55,465 research outputs found

    From laboratory bench to benchmark: technology transfer in laboratory medicine

    Get PDF
    Background: Life Sciences research, enhancing the occurrence of innovation, is able to impact clinical decision-making, both at diagnosis and therapy. Indeed, starting from the knowledge of specific needs and of technical-scientific demands, researchers can conceive and experiment innovative solutions. Despite these strengths, transferring research to the market in Life Sciences shows considerable criticalities. The aim of this paper is to provide concrete evidences on the processes of technology transfer based on the exploitation of the results obtained by KronosDNAsrl, an academic spin-off focused on reproductive medicine. Methods: Different tools were used to evaluate the technical feasibility (validation of the results obtained with the prototype) and to manage the technology transfer process of One4Two®. Results: The different analyses we carried out showed the feasibility of the proposed solution. As a result, the One4Two® prototype has been developed and validated. Conclusions: Here, we provide a strength of evidences on how knowledge obtained by translational research on "bench" can be used to be transferred to the market on "benchmark" enabling innovation in Laboratory Medicine. In addition, the model described for One4Two® can be easily transferred to other products

    Full sphere hydrodynamic and dynamo benchmarks

    Get PDF
    Convection in planetary cores can generate fluid flow and magnetic fields, and a number of sophisticated codes exist to simulate the dynamic behaviour of such systems. We report on the first community activity to compare numerical results of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions that allow easy comparison, since they are either steady, slowly drifting or perfectly periodic. The first two benchmarks are defined based on uniform internal heating within the sphere under the Boussinesq approximation with boundary conditions that are uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic, and has a drifting solution. Benchmark 2 is a magnetohydrodynamic benchmark that can generate oscillatory, purely periodic, flows and magnetic fields. In contrast, Benchmark 3 is a hydrodynamic rotating bubble benchmark using no slip boundary conditions that has a stationary solution. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier–finite element code. There is good agreement between codes. It is found that in Benchmarks 1 and 2, the approximation of a whole sphere problem by a domain that is a spherical shell (a sphere possessing an inner core) does not represent an adequate approximation to the system, since the results differ from whole sphere results

    GATE : a simulation toolkit for PET and SPECT

    Get PDF
    Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols, and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at the address http://www-lphe.epfl.ch/GATE/
    corecore