches the passenger’s 
journey time is two, although the maximum alterna-
tive trains are four. Then, in Figure 9, the probability 
of this passenger matching the first train increased 
by 5%, specifically from 0.5 to 0.525. Thirdly, the 

5.1 Results analysis
The experiments were conducted on a personal 

computer with an Intel Core i5-6200U and 12GB 
RAM. With respect to GASA, the initial tempera-
ture, lowest temperature, cooling efficiency, popu-
lation, and generation are 100, 0, 0.9, and 55, re-
spectively. Regarding the basic parameters of the 
train, the number of the vehicle seats is set as 240, 
so the prescribed train capacity is 1440 persons/
train, then the allowed full-loaded coefficient of a 
train is 150%. Furthermore, the minimum headway 
is 120 seconds. For MCMC, the maximum itera-
tion is 1000. In addition, the lower bound and the 
upper bound of the truncated normal distribution, 
the mean and the standard deviation of the normal 
distribution are set to 0.3min, 2min, 1.5, and 1, re-
spectively. 

AFC data indicate a passenger’s unlink trip, 
which means that the passenger’s route is unknown. 
In China, AFC data provides information includ-
ing the passenger’s ID number, departure station, 
passage time at an entry gate, destination station, 
passage time at an exit gate, line number of the de-
parture station, and line number of the destination 
station. Furthermore, based on the AFC data and the 
current timetable parameters, the probabilities of 
passengers matching different trains would be cal-
culated by using the MCMC technique.

Before timetable optimisation, a simple example 
which includes 50 passengers is shown in Figure 7. 
Obviously, the area of the first train is the largest, 
which indicates that most passengers would match 
the first train successfully. It turns out that during 
the morning peak hours, most passengers would 
not be willing to wait in case of being late for work 
or school. However, due to the finite capacity of a 
running train, a phenomenon in which passengers 
are left behind typically occurs. Thus, the probabil-
ities of passengers matching the second, third, or 
fourth train would also be inferred. From Figure 7, 
the probability of passengers matching the second 
train would be typically larger than the counterpart 
matching the third train. Correspondingly, the prob-
ability of passengers matching the third train would 
also typically be larger than that matching the 
fourth train. Essentially, these results are coherent 
with passengers’ daily habits. Furthermore, a larger 
experiment during the period 7:00–8:00 which in-
cludes 40000 passengers was also conducted. The 
average probability of passengers matching the first 
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non-transfer stations is larger than those at transfer 
stations. Indeed, this phenomenon corresponds with 
a recent study [28] (Zhang et al. 2018). 

Based on the analysis, it can be concluded that 
the new timetable is more sufficient than the al-
ternatives from the passenger’s perspective. More 
precisely, several improvements are listed in Table 2. 
Some timetable parameters before and after optimi-
sation are provided in Table 3.

5.2 Sensitivity analysis
Given that different allowed full-loaded coeffi-

cients of the running train would affect the objective 
value of the stage-two model, several additional nu-
merical simulations were conducted on the MAT-
LAB platform. In Figure 11, passengers’ total waiting 
time would be shorter when the allowed full-loaded 
coefficient is higher. In particular, the passengers’ 

total waiting time is associated with the probabili-
ty of passengers matching different trains. Figure 12 

passenger whose probability of matching the first 
train is equal to one is defined as the unique match-
ing passenger. From Figure 10, the number of unique 
matching passengers after timetable optimisation 
increased remarkably compared to before. To sum 
up, the reason why passengers benefit a lot from the 
new timetable is that the objective of the new time-
table aims to reduce passengers’ total waiting time. 
Furthermore, passengers’ total waiting time is based 
on passengers matching different trains. In other 
words, shorter passengers’ total waiting time corre-
sponds with higher probability of passengers match-
ing the first train. Another interesting phenomenon 
is that the number of unique matching passengers at 
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Case 2 (regular matching passenger):
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Undoubtedly, W2
i,u in case 2 is larger than W1

i,u in 
case 1. It is indicated that the waiting time of a unique 
matching passenger is shorter than that of a regular 
matching passenger. Hence, with a higher full-loaded 

indicates how the full-loaded coefficient affects the 
number of unique matching passengers. When the 
full-loaded coefficient of a running train increases, 
the number of unique matching passengers increases 
as well. For demonstrative purposes, the following 
equation is utilised to explain the mechanism un-
derlying the phenomena in which passengers’ total 
waiting time decreases when the allowed full-load-
ed coefficient increases.
Case 1 (unique matching passenger):

W TF t, , ,i u j u i u
a1 = -

Table 3 – Timetable parameters [s]

Station Original dwelling time Optimised dwelling time 
(Up)

Optimised dwelling time 
(Down)

Running time between two 
stations

S1 30 26 25 -

S2 30 24 27 220

S3 30 39 34 150

S4 30 34 32 150

S5 40 46 43 120

S6 40 43 41 140

S7 45 48 45 130

S8 45 45 44 100

S9 40 34 36 100

S10 30 29 30 100

S11 30 31 32 120

S12 50 56 55 80

S13 30 24 26 120

S14 28 28 28 90

S15 30 35 34 90

S16 30 27 27 90

S17 45 45 45 80

S18 45 49 50 110

S19 30 24 26 120

S20 45 47 50 70

S21 30 20 23 120

S22 30 30 29 150

S23 30 31 31 150

Table 2 – The comparisons between the real timetable and the new timetable

Timetable Real timetable The best found by MCMC-GASA

Passengers’ total waiting time 1218 hours (0%) 1029 hours (-15.5%)
Unique matching passengers 14514 (0%) 19990 (+37.7%)

Headway 180 seconds 121 seconds 
CPU - 317 minutes
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The proposed MCMC-GASA is not efficient 
enough to find the optimal solution. Hence, a more 
efficient algorithm should be designed to optimise 
the timetable in the future. Furthermore, the appli-
cation of MCMC-GASA is limited by the minimum 
input dataset, and the results accuracy by MC-
MC-GASA is also affected by the results obtained 
by the BFS. Therefore, a general integrated algo-
rithm combing the BFS and MCMC-GASA should 
be constructed in the future.

Essentially, passengers matching different trains 
in the intermediate station of a complete route 
would be categorised as the transfer train matching 
behaviour. Thus, the proposed models would also 
be applicable for network optimisation. In future 
work, the external factors and unpredicted delays 
by network will also be included, and our models 
will be extended to a network case.
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基于乘客与地铁车次匹配的城市轨道交通时刻
表优化：以北京地铁线为例

摘要

由于高峰期地铁车站内的拥挤现象十分常见，
因此站台上的乘客容易发生滞留。本文首先提出一
个可以获取乘客匹配车次的方法，其次，为了降低
乘客总等待时间，本文提出基于乘客匹配车次的两
阶段时刻表优化模型。第一阶段模型的目标是根据
AFC数据和时刻表参数获取乘客匹配不同车次的概
率，第二阶段模型的决策变量包含列车发车间隔和
列车在各站的停站时间，目标函数是使乘客总等待
时间最小。鉴于本文提出的两阶段模型的复杂性，
本文提出马尔可夫链蒙特卡洛模拟-遗传模拟退火的
混合算法，并运用北京地铁一号线实际案例予以实
证。结果显示，优化后的时刻表更具优越性，其中
匹配唯一车次的乘客人数提高了37.7%，乘客总等待

时间下降了15.5%。

coefficient of a running train, the number of unique 
matching passengers would increase simultaneous-
ly. Thus, passengers’ total waiting time would be 
shorter as well.

6. CONCLUSION
To summarise, the mathematical model is for-

mulated to characterise each passenger matching 
different trains according to the AFC data record. 
Then, passengers’ total waiting time based on each 
passenger matching different trains is delivered as 
the objective of the timetable optimisation. Accord-
ingly, two elaborately designed algorithms are pro-
posed to estimate each passenger matching different 
trains and to optimise timetable, respectively. More-
over, a case study of Line 1 in Beijing metro is uti-
lised to verify the proposed models and algorithms. 
The results show that the new timetable consider-
ing passengers matching different trains would be 
better and more efficient than the alternative time-
table. Particularly, passengers’ total waiting time 
decreased from 1218 hours to 1029 hours, and the 
number of unique matching passengers increased 
from 14514 persons to 19900 persons. 

Specifically, the train loading and timetable pa-
rameters are utilised to build the model of passen-
ger-and-trains matching, and the timetable is opti-
mised according to passenger’s matching different 
trains. However, as mentioned in assumption 2, the 
passenger’s route is obtained by the BFS. In future 
research, random nature of decisions on the choice 
of route by passengers will be considered. Timeta-
ble parameters on different lines are different, and 
it indicates that the passengers’ different routes 
would affect the probability of passengers match-
ing different trains. Therefore, the probabilities of 
route choice for a passenger should be considered 
for affecting passenger’s matching different trains 
in the future. 

As for assumption 4, the advantage of the trun-
cated normal distribution lies in successfully char-
acterising the phenomenon in which the passenger’s 
walking time is not too long nor too short. However, 
the gender and the age of a passenger would affect 
the passenger’s walking time in the station as well. 
Thus, passenger’s walking time obtained by the 
truncated normal distribution would not be accurate 
enough. With this concern, signalling data of the 
mobile phone will be utilised to verify a passenger’s 
walking time in the future. 
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