1,041 research outputs found

    Multiresolution Approximation of a Bayesian Inverse Problem using Second-Generation Wavelets

    Full text link
    Bayesian approaches are one of the primary methodologies to tackle an inverse problem in high dimensions. Such an inverse problem arises in hydrology to infer the permeability field given flow data in a porous media. It is common practice to decompose the unknown field into some basis and infer the decomposition parameters instead of directly inferring the unknown. Given the multiscale nature of permeability fields, wavelets are a natural choice for parameterizing them. This study uses a Bayesian approach to incorporate the statistical sparsity that characterizes discrete wavelet coefficients. First, we impose a prior distribution incorporating the hierarchical structure of the wavelet coefficient and smoothness of reconstruction via scale-dependent hyperparameters. Then, Sequential Monte Carlo (SMC) method adaptively explores the posterior density on different scales, followed by model selection based on Bayes Factors. Finally, the permeability field is reconstructed from the coefficients using a multiresolution approach based on second-generation wavelets. Here, observations from the pressure sensor grid network are computed via Multilevel Adaptive Wavelet Collocation Method (AWCM). Results highlight the importance of prior modeling on parameter estimation in the inverse problem

    Aging concrete structures: a review of mechanics and concepts

    Get PDF
    The safe and cost-efficient management of our built infrastructure is a challenging task considering the expected service life of at least 50 years. In spite of time-dependent changes in material properties, deterioration processes and changing demand by society, the structures need to satisfy many technical requirements related to serviceability, durability, sustainability and bearing capacity. This review paper summarizes the challenges associated with the safe design and maintenance of aging concrete structures and gives an overview of some concepts and approaches that are being developed to address these challenges

    A hysteretic multiscale formulation for validating computational models of heterogeneous structures

    Get PDF
    A framework for the development of accurate yet computationally efficient numerical models is proposed in this work, within the context of computational model validation. The accelerated computation achieved herein relies on the implementation of a recently derived multiscale finite element formulation, able to alternate between scales of different complexity. In such a scheme, the micro-scale is modelled using a hysteretic finite elements formulation. In the micro-level, nonlinearity is captured via a set of additional hysteretic degrees of freedom compactly described by an appropriate hysteric law, which gravely simplifies the dynamic analysis task. The computational efficiency of the scheme is rooted in the interaction between the micro- and a macro-mesh level, defined through suitable interpolation fields that map the finer mesh displacement field to the coarser mesh displacement field. Furthermore, damage related phenomena that are manifested at the micro-level are accounted for, using a set of additional evolution equations corresponding to the stiffness degradation and strength deterioration of the underlying material. The developed modelling approach is utilized for the purpose of model validation; firstly, in the context of reliability analysis; and secondly, within an inverse problem formulation where the identification of constitutive parameters via availability of acceleration response data is sought

    Multiscale Methods for Random Composite Materials

    Get PDF
    Simulation of material behaviour is not only a vital tool in accelerating product development and increasing design efficiency but also in advancing our fundamental understanding of materials. While homogeneous, isotropic materials are often simple to simulate, advanced, anisotropic materials pose a more sizeable challenge. In simulating entire composite components such as a 25m aircraft wing made by stacking several 0.25mm thick plies, finite element models typically exceed millions or even a billion unknowns. This problem is exacerbated by the inclusion of sub-millimeter manufacturing defects for two reasons. Firstly, a finer resolution is required which makes the problem larger. Secondly, defects introduce randomness. Traditionally, this randomness or uncertainty has been quantified heuristically since commercial codes are largely unsuccessful in solving problems of this size. This thesis develops a rigorous uncertainty quantification (UQ) framework permitted by a state of the art finite element package \texttt{dune-composites}, also developed here, designed for but not limited to composite applications. A key feature of this open-source package is a robust, parallel and scalable preconditioner \texttt{GenEO}, that guarantees constant iteration counts independent of problem size. It boasts near perfect scaling properties in both, a strong and a weak sense on over 15,00015,000 cores. It is numerically verified by solving industrially motivated problems containing upwards of 200 million unknowns. Equipped with the capability of solving expensive models, a novel stochastic framework is developed to quantify variability in part performance arising from localized out-of-plane defects. Theoretical part strength is determined for independent samples drawn from a distribution inferred from B-scans of wrinkles. Supported by literature, the results indicate a strong dependence between maximum misalignment angle and strength knockdown based on which an engineering model is presented to allow rapid estimation of residual strength bypassing expensive simulations. The engineering model itself is built from a large set of simulations of residual strength, each of which is computed using the following two step approach. First, a novel parametric representation of wrinkles is developed where the spread of parameters defines the wrinkle distribution. Second, expensive forward models are only solved for independent wrinkles using \texttt{dune-composites}. Besides scalability the other key feature of \texttt{dune-composites}, the \texttt{GenEO} coarse space, doubles as an excellent multiscale basis which is exploited to build high quality reduced order models that are orders of magnitude smaller. This is important because it enables multiple coarse solves for the cost of one fine solve. In an MCMC framework, where many solves are wasted in arriving at the next independent sample, this is a sought after quality because it greatly increases effective sample size for a fixed computational budget thus providing a route to high-fidelity UQ. This thesis exploits both, new solvers and multiscale methods developed here to design an efficient Bayesian framework to carry out previously intractable (large scale) simulations calibrated by experimental data. These new capabilities provide the basis for future work on modelling random heterogeneous materials while also offering the scope for building virtual test programs including nonlinear analyses, all of which can be implemented within a probabilistic setting

    Least-biased correction of extended dynamical systems using observational data

    Full text link
    We consider dynamical systems evolving near an equilibrium statistical state where the interest is in modelling long term behavior that is consistent with thermodynamic constraints. We adjust the distribution using an entropy-optimizing formulation that can be computed on-the- fly, making possible partial corrections using incomplete information, for example measured data or data computed from a different model (or the same model at a different scale). We employ a thermostatting technique to sample the target distribution with the aim of capturing relavant statistical features while introducing mild dynamical perturbation (thermostats). The method is tested for a point vortex fluid model on the sphere, and we demonstrate both convergence of equilibrium quantities and the ability of the formulation to balance stationary and transient- regime errors.Comment: 27 page

    Multiscale Modeling and Gaussian Process Regression for Applications in Composite Materials

    Get PDF
    An ongoing challenge in advanced materials design is the development of accurate multiscale models that consider uncertainty while establishing a link between knowledge or information about constituent materials to overall composite properties. Successful models can accurately predict composite properties, reducing the high financial and labor costs associated with experimental determination and accelerating material innovation. Whereas early pioneers in micromechanics developed simplistic theoretical models to map these relationships, modern advances in computer technology have enabled detailed simulators capable of accurately predicting complex and multiscale phenomena. This work advances domain knowledge via two means: firstly, through the development of high-fidelity, physics-based finite element (FE) models of composite microstructures that incorporate uncertainty in predictions, and secondly, through the development of a novel inverse analysis framework that enables the discovery of unknown or obscure constituent properties using literature data and Gaussian process (GP) surrogate models trained on FE model predictions. This work presents a generalizable approach to modeling a diverse array of composite subtypes, from a simple particulate system to a complex commercial composite. The inverse analysis framework was demonstrated for a thermoplastic composite reinforced by spherical fillers with unknown interphase properties. The framework leverages computer model simulations with easily obtainable macroscale elastic property measurements to infer interphase properties that are otherwise challenging to measure. The interphase modulus and thickness were determined for six different thermoplastic composites; four were reinforced by micron-scale particles and two with nano-scale particles. An alginate fiber embedded with a helically symmetric arrangement of cellulose nanocrystals (CNCs) was investigated using multiscale FE analysis to quantify microstructural uncertainty and the subsequent effect on macroscopic behavior. The macroscale uniaxial tensile simulation revealed that the microstructure induces internal stresses sufficient to rotate or twist the fiber about its axis. The reduction in axial elastic modulus for increases in CNC spiral angle was quantified in a sensitivity analysis using a GP surrogate modeling approach. A predictive model using GP regression was employed to investigate the link between input features and the mechanical properties of fiberglass-reinforced magnesium oxychloride (MOC) cement boards produced from a commercial process. The model evaluated the effect of formulation, crystalline phase compositions, and process control parameters on various mechanical performance metrics
    corecore