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ABSTRACT

Simulation of material behaviour is not only a vital tool in accelerating product de-

velopment and increasing design efficiency but also in advancing our fundamental un-

derstanding of materials. While homogeneous, isotropic materials are often simple to

simulate, advanced, anisotropic materials pose a more sizeable challenge. In simulating

entire composite components such as a 25m aircraft wing made by stacking several

0.25mm thick plies, finite element models typically exceed millions or even a billion

unknowns. This problem is exacerbated by the inclusion of sub-millimeter manufac-

turing defects for two reasons. Firstly, a finer resolution is required which makes the

problem larger. Secondly, defects introduce randomness. Traditionally, this random-

ness or uncertainty has been quantified heuristically since commercial codes are largely

unsuccessful in solving problems of this size. This thesis develops a rigorous uncer-

tainty quantification (UQ) framework permitted by a state of the art finite element

package dune-composites, also developed here, designed for but not limited to com-

posite applications. A key feature of this open-source package is a robust, parallel and

scalable preconditioner GenEO, that guarantees constant iteration counts independent

of problem size. It boasts near perfect scaling properties in both, a strong and a weak

sense on over 15, 000 cores. It is numerically verified by solving industrially motivated

problems containing upwards of 200 million unknowns.

Equipped with the capability of solving expensive models, a novel stochastic frame-

work is developed to quantify variability in part performance arising from localized

out-of-plane defects. Theoretical part strength is determined for independent samples

drawn from a distribution inferred from B-scans of wrinkles. Supported by literature,

the results indicate a strong dependence between maximum misalignment angle and

strength knockdown based on which an engineering model is presented to allow rapid

estimation of residual strength bypassing expensive simulations. The engineering model

itself is built from a large set of simulations of residual strength, each of which is com-

puted using the following two step approach. First, a novel parametric representation
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of wrinkles is developed where the spread of parameters defines the wrinkle distribu-

tion. Second, expensive forward models are only solved for independent wrinkles using

dune-composites.

Besides scalability the other key feature of dune-composites, the GenEO coarse

space, doubles as an excellent multiscale basis which is exploited to build high quality

reduced order models that are orders of magnitude smaller. This is important because

it enables multiple coarse solves for the cost of one fine solve. In an MCMC framework,

where many solves are wasted in arriving at the next independent sample, this is

a sought after quality because it greatly increases effective sample size for a fixed

computational budget thus providing a route to high-fidelity UQ.

This thesis exploits both, new solvers and multiscale methods developed here to

design an efficient Bayesian framework to carry out previously intractable (large scale)

simulations calibrated by experimental data. These new capabilities provide the basis

for future work on modelling random heterogeneous materials while also offering the

scope for building virtual test programs including nonlinear analyses, all of which can

be implemented within a probabilistic setting.



ACKNOWLEDGEMENTS

I would like to thank Dr. Timothy Dodwell for taking on the task of supervising my

PhD and doing so in a cheerful and patient manner. I have learnt much from his wealth

of knowledge about all things mathematical but I am most grateful for his above and

beyond approach to supervising me.

Special mention must be given to a number of people. Firstly, Dr. Anne Reinarz,

who helped me with running simulations on supercomputers. Secondly, Dr. Samuel

Erland for making any downtime productive and entertaining. I would also like to

thank the X-AT group for their support.

Finally, I would like to thank my parents, my sister Meher, and N. Each have

supported me through my PhD in their own ways without which this would not have

been possible. Thank you for listening even when you didn’t have to. I owe this to

you.



CONTENTS

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1 Introduction 24

1.1 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Literature review 31

2.1 Wrinkles and non destructive testing . . . . . . . . . . . . . . . . . . . . . 36

2.2 Uncertainty quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.1 Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.1 Iterative solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.1 Multilevel preconditioners . . . . . . . . . . . . . . . . . . . . . . . 56

2.4.2 Domain decomposition preconditioners . . . . . . . . . . . . . . . . 58

2.5 Modern multiscale methods . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 dune-composites - an open source, high performance package for solving

large-scale anisotropic elasticity problems 69

3.1 Introduction - Why do we need dune-composites? . . . . . . . . . . . . . 69

3.2 Preliminaries : Anisotropic elasticity equations and their finite element dis-

cretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 A robust, scalable, parallel iterative solver for composite structures . . . . . 73

5



3.3.1 Krylov subspace methods preconditioned with two-level additive Schwarz

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.2 A robust coarse space via Generalised Eigenproblems in the Overlaps

(GenEO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.3 Implementation of GenEO on a High Performance Computer . . . . 78

3.4 Using and extending dune-composites . . . . . . . . . . . . . . . . . . . 81

3.4.1 Defining a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.2 Internals of dune-composites . . . . . . . . . . . . . . . . . . . . 82

3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5.1 Example 1: A flat composite plate . . . . . . . . . . . . . . . . . . 84

3.5.2 Example 2 : Corner unfolding – validation & performance compari-

son with Abaqus (up to 32 cores) . . . . . . . . . . . . . . . . . 88

3.5.3 Example 3 : Large composite structure – parallel efficiency of dune-composites

(up to 15,360 cores) . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5.4 Subsurface flow applications: Strong scaling for the SPE10 benchmark 94

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4 A Bayesian framework for assessing the strength distribution of composite

structures with random defects 99

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Bayesian approach to construct defect distributions from measured data . . 100

4.2.1 Parameterizing a wrinkle defect . . . . . . . . . . . . . . . . . . . . 100

4.2.2 Posterior Sampling using a Metropolis-Hastings algorithm . . . . . 101

4.2.3 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Industrially Motivated Case Study . . . . . . . . . . . . . . . . . . . . . . 106

4.3.1 Model Problem and its industrial application . . . . . . . . . . . . . 107

4.3.2 Extracting wrinkle data from B-Scans using Multiple Field Image

Analysis (MFIA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3.3 Defining a Wrinkle, Prior and likelihood definition . . . . . . . . . . 110

4.3.4 Finite Element Modelling . . . . . . . . . . . . . . . . . . . . . . . 113

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4.1 Bayesian Sampling of wrinkles . . . . . . . . . . . . . . . . . . . . 114

4.4.2 Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . 116

4.4.3 An ‘engineering model’ for Corner Bend Strength . . . . . . . . . . 117

4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6



5 Multiscale methods for composites 122

5.1 What is a good multiscale model? . . . . . . . . . . . . . . . . . . . . . . 122

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2.1 Customized coarse space - GenEO . . . . . . . . . . . . . . . . . . . 128

5.2.2 Partition of Unity . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 Data-driven multiscale models for high dimensional MCMC 148

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2 Standard Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . 150

6.3 Multiscale Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . 151

6.3.1 Multiscale model . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.3.2 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.4.1 Parallel implementation . . . . . . . . . . . . . . . . . . . . . . . . 166

6.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7 Concluding remarks and future work 170

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.1.1 Nonlinear mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.1.2 Grids, subdomains and PoUs . . . . . . . . . . . . . . . . . . . . . 177

A Code blocks for chapter 3 180

References 183

7



LIST OF FIGURES

2-1 The traditional approach to new aircraft design where each level of the

test pyramid signifies the number of physical tests conducted which re-

duces as we move upwards with only one or two tests being conducted

at the component scale [13]. . . . . . . . . . . . . . . . . . . . . . . . . . 32

2-2 Micrograph of polycrystalline metal showing individual grains composed

of a crystal lattice each [14]. . . . . . . . . . . . . . . . . . . . . . . . . . 32

2-3 (a) and (b) show two types of unit cell that are representative of perfectly

packed fibres (after [26]). (Below) shows an SEM picture of a unidirec-

tional composite ply. Unit cells (a) and (b) are poor representations of

reality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2-4 Scale separation distinguishing micro from macro scale. The range of

scales introduces significant complexity in the analysis of aerospace com-

posites. From Left to Right: fibre/resin scale (5µm), ply scale (0.25mm),

laminate scale (5-30mm) to the structure (> 1m)(Composite Fan Blade). 35

2-5 Ultrasonic B-scans showing out of plane fibre waviness or wrinkles. . . . 37

2-6 Sequential plots of a sample Markov chain for a known posterior. (From

left-right) 1. The first 10 samples of the chain showing clearly where

some proposals have been rejected and previous samples carried forward;

2. 100 samples of the same chain. At this point we can say burn-in is

complete; 3. 1000 samples drawn from the posterior show a well mixed

chain. 4. 10000 samples showing all the correlated samples drawn.

We note this example does not involve any model solves and it simply

demonstrating the Markov chain process, in a conceptual way. . . . . . 45

8



2-7 Sequential plots with 4 Markov chains exploring a more complicated yet

known posterior given in Eq. (2.6). The acceptance ratio of all chains is

near the theoretical optimum of 0.23 [82] for a step size of β = 0.27. . . 47

2-8 Demonstration of the coarsening or aggregation process in AMG. Left:

Isotropic material where nodes within a radius are strongly connected

and have similar solutions so neighbouring nodes can be collapsed onto

one node. Right: A stiffening inclusion (in blue) makes it difficult to

design an effective aggregation scheme. The nodes in green are strongly

and non-locally connected. The dashed red line shows a previously ex-

isting strong connection broken by the inclusion. If we see this inclusion

as a single carbon fibre in a matrix, the challenge of aggregating degrees

of freedom within even a single ply becomes obvious. . . . . . . . . . . . 58

2-9 (Left) Non overlapping partitions on a unit cube. (Right) A subdomain

with overlaps shared by neighbours. . . . . . . . . . . . . . . . . . . . . 59

2-10 Two subdomain decomposition of a 1-D example showing partition of

unity for the minimal overlap case. The Dirichlet subdomain boundaries

have zero contribution to the solution and since there are no other shared

nodes, the additive Schwarz reduces to block Jacobi algorithm. . . . . . 61

2-11 Left: Dependency of additive Schwarz on overlap for a fixed number

of subdomains (32 in this test); Right: Dependency of restrictive ad-

ditive Schwarz on overlap size. The only difference in comparison to

the left plot is the inclusion of partition of unity in the construction of

the preconditioner. The overlap is given in number of elements that a

subdomain is extended by. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2-12 Left: In the additive Schwarz test, the overlap is fixed in number of

elements while subdomain count increased. From the plot, at least 64

subdomains are required for convergence because the overlap, as a per-

centage of subdomain size, is insufficient for larger subdomains. There-

fore, none of the solutions converge to the required tolerance; Right: The

RAS test shows slight improvement in convergence with the addition of

partition of unity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2-13 Additive Schwarz example with overlap fixed in terms of percentage of

subdomain size which illustrates the paradoxical nature of two competing

requirements i.e. overlap and number of subdomains. As the subdomain

count increases, global communication becomes more necessary, so con-

vergence deteriorates. Once again, AS on the left is compared with RAS

on the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

9



2-14 One dimensional composite problem with resin rich (red) and carbon

fibre (blue) dominated zones. Eresin = 10GPa and Ecomposite = 162GPa. 63

2-15 The two-norm of the residual against CG iterations for a 1D composite as

shown in Fig. 2-14 using no coarse space (blue line) and Nicolaides coarse

space (red line). One-level AS does not converge for this composite

problem but with the Nicolaides coarse correction, the solution converges

in 22 iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3-1 (Left) Domain Ω partitioned into non-overlapping subdomains Ω′j where

colouring differentiates independent subdomains. (Middle) Shows over-

lapping subdomain Ωj with a single layer of overlap (O = 1). Overlap

region Ω◦j is shown in white. Transparent red regions show cells of the

grid which belong to ’nearest neighbour’ processors. (Right) Shows par-

tition of unity (PoU) operator Ξj on a single processor, defined as in

(3.12). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3-2 Code structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3-3 Visualisation of results for Example01a using Paraview (left) Visual

output of laminate and stacking sequence using plotProperties() func-

tion (right) Visualisation of solution, in deformed coordinates (scalar

factor of displacement is 4). . . . . . . . . . . . . . . . . . . . . . . . . 85

3-4 (Left) The eigenvectors corresponding to the first nine non-zero eigen-

values on a subdomain with no global Dirichlet boundary. (Right) The

reduction of the residual against CG iterations for Example01b using no

coarse space, only zero energy modes (ZEM) and the full GenEO coarse

space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3-5 (Left) Diagram of the corner bend specimen with resin edge treatment.

(Right) Cross section of the corner showing the loading conditions. . . . 88

3-6 (Left & Middle) Stresses (in MPa) as functions of the distance r from

the outer radius at the apex of the curve, at 2.156mm from the edge of

the resin-edge-treated laminate (dune-composites, solid blue; Abaqus,

dotted red). The background colours indicate the stacking sequence:

+45◦=red, −45◦=blue, 90◦=green, 0◦=yellow. (Right) Cost compari-

son between the sparse direct solver implemented in Abaqus and the

iterative preconditioned CG solver in dune-composites. . . . . . . . . . 90

10



3-7 (Left) Geometry of the wingbox with dimensions; the colouring shows

the number of eigenmodes used in GenEO in each of the subdomains of

Setup 6 in Table 3.2. (Right) Close-up plot of the corner of the wingbox

using plotProperties(), which shows the wrinkle and the inter-lacing

of the different stacking sequences in the corner, cover and spar regions. 91

3-8 FE solution for Example 3: (Left) Overall deformation of the wingbox

with colours showing the magnitude of the displacements in cm. (Right)

Camanho failure criterion (3.22) in a close-up of the corner containing

the wrinkle defect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3-9 Parallel performance of dune-composites on Archer: (Left) A weak

scaling test, as summarised in Table 3.2. (Right) A strong scaling test

using Setup 5 in Table 3.2, with the dashed line showing perfect scaling,

as summarised in Table 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . 94

3-10 (Top) Logarithm of the permeability field K for the SPE10 benchmark,

from bottom to top: Kx, Ky and Kz. (Bottom) A strong scaling test

using the SPE10 dataset, with the dashed line showing perfect scaling. . 96

4-1 Illustration of Eq. (4.1) showing the transformation from pristine to

defective state for a 39 ply composite with a representative stacking

sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4-2 Representation of Bayesian approach in a simplified 2D parameter space

for a known likelihood function (a variant of the Rosenbrock function).

(Left) Sampling from isotropic Gaussian prior π0(ξ). (Right) MCMC

sampling from posterior π(ξ|Dobs). . . . . . . . . . . . . . . . . . . . . . 103

4-3 Schematic of a wing spar highlighting the region of showing a B-scan at

a defect location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4-4 Estimating alignment at a point by minimizing the integral of the gray

scale over the trial fibre using the MFIA algorithm [164]. Randomly

sampled points are used to reconstruct an alignment over the domain. . 109

4-5 A hierarchical multilevel sampling scheme that is biased towards regions

of high misalignment is used draw sampling locations for the trial fibre.

The number of new samples per cell on every level are proportional to

the relative average misalignment observed in that cell on the previous

level. The figure shows level 1 through 3 from left to right and each

picture only shows the samples drawn on that level. . . . . . . . . . . . 110

11



4-6 FE model showing the true geometry of the part with a sample wrinkle

amplified for visual clarity. Note that it is a fully internal wrinkle with

no trace at the surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4-7 The ACF showing the longest autocorrelation length across all dimen-

sions of MCMC is illustrated here. Monte Carlo samples of wrinkles are

obtained by subsampling every Λ = 100 samples. . . . . . . . . . . . . . 115

4-8 (Left) Two-dimensional posterior distributions of the first five coeffi-

cients ai in Eq. (4.1), note 2-D plot axes are plotted on a scale of ±0.25

to visualize dependencies. For example, the a3 plots suggest that a rela-

tively constant amount of the 3rd KL mode compared to others is present

in all wrinkles studied here. (Right) Posterior distribution of covariance

length scale parameter λ plotted separately. . . . . . . . . . . . . . . . . 115

4-9 Top row shows B-Scan data, bottom two rows show 8 independent pos-

terior samples of wrinkles in B-Scan coordinates. . . . . . . . . . . . . . 116

4-10 (Left) CDF of critical or failure moment Mc per unit width of a part,

where wrinkle distributions are using the Bayesian framework introduced

within this chapter. (Right) Mc of samples obtained by assuming a

Gaussian prior with mean and variance derived from data. . . . . . . . . 118

4-11 Left to right showing σ33, τ13 and τ23 respectively at Ma = 1 kNmm/mm.118

4-12 Approximating the relation between Mc and maximum wrinkle slope

with Eq. (4.24). q = 2.867 and λq = 4.212 for the fitted curve. q = 2.587

and λq = 3.834 for lower 99% confidence bound. . . . . . . . . . . . . . . 119

5-1 A Gaussian random field showing a more continuous distribution of

scales such that features are not readily distinguishable using discrete

lengths scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5-2 Eigenvalue spectrum of (left) an isotropic material, (right) a composite

and (bottom) a Gaussian random field. . . . . . . . . . . . . . . . . . . . 124

5-3 One dimensional example to clarify definitions in Section 5.2. (Left)

Non-overlapping partitions of Ω. (Right) Partitions of Ω overlapped by

one element giving an overlap 2 elements wide. . . . . . . . . . . . . . . 127

12



5-4 (Left) The domain Ω divided into 64 non-overlapping subdomains Ω′.

(Middle) The solid coloured region shows overlapping subdomain Ωj

where the red subregion is denoted by Ω◦ in our notation and the white

subregion is Ωj\Ω◦j . (Right) Close up of Ωj where the set dof(Ωj) is

marked by square black grid points while the spherical green grid points

on the boundaries denote the set dof(Ωj)\dof(Ωj). Note: we assume

that all surfaces are Dirichlet boundaries. . . . . . . . . . . . . . . . . . 127

5-5 Visual comparison of the two partition of unity operators in one dimension.130

5-6 The red nodes show the interior boundary ∂Ω◦
j,int while the black nodes

show the exterior boundary ∂Ω◦
j,ext of an arbitrary 2D subdomain. . . . 132

5-7 (Top) 2D composite elastic field showing the layered material with ap-

plied constraints. The domain is discretized into 4× 4 subdomains and

Ω6 is overlaid in a white mesh. Deformations for Ω6 are shown in Fig. 5-

9. (Bottom) Gaussian random field for the same problem with a high

contrast ≈ 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5-8 Sensitivity of GenEO multiscale method to 3 PoUs for the problem shown

in Fig. 5-7(top). (a) Non-smooth PoU (b) Smooth PoU and (c) uPoU. In

(d) we present the Von Mises stress error in L2 norm relative to fine scale

solution, assumed to be the truth. The stress error curves correspond to

50% overlap for all three PoUs and are identified by their markers. . . . 135

5-9 First 6 eigenmodes in 2D elasticity excluding the zero energy rigid body

modes. The deformations are shown for a subdomain that does not share

any nodes with the domain boundary i.e. floating subdomain marked

by a white mesh overlaid on Fig. 5-7(top). Red cells represent softer

interply regions of a laminate and blue cells show carbon fibre layers. . . 136

5-10 Von Mises stress plots for the layered composite beam shown in Fig. 5-

7. (a) Fine scale solution with 80, 802 dofs (b) Non-smooth PoU, (c)

Smooth PoU and (d) uPoU. (b), (c) and (d) were computed with 480

dofs. The solution in (a) is treated as the truth relative to which the

error εσ is computed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5-11 Stresses after patch recovery at 50% overlap for all three PoUs. . . . . . 139

5-12 Von Mises stress error relative to the fine scale solution pictured in Fig. 5-

10(top). Both plots shown here are solved using uPoU. (Top) Before

stress recovery, L2 norm error ≈ 2.6%. (Bottom) Post stress recovery,

L2 norm error = 2.1%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

13



5-13 (a) Fine scale solution for heterogeneous material shown in Fig. 5-7. (b)

Multiscale (640 dofs) solution projected on the fine grid. (c) Difference

between fine and multiscale solutions. . . . . . . . . . . . . . . . . . . . 141

5-14 Visualizing uPoU on Ω7 of the heterogeneous beam with 50% overlap. . 142

5-15 Stress plots for 3D composite beam using the smooth PoU. . . . . . . . 143

5-16 Wrinkle defined in Eq. (5.18) embedded in a laminate. . . . . . . . . . . 144

5-17 Stress plots for 3D composite beam containing a wrinkle solved using

the smooth PoU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5-18 Stress plots for 3D composite beam containing a wrinkle calculated with

uPoU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6-1 Representation of Bayesian approach in a simplified 2D parameter space

for some likelihood function. (Left) Sampling from isotropic Gaussian

prior π0(ξ). (Right) MCMC sampling from posterior π(ξ|Dobs). . . . . . 150

6-2 The solid contours denote some (true) posterior distribution π and the

dashed contours mark a coarse approximation of it πH . Generally these

are unknown quantities but we draw them here to demonstrate the de-

layed acceptance MCMC scheme. The stars denote two consecutive sam-

ples in the ξ-chain (red arrow) pulled from π while the black dots show

the subchain or η-chain (dashed black arrows) sampling from πH between

ξi−1 and ξi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6-3 Basis functions used to create a Gaussian random field. All plots range

between -1 and 1 on the domain [0, 1]2. . . . . . . . . . . . . . . . . . . . 157

6-4 The reference elastic field created using the basis functions shown in

Fig. 6-3. This is treated as the truth to be determined by solving the

inverse problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6-5 Mean field for computed parameters . . . . . . . . . . . . . . . . . . . . 159

6-6 Probability density of the error between fine scale and multiscale models

tH . The variance in error V(tH) = 2.3× 10−4. . . . . . . . . . . . . . . . 161

6-7 Top: Actual scaled error tH for a chain can be seen converging to the user

provided threshold ε = 10−1. Bottom: Error reduces as the multiscale

model learns the posterior distribution. The error plotted here, t̂H , is the

mean of the scaled error tH of a chain between two consecutive updates.

The plots are shown for 4 chains. . . . . . . . . . . . . . . . . . . . . . . 162

14



6-8 Black dots highlight the samples where the updated condition was trig-

gered and the solution added to the coarse space with respect to the first

two parameters p1 and p2. The red dots mark all other samples drawn

by the MCMC process. Note the burn-in where almost every sample

requires an update. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6-9 The x-axis shows sample of a chain and the vertical lines mark the sam-

ples where coarse space updates occurred. As the chain propagates,

the frequency of updates reduces visualized here by the vertical lines be-

coming sparse as the coarse space learns about the posterior distribution.

The vertical black line marks the burn-in length of the chain. . . . . . . 164

6-10 Posterior densities for the first 9 parameters of the random field. . . . . 165

7-1 An arbitrary body showing a particle and the relevant features in a

peridynamic framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7-2 Left: Two particle PMB model where c is the micromodulus or stiffness

of the spring. Right: Constitutive law for the spring connection. . . . . 173

7-3 Left: A peridynamic subdomain embedded within a finite element do-

main. Right: More detailed drawing of the peridynamic subdomain

showing the handshake region in red and the unconstrained peridynamic

particles in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7-4 Solution strategy for multiscale modelling of failure using peridynamics

on the microscale and FEM on the macroscale. . . . . . . . . . . . . . . 176

7-5 Coupled multiscale example . . . . . . . . . . . . . . . . . . . . . . . . . 177

15





LIST OF TABLES

3.1 Demonstration of performance of different preconditioners for Example01b

for fixed problem size (30,000 DOFs) but increasing the number of subdo-

mains: Number of pCG iterations (it), coarse space dimension (dim(Vh)),

an estimate of the condition number κ. . . . . . . . . . . . . . . . . . . . 88

3.2 Details of the six setups and results used in the weak scaling test. In

all of the tests, we used two layers of 20-node serendipity elements per

fibrous layer and only one layer of elements in each of the interface layers.

The number of elements per core was fixed at 2808. . . . . . . . . . . . . 93

3.3 Strong scaling test with Setup 5 in Table 3.2, demonstrating near optimal

strong scaling up to at least 11, 320 cores. Note: EpC is Elements per

Core and TCT is Total Core Time i.e. TCT = Ttotal∗Ncores
60×60×24 . . . . . . . . 94

3.4 A strong scaling test using the SPE10 dataset. . . . . . . . . . . . . . . 97

4.1 Assumed mechanical properties for CFRP material (M21/IMA), where 1

is the fibre direction in-plane, 2 is perpendicular to the fibre direction in-

plane and 3 is out-of-plane. s33 is the tensile through-thickness strength

and s13 is the transverse shear strength. . . . . . . . . . . . . . . . . . . 114

5.1 Assumed mechanical properties for CFRP material (M21/IMA), where

1 is the fibre direction in-plane, 2 is perpendicular to the fibre direction

in-plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.1 Convergence properties of all three MCMC algorithms tested for the first

parameter p1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

17



NOMENCLATURE

Finite elements

Preliminaries

Ω Finite element domain

Γ Boundary of Ω the type of which is denoted by subscript

T Uniform mesh on Ω with element size denoted by subscript

σij Cauchy stress tensor

u(x) Displacement vector

f(x) Body force per unit volume

εij(u) Infinitesimal strain tensor

Cijkl Elasticity tensor

hi Dirichlet boundary conditions prescribed on ΓD

gi Neumann boundary conditions defined on ΓN

φ(i)(x) Vector valued shape functions at i-th node

Ω′j Non-overlapping j-th partition of Ω

δ Overlap size

Ωδ
i i-th partition overlapped by δ

Ω◦i Set of overlapped degrees of freedom on the i-th subdomain

χ Partition of unity operator

Matrices

Upper case bold notation

A Coefficient matrix, stiffness matrix

AΩ◦i
Coefficient matrix of overlapped dofs of i-th subdomain

D Matrix containing only the diagonal elements of A

Σ Covariance matrix

18



R Matrix containing only the off-diagonal elements of A

M−1 Preconditioner

Ri Restriction operator for i-th subdomain

S Sparsity pattern of a matrix

Xj Partition of unity operator on j-th subdomain

Vectors

Lower case bold notation
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CHAPTER 1

INTRODUCTION

Scientific advances in aerospace composite design and materials offer exciting engineer-

ing opportunities, making them the material of choice for many modern aircraft (e.g

Airbus A350, Boeing 787). However, composite manufacturers face huge challenges

in designing and making complex components quickly enough to remain commercially

competitive. There is a growing realization in both academia and industry that to

meet ambitious global growth targets, composites manufacturers should ‘reduce time,

cost and risk to market through the use of validated simulation tools’ [1]. Currently

simulation capabilities allowing high-fidelity full-scale analysis of a composite structure

are limited and not openly available. Furthermore, analyses have mostly been confined

to a deterministic approach that does little to account for the uncertainty introduced

by defects, for instance. But, why is this? What makes this analysis of large scale

composite structures so challenging?

When we apply classical finite element (FE) analysis to a composite structure, the

problem reduces to finding a vector of displacements u(i) ∈ R3 at each of the n nodes

within a FE mesh. This leads to the sparse system of FE equations [2]:

Aũ = b, where ũ = [u
(1)
h , . . . ,u

(n)
h ]T , (1.1)

A is the global stiffness matrix and b is the load vector arising from the applied

boundary conditions or loading. In solving the linear system Eq. (1.1) and quantifying

uncertainty therein, we face three significant challenges that are defined below:
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Scale of calculations

Composite materials are manufactured from thin fibrous layers, less than 1mm thick,

separated by even thinner resin interfaces of thickness less than 0.05mm, yet entire

component parts are generally several metres long, see Fig. 2-4. To resolve stresses

and accurately predict failure, several elements need to be placed through each layer

[3]. Naturally this means that the number of nodes n is very large. As an example,

we model a 1m section of a wing box given in Section 3.5.3, while resolving the resin

interfaces, giving in total 200 million degrees of freedom. Solving linear systems of

this size requires specialized, parallel solvers. Current industry standard tools, such as

Abaqus [4], are not able to deal with these problem sizes, largely due to limitations of

the parallel solvers employed.

Material anisotropy

Central to the benefits of composite structures is the inclusion of directional fibres,

which gives them an excellent weight to stiffness ratio under a particular loading. This

means, there is a large contrast (∼ 1 : 40) in mechanical properties within a single

layer of composite, related to the fibre direction(s) and those directions dominated by

the stiffness of the matrix material (typically a toughened epoxy resin). In the FE

discretization, this leads to a stronger coupling between degrees of freedom in the fibre

direction, as opposed to those in the orthogonal directions.

The fibrous layers are stacked with different fibre orientations to form a laminate,

adding an additional level of complexity. The fibre directions act as stiff constraints on

the deformation, whilst the weak connections give rise to low-energy mechanics within

the structure. Mathematically, this causes significant numerical challenges in solving

Eq. (1.1) via iterative solvers, since the system is very ill-conditioned. For such cases,

classical iterative solvers (required to address Challenge 1) converge very slowly [5].

Variability in materials and models

Manufactured components are guaranteed to have defects that compromise their per-

formance measured as a knockdown in strength. In the aerospace industry where great

emphasis is placed on safety, large heuristically derived factors have to be applied and

redundancies built in. The final products are thus over-engineered, preventing the in-

dustry from exploiting the full benefits offered by composites. The primary driver for

this is the uncertainty in part performance which is difficult to model. Quantifying

the uncertainty becomes particularly challenging and even impossible in certain cases.

For example, the resolution required to resolve small defects generates a very high
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dimensional problem, a stumbling block for Bayesian methods [6]. For large, exotic

and expensive components, limited availability of experimental data lowers confidence

in Bayesian model outputs. Furthermore, the interest often lies in rare events which

means many simulations can be expected prior to a single occurrence of a rare event.

It is for these reasons uncertainty quantification is difficult in composite applications.

Combining these with the first two challenges that arise in solving large, ill-conditioned

systems, stochastic simulations using classical Bayesian inversion become intractable.

1.1 Outline of this thesis

Chapter 2: Literature review

Chapter 2 highlights the demand for stochastic modelling of large, ill-conditioned sys-

tems arising in composite structures. From this point of view, we first review some

existing methods of Bayesian inversion for model parameter estimation. The frontier of

Bayesian applications is dominated by expensive models that motivate the development

of effective solvers which at this scale necessarily require preconditioning. Therefore,

we review some popular solvers followed by preconditioners used by them. A good

preconditioner can double as a good coarse approximation; an idea that has led to the

development of modern multiscale methods.

This chapter aims to provide a general overview of the current state of affairs from

the perspective of the three foundational pillars of this thesis - solvers and precondi-

tioners for large systems, multiscale methods for composites and Bayesian inversion

using state of the art methods.

Chapter 3: dune-composites - an open source, high performance package for

solving large-scale anisotropic elasticity problems

In Chapter 3 we address two of the three motivational challenges in this thesis. As part

of a larger international collaborative effort, we provide an open source package called

dune-composites for modelling large composite structures. This chapter demonstrates

some key features of the package, most important of which is the implementation of a

novel, robust preconditioner that performs exceptionally well in parallel, boasting near

perfect scalability. It is capable of handling a number of typical pitfalls for composite

solvers such as very large problems, geometrically varying stacking sequences and defect

inclusions, to name a few.

Furthermore, it interfaces well with the latest solvers including those in dune-istl

[7] and Hypre [8] and provides room for users to extend it in any direction or use it
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directly for engineering applications. This chapter documents the structure of the code

and highlights the novelty aspects of the code base.

We illustrate its use through smaller examples that can be run on a desktop com-

puter building up to a large scale simulation on the UK national supercomputer ARCHER

using 15,360 of its cores with the aim of providing the user with sufficient understanding

of how to implement the code for their own applications.

The work presented in this chapter is under review by the Journal of Computer

Physics Communications.

R. Butler, T. Dodwell, A. Reinarz, A. SANDHU, R. Scheichl and L.

Seelinger, dune-composites – High-performance dune modules for solving large-

scale, strongly anisotropic elliptic problems with applications to aerospace composites,

Computer Physics Communications 249 (2020).

Chapter 4: A Bayesian framework for assessing the strength distribution of

composite structures with random defects

Large deformations during consolidation make composites prone to wrinkle defects

[9, 10] which creates difficulties in quantifying part strength for two primary reasons;

measuring these internal defects and their effect on strength. Chapter 4 presents a

novel characterization method for wrinkles which is coupled with standard Markov

chain Monte Carlo (MCMC) algorithm to find a possibly true distribution of wrinkles

based on observed defects. Independent samples from this distribution are included in

finite element simulations to predict residual strength or knockdown. These simulations

are made possible by dune-composites package in Chapter 3.

An engineering result is derived from stochastic simulation that relates failure load

to maximum gradient of the wrinkle for an industrially motivated case study of wrinkles

in corner bends. The novelty lies in the method rather than this particular application

since choices like failure criteria for composites are not universal. These choices are left

to the user and can be trivially substituted depending on requirements.

The work presented in this chapter was published in the Journal of Composite

Structures.

A. SANDHU, A. Reinarz, and T. Dodwell, A Bayesian framework for assess-

ing the strength distribution of composite structures with random defects, Composite

Structures 205 (2018), pp 58-68.
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Chapter 5: Multiscale methods for composites

This chapter draws heavily from Chapter 3 with the key observation being the adapt-

ability of the GenEO coarse space as a good multiscale basis. In Chapter 3 this coarse

space has been shown to provide an excellent preconditioner for two-level additive

Schwarz methods but, in this chapter, we focus on its use as a multiscale method. We

describe a type of generalized multiscale method whereby a bespoke macroscale model

is constructed from a handful of eigenmodes computed on overlapping subdomains by

solving a generalized eigenvalue problem. The eigenmodes per subdomain are stitched

together using a partition of unity (PoU) operator. Importantly, the choice of PoU

has a major bearing on the quality of the multiscale model. So, we explore a range of

PoU choices. We demonstrate the approach to constructing customized coarse spaces

in a step by step manner with the help of a few toy examples in both, two and three

dimensions.

The foundational work for this chapter appeared in the a special issue on the bi-

furcation and degradation of geomaterials with engineering applications.

T. Dodwell, A. SANDHU and R. Scheichl, Customized Coarse Models for

Highly Heterogeneous Materials. In: Bifurcation and Degradation of Geomaterials

with Engineering Applications. IWBDG 2017. Springer Series in Geomechanics and

Geoengineering.

Chapter 6: Data-driven multiscale models for high dimensional MCMC

Chapter 6 links Chapter 3 and Chapter 5 in a delayed acceptance MCMC setting to

address the third motivational challenge of this thesis - variability in materials and

models. Here, we see the wrinkles introduced in Chapter 4 as localized variations in an

elastic field that can be parameterized in some way. The parameters form the unknowns

to be inferred in a Bayesian sense. This chapter addresses the problem of running

stochastic simulations when a single forward solve is too costly. The idea is to combine a

good reduced order model with an MCMC framework that permits efficient exploration

of the posterior parameter space. This is achieved with the GenEO coarse space working

as a surrogate model that explores an approximate posterior. In a way, the surrogate

model which is cheap to solve, acts a filter for samples drawn from the prior that screens

bad samples at a much lower cost thus improving overall efficiency. The effective sample

size is therefore, greatly increased for a fixed computational budget.

As the Markov chain explores the posterior, the coarse space is adaptively enriched

every time its indicator of quality exceeds a prescribed threshold. This is how a reduced

order model tailored to a particular posterior is built which is much more effective than
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constructing a bespoke space over the prior. Importantly, the coarse adaptation is an

online step and does not need a wasteful offline calculation.

This work is in preparation for the International Journal of Probabilistic Engineer-

ing Mechanics

T. Dodwell and A. SANDHU, Data-driven multiscale models for high dimen-

sional MCMC
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CHAPTER 2

LITERATURE REVIEW

Composite materials are widely used in several industries, an incomplete list of which

includes aerospace, automotive, marine, sports and many more high precision appli-

cations [11]. Particularly in the aerospace industry, where safety is paramount, for a

component to be certified airworthy and/or crashworthy, an extensive test pyramid

outlines the testing protocols for newly developed components, see Fig. 2-1. The num-

ber of tests conducted decreases as development moves up through the levels of the

pyramid with no more than one test being conducted on the aircraft scale. It is ev-

ident that this approach is expensive and cannot effectively quantify various sources

of uncertainty. To overcome this limitation, large safety factors are imposed at every

design stage producing over-engineered parts in the interest of safety. A modelling

based initiative [12] allows numerical simulation and stochastic methods to be used

in the certification process with the ultimate aim of lowering costs whilst challenging

conservatism to obtain more optimized designs. Advances in mathematical modelling

have virtualized parts of the test pyramid in the sense that mechanical testing supple-

mented with extensive models can reduce cost of development. The primary driving

force behind these modelling protocols is the underlying industrial desire to reduce

time, cost and risk to market through the use of validated simulation tools.

So why has this not been done yet? Particularly for composite materials, as we move

up the pyramid, existing models lose accuracy and gain uncertainty since the effects

of finer details such as defects are washed out because they cannot be resolved at the

component level with existing computation capabilities. However, at the coupon level,

most relevant heterogeneities can be captured. The multiscale paradigm capitalizes on
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Figure 2-1: The traditional approach to new aircraft design where each level of the test pyramid
signifies the number of physical tests conducted which reduces as we move upwards with only
one or two tests being conducted at the component scale [13].

this phenomenon by enabling models at various levels to communicate with each other.

The question then becomes, what information must be communicated across levels

to achieve the objective of increasing accuracy and lowering uncertainty. In order to

understand that, we will take a bottom-up approach starting at the coupon level.

All engineering materials, considered on a scale sufficiently small, reveal some degree

of heterogeneity. In metals, the heterogeneity is evident at granular level where each

grain is one continuous crystal lattice that does not tessellate well with its neighbours,

see Fig. 2-2. Grains typically occur on the micrometre scale so an individual grain

Figure 2-2: Micrograph of polycrystalline metal showing individual grains composed of a crys-
tal lattice each [14].
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has little to do with the mechanical behaviour at the macroscale (say, metre scale) at

which a metal is considered homogeneous. Somewhere between the macroscale and the

granular scale, the influence of a single grain disappears. Beyond that length scale, the

material is effectively homogeneous. Consider a small sample of a metal at this scale.

Rodney Hill defines this sample as a representative volume that

“(a) is structurally entirely typical of the whole mixture on average, and (b)

contains a sufficient number of inclusions for the apparent overall moduli to

be effectively independent of the surface values of traction and displacement,

as long as these values are ‘macroscopically uniform’.” [15]

By macroscopically uniform, he meant the values fluctuate about a mean by ε, a value

much smaller than the dimensions of the representative volume. If ε is not negligible,

the representative sample is not large enough. On the other hand, as the size of a

representative volume element (RVE) is increased, the boundary value problem that

must be solved to obtain its stress state increases in complexity. A paper by Heinrich

et al. [16] provides a detailed analysis of this balancing act.

The problem considered by Hill in [15] was the elastic behaviour of two solid phases

bonded together under the assumption that the phases themselves are isotropic and

uniform. He was then able to calculate bounds on the moduli for an arbitrary volume

fraction as long as the ratio between the two isotropic moduli did not differ by a factor

greater than two, approximately. The principle behind an RVE is to derive effective

properties of the heterogeneous mixture contained within. This is known as homoge-

nization, a detailed review of which can be found in [17] and particularly in the context

of fibrous composites in [18–21]. As Hill showed in his work, calculating even simple

Reuss [22] and Voigt [23] bounds on a representative volume applies a constraint on

the contrast between constituent properties, although he was able to compute them for

arbitrary mixtures. Prior to his work, homogenization was limited to very low volume

fractions where, inclusions were mere impurities or dilute dispersions rather than stiff-

ening inclusions [24]. However, the term arbitrary mixture is somewhat misleading here

because an RVE can only be rigorously defined when one of the following statements is

true; either the microstructure is periodic or the volume in consideration contains an

infinite amount of microstructures so that it is statistically homogeneous and ergodic.

The former statement is extremely limiting so most RVEs are based on latter. In a

physical sense, the second statement suggests that the microstructure is invisible from

the macroscale and can be considered homogeneous. This is formally known as scale

separation which introduces the micro, meso and macroscales. Not all materials exhibit

features at each of the scales. So, from a modelling perspective, more important than

their existence is the separation between them.
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Consider an idealized microstructure of a unidirectional fibrous laminate. The fi-

bres are assumed to be cylindrical and arranged parallel to each other. For such an

arrangement, a unit cell or RVE is easily constructed that can be repeated to produce

the laminate. However, as shown in Fig. 2-3, the cylindrical and parallel assumptions

are an inaccurate representation of reality. Deviations from the idealized structure such

as waviness, fibres crossing over and a variety of diameters, all of which occur in carbon

fibre composites, have a measurable influence on their stress state particularly in terms

of failure [25].

Figure 2-3: (a) and (b) show two types of unit cell that are representative of perfectly packed
fibres (after [26]). (Below) shows an SEM picture of a unidirectional composite ply. Unit cells
(a) and (b) are poor representations of reality.

All non-fictitious materials are of the non-periodic type because any manufacturing

process will produce random deviations from the idealized microstructure. For an RVE
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Figure 2-4: Scale separation distinguishing micro from macro scale. The range of scales in-
troduces significant complexity in the analysis of aerospace composites. From Left to Right:
fibre/resin scale (5µm), ply scale (0.25mm), laminate scale (5-30mm) to the structure (>
1m)(Composite Fan Blade).

to perform effectively, a material must exhibit sufficient scale separation. For exam-

ple, in metals the heterogeneities are far smaller than the typical scale of engineering

structures which permits structures to be represented by periodically arranged RVEs.

Owing to this RVEs have been used with great success in modelling metals or even

metal matrix composites [27, 28]. This is not the case for fibrous composites. In Fig. 2-

4, we can identify individual structures at multiple scales without much separation

between them relative to an equivalent metallic structure.

For common applications, composites are generally modelled within a finite element

framework with effective or homogenized properties instead of taking into account in-

dividual material properties and geometric arrangement at the microscale. These effec-

tive properties can be expensive or even impossible to measure post manufacture due

to substantial geometric changes. For these reasons, a lot of effort has gone into the

homogenization methods to derive composite properties directly from materials and

microstructure. Beginning with the rule of mixtures many more analytical methods for

homogenization such as concentric cylinder assemblage [18], Hashin-Shtrikman bounds

[29] and the Mori-Tanaka [17] method were developed. These were complemented by

numerical approaches like the generalized method of cells [20, 21] leading to the newer

and more complicated homogenization by differential expansions [30] or by integral

transformation [31]. For most engineering applications, these homogenized properties

are sufficient on the macroscale however, these methods assume regular fibre placement

in the matrix, which we can see from Fig. 2-3 is far from reality. Furthermore, devia-

tions from the ideal structure occur not only at the microscale but also mesoscale for

composites, and these methods are no longer valid. For instance, mesoscopic defects

like wrinkles on the ply level introduce non-periodic localized variations in the effective

properties that become difficult to homogenize in a general way. So, the FE mesh must
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be refined till homogenization is applicable across an element. This implies an upper

bound on the mesh parameter if we are to capture the influence of such defects. Conse-

quently, the problem becomes intractably large. Thus, we are left with no choice but to

employ a multiscale approach. In particular, we are especially interested in multiscale

methods of the spectral kind which excludes RVEs since they provide a good way of

modelling large structures with small non-periodic defects.

To that end we will now review wrinkles defects in composites and the difficulties in

visualizing them in Section 2.1. Wrinkles are then cast as a localized variation in me-

chanical properties such that the elastic field of any component can be parameterized,

the parameters of which are assumed to fit an unknown distribution. In order to sample

from this distribution and quantify its uncertainty, we resort to Markov chain Monte

Carlo methods, the current state of which is reviewed in Section 2.2.1. The systems of

equations describing such a problem for composite structures may lie outside the scope

of commercial iterative solvers. We discuss these limitations and their impact on the

development of solvers in Section 2.3. Importantly, the literature makes it clear that

the success of iterative solvers depends on preconditioning. In Section 2.4 we review the

development of preconditioners from a historical perspective to the development of the

latest domain decomposition preconditioners. Uncertainty quantification requires sev-

eral forward solves however, even preconditioned iterative solvers are too expensive to

permit many simulations. This constraint forced the development of multiscale meth-

ods which trade some accuracy for speed. An overview of existing multiscale methods

is presented in Section 2.5 highlighting the need for customized coarse spaces.

2.1 Wrinkles and non destructive testing

While manufacturing large, complex composite components, small process-induced de-

fects can form [32], for example porosity [33], in-plane fibre waviness [34], out-of-plane

wrinkles [35, 36]. In practice, we observe a distribution of locations, sizes and shapes

of these defects, and therefore the direct effect they have on part performance is un-

certain. Within the aerospace industry, where safety is paramount, this uncertainty

is mitigated by heuristic safety factors derived from extensive testing, which leads to

high certification cost and over-conservativeness of design.

Wrinkle defects occur in the consolidation, forming and/or curing stages. There are

number of different mechanisms that cause out-of-plane wrinkling [9, 10, 37], although

in most cases they are caused by the combination of the mechanics of the laminate in

its uncured state, and the geometric constraints imposed by the manufacturing tool

to which the laminate must conform. Importantly, the presence of a wrinkle defect
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Figure 2-5: Ultrasonic B-scans showing out of plane fibre waviness or wrinkles.

can significantly effect the structural integrity of the as-manufactured part, in some

cases leading to expensive wholesale rejection. Naturally there has been a focused

research effort to develop non-destructive methods (NDT) to measure and classify

wrinkles in as-manufactured parts [38–42]. Amongst the variety of NDT methods

available, only some are suitable for investigating geometric features at the meso-scale

(sub-laminate scale). The most popular of these are X-ray computed tomography

(XRCT) [38], ultrasonic techniques [39, 40] or infrared thermography [41]. XRCT can

provide fibre scale resolution in a 3D volume but it is a much slower process compared

to some ultrasonic methods which sacrifice accuracy for speed by limiting resolution.

Faster NDT methods such as infrared thermography [42] enable scanning of larger

areas but are limited to 2D information since they cannot penetrate much deeper than

the surface of composite components. For these reasons, the industry prefers using

ultrasonic techniques. Besides speed and accuracy, choice of NDT methods is driven

by physical constraints. Aerospace components are usually too large to accommodate

in a CT scanner. Ultrasonic methods require that parts be submerged in a coupling

medium (typically water) which can again, be a limitation for large parts. Phased arrays

[41] provide a viable alternative in such cases by enabling in-situ ultrasonic scanning.

Principally, it is a combination of multiple individual ultrasonic probes programmed

to work harmoniously, steering and focusing sound without source motion. The array

of probes is embedded in flexible housing capable of bending along curved surfaces.

The phased array functions like a medical ultrasound scanner with one key difference

- different regions are explored by steering the ultrasonic beam instead of the device

itself.

These wrinkle measurements have supported a growing research interest in the me-

chanical knockdown of wrinkle defects. The formation of wrinkles not only disrupts

the even distribution of fibre and resin, but can significantly increase interply shear

stresses triggering failure at significantly reduced loads [25, 36, 43, 44]. Numerical
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studies have used wrinkle measurements, to perform parametric studies using finite

elements to explore the deterministic effect of variations of wrinkle shape on structural

integrity [36, 43, 45]. These studies include prediction of both, failure initiation [25,

44] and mix-mode propagation [36]. Notably, in a recent study, Xie et al. explores the

compressive strength of flat plate coupons containing internal wrinkles [45]. Here, the

authors define wrinkles by a cosine function enveloped within a 3D Gaussian exponen-

tial. They use six classifying parameters to characterize a wrinkle namely, amplitude,

wavelength, maximum misalignment angle, wrinkle-center location, offset parameter

for the cosine basis function and the extent of the Gaussian envelope. Based on a

large number of simulations, the study recommends that maximum wrinkle angle is

the strongest indicator of strength knock down. Previously, Wang et al. developed

three methods of fabricating out-of-plane waviness which were used to quantify a wider

class of wrinkles by introducing additional parameters [46]. However, those wrinkles are

also constructed from cosine functions fitted to empirical misalignment measurements.

Based on this study, Lemanski et al. illustrated numerically, a strength reduction of

approximately 54% for peak misalignment of 22◦ [43]. Other studies have explored

various combinations of these parameters, reporting compressive strength knockdown

dependencies on other parameters such as amplitude [47] and amplitude-wavelength

ratio [48].

In this review we identify and challenge two limitations in the existing numerical

studies. Firstly, the parameterization of the wrinkle has mostly been limited to single

sinusoidal functions engulfed by a Gaussian envelope. We are aware of just one study by

Kratmann et al. [49] which introduced a Fourier basis. This basis has limitations since

a large number of Fourier modes are required to capture localized wrinkle profiles. We

are unaware of any study that explores the sensitivity of their results to the choice of

wrinkle parameterization in the field of linear elasticity. However, in buckling analysis

of composite sandwich panels, Wadee [50] demonstrates that localized imperfections

defined by sech based functions are of greater concern than periodic imperfections.

We seek a more general parameterization of wrinkles by exploiting the literature from

Gaussian random fields [51] and informing the parameterization directly from measured

data. Secondly, analytical studies have explored the effects of variations of out-of-plane

wrinkles in a deterministic way. Current studies have not explored the stochastic effects

of wrinkles, to derive a distribution in strength of components due to defects. The

success of a stochastic simulation is dependent on the ability to define the probability

distribution of possible wrinkles. We see this as a Bayesian question. What is the

distribution of possible wrinkles given that we observe a set of wrinkles for which we

have NDT measurements? To answer the question, we need to be able to sample from
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an unknown distribution, typically done via Markov chain Monte Carlo techniques.

2.2 Uncertainty quantification

Uncertainty quantification problems are usually of two types; forward uncertainty prop-

agation and inverse uncertainty quantification. Our application involves elements of

both so we will review them in that order.

Forward uncertainty propagation In scenarios where we are uncertain about

model inputs, we wish to quantify the uncertainty in model outputs propagated as

a result of parametric variability. For example, an important result in Chapter 4 is the

prediction of variability in part strength given a possible distribution of defects that

may be present in it. The variations in defects are seen as uncertain inputs to the

model and our aim is to quantify the uncertainty in terms of mean and variance in the

resulting distribution of model output which is a failure load.

Inverse uncertainty quantification Given a mathematical model describing a

physical process for which we have some experimental observations, inverse uncer-

tainty quantification estimates two things; 1) model inadequacy or the discrepancies

between experimental and model outputs called bias correction and 2) parameters in

the sense of distributions. This is the more interesting of the two types of UQ as it re-

quires considerable ingenuity due to its computationally intensive nature. As a result,

analysis of this type has mostly been restricted to scalar valued problems in the fields

of geophysics [52], electromagnetism [53], genetics [54] and atmospheric analysis [55] to

name a few.

In order to understand some of the considerations of inverse UQ, let us imagine

a forward model Fm(x,θ) for which we have experimental measurements Fe(x). If

we denote the difference between model and experimental outputs with εm(x) and εe

denotes experimental uncertainty, then we can write a comprehensive model updating

formula that encompasses all sources of uncertainty as

Fe(x) = Fm(x,θ) + εm(x) + εe (2.1)

The bias correction element of inverse UQ estimates εm(x) and the parameter estima-

tion component searches for the distribution of θ.

The forward models under consideration are elliptic partial differential equations

with random high contrast coefficients describing some random field and solved using

a finite element approach. Assuming that distributions of these random coefficients
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are directly accessible, independent and identically distributed (iid) samples are drawn

and solved deterministically. This is the Monte Carlo method and is the default choice

for PDEs with random inputs. However, in its simplest form it converges slowly. Many

acceleration techniques have been proposed over the years such as Latin hypercube

sampling [56], importance sampling [57], Gibb’s sampler [58] and the Markov chain

Monte Carlo [59] method.

Other methods that do not rely on deterministic solves exist such as stochastic

finite elements with a perturbation approach [60] or probabilistic finite elements with

second moment analysis [61]. However, these methods are limited to random inputs

and outputs of small magnitude, which cannot be guaranteed, particularly in nonlinear

analysis where outputs can vary strongly for small perturbations to inputs. To get

around the small magnitude limitation, stochastic Galerkin methods were developed as

generalizations of polynomial chaos expansion [62] which was used extensively in solid

mechanics [63]. Generally speaking, these methods offer better convergence when they

can be applied.

A class of methods that combines the advantages of sampling and non sampling

based methods, called stochastic collocation methods was first proposed in [64]. It

is a sampling based method similar in many ways to the Monte Carlo method but

rather than approximating the solution statistics (as in traditional sampling methods),

stochastic collocation aims to approximate a solution response function in the proba-

bility space. To approximate the function, it uses deterministic solutions at collocation

points as opposed to solutions for iid samples in the Monte Carlo method. Further-

more, the Monte Carlo method does not approximate a solution response function but

only the solution statistics. So, in that sense, stochastic collocation may be described

as a strong approximation method in comparison to the weak approximation methods

(Monte Carlo) [65].

Another popular UQ tool is Gaussian process regression (GPR) that learns from

the data and uses the similarities between observations to predict the value for an

unseen point. It is non-parametric by contrast as it aims to find distributions over

all possible models consistent with observations [66]. Naturally, optimization over all

possible models requires an infinite amount of time, so we restrict the search to a

subspace. To do that a constraint is imposed which qualitatively suggests that samples

from the input space close to each other, will produce outputs that are near each other.

Mathematically, this is encoded in the covariance matrix which is the central component

of any GPR. This covariance matrix is what enables us to get conditional probabilities

of model outputs Fm(x,θ) given experimental observations. A major limitation of

GPRs is they are tightly bound to Gaussian distributions. If the likelihoods are non-
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Gaussian, posteriors and marginal likelihoods are not available in closed form and the

process is not Gaussian anymore. Another limitation, and arguably a more pertinent

one to this thesis, is the scalability of Gaussian progress regression which suffers from

the so called curse of dimensionality. In the context of elasticity, where the model

outputs Fm(x,θ) are displacement measurements for example, the regression problem

can become very high dimensional, where irrespective of the choice of covariance kernel,

GPR will likely fail [67]. Such cases can be frequently encountered in the real world,

and commonly in this thesis, so we have to resort to approximate inference methods

like MCMC.

As mentioned previously, we are interested in large scale composite problems with

highly varying coefficients in the governing equation, producing very high dimensional

problems. All UQ methods reviewed here lose their merits in a high dimensional context

with the exception of the Monte Carlo method which is dimension independent [68].

For this reason, it is our method of choice with Markov chain sampling.

2.2.1 Markov chain Monte Carlo

While the aim of models is to reduce reliance on experimental tests, tests are used to

reduce and quantify uncertainty in the models themselves. The typical probabilistic

approach is Bayesian, more commonly known as Markov Chain Monte Carlo (MCMC).

Here, a prior distribution of the model inputs is tuned to a set of observed test data

to learn a posterior distribution that fits the data (probabilistically), thus reducing

uncertainties in the models themselves. However, existing capabilities are notoriously

computationally expensive, limited to small scale applications and simplified experi-

mental data sets that may often be synthetically generated, as the underlying methods

are designed for simplified toy mathematical benchmarks [69–71]. To that end, we now

review the relevant literature on MCMC.

Say, the occurrence of a wrinkle in a part is event A and observing a wrinkle is event

B. Then Bayes’ theorem states the conditional probability of a wrinkle occurring, given

that certain wrinkles have been observed is written as

P(A|B) =
P(B|A)P(A)

P(B)
(2.2)

where P(A|B) is the conditional probability of A given B, P(A) and P(B) are in-

dependent likelihoods or marginal probabilities of each event. Interest usually lies in

finding P(A), the posterior probability density known as the posterior distribution.

When events A and B are described by models, the problem becomes one of finding

posteriors for model parameters.
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The posterior probability distribution for a set of model parameters contains all

that the data has to tell us in the context of a prescribed model. It is the fundamental

quantity for Bayesian parameter estimation. Assuming that samples from the posterior

distribution are directly accessible, we can estimate a function (integral) over that dis-

tribution using the Monte Carlo method. However, models of reality are ever increasing

in complexity and the posterior distributions become inaccessible. For example, an en-

gineer modelling a compression test of composite plates wishes to know the underlying

elastic field which is described by spatially varying elastic constants. Given material

variability, the elastic constants at a point must fit some unseen distribution. How

then do we obtain independent samples from it? Markov chain Monte Carlo enables

this exploration which has today become a ubiquitous tool for Bayesian inference.

Bayesian statistics tools have been well developed in a broad range of application

fields including groundwater hydrology [52, 72], image visualization [73] and ecology

[71]. Here, we use these Bayesian tools to integrate high-fidelity finite element modelling

capabilities of composites [25] with experimental observations from various tests. The

main idea is that from available information a broad probability distribution (the prior

in the Bayesian terminology) is assigned to the input parameters. If in addition we

have experimental data related to real parts, it is possible to reduce the uncertainty

and to get a better representation of parameters by conditioning the prior distribution

on this data (leading to the posterior). However, direct sampling from a posterior

distribution is not possible, therefore we generate samples using a Metropolis-Hastings

type Markov chain Monte Carlo (MCMC) approach [74]. This approach consists of two

main steps: (i) given the previous samples, a new sample is generated using a proposal

distribution [6], such as a random walk; (ii) the likelihood of this new sample (i.e. how

well the proposal matches observations) is compared to the likelihood of the previous

sample. Based on this proposal and comparison steps, the proposed sample is either

accepted and used for inference, or rejected and the previous sample is used again. The

process leads to a Markov chain of possible input parameters, which have the probability

distribution we seek, namely the distribution of parameters given experimental data.

To obtain useful MCMC results such as the expectation of a function over the poste-

rior distribution, one must generate sufficient samples from the posterior. Each sample

requires the evaluation of posterior probability at that point in the parameter space.

Every posterior probability density evaluation requires a forward solve to estimate the

likelihood of sampled parameters. In the context of elasticity, a forward solve refers

to one solve of the finite element model Eq. (1.1). Thus, the statistical efficiency of

MCMC depends on two factors

1. Rejection rate: With the exception of delayed rejection [75], all MCMC algorithms
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reject bad samples along with any related information so the computation effort

spent in deciding the quality of the sample is wasted and statistical efficiency

deteriorates.

2. Cost of a single forward solve: Any MCMC algorithm must have a finite rejection

rate. If the cost of obtaining a solution and making the accept/reject decision is

too high, the MCMC efficiency drops as rejection rate increases.

First we shall review methods that aim to improve efficiency of MCMC algorithms

from the viewpoint of sample rejection followed by computation cost of a forward

solve. Every time a sample is rejected, computational effort equivalent to one forward

solve is wasted. So, we must decide how to traverse the posterior efficiently in order

to evaluate its probability density without unnecessary model solves. Most MCMC

algorithms concern themselves with the way samples are drawn from the prior so as to

minimize rejection whilst ensuring that the posterior is effectively sampled.

Metropolis-Hastings proposals

The scientific literature is strewn with a variety of sampling techniques, each with

its merits and demerits including speed and scope for parallelization. The goal has

always been to find an intelligent strategy for exploring the parameter space with

minimal effort. A major bottleneck in this process is the number of unused likelihood

evaluations which typically involve solving an expensive model. It is in this sense

we require sampling methods to be efficient. In this section we look at a few MCMC

proposals within the Metropolis-Hastings framework, noting that the accept-reject step

is identical independent of the way a proposal is made.

Also known as the standard random walk, the Metropolis-Hastings [74] sampling

method is simple yet powerful. In fact, it is the most commonly used MCMC method

that can draw samples from any probability distribution P(x) assuming the value of

the function of interest f(x) proportional to P(x) can be computed. The central idea is

that the kth sample depends only the (k−1)th sample producing a chain of dependent

samples. A standard sample is of the form

x(k) = x(k−1) + βξ(k), ξ(k) ∼ N (µ,Σ) (2.3)

where x vector represents the spatial location of the k-th sample and N (µ,Σ) is a

normal distribution with mean µ and covariance matrix Σ. Let us demonstrate with

the help of two examples, see Figs. 2-6 and 2-7. The first example shows an off-the-shelf
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Metropolis-Hastings algorithm tasked with sampling from a target distribution

N
([

4

4

]
,

[
1 0.9

0.9 1

])
(2.4)

A chain is initiated from a random point (black dot in Fig. 2-6) drawn from

N
([

0

0

]
,

[
0.5 0

0 0.5

])
(2.5)

Metropolis-Hastings makes the samples converge to a stationary distribution. The

time that passes before the samples start to represent the target distribution is called

the burn-in period, after which the Markov chain is said to be mixed. A chain is

said to be ’well mixed’ when its length exceeds any observed correlation length scale

many times over. Once the chain is sufficiently well diffused through the posterior,

independent samples are pulled from the chain of correlated samples for further Monte

Carlo analysis. However, this is a simple example where intuition and the ‘eyeball norm’

of an experienced eye provide sufficient diagnostic information regarding convergence.

When posterior distributions become more complex, making decisions about length

of burn-in or degree of mixing are not straightforward. Consequently, it is difficult to

know when to terminate the MCMC process. It is common to ask, are we there yet? To

demonstrate this difficulty, let us consider the second example that shows four Markov

chains exploring a posterior given by the inverse of the Rosenbrock function

f(x1, x2) = (a− x1)2 + b(x1 − x2
2)2 (2.6)

where a = 50 and b = 100. A step size β = 0.27 is used when making a proposal

according two Eq. (2.3). One of the simplest (and probably the earliest) diagnostic

measures is the use of multiple chains. Multiple chains started with vastly different

initial conditions, will give similar results if they converge. Only three decades ago,

a convergence test used for scientific purposes was the so called thick felt-tip pen test

[76]. To pass this test, the statistics for the set of independent samples from each chain

should be separated (graphically) by no more that the width of thick felt-tip pen. If it

failed, the chain continued running. Many theoreticians argue that such methods are

fundamentally flawed because the thick felt-tip pen diagnostic measures the separation

between two states of the sampled distribution rather than the how far either is from

the true distribution. This statement is true for all existing diagnostic tools based on

MCMC outputs. In fact, this argument is widely accepted yet, a suite of diagnostic

tools plagued with this flaw continues to be used today because “a weak diagnostic is
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Figure 2-6: Sequential plots of a sample Markov chain for a known posterior. (From left-right)
1. The first 10 samples of the chain showing clearly where some proposals have been rejected
and previous samples carried forward; 2. 100 samples of the same chain. At this point we can
say burn-in is complete; 3. 1000 samples drawn from the posterior show a well mixed chain. 4.
10000 samples showing all the correlated samples drawn. We note this example does not involve
any model solves and it simply demonstrating the Markov chain process, in a conceptual way.
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better than no diagnostic at all” [77]. Despite this logical setback, Gelfand and Smith

kicked off a flurry of activity in the field of MCMC diagnostics. Within the five years

that followed, a whole suite of tools was developed, of which the most popular today

are the Gelman and Rubin measure [78] for multiple chains and the Raftery and Lewis

[79] diagnostic for a single long chain.

The debate behind one long chain and several short chains has not yet been settled

either. Advocates of the single long chain school of thought, Geyer [80] and Raftery

and Lewis [81] argue that in the case of long burn-ins or strong autocorrelation within a

chain, several short chains maybe essentially worthless. On the other hand, a single long

chain may get trapped in a local optimum and fail to explore multimodal posteriors.

With this in mind, we now look at the most popular diagnostic test for both single and

multiple chains.

The Gelman and Rubin diagnostic [78] is two step process. First, a conservative

estimate of the marginal posteriors is built, from which starting points are sampled

for the desired number of chains. The number of chains depends on the modality of

the target distribution yet no scientific basis relating number of chains required to

the number of modes exists. Second, estimate the target density based on the last n

proposals (where the length of chain � n) as a generalized student t-distribution. The

key concept is that the scale parameter for the t-distribution is based on inter-chain

(means of chains) and intra-chain variances. For example, in Fig. 2-7 for 100 samples

per chain, we can expect the variance of each chain to be lower than the variance of

the means of chains. As chains converge, the ratio of these two quantities approaches

1. At that point, the chains can be terminated and the last n samples from all chains

used for inference. Gelman and Rubin implemented this diagnostic tool in a software

package called CODA [83].

The Raftery and Lewis diagnostic [79] supplements convergence detection with a

way of bounding variances of any quantile for estimated functions (cdf, pdf, etc) of

parameters. Based on the user’s quantity of interest or rather quantile of interest and

desired accuracy, this test (also implemented in CODA [83]) recommends the length of

chain, burn-in time and subsampling rate to extract uncorrelated samples. This test has

however, received criticism for lack of robustness in predicting the length of chains given

different initial conditions for the same problem. Furthermore, the appropriateness of

the subsampling rate has also been challenged [84].

Both these diagnostic tests are applicable to all MCMC algorithms. More special-

ized tests also exist but they are also much more difficult to implement. A paper by

Cowles and Carlin [77] reviewed 13 existing tests and reached the surprising conclu-

sion that all of them can sometimes fail to identify convergence of the type they were
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Figure 2-7: Sequential plots with 4 Markov chains exploring a more complicated yet known
posterior given in Eq. (2.6). The acceptance ratio of all chains is near the theoretical optimum
of 0.23 [82] for a step size of β = 0.27.
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designed to detect even for contrived, toy problems. To their own dismay, they con-

cluded that automated convergence diagnosis is unsafe, a state that may never change.

Instead they recommend a number of alternative approaches to remedy this problem

and can be found in [77].

Another important parameter is the acceptance ratio of a chain which, unsurpris-

ingly is the ratio of number of new samples accepted to the length of the chain post

burn-in. This is not so much a diagnostic tool as it is a way to tune MCMC parameters

such as step size. A theoretical result shows that a ratio of 0.23 achieves optimum diffu-

sion through a d-dimensional posterior [82]. However, this may not always be possible

in practice. Acceptance ratio is strongly dependent on proposal selection. For instance,

if the proposal is too narrow and the steps are small, the burn-in period is extended

which may result in wasteful forward solves. On the other hand, if the proposal is too

wide, the burn-in is indeed shortened but acceptance rate deteriorates. This makes

sense because if the kth sample is far away from (k− 1)th sample, it is less likely to be

as good.

Several specializations of the standard random walk exist that offer advantageous

performance in certain situations. An incomplete list of examples is Gibb’s sampler

[58], Hit and run algorithm [85] and Metropolis-within-Gibbs’ sampler [6].

It is well known, that off-the-shelf MCMC algorithms suffer from the curse of dimen-

sionality [6] i.e. the mixing time tends to infinity as the dimensionality of the problem

grows. The problem then is that under mesh refinement of PDEs (increasing number

of unknowns), the MCMC convergence is expected to deteriorate significantly. Using

standard algorithms, high dimensional inference using MCMC for any large model be-

comes prohibitive. Preconditioned Crank-Nicholson (PCN) proposal was developed to

address this issue.

The preconditioned CN or PCN proposal is a modification of the standard random

walk that differs only in the way a new sample is drawn. Most importantly, it lifts

the curse of dimensionality i.e. MCMC convergence is achieved independent of mesh

refinement. The proposal is of the form

x(k) =
√

1− β2x(k−1) + βξ(k), ξ(k) ∼ N (µ,Σ) (2.7)

which is an off-centre proposal with a scaled step size β. Cotter et al. use a Navier-

Stokes example to demonstrate the robustness of this method to mesh refinement [6]

and hence it superiority to standard random walk. There are other proposal of this

type like Crank Nicholson Langevin (CNL) and pCNL proposals which are not reviewed

here but can be found in [6].
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The advantages of the random walk and PCN are two-fold.

1. In practice, proposal densities are chosen to be symmetric distributions which

makes the acceptance probability a simple calculation requiring only the PDF be

evaluated for the previous and current sample and

2. It is not necessary to know the normalizing constant which is usually an inacces-

sible quantity.

Both these random walk algorithms are similar in every way except proposal dis-

tribution which means both of them have an acceptance ratio (AR) between 0 and 1.

Two competing requirements determine a balanced AR. As mentioned previously, there

exists an optimum value of AR = 0.23 that ensures mixing through the posterior. How-

ever, AR less than one means samples are rejected and computational effort is wasted.

To improve AR without extending burn-in or compromising mixing properties, we can

include some information about the posterior into the proposal. This brings us to a

new type of proposal distribution that incorporates information about the likelihood.

Both standard walk and PCN proposals incorporate no information about the pos-

terior density [6, 86, 87]. The idea behind Metropolis adjusted Langevin (MALA)

proposals is that gradient information about the target probability density function is

used in drawing a fresh proposal every time however, the accept-reject step remains

identical to Metropolis-Hastings. Generally speaking, computing numerical derivatives

where large models are involved is an expensive and often infeasible idea although in

applications where derivatives are readily available, MALA proposals offer significant

speed ups.

Instead of computing derivatives of densities for very large systems, an alternative

approach may be to speed up the forward solves so that more independent samples

may be drawn for a fixed budget. Various MCMC strategies have been developed to

improve effective sample size for a given computational budget.

Delayed acceptance

In cases where solving a forward model is a computationally intensive task, it may be

considered unwise to evaluate the model to a high degree of accuracy for all samples,

especially the rejected ones. It is beneficial to compute the solution approximately

to screen for bad samples and then refine the solution for good ones. This is the

essence of delayed acceptance MCMC. The idea is to replace the forward model with a

computationally efficient and faster model that lowers the complexity of the full model

by solving its projection in a subspace. Only for samples that are accepted at the
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first stage (coarse evaluation) are full model solves carried out with a second stage

accept-reject step to find the possibly true posterior or an unbiased estimate thereof

[88].

The efficiency of delayed acceptance relies on the quality of the substitute model

which is built from representative samples drawn from the posterior. Naturally, the

choice of these representative samples is important. T.Cui et al. [69] propose an

innovative solution by combining model reduction with adaptive MCMC. Their method

does two things well;

1. The adaptive MCMC [89] process draws from the posterior in search for samples

that can be used to build or enrich the surrogate model as a chain mixes through

the target distribution. In this way, the accuracy of the faster model is adaptively

improved.

2. The surrogate model draws from a distribution that is an approximation of the full

posterior which is used to improve the efficiency of MCMC sampling. In simple

terms, the approximate posterior acts as a filter to achieve better sampling from

the true posterior.

Classical approaches have generally computed reduced models offline which means

they are not tailored to the target distribution [90]. As a result, it may contain modes

that are never observed in the true posterior. The posterior is generally not known

till the data becomes available, so classical reduced models have to maintain numerical

accuracy over a much larger region which unnecessarily adds to the computational

burden. Enriching a model adaptively, reduces the burden by concentrating in localized

regions of the posterior so that it can be of lower dimension while retaining accuracy

of the offline approach. In this thesis, we couple multiscale methodology with delayed

acceptance MCMC to build robust surrogates to improve statistical efficiency.

Motivation for the next section (see Section 2.3) is derived from the second fac-

tor governing statistical efficiency of any MCMC process; the need for better solvers.

Conclusions of a stochastic nature are prohibitively expensive if a single forward solve

requires excessive computational resources therefore, we seek a solver (and precondi-

tioner) that accelerates convergence enabling forward solves to be computed in reason-

able time. To that end, we first review the existing methods that are considered state

of the art and identify avenues of improvement.
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2.3 Solvers

Let us reconsider the linear system of equations

Aũ = b (2.8)

where A is an n×n coefficient matrix, b is a known vector of size n and ũ ∈ Rn is the

unknown vector. Such systems occur naturally when discretizing parabolic or elliptic

PDEs with finite elements. In the case of elasticity, A is also known as the stiffness

matrix and is usually symmetric, positive and definite (SPD). With these assumptions

in mind, we shall now review the existing solvers and identify gaps to be filled.

The traditional taxonomy of solvers into direct or iterative categories does not

describe well the present state of affairs. Boundaries between the two have become

increasingly blurred. For example, iterative solvers use plenty of ideas from the field

of sparse direct solvers, mainly in the form of preconditioners, significantly improving

their reliability. Direct solvers are almost always based on some flavour of Gaussian

elimination but iterative solvers encompass a vast variety of techniques like the pure

iterative methods such as Jacobi [91], Gauss-Seidel [92] or SOR [93] to Krylov subspace

[94] methods which in theory, converge to multilevel methods. Classifying all these

techniques under one heading can provide a somewhat misleading picture of the field,

without even considering preconditioners. This will become evident in the following

sections.

It is well known that direct or even sparse direct solvers are limited in application

since they limit the size of a problem that can be solved. Elasticity being a vector valued

problem in 3 dimensions grows rapidly when the mesh parameter is reduced. Imagine

a unit cube discretized using a single linear hexahedral finite element with 8 nodes

and 24 degrees of freedom. It’s stiffness matrix is a 24 × 24 dense matrix. Discretize

the cube into 50 elements in each dimension and we create a system of nearly 4× 105

degrees of freedom (dofs). A stiffness matrix of this size (or even its factors) cannot

be stored in the memory of a typical desktop computer. Therefore, given our interest

in composite applications with millions of degrees of freedom, we are left no choice

but to use iterative solvers. So, we begin by reviewing the present state of research

on iterative solvers, with two aspects in mind - their degree of parallelism and rate of

convergence.
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2.3.1 Iterative solvers

Historically, initial development of iterative methods was dominated by stationary it-

erative methods such as successive overelaxation and its variants that rely on matrix

splittings. Examples of classical stationary iterative methods are Jacobi, Gauss-Seidel,

SOR and SSOR [95]. The key idea, in contrast to direct methods, is that the system of

equations is resolved iteratively where an initial solution is assumed and progressively

improved. Say, we have a trial vector v, we can substitute it into Eq. (2.8) and arrive

at a residual vector r = Av − b. The purpose of iterative methods is to systemati-

cally alter the trial vector in a way such that components of the residual eventually

disappear.

Now we briefly review each of these methods. Jacobi iteration is probably the

simplest iterative method. It requires that A be diagonally dominant which is split

into its diagonal matrix D and remainder R such that A = D + R. The (k + 1)th

iterate, denoted uk+1 is obtained by computing

uk+1 = D−1(b−Ruk) (2.9)

For composite or general heterogeneous applications, Jacobi method is unsuitable as

the coefficient matrix is unlikely to be diagonally dominant. Furthermore, convergence

is guaranteed iff the spectral radius of the iteration matrix (D−1R) is less than 1,

which is not achievable without preconditioning in composite modelling. However, this

algorithm is amenable to parallelism but convergence is extremely slow relative to state

of the art methods.

The desire for improved convergence led to the Gauss-Seidel method which is sim-

ilar to Jacobi iteration but uses lesser memory allowing larger problems to be solved.

In lowering memory requirements however, the method sacrifices its parallelism - an

unimportant concern at the time of it’s development. Although convergence is achieved

faster than Jacobi method, it is still not fast enough. Young and Frankel, in search

for better convergence introduce an extrapolation parameter ω into the Gauss-Seidel

iteration. When ω = 1, Gauss-Seidel is recovered otherwise the method is known

as successive over relaxation (SOR). With the optimal choice of ω, convergence rate

can be improved by an order of magnitude in comparison to Gauss-Seidel method but

knowing that parameter in advance may not be possible. So, convergence suffers. A

symmetric version of SOR called SSOR exists but provides no advantage over SOR

as a stand-alone iterative method however, it is useful as a preconditioner for Krylov

subspace methods.

Generally speaking, stationary iterative methods lack sufficient generality and de-
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pend heavily on convergence parameters which may not be known a priori. These

methods were developed with the aim of improving convergence properties to unlock

the ability to solve larger problems however, convergence can often stagnate for reasons

such as high contrast coefficients in the governing PDE or small length scales over which

material variation occurs. Both of these challenges are encountered in the modelling

of layered composites. For many practical problems, these methods do not converge

at all. This led to the next wave of development which produced Krylov subspace

methods [96–98].

Krylov subspace methods

A Krylov method as defined by Gutknecht [94] is an iterative method starting from

some initial approximation and corresponding residual and generating for all, or at

least most k, until it possibly finds the exact solution, iterates uk such that

uk − u0 = qk−1(A)r0 ∈ Kk(A, r0) = span{r,Ar,A2r, . . . ,Ak−1r} (2.10)

with a polynomial qk−1 of exact degree k−1. For some k, uk may not exist or qk−1 may

have lower degree, for example in Bi-CG. Krylov methods, at least in theory, converge

in a finite number of steps in exact arithmetic. One of the most popular methods from

this class is the conjugate gradient or CG for short.

Hestenes and Steifel [99], and Lanczos [100] independently proposed the conjugate

gradient (CG) method for SPD matrices which showed unprecedented convergence

rates with well defined bounds [97]. Disregarding numerical errors, CG converges in a

maximum of m? steps where m? is the number of distinct eigenvalues of A. Experi-

mental observations revealed that ill-conditioned systems required slightly more than

m? iterations to converge, however, well-conditioned systems converged in m iterations

where m << m?. This made CG a very attractive method. As it gained more traction,

the research community went down bifurcating paths. Whilst a subset of researchers

worked on extending CG to the non-symmetric or indefinite cases, the remainder fo-

cused their efforts into improving condition number of the system. Extensions for the

symmetric indefinite case led to the development of MINRES and SYMMLQ [101,

102]. The non-symmetric indefinite case resulted in some famously known methods like

GMRES [103], QMR [104] and Bi-CGStab [105] to name a few. We do not review

these methods in detail as they lie outside the scope of applications in this thesis.

We narrow our focus to SPD matrices that are ill-conditioned. Most composite

structures are of this type. To make them amenable to strong convergence using CG,

their condition number must be improved. The answer to that problem is precondi-
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tioning. It is a strategy for converting a not so readily solvable system into one for

which a fast solution method exists. Computational experience accumulated over the

last couple of decades indicates that a good preconditioner holds the key to an effective

iterative solver.

2.4 Preconditioning

“In ending this book with the subject of preconditioners, we find ourselves at

the philosophical center of the scientific computing of the future.... Nothing

will be more central to computational science in the next century than

the art of transforming a problem that appears intractable into another

whose solution can be approximated rapidly. For Krylov subspace matrix

iterations, this is preconditioning.” [106]

Mathematically, a preconditioned linear system of equations is of the form

M−1Aũ = M−1b (2.11)

where M−1 ≈ A−1 is a linear operator called a preconditioner. Generally speaking,

preconditioning improves the spectral properties of the coefficient matrix making it

more favourable to iterative solutions. A preconditioner must be able to do two things;

1. It must be cheap to construct and easily applicable. This condition ensures a

reasonable expense per iteration. But, what is meant by a reasonable cost? An

important consideration in the affordability of a preconditioner is its reusability.

For an invariant coefficient matrix, with an evolving right hand side, it is worth

investing in a powerful preconditioner that is used repeatedly so that the setup

cost is eventually amortized. If it cannot be reused, in nonlinear problems for

instance, it must necessarily be cheap.

2. The preconditioned system must be easy to solve. This condition means that the

solution must converge rapidly and the cost of solving the preconditioned system

should be much lower than solving the same unpreconditioned one.

These conditions contradict each other therefore, a balance between the two is usually

sought. This paradox resulted in two general approaches to constructing precondition-

ers. One way is to build specialized algorithms that are near optimal for a narrow

band of problems. They could perform very well but require in-depth knowledge of

the problem being solved including the original PDEs, their discretization, boundary

conditions and so forth. Very effective preconditioners can be built in this way but they
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tend to be extremely sensitive to details of the problem that even subtle changes may

penalize the efficacy of the preconditioner. This method is not always feasible or even

desirable. For example, the information required to build a problem specific precon-

ditioner may not be available or extremely difficult to obtain. Furthermore, problem

specific preconditioners cannot be applied as a black box and the user must understand

it fully. These reasons inspire an interest in purely algebraic methods that use only

the information contained in the coefficient matrix and are universally applicable. This

is the second approach. Preconditioners designed in this way are sub-optimal for any

particular problem but perform better across of a wider class of problems.

The term preconditioning was originally employed by Turing [107] but the scope

was limited to managing rounding errors in direct solvers. In the context of iterative

methods, Evans [108] was the first to use the term but the concept however, predates

that usage. Previously, Jacobi used planar rotations to make systems of linear equa-

tions diagonally dominant, a condition necessary for convergence of the Jacobi method

reviewed in Section 2.3. Today preconditioning is mostly targeted at improving the

condition number of a system. The first use of preconditioning in this context was

reported by Cesari [109, 110]. Early ideas for preconditioning CG can be found in

[96, 111] but major developments came later with the works of Meijirink and Van der

Vorst [112] where they proposed incomplete Cholesky CG (ICCG) method. Although

the concept of incomplete factorization was not new at this point, observing their suit-

ability as a CG preconditioner is attributed to Meirijink and Van der Vorst. This was

followed by a paper by Kershaw [113] that did a lot to popularize the method. Precon-

ditioners of this type are variations on the treatments of LU factors of the coefficient

matrix in order to approximate its inverse whilst maintaining sparsity structure. Spar-

sity is enforced either via a level-of-fill [114, 115] or a drop tolerance [116] approach,

selection criteria for which is not rigorously defined. Consequently, unpredictably large

amounts of memory are a required to store LU factors, a fundamental challenge of fac-

torization based methods. As a class, ILU preconditioners are sub-optimal in the sense

that as the mesh parameter h→ 0, the condition number of the preconditioned system

κ→∞. This particular constraint makes ILU preconditioners unsuitable for compos-

ite application where the mesh parameter can be very small to accommodate material

anisotropy or defect resolution. Since the works of Kershaw [113] preconditioning has

occupied center stage and much work has gone into improvements and extensions in-

cluding level-of-fill and drop tolerance based incomplete factorizations, generalization

to blocked matrices, stabilized versions and most recently, efficient parallel implemen-

tations. However, parallelization of incomplete factorization can be quite challenging

and scalability is a concern.
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These two limitations of incomplete factorization have motivated developments of

two distinct type of preconditioners. First, difficulty in parallelization is the primary

motivator for seeking a class algebraic preconditioners known as sparse direct inverses

[117, 118]. These preconditioners are based on solving a series of smaller (least-square

type) problems instead of factorization which is why they can be dominated by setup

times. Importantly, they can breakdown for structural applications. Although, ef-

ficient parallel implementations have become available recently due to advances in

parallel computing. Inspite of their parallel character, they are similar to ILU precon-

ditioners in terms of performance which makes them unsuitable for our applications.

Second, preconditioners from the multilevel paradigm are a consequence of the scal-

ability concern. For large anisotropic elasticity problems however, we find ourselves

in need of a robust, parallel and scalable preconditioner that does not entirely fit in

either category. This class of preconditioners called domain decomposition methods

are particularly suitable due to their inherent parallelism. To this end, we first review

multilevel methods and their limitations with respect to composites thus motivating

the domain decomposition paradigm, reviewed in greater detail to provide the reader

with a strong basis for understanding the objectives of this thesis. Importantly, the

domain decomposition framework provides a natural way to parallelize any of the pre-

conditioners mentioned here by breaking a problem down into smaller domains which

can be worked upon in parallel.

2.4.1 Multilevel preconditioners

The earliest preconditioners were built on relaxations schemes due to their popularity

at the time rather than suitability. Krylov subspace methods were seen as nothing more

than acceleration techniques. Multigrid methods are then a different class of accelera-

tion techniques. In their simplest form, they use one fine and one coarse discretization

of the underlying problem. After iterating on the fine scale, the residual is projected

onto the coarse grid. Using the residual as the right hand side in Eq. (2.8) and solving,

we obtain a correction that is interpolated back onto the fine scale. Importantly, we do

not have to stop at two discrete levels. This gives rise to the multilevel paradigm, the

first such methods being published by Fedorenko [119] although it did not gain trac-

tion till [120] provided the necessary analysis to support the idea and nudge it into the

limelight. Other early ideas came from works by Brandt [121] and Hackbusch [122].

Since then numerous methods have come up that traditionally fall into two classes;

geometric multigrid and algebraic multigrid.

56



Geometric multigrids

The original multigrid method, or more precisely the geometric multigrid was limited

in application because most problems required a bespoke version. In principle, a finely

discretized domain is coarsened till it can be solved quickly on the coarsest level. The

solution is then interpolated back onto the finest grid. This way the slowly varying com-

ponents of the error are removed. The rapidly varying error components are removed

with a smoother which can be any iterative method described previously. It is easy

to see how geometric multigrids can be sensitive to discretization (i.e. unstructured

grids), geometries or material variations.

Consider a typical carbon fibre composite with distinct layers and interfaces where

the layers are an order of magnitude thicker than resin rich interfaces between them.

In a standard FE simulation of such a structure with high contrast materials requires

a number of elements through the thin resin layers to accurately capture stresses.

Therefore, every resin layer must have at least one element through thickness to provide

the crudest stress estimate. Given a fixed domain, this constraint imposes a lower limit

on the number of unknowns in the model which may still be too large a system to solve.

Therefore, algebraic multilevel approach is preferred over the geometric one.

Algebraic multigrids

The need for general multilevel algorithms led to one of the most famous methods,

the algebraic multigrid (AMG). They are the most widely used preconditioners for

iterative solvers for Eq. (2.8) in both commercial and scientific FE codes [7, 8]. They

have demonstrated excellent scalability for a broad class of problems over thousands

of processors, and have the advantage of working only with the information contained

in the coefficient matrix, so that they can be applied ‘black-box’. As a preconditioner,

AMG constructs the matrix M by repeatedly coarsening the full matrix A through

recursive aggregation over the degrees of freedom. The aggregation process is algebraic

and based on the fact that the solution at two neighboring nodes will be similar if

they are ‘strongly connected’. The success of an AMG preconditioner depends on this

aggregation process. Extrapolating from Fig. 2-8 (right) for multiple fibrous inclusions

we can see that the connectivity of degrees of freedom within a composite laminate is

very complex and even for a simple laminate, performance of all AMG preconditioners

that we tested was prohibitively poor. In particular, this includes off-the-shelf AMG

used in the commercial software Abaqus [4], as well as tailored aggregation strategies

in the AMG preconditioners provided through dune-istl [7] and Hypre [8].

This initial testing of AMG preconditioners highlighted the need for the develop-
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Figure 2-8: Demonstration of the coarsening or aggregation process in AMG. Left: Isotropic
material where nodes within a radius are strongly connected and have similar solutions so neigh-
bouring nodes can be collapsed onto one node. Right: A stiffening inclusion (in blue) makes it
difficult to design an effective aggregation scheme. The nodes in green are strongly and non-
locally connected. The dashed red line shows a previously existing strong connection broken by
the inclusion. If we see this inclusion as a single carbon fibre in a matrix, the challenge of
aggregating degrees of freedom within even a single ply becomes obvious.

ment and implementation of a robust preconditioner with respect to both problem

size, material heterogeneity and anisotropy for large-scale composite based applica-

tions. Over the last decade there has been significant effort from the domain decompo-

sition community to develop scalable and robust preconditioners suitable for parallel

computation. One such preconditioning approach is provided by the additive Schwarz

framework [123] that we classify as domain decomposition preconditioners.

2.4.2 Domain decomposition preconditioners

Domain decompositions methods follow a divide and conquer philosophy and broadly

fit into one of two categories; overlapping Schwarz methods and iterative substructuring

methods. In this review, we focus on the former type which is more relevant to the

subject at hand although both ideas serve a common goal of achieving good convergence

independent on the number of subdomains.

The original Schwarz method relies on splitting the domain into smaller, overlap-

ping subdomains using a graph partitioning tool such as METIS [124]or SCOTCH [125]

so that each subdomain is handled by an individual MPI process. Good graph parti-

tioners are aimed at balancing computational burden per processor by ensuring that

subdomains are roughly equal in number of unknowns while minimizing communica-
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Figure 2-9: (Left) Non overlapping partitions on a unit cube. (Right) A subdomain with
overlaps shared by neighbours.

tion through intelligent domain decomposition. This basic parallel version, known as

the Jacobi Schwarz method, has poor convergence properties and necessarily requires

overlapped regions.

There are two key ingredients required by any overlapping domain decomposition

method to have a chance at convergence;

1. A way to extract the subproblem and be able to project it back onto the complete

domain. This is done via restriction and extension operators respectively.

2. A technique of stitching together local solutions which is achieved through parti-

tion of unity operators, shown as χ in Fig. 2-10.

If the assembly of local solves to give a global solution is done without the partition of

unity to average out the solution in the overlapped region in some sense, the resulting

algorithm, known as additive Schwarz method (AS) converges poorly or not at all due

to competing solutions in the overlaps. Therefore, a partition of unity must be applied

giving the restricted additive Schwarz (RAS) algorithm.

Given a restriction operator Ri that maps A to Ai, its transpose is the prolongation

operator that reverses the restriction. Then the additive Schwarz preconditioner is

defined as

M−1
AS :=

N∑
i=1

RT
i (RiART

i )−1Ri (2.12)

Similarly, the RAS preconditioner can then be written as a sum of local inverses over

all domains

M−1
RAS :=

N∑
i=1

RT
i χi(RiART

i )−1Ri (2.13)
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where χi is the partition of unity operator for the i-th subdomain.

Recall Eq. (2.8) for which the Jacobi iteration may be written as

Duk+1 = Duk + (b−Auk) (2.14)

In its original form, the Jacobi method is an element by element iteration however the

block Jacobi method reorders the matrix into block form making it more suitable for

iterative solvers since operations can be carried out on blocks, independently. Block

Jacobi method therefore, has a higher degree of parallelism.

Say, the set of indices of a mesh {1, 2, . . . , n} are partitioned into two sets S1 =

{1, 2, . . . , ns} and S2 = {ns + 1, ns + 2, . . . , n} and corresponding partitions applied to

u and b such that u1 and u2 denote the partitioned sets of unknowns and b1 and b2

the partitioned right hand side. The linear system in Eq. (2.8) has the following block

form (
A11 A12

A21 A22

)(
u1

u2

)
=

(
b1

b2

)
(2.15)

where Aij = Ai×j for 1 ≤ i, j ≤ 2. The block Jacobi algorithm now becomes(
A11 0

0 A22

)(
uk+1

1

uk+1
2

)
=

(
b1 −A12u

k
2

b2 −A21u
k
1

)
(2.16)

or simply (
A11 0

0 A22

)
uk+1 = b−

(
0 A12

A21 0

)
uk (2.17)

Notice, Eq. (2.17) is the blocked version of Eq. (2.9). We can rewrite this as

uk+1 = uk +

M−1
JSM︷ ︸︸ ︷(

A11 0

0 A22

)−1

rk (2.18)

where rk = b−Auk is the k-th residual vector. When the overlap between neighbours

is minimized, the subdomain boundaries can be seen as Dirichlet boundaries in which

case, we obtain the additive Schwarz algorithm as block Jacobi method i.e. M−1
JSM =

M−1
AS .

Convergence of both AS and RAS as iterative methods is slow. However, they make

good preconditioners for Krylov subspace methods. But how good are any of these

domain decomposition methods? The iteration count of one-level methods plateaus out

and weak scaling cannot be achieved. Stagnation is caused by few eigenmodes in the low
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Figure 2-10: Two subdomain decomposition of a 1-D example showing partition of unity for
the minimal overlap case. The Dirichlet subdomain boundaries have zero contribution to the
solution and since there are no other shared nodes, the additive Schwarz reduces to block Jacobi
algorithm.

Figure 2-11: Left: Dependency of additive Schwarz on overlap for a fixed number of subdo-
mains (32 in this test); Right: Dependency of restrictive additive Schwarz on overlap size. The
only difference in comparison to the left plot is the inclusion of partition of unity in the con-
struction of the preconditioner. The overlap is given in number of elements that a subdomain
is extended by.

energy spectrum of the preconditioned problem i.e. the system is ill-conditioned even

after preconditioning. This phenomenon occurs due to the lack of global information

exchange. The solution on the ith subdomain depends on the value of b across all

subdomains which is not communicated in one-level methods. Therefore, a coarse grid

correction must be applied which significantly improves convergence.

A classical coarse space correction was proposed by Nicolaides [126], which in a

scalar valued problem is a vector of ones. In vector valued elasticity for example, the

equivalent space would include all the zero energy modes of deformation. To demon-

strate this with an example, we consider a contrived one dimensional elasticity problem

for a composite material, shown in Fig. 2-14. A comparison of one and two level ad-

ditive Schwarz methods for this problem divided into 32 subdomains is presented in

Fig. 2-15. In the one-level AS case, the condition number of the system of linear equa-
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Figure 2-12: Left: In the additive Schwarz test, the overlap is fixed in number of elements while
subdomain count increased. From the plot, at least 64 subdomains are required for convergence
because the overlap, as a percentage of subdomain size, is insufficient for larger subdomains.
Therefore, none of the solutions converge to the required tolerance; Right: The RAS test shows
slight improvement in convergence with the addition of partition of unity.

Figure 2-13: Additive Schwarz example with overlap fixed in terms of percentage of subdomain
size which illustrates the paradoxical nature of two competing requirements i.e. overlap and
number of subdomains. As the subdomain count increases, global communication becomes more
necessary, so convergence deteriorates. Once again, AS on the left is compared with RAS on
the right.

tions is ≈ 5.12 × 107 which with preconditioning reduces to ≈ 8.17 × 102 however,

a converged solution is not obtained due to the Krylov solver stagnating. Nicolaides

coarse space correction not only helps achieve convergence but it does so in just 22

iterations as shown by the red line in Fig. 2-15. The condition number improves from

≈ 9.13 × 108 to ≈ 2 × 103 with two-level AS preconditioning. In general, Nicolaides

coarse space is a specific example of a wider class of spectral coarse spaces that are cal-

culated by solving a local generalized eigenvalue problem. Two level additive Schwarz
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Figure 2-14: One dimensional composite problem with resin rich (red) and carbon fibre (blue)
dominated zones. Eresin = 10GPa and Ecomposite = 162GPa.

Figure 2-15: The two-norm of the residual against CG iterations for a 1D composite as shown
in Fig. 2-14 using no coarse space (blue line) and Nicolaides coarse space (red line). One-level
AS does not converge for this composite problem but with the Nicolaides coarse correction, the
solution converges in 22 iterations.

preconditioners are of the form

M−1
AS,2 = M−1

AS +
N∑
i=1

RT
H(RHART

H)−1RH (2.19)

where RH is a coarse space computed from a coarse mesh with an element of size H,

each representing a subdomain. M−1
AS,2 is a two level additive Schwarz preconditioner

that can be applied to the fine scale.

Two level preconditioners offer a major advantage that is exploited in this thesis.

If chosen wisely, RH produces a good multiscale model eliminating the need to solve a

large preconditioned fine scale model. Instead, one can directly solve the coarse model

(RHART
H)ũ = RHb and recover fine solutions in the region of interest by applying

RT
H locally. Therefore, we review the choice of RH under the heading of multiscale

methods in Section 2.5.
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2.5 Modern multiscale methods

The need for fast forward solves has been highlighted in Section 2.2.1 where we need

to solve a problem many times to quantify the uncertainty in an inferred quantity. In

the case of expensive forward models, Section 2.2.1 talks about a surrogate model that

is cheaper to solve and can be used as a screening step to increase effective sample

size for a fixed computational budget. In this section, we concern ourselves with the

development of that surrogate which encodes some amount of fine scale information

into a coarser basis producing a multiscale basis. The major advantage of a multiscale

basis embedded in the domain decomposition framework is that it offers a more efficient

solution in a parallel setting.

One of the first multiscale methods was homogenization of heterogeneous materi-

als, originally developed for elasticity problems. The term homogenization was coined

by Ivo Babuska [127] to define methods based on averaging principles. It refers to

an approach that explores macroscale behaviour of a medium by its microstructural

properties. The idea is to replace a heterogeneous material with an equivalent homo-

geneous one. However, this substitution assumes a periodic arrangement of hetero-

geneities in the medium. Homogenization becomes difficult when the heterogeneities

have a random character. Real world composites have geometric variations, changing

stacking sequences and defects. This means the homogenized finite element has an

upper bound in size which it cannot exceed otherwise the effective bulk properties will

become invalid. This produces very large systems of equations. However, homogenized

mechanical properties are still used to define the constitutive law over a finite element

in a composite simulation. Each element in a composite lamina is defined by an effec-

tive (orthotropic) material matrix rather than individual fibre and matrix properties.

Therefore, homogenization alone is insufficient as a multiscale method but is integral

to the finite element approach. The homogenization paradigm is further extended or

even exploited by the RVE concept, which we have already considered and concluded

as being unsuitable for real world composite simulations. So we seek another FE based

multiscale approach, particularly one suitable for parallelization.

Finite element tearing and interconnecting (FETI) methods are robust domain de-

composition methods for solving large linear systems. Farhat and Roux [128] introduced

them as iterative substructuring methods requiring reduced interprocessor communica-

tion in comparison to classical substructuring. Classical FETI and its variants are well

established in the field of robust parallel solvers for large linear systems. They have been

quite successful due to their broad scope of application and moderate complexity but

most importantly, due to their excellent parallel scalability and robustness [129, 130].
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Mandel and Tezaur [131] provided the first convergence proof for FETI methods ap-

plied to 2D problems with homogeneous coefficients by bounding the spectral condition

number of the preconditioned system. Klawonn and Widlund [132] extended the imple-

mentation and analysis of the FETI method to 3D heterogeneous coefficients although

the coefficients could only be piecewise constant with respect to the domain decom-

position i.e. each subdomain in itself remains homogeneous but the overall structure

does not. The authors proved the boundedness of its condition number is independent

of discontinuous nature of the coefficients as long as they are aligned with subdomain

interfaces and a special scaling is applied to the preconditioner. Pechstein and Scheichl

[133] developed the analysis of FETI methods further to include highly heterogeneous

multiscale problems where either the coefficient jumps are not aligned with grid parti-

tions or local variations within a subdomain are of high contrast. However, numerical

experiments have shown the lack of robustness in such cases. This is a major limita-

tion of FETI methods in context of composite applications as the coefficient jumps are

high contrast and not smooth. For a comprehensive analysis, we refer the reader to a

monograph by Toselli and Widlund [134].

The latest multiscale methods in structural applications, involve some kind of spec-

tral decomposition. It is a natural representation because eigenvectors of stiffness

matrices represent various modes of deformation, ranked according to corresponding

eigenvalues or energy requirement. The first two-level preconditioner based on Nico-

laides coarse space mentioned in the previous section is also a spectral space where only

the zero energy eigenmodes are used to formulate the coarse space or reduced order

model on the second level. However, this space is insufficient as a multiscale model by

itself, since this would produce deformations as combinations of rigid body modes only.

So what is a good coarse space?

Some popular coarse spaces are derived by solving an eigenvalue problem. One

such basis was proposed by Efendiev [90] involving a two stage computation called

offline and online stages. In the offline stage, a series of local snapshots or solutions

are computed which is usually large dimensional (dimension of the fine grid). This

space of snapshots is subsequently reduced via some spectral procedure like proper

orthogonal decomposition (POD). This new offline space forms the coarse basis for a

given set of input parameters. Calibrating the coarse space by selecting a subset of the

offline basis functions allows a balance to be sought between accuracy and efficiency.

Crucially, a coarse space computed in this way to build a reduced order model is bound

to given inputs, loads, boundary conditions and so on. Any changes to these would

require the model to be recomputed, an expensive task particularly for large problems.

Furthermore, the dimensionality of the solution of a reduced order model is affected by
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how well it represents the multiscale character of the problem. Naturally, for a range of

inputs, an evolving model is required. GMsFEM remedies this problem. The ingenuity

of GMsFEM lies in systematic enrichment of the coarse space on the fly in the online

stage thus tailoring reduced order models to capture the general mechanics over a wide

range of possible inputs whilst ensuring it is adapted to the current problem.

In this method, the coarse space is obtained by solving a generalized eigenvalue

problem of the form Au = λBu. The choices for A and B are what distinguish

different GMsFEM methods. In their paper, the authors use three different choices

[90], in the third of which A is the stiffness matrix and B is the mass matrix of a

subdomain.

Another choice for B in overlapped grids is the overlap matrix extracted from A such

that the only non zero terms are those indexed by the overlapping degrees of freedom.

In a physical sense, this Generalized Eigenvalue problem for Overlapping (GenEO) [135]

subdomains computes eigenvectors that are compatible across subdomains due to the

overlap constraint i.e. all modes computed over all subdomains can be stitched together

(with a partition of unity) to produce a global mutliscale basis. The GenEO coarse

space is extensively used in this thesis both, for preconditioning large systems and as

a reduced order model for stochastic simulations.

2.6 Concluding remarks

In this chapter, we have reviewed the literature on five distinct topics that are pulled

together in this thesis for multiscale modelling of composite materials with random de-

fects. Prior to the development of iterative solvers, modelling of large structures with

tiny defects lay outside the scope of human capability but specialized iterative solvers

called Krylov subspace solvers provided a computational route to solving extremely

large problems. However, even these powerful solvers are prone to high iteration counts

or convergence failure for many realistic problems that tend to be ill-conditioned. It

then became clear that the success of iterative solvers depended strongly on precondi-

tioning.

Domain decomposition preconditioners are best suited for large problems that can

only be solved in parallel, particularly for composite materials where multilevel pre-

conditioners are not sufficiently robust. However, a global preconditioner built from

local inverses calculated on subdomains only, stagnates when the number of subdo-

mains increases beyond a threshold i.e. does not scale well due to a lack of global

communication. This is remedied by an adding a second level to the preconditioner via

the additive Schwarz framework. In this way, robust and scalable two level additive
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Schwarz preconditioners can be assembled that are well suited to high dimensional,

anisotropic elasticity problems.

Solving large systems of anisotropic equations is part of a larger endeavour - to

quantify the uncertainty in manufactured parts that are defective to some degree in

order to challenge industrial design conservatism and reduce cost. This is a Bayesian

problem, the solution to which hinges on a number of successful solves of large systems.

At this scale, even state of the art preconditioned iterative solvers become prohibitively

expensive and the uncertainty remains unquantified. However, observing that a good

coarse space (required for the second level of preconditioning) can be used as a robust

multiscale method, opens a route to the solution. This permits model order reduction

to a manageable dimensionality thus making repeated solves possible. This coarse

model is a key ingredient of MCMC, the method used to quantify the uncertainty in

the underlying random field.

There is a wide variety of MCMC methods, all competing to provide the greatest

effective sample size in the most efficient way. Efficiency is governed by the number of

wasteful solves because the time spent computing a bad sample is never recovered. Then

the aim can be redefined as minimizing rejection and correlation between subsequent

samples in search of the largest effective sample size for a fixed budget. This is most

effectively achieved via the delayed acceptance framework where bad samples can be

screened at a fraction of the cost by using a good multiscale model.

From the viewpoint of supplementing the test pyramid computationally with the

goal of reducing uncertainty at higher levels, we have identified a need for efficient

solvers that can tackle problems at the component level whilst maintains the accuracy

of coupon level simulations i.e. robust and scalable solvers including preconditioning.

This we address in Chapter 3. We also highlight a need for better parameterization

of non-periodic features like wrinkles in composites and quantify the strength penalty

they impose on components in a stochastic sense. This is studied in Chapter 4. This

review also shows the lack of a good multiscale model that captures enough fine scale

detail and simultaneously be cheap to solve. This is the key ingredient developed in

Chapter 5 (as a byproduct from Chapter 3) which is then used in a Bayesian setting

to make inferences about variations in the underlying elastic field.
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CHAPTER 3

DUNE-COMPOSITES - AN OPEN

SOURCE, HIGH PERFORMANCE

PACKAGE FOR SOLVING

LARGE-SCALE ANISOTROPIC

ELASTICITY PROBLEMS

3.1 Introduction - Why do we need dune-composites?

In Chapter 1, we showed why there is a need to develop validated simulation tools for

modelling of composites. It highlights three challenges that arise in modelling large

composite structures and the limitations of existing capabilities. In this chapter, we

tackle the first two challenges; scale of calculations and material anisotropy. In Sec-

tion 2.3 we show how the challenge of scale restricts our choice of solver and demands

a preconditioner. In Section 2.4 we show how material anisotropy produces ill condi-

tioned systems making existing preconditioners less effective. Thus there is a need for

a specialised preconditioned parallel solvers that are both robust and scalable.

The domain decomposition, or the one level additive Schwarz framework [123]

whereby the domain is decomposed into a number of overlapping subdomains, which

in our case corresponds to one processor, and the subdomain’s local stiffness matrix is

inverted on each processor directly. Reportedly, as shown in Section 2.4.2 this one level
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approach is insufficient for very large problems and global information in the form of

a coarse space must be added. Section 2.4.2 also shows the success of the Nicolaides

coarse space [126]. In dune-composites, we use GenEO [135] to construct a coarse

space by combining low energy eigenvectors of the local subdomain stiffness matrices

using a partition of unity. The resulting preconditioner leads to an almost optimal scal-

ing with respect to problem size and number of processors, allowing us to successfully

tackle large industrially important problems with over 200 million degrees of freedom.

dune-composites is a high-performance composite FE package built on top of

Dune (Distributed and Unified Numerics Environment), an open source modular tool-

box for solving partial differential equations (PDEs) with grid-based methods [136–138].

Based on the core Dune philosophy, dune-composites is written using C++ and ex-

ploits modern inheritance and templating programming paradigms. It is open source

and publicly available at https://dune-project.org/modules/dune-composites/.

The package provides a single codebase with the following key features:

• implementation and interface to a novel, robust preconditioner called GenEO [3,

135] for parallel Krylov solvers, which exhibits excellent scalability over thou-

sands of processors on Archer, the UK national HPC system. The precondi-

tioner is now provided as part of dune-pdelab since release 2.6 at https://

dune-project.org/modules/dune-pdelab/ after initially developing it within

the dune-composites module;

• interfaces to handle composite applications, including stacking sequences, com-

plex part geometries, defects and non-standard boundary conditions, such as

multi-point constraints or periodicity;

• to overcome shear locking of standard FEs, mesh stabilisation strategies to sup-

port reduced integration [139], as well as a new 20-node 3D serendipity element

(with full integration) have been implemented;

• interfaces to other state-of-the-art parallel solvers (& preconditioners) in

dune-istl [7] and Hypre [8];

• a code structure which supports both engineering end-users, and those requiring

flexibility to extend any aspect of the code in a modular way to introduce new

applications, solvers or material models.

The purpose of this chapter is to highlight the novel mathematical aspects of the

code and document its structure. We illustrate its use through a range of indus-

try motivated examples, which should enable other scientists to build on and extend
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dune-composites for use in their own applications. We begin by outlining the math-

ematical formulation of the new robust preconditioner and its implementation on a

distributed memory computer in Sec. 3.3. We then provide details of the structure

and salient features of the code in Sec. 3.4 including the pertinent code blocks in Ap-

pendix A. Finally in Sec. 3.5, through the use of a series of example problems, we

provide details of how to implement, build and run your own applications. We also

use these examples as an opportunity to demonstrate the computational efficiency of

dune-composites.

3.2 Preliminaries : Anisotropic elasticity equations and

their finite element discretisation

A composite structure occupies the domain Ω ⊂ R3 with the boundary Γ and a unit,

outward normal vector n ∈ R3. At each point x ∈ Ω, we define a vector valued

displacement u(x) : Ω → R3. In each of these three global directions, the boundary

may contain a Dirichlet component Γ
(i)
D and a Neumann component Γ

(i)
N , such that

Γ = Γ
(i)
D ∪ Γ

(i)
N and Γ

(i)
D ∪ Γ

(i)
N = ∅, i = x, y, z (3.1)

Let σij denote the Cauchy stress tensor and f(x) : Ω → R3 the body force per

unit volume. The infinitesimal strain tensor, is defined as the symmetric part of the

displacement gradients

εij(u) =
1

2
(ui,j + uj,i) . (3.2)

where ui,j = ∂ui
∂xj

. The strain tensor is connected to Cauchy stress tensor via the

generalised Hooke’s law

σij(u) = Cijkl(x)εkl(u). (3.3)

Cijkl(x) is a symmetric, positive definite fourth order tensor. A composite laminate

is made up of a stack of composite layers (or plies ∼ 0.2mm), separated by a very

thin layer of resin (15µm). A single composite layer is modelled as a homogeneous

orthotropic elastic material, characterised in general by 9 parameters and a vector of

orientations θ. Resin interfaces are assumed isotropic, defined by just 2 scalar (Lamé)

parameters. These fibres are aligned in local coordinates and can be rotated in any

direction using standard tensor rotations, for more details see e.g. [140].

Given functions hi : Γ
(i)
D → R and gi : Γ

(i)
N → R, prescribing the Dirichlet and

Neumann boundary data (for each component), we seek the unknown displacement
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field u(x), which satisfies the force equilibrium equations and the boundary conditions,

∇ · σ(u) + f = 0, x ∈ Ω, ui = hi for x ∈ Γ
(i)
D and σijnj = gi for x ∈ Γ

(i)
N ,

(3.4)

as well as eqs. (3.2) and (3.3). Then, we define the function space for each component

of displacement ui to be

V (i) := {v ∈ H1(Ω) : vi(x) = hi , x ∈ Γ
(i)
D }, (3.5)

leading to the weak formulation of (3.4), of finding u ∈ V := V (1) ⊗ V (2) ⊗ V (3) such

that

a(u,v) :=

∫
Ω
σij(u)εij(v) dx =

∫
Γn

σijnjvi ds−
∫

Ω
fivi dx := b(v), ∀v ∈ V. (3.6)

We consider the discretisation of the variational equation (3.6) with conforming

FEs on a mesh Th on Ω. Let Vh ⊂ V denote the restriction of V onto a FE space on

Th and seek an approximation uh ∈ Vh such that

a(uh,vh)− b(vh) = 0, for all vh ∈ Vh. (3.7)

We block together displacements from all three space dimensions, so that u
(i)
h ∈ B =

R3 denotes the vector of displacement coefficients containing all space components

associated with the ith basis function. We introduce the (vector-valued) FE basis for

Vh defined by the spanning set of (vector-valued) shape functions {φ(i)(x)}ni=1. These

are the normal scalar shape functions, repeated for each displacement component.

Therefore the vector displacement at a point is given by uh(x) =
∑n

i=1(u
(i)
h )T φ(i)(x).

The choice of basis converts (3.7) into a symmetric positive-definite (spd) system of

algebraic equations

Aũ = b where A ∈ Bn × Bn and b ∈ Bn (3.8)

where the blocks in the global stiffness matrix and in the load vector, for any i, j =

1, . . . , n, are given by Aij = a(φ(i),φ(j)) and bi = b(φi). The vector

ũ = [u
(1)
h , . . . ,u

(n)
h ]T ∈ Bn is the block vector of unknown FE coefficients. System

(3.8) is assembled element-wise from (3.6), using Gaussian integration.
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3.3 A robust, scalable, parallel iterative solver for com-

posite structures

The key innovation of dune-composites, as a software package, is the design and

implementation of a highly robust, scalable parallel iterative solver for composite ap-

plications. This solver is applicable to a more general class of problems and been made

available in the dune-pdelab module. In this section, we provide the mathematical

and implementation details of the new solver. Apart from new types of FEs that had

to be implemented in Dune, the remainder of the package largely provides interfaces

to handle the set-up for complex composite applications.

3.3.1 Krylov subspace methods preconditioned with two-level addi-

tive Schwarz methods

In dune-composites we use preconditioned Krylov subspace methods both in sequential

and parallel, as provided by Dune’s “Iterative Solver Template Library” dune-istl

[7]. Krylov subspace methods are iterative solvers which construct a sequence of ap-

proximations u(k) in the k-dimensional subspace:

Kk = span{r,Ar,A2r, . . . ,Ak−1r} ⊂ Rk (3.9)

where r = b−Aũ(0) is the initial residual. The simplest Krylov subspace method for

a symmetric positive-definite matrix A is the Conjugate Gradient method (CG), first

introduced by Hestenes and Stiefel (1952). In each step, the approximate solution ũ(k)

is updated by adding the search direction d(k) scaled by a factor chosen to minimise the

energy norm over the space Kk. The search directions are chosen to be A-orthogonal to

all previous directions i.e. 〈d(k),Ad(k′)〉 = 0 for k′ < k. The method iterates until the

residual norm (or “energy”) ‖r(k)‖ reduces below a user defined tolerance. Importantly,

the convergence rate of CG depends on the spectral properties of the matrix A, see

e.g. [141]. In particular, it can be bounded proportionally to the square root of the

condition number κ, defined as the ratio between its largest and smallest eigenvalue.

A large value, as usually seen in composites, indicates that the system Aũ = b is

ill-conditioned. This means that u is very sensitive to small changes in b. For such

cases, iterative solvers converge very slowly or even not at all, particularly when the

problem size increases. A remedy is to precondition the system, that is to develop an

operation M−1 which is computationally cheap to construct and apply (in parallel)

such that M−1Aũ = M−1b is better conditioned and CG solvers converge quickly.

In dune-composites our main preconditioner is a two level additive Schwarz method.
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Figure 3-1: (Left) Domain Ω partitioned into non-overlapping subdomains Ω′j where colouring
differentiates independent subdomains. (Middle) Shows overlapping subdomain Ωj with a single
layer of overlap (O = 1). Overlap region Ω◦j is shown in white. Transparent red regions show
cells of the grid which belong to ’nearest neighbour’ processors. (Right) Shows partition of unity
(PoU) operator Ξj on a single processor, defined as in (3.12).

To construct this method we partition our domain Ω into a set of non-overlapping sub-

domains Ω
′
j for j = 1 to N resolved by Th, as shown in Fig. 3-1 (left). Each subdomain

Ω
′
j is extended by O-layers of elements to give the overlapping subdomains Ωj , Fig.

3-1 (middle). For each subdomain 1 6 j 6 N , we denote the restriction of Vh to Ωj

by Vh(Ωj), whilst the space of FE functions with support contained in Ωj is called

Vh,0(Ωj).

Remark: In dune-composites the user can define the initial non-overlapping de-

composition (or a default is used), the overlapping process is handled by Dune’s parallel

structured grid class Dune::YaspGrid [136].

Any function v ∈ Vh,0(Ωj) is mapped onto Vh by the prolongation operator RTj :

Vh,0(Ωj)→ Vh, which extends v by zeros, so that

RTj v(x) =

v(x), x ∈ Ωj

0, x ∈ Ω\Ωj

.

We therefore note that the restriction operator Rj : Vh → Vh,0(Ωj). In matrix form the

restriction and prolongation operators Rj and RTj , are denoted Rj and RT
j respectively.

This allows us to define the subdomain stiffness matrices restricted to Vh,0(Ωj) as

Aj := RjART
j for j = 1, . . . , N . In practice, we do not compute Aj from A via

this double matrix product. Instead, we can equivalently assemble Aj directly from

the bilinear form (3.7) on Ωj with homogeneous Dirichlet boundary conditions on all

artificial interior subdomain boundaries, i.e. all points x ∈ ∂Ωj that satisfy x ∈ Ωj′ for

some other j
′ 6= j.

The 1-level Additive Schwarz method can then be defined as a preconditioner of
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(3.8) via the operator

M−1
AS,1 =

N∑
j=1

RT
j A−1

j Rj (3.10)

Here, in the subscript, the AS denotes additive Schwarz and the 1 denotes a one-

level method. In this case the preconditioner M−1
AS,1 approximates the inverse operator

A−1 by a sum of local solves on overlapping subdomains, with homogeneous Dirichlet

boundary conditions on interior boundaries. We will see in the numerical examples to

follow that, for large problems, a single-level method is not sufficient, causing stagnation

(high iteration counts) of the iterative solver. This stagnation of the iterative solver is

caused by a few very small eigenvalues in the spectrum of the preconditioned problem.

They are due to the lack of a global exchange of information in the preconditioner

in the single-level method. A classical remedy is the introduction of a coarse grid

problem that couples all subdomains at the second level [123]. To define our coarse

problem, we introduce a coarse space VH ⊂ Vh (which we define below). We denote

the restriction from the fine to the coarse space by the operator RH : Vh → VH , with

matrix representation RH . The two-level additive Schwarz preconditioner (in matrix

form) is given by

M−1
AS,2 = RT

HA−1
H RH + M−1

AS,1 where AH = RHART
H . (3.11)

Two natural questions arise:

• What is a good choice of coarse space VH for composite applications?

• How do we construct AH efficiently on a distributed memory computer without

assembling A directly?

3.3.2 A robust coarse space via Generalised Eigenproblems in the

Overlaps (GenEO)

The ideal coarse space would capture the global low energy modes of A that jeopardise

the performance of Krylov solvers. Specifically, in the two-level additive Schwarz set-

ting, the modes not captured by the local solves are of interest. Yet, to compute those

low-energy modes explicitly would be more expensive than inverting A itself. Instead,

the global low-energy modes can be approximated by stitching together local (opti-

mal) approximations. These local approximations are solutions of specific Generalised

Eigenproblems in the Overlaps, hence named GenEO, defined below. Importantly the

local eigenproblems are independent and can trivially be computed in parallel. The

robustness of GenEO has been proven for isotropic elasticity problems, Spillane et al.
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[135], and numerically verified by the authors for anisotropic variants [25].

The construction of the GenEO coarse space has two key steps: the definition of

the generalised eigenproblems on the subdomains and the stitching together of the

resulting local eigenmodes from each subdomain to form a global basis. This stitching

process by means of partition of unity (PoU) operators is also incorporated in the local

eigenproblems, therefore we construct the PoU operators first.

Definition 3.3.1. (Subdomain Overlap). For each subdomain Ωj, the overlap region

is defined by the set

Ω◦j := {x ∈ Ωj : ∃j′ 6= j s.t. x ∈ Ωj′},

i.e. the subset of Ωj which belongs to at least one other subdomain.

Definition 3.3.2. (Partition of Unity). The family of operators Ξj : Vh(Ωj) →
Vh,0(Ωj), j = 1, . . . , N , defines a Partition of Unity if

N∑
j=1

RTj Ξj(v|Ωj ) = v, ∀v ∈ Vh .

Since RTj′Ξj′(v|Ωj′ ) = 0 on Ωj\Ωo
j for all j′ 6= j, it follows from this definition that

restricted to Ωj\Ωo
j each Ξj has to be the identity operator. In the overlaps, the choice

of Ξj is not unique. The simplest approach is to define Ξj(v) such that each coefficient

of the FE function v is scaled by the number of subdomains the corresponding degree

of freedom belongs to (see [135] for details). However, we also provide a smoother

PoU as defined by Sarkis [142] in our implementation, but observe little difference in

the performance of the overall solver (at most one iteration); we therefore keep the

presentation here as simple as possible.

Given this set of local PoU operators Ξj(·), we can construct any global FE function

vh ∈ Vh from local functions v
(j)
h ∈ Vh(Ω) as follows:

vh =

N∑
j=1

RTj Ξj(v
(j)
h ) . (3.12)

In particular, we can define the local generalised eigenproblems that (once collected

from each subdomain) provide the basis of the GenEO coarse space. The following def-

inition can be rigorously motivated from theoretical considerations and we refer again

to [135]. For each subdomain Ωj , j = 1, . . . , N , we define the generalised eigenproblem:

Find (λ, p) ∈ R+ × Vh(Ωj) such that

aΩj (p, v) = λaΩoj
(Ξj(p),Ξj(v)), ∀v ∈ Vh(Ωj), (3.13)
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where, for any D ⊂ Ω, the bilinear form aD is defined like a in (3.6) with the integral

restricted to D.

Definition 3.3.3. (GenEO coarse space). For each subdomain Ωk let p
(j)
k be the eigen-

functions from (3.13) with associated eigenvalues λ
(j)
k in ascending order. Then, for

some choice of mj ∈ N, the GenEO coarse space is defined as

VH := span{RTj Ξj(p
(j)
k ) : k = 1, . . . ,mj , j = 1, . . . , N}.

The only parameter that remains to be chosen is the number of eigenmodes mj to

be included in each subdomain Ωj . In order to ensure robustness and scalability of the

solver, the condition number of the preconditioned system needs to be bounded from

above, independent of N , h and of the material properties. It has been shown in [135]

that

κ(M−1
AS,2A) 6 C max

16j6N

1 +
1

λ
(j)
mj+1

 . (3.14)

where C > 0 is a constant depending only on the geometry of the subdomains and where

λ
(j)
mj+1 is the lowest eigenvalue whose eigenfunction is not added to the coarse space on

Ωj . Thus, the desired robustness can be achieved by including all eigenfunctions in the

coarse space whose eigenvalues are below an a priori chosen threshold. A particular

threshold that turns out to provide an effective black-box choice formj and also depends

only on the geometry of the subdomain partition is to include all eigenfunctions with

λ
(j)
k ≤ diam(Ωj)/width(Ωo

j).
1 This simple threshold can be scaled by a constant factor,

thus also scaling the condition bound of the preconditioned system by the same factor.

As the number of iterations of the Krylov solver depends directly on the condition

number, this allows us to balance the time spent in the iterative solver with the time

spent on setting up the preconditioner.

The number of eigenfunctions that are used in the coarse space is problem-specific,

but it turns out that for strongly structured coefficient distributions only a small num-

ber is typically sufficient. We will see in Section 3.5 that the calculation of these local

eigenmodes is not prohibitively expensive, while yielding excellent condition numbers

and, due to the independence of the individual eigenproblems, parallel scalability.

1For any D ⊂ Ω, diam(D) and width(D) refer to the radius of the largest circumscribed and
inscribed circle, respectively.
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3.3.3 Implementation of GenEO on a High Performance Computer

The two-level additive Schwarz preconditioner with GenEO coarse space is implemented

within a collection of header files, which are located in dune-pdelab from releases/2.6

and in the folder solvers/geneo/ in prior releases. Here we describe our implemen-

tation. We are aware of only one other high performance implementation of GenEO,

which can be found in the package HPDDM for which details are provided in Jolivet et

al. [143, 144].

It is a main goal of such an implementation to fully exploit the excellent parallel

scalability promised by the method’s construction and theoretical properties. There-

fore, each process j will be assigned to subdomain Ωj and only store relevant fine-level

operators and functions in the form of local restrictions to Ωj . Further, per-subdomain

stiffness matrix and eigenproblem solves will be run in parallel on the respective pro-

cesses. Only scalable nearest-neighbour communication is needed, with the exception

of setting up the coarse matrix, which consequently requires particular care.

Partition of Unity (PoU) operator

The partition of unity operator as defined by Def. 3.3.2 is stored locally on each

processor (see Fig. 3-1). In practice, the partition of unity operator Ξj is represented

as a diagonal matrix X(j). In the simplest case, each diagonal entry of X(j) is set to

one divided by the number of subdomains containing the associated degree of freedom,

except for the subdomain boundary where entries are set to zero. Therefore, if v(j)

is a vector containing all nodal degrees of freedom of the FE function vh ∈ Vh(Ωj)

in subdomain Ωj , the operation X(j)v(j) automatically maps vh into Vh,0(Ωj). Such

a PoU can be generated using existing parallel data structures in Dune by adding a

vector of ones using an AddDataHandle and by enforcing both global and subdomain

boundary conditions before and after communication. The implementation of the PoU

operators is within the header file geneo/partitionofunity.hh under the function

standardPartitionofUnity(...). As the choice of partition of unity operator is not

unique, we also provide the PoU in [142], which is implemented in the same header

file under the function sarkisPartitionofUnity(...). This gives a ‘smoother’ PoU

operator, which is however restricted to equally distributed subdomain sizes. Under

testing, we noted no significant difference in the performance of the preconditioner

when changing between the two different PoU operators.
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Subdomain eigenproblems

The local generalised eigenvalue problems (3.13) can be rewritten in matrix form as

follows: Find eigenpairs (λ
(j)
i ,p

(j)
i ) with eigenvalues in ascending order and ‖p(j)

i ‖ = 1

such that

AΩjp
(j)
i = λ

(j)
i

(
X(j)AΩ◦j

X(j)
)
p

(j)
i , for j = 1, . . . , N and i = 1, . . . ,mj (3.15)

where AΩj and AΩ◦j
denote the stiffness matrices corresponding to the bilinear forms

aΩj (·, ·) and aΩ◦j
(·, ·) on Vh(Ωj) and Vh(Ωo

j), respectively. They are solved using ARPACK++

[145].

A customised wrapper has been developed to convert Dune data structures into

a suitable format for ARPACK++ [145]. In order to regularise the problem, we employ

ARPACK++’s shift and invert spectral transformation mode and, since we are interested

in the smallest mj eigenvalues, we choose a small shift factor. The global coarse basis

vectors Φ1, . . . ,ΦNH are obtained from the local eigenvectors by applying the PoU

operator, i.e., Φi(j,k) := X(j)pjk, and padding the rest of the global vector (outside Ωj)

with zeros. Here, NH = mjN is the total number of modes in the coarse space.

Coarse space assembly

The parallel assembly of the coarse system AH = RHART
H is not trivial in practice

since process j only has local access to rows and columns of A associated to degrees of

freedom on sub-domain Ωj . We denote this submatrix Ãj . Note that Ãj differs from

the matrix Aj in (3.10) in that it does not incorporate Dirichlet conditions on interior

subdomain boundaries.

Furthermore the coarse space prolongation matrix RT
H is only available in a dis-

tributed manner. Each basis vector Φi, i ∈ {1, . . . , NH}, is available only on process

j(i), where the unique j(i) ∈ {1, . . . , N} denotes the index of the subdomain Ωj(i) as-

sociated with the eigenproblem (3.15) corresponding to Φi. However, due to the local

support of the basis functions, one can break down the global matrix product into local

products

(AH)i,` = (RHART
H)i,` =

(
ΦT
i Ãj(i)

)
Φ`, for i, ` = 1, . . . , NH , (3.16)

with a slight abuse of notation, denoting the local parts of the global vectors Φi and

Φ` restricted to Ωj(i) again by Φi and Φ`. In the implementation, the matrix vector

product in the bracket is local whereas the scalar product requires communication

of (parts of) vector Φ` from processor j(`) to processor j(i). This avoids having to
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communicate the local matrices Ãj .

We note that the locality of the basis functions implies ΦiÃj(`)Φ` = 0 whenever

Ωj(i) ∩Ωj(`) = ∅. Therefore, the parallel assembly of AH requires only communication

between processes assigned to overlapping subdomains. This locality of communica-

tion, which is demonstrated in Fig. 3-1 (middle), can be exploited to set up AH as a

banded sparse matrix. Its parallel communication is implemented using a customised

DataHandle implemented within geneo/multicommdatahandle.hh, allowing to pass

basis functions between all processes at the same time and therefore make best use of

available bandwidth. Combining sparsity and efficient communication, linear complex-

ity in basis size can be achieved for this step.

Since the number of coarse degrees of freedom per process is too small, i.e., mj

on process j, after assembly we distribute the resulting global coarse matrix AH to

all processors and duplicate the coarse solve on all processors to avoid fine-grained

communication. The communication of AH is achieved directly with MPI calls, as the

dune-pdelab communication infrastructure is not designed for such global operations.

In case of the restriction of a distributed vector vh representing a function vh ∈ Vh,

it follows that

(RHvh)i = ΦT
i vh. (3.17)

So, each row i can be computed by the process associated with Φi, and the rows can

be exchanged among all processes via MPI Allgatherv. Again, the communication

effort increases with the dimension of VH . On the other hand, the prolongation RT
HvH

of a vector vH that is globally available on all processors, representing a vH ∈ VH ,

consists only of local contributions and hence can be computed in parallel without

communication. Since the result lies in Vh(Ω), the regular PDELab communication

patterns can be used. This only involves communication between adjacent subdomains,

making this a highly scalable process.

Each process executes its associated subdomain solve as well as the coarse space

solve (redundantly). Where possible we use a sparse direct solver (UMFPack) [146]. For

very large problems and a large number of parallel processors the coarse space becomes

too large, and must itself be solved with a preconditioned iterative solver; in that case

we use by default preconditioned CG with the BoomerAMG [8] preconditioner. It is

important to note that in such cases since the coarse solve is inexact, the preconditioner

for the (overall) Krylov method is now instationary. It is therefore necessary to switch

from a standard preconditioned CG to a flexible Krylov solver. In our case we use

Flexible GMRES as provided by dune-istl [7].
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3.4 Using and extending dune-composites

User Layer

dune-composites

DUNE

Model class

Setup Geometry

Driver localOperator

Solver

PostProcessing QoIPlotting

dune-common dune-geometry dune-grid
dune-

localfunctions

dune-functions dune-istl dune-pdelab dune-typetree

Figure 3-2: Code structure.

In this section we provide an overview of the dune-composites code, sufficient to

enable other scientists to leverage the framework. The code is structured so that little

additional knowledge of Dune and/or C++ is required to apply the code within the

existing functionality. Figure 3-2 shows the code structure. A user can extend any of

the functionality e.g. implement a new solver, define a more complex nonlinear problem

(e.g. cohesive zone) or introduce new types of elements.

3.4.1 Defining a Model

At the highest level an analysis is defined by a user-defined BaseStructuredGridModel

class shown in green in Figure 3-2. This class defines all the key variables, functions

and classes which describe the analysis, as well as storing any variables that are re-

quired for postprocessing or any later calculations. A base model class is provided

(baseStructureGridModel), which can be inherited by each example. This provides

default variables and functions, so that the user need only overwrite those functions

which deviate from this base class. The Model class also defines the general loading

on the structure and the boundary conditions, these include Dirichlet and Neumann

conditions, but also thermal loading and multi-point constraints. Periodic bound-

ary conditions are defined within the grid data structure, using Model::LayerCake().
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Examples of user defined Model classes for a series of applications are provided in

Section 3.5.

3.4.2 Internals of dune-composites

The functions provided in the subfolder /Setup provide support for the geometric setup

of the grid geometry, material properties and boundary conditions. This includes the

composite layering (or stacking sequence), the structural geometric shape of the compo-

nent and in some cases adding a perturbation to the geometry to form a defect (see for

example Sec. 3.5.1). Because of uniform layering and planar anisotropy in composite

laminates, our first version has focused on structured, overlapping grid implementa-

tions using Dune::YaspGrid and Dune::GeometryGrid. The Dune::GeometryGrid

functionality allows us to apply any continuous transformation to the basic cartesian

mesh provided by Dune::YaspGrid. Development of unstructured grid implementation

using Dune::UGGrid [147] are the subject of future work.

The folder /Driver contains the key functions and classes which relate to the FE

calculations beyond what is available directly from Dune::PDELab. In particular these

include all element calculations, the definitions of new FEs, solvers and preconditioners.

The functions and classes are split between three folders:

• /localOperators define the weak form of the equations to be solved on an

element, along with any support functions. In our case for anisotropic linear

elasticity equations we define the local operator linearelasticity.hh which re-

turns the element stiffness matrix, load vector and residual as defined by equation

(3.6).

• /FEM defines specialist finite elements beyond those defined by Dune::PDELab.

In our case, these are the family of serendipity elements [148]. The use of these

elements are then defined explicitly in the Driver class, where the FE space is

set up on the grid.

• /Solvers defines specialist solvers and preconditioners beyond those defined in

Dune::PDELab::istl [7]. The Driver uses the solver as defined by the Model

class, defined by the templated class function Model::solve(). By default, as

defined by BaseStructuredGridModel, for parallel calculations we use a CG

Krylov solver, preconditioned with either a one or two level additive Schwarz

method. Two-level methods use GenEO as the coarse space as long as ARPACK++

is available. If not, the coarse space consists of only the zero energy modes [123].

In sequential mode, in particular for the coarse and the local solves, a sparse
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direct solver UMFPack [146] and the iterative CG preconditioned with AMG as

provided by Dune::PDELab::ISTLBackend SEQ CG AMG SSOR, are also available.

In /Solvers/hypre we provide a wrapper to the external parallel solvers provided

by hypre [149], including boomerAMG [8].

The analysis is defined via a Driver. This is a class which provides the complete so-

lution procedure, from the setup of the grid, the definition of a finite element space,

assembly of the global stiffness matrix and load vector, and finally, calling the solver,

followed by the Post Processing routines, as defined by the Model class. In this

version, we provide two driver classes for the examples considered in Section 3.5:

/FEMDriver/linearStatic.hh and /FEMDriver/ThermalStatic.hh.

The folder /PostProcessing contains various classes and functions for the postpro-

cessing of results. By default, after the solution has been calculated the driver initiates

certain post processing steps, in particular the calculation of stresses, the creation of

the necessary data for any plots and finally the calculation of any further quantities of

interest. All of these routines can be modified by the user.

3.5 Examples

In this section, we introduce and demonstrate the functionalities of dune-composites

using a series of examples of increasing complexity. The examples are intended as a

starting point for researchers implementing their own studies, whilst also demonstrating

the significant computational gains dune-composites is able to achieve in comparison

to the commercial package Abaqus [4].

To simplify the definition of the examples in the following we assume that all cases

use the same material properties. The orthotropic fibrous layers are assumed to be of

thickness tp = 0.23mm, with elastic moduli

E11 = 162GPa, E22 = E33 = 10GPa, G12 = G13 = 5.2GPa, G23 = 3.5GPa,

(3.18)

ν12 = ν13 = 0.35 and ν23 = 0.5,

whereas the isotropic resin rich layers are assumed to be ti = 0.02mm thick, with

isotropic properties E = 10GPa and ν = 0.35. These particular values are taken from

a previous study by the authors [150].
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3.5.1 Example 1: A flat composite plate

For the first two examples we consider a flat composite plate [0, 100mm] × [0, 20mm]

under various loading conditions. The laminate is made up of 12 identical composite

layers arranged in the following composite stacking sequence

[∓45◦/0◦/90◦/± 45◦/∓ 45◦/90◦/0◦/± 45◦] . (3.19)

The composite layers are separated by 11 isotropic resin interface layers, giving a total

thickness of T = 2.98mm. In each of the examples, we discretise the geometry with

quadratic, 20-node serendipity elements (with full Gaussian integration). For the base

mesh, which will be refined, we take 20 elements in the x-direction, 5 in the y-direction

and through thickness 2 per composite layer and 1 per interface layer. This gives a

total number of 3, 500 elements, with 13, 608 degrees of freedom.

The geometry, the stacking sequence and the initial finite element mesh are intro-

duced into a model by overwriting the base class function Model::LayerCake(), with

user defined function given in Algorithm 4 in Appendix A. Here the geometry and grid

are defined by a file stackingSequences/example1.csv.

In these first two examples, we demonstrate a very simple setup and run on a single

processor as well as on a few processors. We consider a cantilever beam with a uniform

pressure of 0.01 MPa applied to the top face and the following boundary conditions:

u1 = u2 = u3 = 0 at x = 0 and σ33 · n3 = −q at z = T. (3.20)

All other boundary conditions are assumed to be homogeneous Neumann conditions,

i.e.

σij · nj = 0. (3.21)

Boundary conditions are implemented by overwriting the two class functions

Model::isDirichlet() and Model::evaluateNeumann(). The implementation can

be found in Appendix A Algorithms 5 and 6, respectively.

We note that Model::evaluateDirichlet() need not be overwritten since by de-

fault it returns homogeneous boundary conditions (i.e. u(x) = 0 ) for all those points x

marked as Dirichlet boundary conditions by isDirichlet(). Furthermore, by default

loading under the weight of the structure is included by providing density as an input

parameter. We do not wish to include it in this example and therefore we must also

overwrite the function Model::evaluateWeight()
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Figure 3-3: Visualisation of results for Example01a using Paraview (left) Visual output
of laminate and stacking sequence using plotProperties() function (right) Visualisation of
solution, in deformed coordinates (scalar factor of displacement is 4).

Example 1a: A flat composite plate – getting started

Our first study computes the maximum vertical deflection of the cantilever beam as

our quantity of interest

Q(u) = max
x∈Ω

u3(x).

This is done by providing the user defined function in Appendix A Algorithm 8. This

function loops over the solution at each vertex native(u)[i], and records the max-

imum vertical displacement native(u)[i][2]. Since for a parallel run, this maxi-

mum is only the maximum on the local subdomain associated with a given proces-

sor, the final command MPI Allreduce() finds the maximum vertical displacement

over all subdomains (processors). The final result is stored in QoI, a member of the

baseStructuredGridModel class.

We use the default sequential and parallel solvers. On a single processor (e.g. with

the call ./Example1a) the sparse direct solver UMFPack [146] is used. Otherwise, if

more than one processor is used (e.g. with the call mpirun -np 8 ./Example1a) the

equations will be solved with CG, preconditioned with a one-level additive Schwarz

preconditioner, as defined by (3.10) using UMFPack as the local solver on each subdo-

main.

As output, the quantity of interest is printed to the screen (Maximum Vertical

Displacement in Example01a = 1.23992mm). Furthermore, the data for plots of the

laminate stacking sequence, the solution (deformation) and the stress field are generated

and provided in three files named Example01a xxx.vtu. The stacking sequence and

solution are shown in Fig. 3-3.

85



Example 1b: A flat composite plate – testing preconditioners (up to 32

cores)

In Example01b, we test our new preconditioner GenEO on up to 32 processors. In this

example we also demonstrate the inclusion of a failure criterion. To do this we change

the quantity of interest to be the pressure q = q? in the boundary condition (3.20)

at which the laminate fails according to the Camanho criterion [151], defined by the

functional

F(σ(x)) =

√(
σ+

33

s33

)2

+

(
σ13

s13

)2

+

(
σ23

s23

)2

. (3.22)

We apply the Camanho criterion only in the resin-rich interface layers and we say that

failure occurs at a load q? if maxx∈ΩInter F(σ(x)) = 1. However, since the problem is

linear it suffices to solve only one problem with an arbitrary load q. The failure load is

then given by q? := q/maxx∈ΩInter F(σ(x)). Expression (3.22) is implemented in the file

PostProcessing/FailureCriterion/Camanho.hh within the code, see Algorithm 9 in

Appendix A. Within linearStaticDriver, by default, the stress field (per element) is

stored within the container stress mech (a 6×1 vector). To compute q?, the Camanho

functional is first calculated in each element. The maximum is then found by once

again overwriting the class function Model::postprocess. The material allowables,

s33 = 61 MPa, s13 = 97 MPa and s23 = 94 MPa, in Eq. (3.22) are stored in a

std::vector<double> p.

Different failure criteria can be implemented by defining other user-defined func-

tionals of the stress tensor, similar to Dune::Composites::Camanho(). In this simple

test, we note that failure initiates due to high through thickness stresses in the interface

between layers (σ13 and σ23) as the laminate bends. For further engineering discussion

of the failure of composites under the Camanho criterion we point the reader to the

original paper [151] and to [3, 150].

We use this test example to demonstrate the influence of the GenEO coarse space

on the parallel iterative solver. For the first experiment we use 16 processors. Fig. 3-

4 (left) shows the first nine non-zero energy modes of a subdomain with no global

Dirichlet boundary. Linear combinations of these functions together with the zero

energy modes (six rigid body translations and rotations) provide a good low dimensional

representation of the system on that subdomain consisting of those modes most easily

excited in the context of energy requirements. Fig. 3-4 (right) shows the influence

of the coarse space on the number of iterations for the preconditioned Krylov Solver

(pCG), comparing no coarse space (one-level additive Schwarz), only the zero energy

modes (ZEM) and the GenEO coarse space. The need for a coarse space is clear; with no

coarse space, even in this simple test case we observe the well-documented stagnation
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Figure 3-4: (Left) The eigenvectors corresponding to the first nine non-zero eigenvalues on a
subdomain with no global Dirichlet boundary. (Right) The reduction of the residual against CG
iterations for Example01b using no coarse space, only zero energy modes (ZEM) and the full
GenEO coarse space.

phenomenon for iterative solvers [123] between Iteration 10−100. With a coarse space

(ZEM or GenEO), the convergence shows no stagnation and it is much faster – close to

optimal with GenEO.

Next we want to study the robustness of GenEO as a function of the number of

subdomains in comparison to one-level additive Schwarz (AS) and ZEM. We consider

a fixed size problem and increase the number of subdomains. We note that the tests

can be run with

mpirun -np 16 ./Example01b or mpirun -np 16 ./Example01bBoomerAMG

In each case we record the condition number, the dimension of the coarse space dim(VH)

(if applicable) and the number of CG iterations to achieve a residual reduction of 10−5.

The results are summarised in Table 3.1. We see that the iteration counts (and the

condition number estimates) increase steadily with the number of subdomains when no

coarse space is used. The condition number estimate is still fairly big if only the zero

energy modes are used and the iteration counts also increase steadily with the number

of subdomains. In contrast, the iterations and the condition number estimates remain

constant for the GenEO preconditioner. We also add a comparison with boomerAMG [8]

for this test problem. BoomerAMG provides a large number of parameters to fine-tune.

We retained the defaults for most parameters (HMIS coarsening without aggressive

refinement levels and a hybrid Gauss-Seidel smoother). We used blocked aggregation

with block size 3 as recommended for elasticity problems. A strong threshold of 0.75

was chosen after testing values in the range from 0.4 to 0.9. Due to a lower setup cost

with this parameter setting, the boomerAMG solver is faster in actual CPU time, but
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N
AS ZEM GenEO BoomerAMG

it cond κ it cond κ dim(VH) it cond κ dim(VH) it Num. levels

4 89 79,735 26 394 12 16 10 78 258 10
8 97 84,023 30 245 42 15 9 126 258 11

16? 107 98,579 36 177 84 16 10 182 257 12
32 158 226,871 42 230 168 16 9 526 263 12

Table 3.1: Demonstration of performance of different preconditioners for Example01b for
fixed problem size (30,000 DOFs) but increasing the number of subdomains: Number of pCG
iterations (it), coarse space dimension (dim(Vh)), an estimate of the condition number κ.

Figure 3-5: (Left) Diagram of the corner bend specimen with resin edge treatment. (Right)
Cross section of the corner showing the loading conditions.

the numbers of iterations – albeit also constant – are more than 10× bigger. For more

complex geometries, boomerAMG does not perform very well and in our tests it does not

scale beyond about 100 cores in composite applications.

3.5.2 Example 2 : Corner unfolding – validation & performance com-

parison with Abaqus (up to 32 cores)

This example is motivated by the industrial challenge of certifying the corner-bend

strength of a wingspar as its corner unfolds due to the internal fuel pressure in an

aircraft wing. We use this example to demonstrate the validity of the results of

dune-composites by comparing the stresses computed with those given by Abaqus.

We also make a cost comparison between the two software packages up to 32 cores.

The model setup is shown in Fig. 3-5. We consider the curvilinear coordinate

system (s, r, `), where s is around the radius, r is outwards (or normal) to the laminate

and ` runs along the length of the sample. For our particular test, the two limbs of the

coupon are of length L = 3mm and border a corner with a radius of R = 6.6mm. The

width is taken to be W = 15mm. The 12 plies and the 11 interfaces have the same
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properties as in Example01, but the stacking sequence is slightly different, given by

[∓45◦/90◦/0◦/∓ 45◦/∓ 45◦/0◦/90◦/± 45◦] . (3.23)

Furthermore, we apply a resin treatment of 2mm to the free edges of the laminate as

shown in Fig. 3-5 (left). The advantages of edge treatment have been shown in [150]. It

reduces conservatism in the design of aircraft structures, as well as making the analyses

more reliable by eliminating stress singularities at the free edges.

Away from the points of contact, a standard four-point bend test as detailed in

ASTM D6415 [152] generates a pure moment on the corner. To simulate such a mo-

ment, all degrees of freedom at the boundary of one limb are clamped. At the other

end, all nodes are tied with a multipoint constraint where a running moment of 96.8

Nmm/mm is applied. This is achieved by applying an offset load from the mid-plane

of the laminate as a Neumann boundary condition, implemented with the user-defined

function evaluateNeumann().

The finite element mesh consists of 56×56 columns of hexahedral 20-node serendip-

ity elements (element C3D20R in ABAQUS, [4]) in its local l and s coordinates. In the

r direction, each (fibrous and resin) layer is discretised into 6 elements, leading to an

overall number of 432, 768 elements. All of the geometry and mesh parameters are

defined in stackingSequences/example2.csv. To ensure a sufficient resolution of the

strong gradients of the solution at the free edges and at the material discontinuities,

the mesh is graded along the width towards both free edges and in the radial direc-

tion towards each of the fibre-resin interfaces. Grading is defined by the ratio between

largest and smallest elements in the mesh, called the bias ratio and chosen to be 400

between the center and the edge in the l direction and 10 between the layer centers

and interfaces in the r direction. The specification of the geometry and of the mesh

grading can be defined in the function gridTransformation().

In Fig. 3-6 (left & middle), we compare the radius stress (denoted by σr) and the

through-thickness shear stress (denoted by τs`) recovered from dune-composites and

Abaqus. We see good agreement between the two codes. There are two small differ-

ences: Abaqus uses reduced integration while our example uses full integration and the

stresses are not recovered in an identical way from the displacements in the two codes.

In Fig. 3-6 (right) we see the absolute cost and the parallel scalability of the sparse

direct solver in Abaqus and the iterative CG solver in dune-composites for a fixed

total problem size, i.e. a strong scaling test. The red and blue curves show one-level

and two level overlapping Schwarz methods respectively, both of which perform better

than the sparse direct solver (green) in Abaqus. However, both codes show optimal
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Figure 3-6: (Left & Middle) Stresses (in MPa) as functions of the distance r from the outer
radius at the apex of the curve, at 2.156mm from the edge of the resin-edge-treated laminate
(dune-composites, solid blue; Abaqus, dotted red). The background colours indicate the stack-
ing sequence: +45◦=red, −45◦=blue, 90◦=green, 0◦=yellow. (Right) Cost comparison between
the sparse direct solver implemented in Abaqus and the iterative preconditioned CG solver in
dune-composites.

parallel scalability up to 32 cores. In dune-composites the problem is decomposed

into 8 subdomains for 1− 8 cores, distributed evenly to the available cores. On 16 and

32 cores, each core is passed exactly one subdomain, i.e., the number of subdomains

is 16 and 32, respectively. The local problems on each subdomain are solved using

the sparse direct solver UMFPack [146]. The simulations in Abaqus are with a parallel

sparse direct solver, based on a parallel multi-frontal method similar to [153]. Abaqus’s

iterative solver, which is based on CG preconditioned with ML [154] (another black-box

AMG preconditioner), does not converge in a reasonable time for this problem due to

the preconditioner’s aggregation strategy which is non optimal for composites. There-

fore the computational gains observed here are really the difference between using a

direct and a robust iterative solver. Importantly, we note that the parallel sparse direct

solver, available in Abaqus does not scale beyond 64 cores [4], making it unsuitable for

problems much bigger than that considered here, and reinforcing the need for robust

iterative solvers and therefore dune-composites as a package.

3.5.3 Example 3 : Large composite structure – parallel efficiency of

dune-composites (up to 15,360 cores)

The industrially motivated problem described in this section is to assess the strength

of a wingbox with a small localised wrinkle defect. Wrinkle defects, which can form

during the manufacturing process [9, 155], occur at the layer scale. They lead to strong

local stress concentrations [25, 156], causing premature failure. Naturally, good mesh

resolution around the defect is required, leading to finite element calculations with very

large number of degrees of freedom. We leave the engineering discussion of the results

to a future engineering publication, using it instead to demonstrate both weak and
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L = 1m

W =1m

H =0.3m

Figure 3-7: (Left) Geometry of the wingbox with dimensions; the colouring shows the number
of eigenmodes used in GenEO in each of the subdomains of Setup 6 in Table 3.2. (Right) Close-
up plot of the corner of the wingbox using plotProperties(), which shows the wrinkle and the
inter-lacing of the different stacking sequences in the corner, cover and spar regions.

strong scalability of dune-composites up to 15,360 subdomains. The experiments in

this section were performed using the UK national HPC cluster Archer, which has

4, 920 Cray XC30 nodes with two 2.7 GHz, 12-core E5-2697 v2 CPUs each.

For these tests we model a single bay of a wingbox of width W = 1m, height

H = 300cm and length L = 1m, as shown by the schematics in Fig. 3-7 (left). The

laminates were assumed to be of constant thickness, made up of 39 composite layers

(as well as 38 interfaces) giving a total thickness of T = 9.93cm with an internal radius

of 15mm in the corners. As in a typical aerospace application, the stacking sequence

differs in the covers (top and bottom), corners and in the spar (sides) with the following

approximate percentage breakdowns of 0◦, ±45◦ and 90◦:

[50%, 40%, 10%] (covers);

[20%, 60%, 20%] (corners);

[15%, 70%, 15%] (spars)

(3.24)

We reiterate that this example serves to represent structural scale modelling. There-

fore, sub-structural phenomena, such as stiffening of the upper and lower covers, are

not modelled here. The specific layer-sequencing has been chosen, using a discrete

optimiser, to ensure that each laminate is balanced, symmetric with no bend-twist
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Figure 3-8: FE solution for Example 3: (Left) Overall deformation of the wingbox with colours
showing the magnitude of the displacements in cm. (Right) Camanho failure criterion (3.22)
in a close-up of the corner containing the wrinkle defect.

coupling, whilst maximising the number of continuous orientations around the wing

box. Transitions between each of the stacking sequences are achieved over a rela-

tively short segment of 5cm, and the chosen stacking sequence is in no way optimised

for strength in these regions, as considered for example by Dillinger et al. [157]. In

practice, this change of stacking sequence is easy for the user to specify using a .csv

file specifying different Regions for each segment of the wingbox and providing the

required different stacking sequence. The wingbox geometry is again achieved by spec-

ifying a gridTransformation(), which now becomes slightly more complex, in order

to handle each of the different regions. To create the closed curve of this wingbox,

periodic boundary conditions are imposed. In this application, we consider two forms

of loading. Firstly, an internal pressure of 0.109MPa, arising from the fuel, is applied

to the internal surface. Secondly, a thermal pre-stress induced by the manufacturing

process is imposed, using the user-defined function evaluateHeat().

We approximate the influence of the ribs that constrain the wingbox in the y di-

rection, by clamping all degrees of freedom at one end, whilst tying all other degrees

of freedom at the other end using a multipoint constraint. Elements to be included in

the multipoint constraint are marked with the user-defined function isMPC(FieldVec&

x). A localised wrinkle defect is introduced into one of the corner radii, as shown in

Fig. 3-7. The defect is introduced by adapting the function gridTransformation().

The wrinkle geometry is defined by a random field, parameterised by a Karhunen-Loéve

expansion. The actual parametrisation of the wrinkle is chosen to match an observed

defect in a CT-Scan of a real corner section. Further details of this methodology are

provided in Section 4.2.

We firstly carry out a weak scaling experiment, increasing the problem size propor-

tionally to the number of cores used. For iterative solvers that scale optimally with

respect to problem size and with respect to the number of cores, the computational
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Setup Ncores Spar Cover Rd Rnd Length DOF iter. κ(AH) dimVH Time (sec)

1 480 34 14 40 20 20 6.4 · 106 156 445 5025 734
2 960 34 14 40 20 40 1.3 · 107 154 421 7840 806
3 1920 68 28 80 40 40 2.6 · 107 152 322 18752 800
4 3840 68 28 80 40 80 5.1 · 107 144 287 29444 772
5 7680 216 64 80 40 80 1.0 · 108 132 303 50930 764
6 15360 216 64 80 40 160 2.0 · 108 102 245 94527 845

Table 3.2: Details of the six setups and results used in the weak scaling test. In all of the
tests, we used two layers of 20-node serendipity elements per fibrous layer and only one layer
of elements in each of the interface layers. The number of elements per core was fixed at 2808.

time should remain constant. To scale the problem size as the number of cores Ncores

grows, we refine the mesh, doubling the number of elements as we double the number

of cores. The number or elements for each setup are detailed in Table 3.2, separately

listing the number of elements across the spar and the cover, around the corners and

along the length of the wingbox. The defective corner, denoted Rd, contains twice as

many elements as the other three corners, denoted by Rnd. Table 3.2 also details the

resulting number of degrees of freedom, iteration numbers for the preconditioned CG,

an estimate of the condition number of the coarse matrix κ(AH), the dimension of the

coarse space dimVH , as well as the total run time. Fig. 3-9 (left) shows that the weak

scaling of the iterative CG solver in dune-composites with GenEO preconditioner is

indeed almost optimal up to at least 15,360 cores (the limiting capacity available on

Archer for our experiments). We also include a more detailed subdivision of the com-

putational time into Setup Time (for the assembly of the FE stiffness matrix and for

the construction of the GenEO coarse space) and Iteration Iime (for the preconditioned

CG iteration). Both scale almost optimally. This test demonstrates the capability

of increasing the size of the tests at a nearly constant run time and thus, to solve a

problem with 200 million degrees of freedom in just over 14 minutes.

Next we carry out a small strong scaling experiment. The mesh is that of Setup 5

in Table 3.2 and the results of the strong scaling test are given in Figure 3-9 (right)

and in Table 3.3. We see that the iterative CG solver in dune-composites with GenEO

preconditioner scales almost optimally to at least 11320 cores, with the time taken

approximately halving as the number of cores is doubled. Again, both the Setup and

the Iteration scale optimally.
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Figure 3-9: Parallel performance of dune-composites on Archer: (Left) A weak scaling
test, as summarised in Table 3.2. (Right) A strong scaling test using Setup 5 in Table 3.2, with
the dashed line showing perfect scaling, as summarised in Table 3.3.

Ncores EpC dim(VH) num it. Tit Tsetup Ttotal TCT (days)

2880 3132 18843 167 623s 2283s 2906s 96.9
3840 2340 26333 153 434s 1332s 1766s 78.5
7680 2008 52622 132 284s 773s 1057s 94.0
11320 1392 78233 162 208s 498s 706s 92.5

Table 3.3: Strong scaling test with Setup 5 in Table 3.2, demonstrating near optimal strong
scaling up to at least 11, 320 cores. Note: EpC is Elements per Core and TCT is Total Core
Time i.e. TCT = Ttotal∗Ncores

60×60×24 .

3.5.4 Subsurface flow applications: Strong scaling for the SPE10 bench-

mark

In this section we demonstrate the application of the GenEO solver to an elliptic par-

tial differential problem outside of elasticity equations. We therefore test GenEO on

Darcy’s law for a highly hetereogeneous media. A challenging test case in computa-

tional geosciences is the SPE10 benchmark [158]. This problem features high contrast,

discontinuous coefficients making it a challenge for most iterative solvers [159].

We consider the SPE10 domain Ω := [0, 1200] × [0, 2200] × [0, 170] (feet), divided

into a tensor product grid Th with 60 × 220 × 85 = 1.122 × 106 cells. The domain Ω

has boundary ∂Ω = ΓD ∪ΓN , where we define ΓD := {x ∈ ∂Ω : z = 0} as the Dirichlet

part of the boundary and n ∈ R3 as the outward normal to ∂Ω. We calculate the

steady-state fluid pressure u(x) ∈ Ω which obey’s Darcy’s law. This is given by the

linear, scalar elliptic partial differential equations

−∇ · (K(x)∇u) = f, ∀x ∈ Ω (3.25)
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subject to boundary conditions

u(x) = 0 on ΓD and −K(x)∇u · n = 0 on ΓN = ∂Ω\ΓD (3.26)

and uniform source term f ≡ 1. The SPE dataset gives a spatially varying permeability

tensor

K(x) =

Kx(x) 0 0

0 Ky(x) 0

0 0 Kz(x)

 ∀x ∈ Ω (3.27)

Figure 3-10 (top) shows the permeability field, it is constant in each cell, but varies

strongly over the domain. The parameters Kx and Ky vary from 6.64×10−4 to 2.0×104

and the parameter Kz varies between 6.65×10−8 and 6.0×103. We define the function

space for the pressure u as V := {v ∈ H1(Ω) : v(x) = 0, x ∈ ΓD}, and from the finite

element space Vh ⊂ V from the set of piecewise linear functions on Th. The weak, finite

element equations for Eq. (3.25) are then; find uh ∈ Vh such that∫
Ω

K(x)∇vhdx+

∫
Ω
fvhdx = 0 ∀vh ∈ Vh (3.28)

By defining uh =
∑n

i=1 u
(i)φi(x), again we obtain the sparse system of equations

Aũ, where ũ = [u(1), u(2), . . . , u(n)]T (3.29)

is a vector of pressures at each cell vertex assembled element-wise from Eq. (3.28) using

standard Gaussian intergration.

In Fig. 3-10 (bottom) and Table 3.4, we show a small strong scaling experiment per-

formed with this challenging setup. The parameter constrast for this benchmark is on

the order of 1011. Nevertheless, we show that the itertive CG solver in dune-composites

with the GenEO preconditioner scales almost optimally to at least 256 cores. At 512 cores

with only around 2000 elements per core, the strong scaling test begins to breakdown.

Due to the layered structure of the material parameters our domain decomposition is

two dimensional. Each subdomain extends through the full length of in the z-direction.

We used a minimal overlap of only one element. Table 3.4 also details the number of

cores, size of the coarse space dim(Vh), iteration numbers for preconditioned CG, as

well as the time spent in CG iterations, setup time and total run time.
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Figure 3-10: (Top) Logarithm of the permeability field K for the SPE10 benchmark, from
bottom to top: Kx, Ky and Kz. (Bottom) A strong scaling test using the SPE10 dataset, with
the dashed line showing perfect scaling.
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Ncores dim(VH) it. Tit Tsetup Ttotal

16 149 167 136.11 143.621 279.721
32 225 203 58.42 53.065 111.485
64 379 206 25.81 19.982 45.787
128 527 224 11.32 7.107 18.427
256 930 232 6.34 4.552 10.892
512 1737 234 5.18 3.795 8.975

Table 3.4: A strong scaling test using the SPE10 dataset.

3.6 Concluding remarks

In this chapter, we described the new high performance package dune-composites,

designed to solve massive finite element problems for anisotropic linear elasticity equa-

tions. The chapter provides both the mathematical foundations of the methods, their

implementation within a state-of-the-art software platform on modern distributed mem-

ory computer architectures, as well as details of how to set up a problem and carry out

an analysis, illustrated via a series of increasingly complex examples. In addition, we

demonstrate the scalability of the new solver on over 15, 000 cores on the UK national

supercomputer Archer, solving industrially motivated problems with over 200 mil-

lion degrees of freedom within minutes. This scale of computations brings composites

problems that would otherwise be unthinkable into the feasible range.

The disadvantage of dune-composites as a package over commercial counterparts is

the (currently) limited functionality in considering more general problems; this includes

complex geometries, unstructured grids and nonlinear problems. This is the first release

of dune-composites, and therefore the functionality is naturally still limited, but it will

increase over time, driven by the industrial questions we seek to solve as a community

of developers.
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CHAPTER 4

A BAYESIAN FRAMEWORK FOR

ASSESSING THE STRENGTH

DISTRIBUTION OF COMPOSITE

STRUCTURES WITH RANDOM

DEFECTS

4.1 Introduction

In Chapter 2, we identified the need for more comprehensive uncertainty quantification.

Pertaining to wrinkle defects, we identified the need for better parameterization and

non-deterministic analyses in Section 2.1 where we also review effects of defects, their

formation and detection. In this chapter, we develop a framework to compute the

statistics of the strength penalty imposed by defects in composites. We develop a

stochastic methodology to explore the distribution of strength of defective components

by integrating finite element modelling of defects with observed measurement data

about their size, location and morphology. Motivated by industry, we focus our study

on out-of-plane defects, yet note that the general stochastic framework is applicable

across a broad range of defect types, measurement data and modelling choices. Here, we

use these Bayesian tools to integrate high-fidelity finite element modelling capabilities

of defective composites with NDT measurements of wrinkles. The reader is referred
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to Section 2.2 for a review of uncertainty quantification using Bayesian tools. The

main goal is to determine the (inaccessible) distribution of wrinkle parameters based

on measured data. Samples from the inaccessible distribution of wrinkles are drawn via

MCMC. In our case these wrinkle samples can be embedded into a high-fidelity finite

element model and solved using dune-composites [3] to predict the strength of each

sample in a Monte Carlo step. The output is the distribution of component strength

given measurements of observed defects.

We begin by introducing multi-disciplinary concepts that constitute this frame-

work. The general description of the framework is provided starting with wrinkle

parameterization for a generic basis, followed by posterior sampling and finally, Monte

Carlo simulations to determine expected strength. An application of this framework is

demonstrated through an industrial case study where we first describe the model prob-

lem, followed by the implementation of the method. Simulation results are presented

alongside user inputs. In light of the findings and supporting literature [43, 45, 46] for

slope-failure dependency, an engineer’s model is proposed to predict failure based on

maximum misalignment.

4.2 Bayesian approach to construct defect distributions

from measured data

In this section we describe a Bayesian approach to construct a distribution of wrin-

kle defects from observed data, and how this distribution links to stochastic Monte

Carlo simulations with a finite element model to predict the distribution of component

strength. We have intentionally left the description general to show that the methodol-

ogy works for a broad definition of wrinkle defects. In fact, provided an adequate basis

is chosen, a variety of defects can be modelled within this framework. Here, a specific

industrially motivated case study is considered in a later section.

4.2.1 Parameterizing a wrinkle defect

An important step, and one that requires a modelling choice, is to define the method

by which a wrinkle defect in a composite part is parameterized. In this contribution,

and others, a wrinkle defect is defined by a deformation field W : Ω → R3 mapping a

composite component from a pristine state (occupying Ω ⊂ R3) to the defected state

(occupying W (Ω) ⊂ R3), Fig. 4-1. To make our approach amenable to analysis we
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define this map by the finite dimensional representation

W (x, ξ) =

N∑
i=1

aiψi(x,b), for x ∈ Ω ⊂ R3 and ξ = [a,b]T ∈ RNw . (4.1)

where the set {ψi(x)} defines the orthonormal basis over which wrinkles are defined,

and ξ is a vector of coefficients Nw in length parameterizing the wrinkle. Here, we

leave this choice open to show that the methodology presented is largely independent

of parameterization of wrinkle since different choices have been made in the literature.

Having said this, the choice of basis ψi is important as it constrains the representation

of wrinkles. Therefore, it should be left as general as possible, with two important

considerations

• The deformation induced by W (x, ξ) should not self-intersect. This is equivalent

to the constraint that the detJ (x, ξ)) > 0, for all x ∈ Ω, where J (x, ξ)) is the

Jacobian of the deformation map W (x, ξ)). At this stage it is sufficient to choose

ψi not self-intersecting, and impose the constraint detJ (x, ξ) > 0 during the

posterior sampling (see below).

• Since the data for which we tune our wrinkle distribution is estimated from

approximations of the misalignment of plies, the basis functions ψi(x,b) should

have well-defined first derivatives in the x1 and x2 directions. Moreover, the

misalignment is computed as follows

tanφj(x, ξ) =

Nw∑
i=1

ai
dψi(x,b)

dxj
for j = 1 and 2. (4.2)

4.2.2 Posterior Sampling using a Metropolis-Hastings algorithm

Let the vector valued random variable ξ ∈ X ⊂ RNw denote the Nw-dimensional coeffi-

cient vector representing a random wrinkle profile. We will assume this has the general

form defined by (4.1). Let Dobs := {d(1)
obs, . . . ,d

(n)
obs} denote the set of data measured from

n observed independent wrinkles, each characterized by d
(i)
obs = {φ(i)

1 , φ
(i)
2 , . . . , φ

(i)
Nφ
} ∈

D ⊂ RNφ .

The Forward Model F (ξ) : X → D maps a set of wrinkle coefficients ξ ∈ X to

the observable model output d
(i)
obs ∈ D. In this chapter the observable data is the

misalignment field of the wrinkle profile in the x1x3 plane, and therefore we define the
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Figure 4-1: Illustration of Eq. (4.1) showing the transformation from pristine to defective
state for a 39 ply composite with a representative stacking sequence

Forward model as

φj = tan−1

(
Nw∑
i=1

ξ(i)dψi(xj)

dx1

)
at measurement points xj for j = 1 . . . Nφ.

(4.3)

In a Bayesian setting the first task is to construct the prior model and the likelihood

function as probability distributions. The prior density is a stochastic model represent-

ing knowledge of the unknown ξ before Bayesian inversion on the data, denoted by the

distribution π0(ξ). The likelihood function specifies the probability density of the ob-

servation Dobs for a given set of parameters ξ, denoted by L(Dobs|ξ). We assume that

the data and the model parameters have the following stochastic relationship

dobs = F (ξ) + ε (4.4)

where the random vector ε ∈ RNφ captures the measurement noise and other uncer-

tainties in the observation-model relationship. Without additional knowledge of the

measurement errors, ε is modelled as a zero mean Gaussian ε ∼ N(0,Σε), for covari-

ance Σε.

Let the misfit function for the observation d
(i)
obs be defined in the standard way, so

that

δi(ξ) =
1

2

∥∥∥Σ
− 1

2
ε

(
F (ξ)− d

(i)
obs

)∥∥∥
2

(4.5)
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Figure 4-2: Representation of Bayesian approach in a simplified 2D parameter space for a
known likelihood function (a variant of the Rosenbrock function). (Left) Sampling from isotropic
Gaussian prior π0(ξ). (Right) MCMC sampling from posterior π(ξ|Dobs).

Whilst the misfit over the complete data set Dobs is defined by

∆(ξ) = min
i=1,...,Nφ

δi(ξ), (4.6)

which can be interpreted as mis-fit compared with the closest observed data point. The

likelihood function L(Dobs|ξ) is proportional to exp(−∆(ξ)), and by Bayes’ formula,

the posterior probability density is

π(ξ|Dobs) =
1

Z
exp(−∆(ξ))π0(ξ), (4.7)

where Z is a normalizing constant (which there is no need to compute).

The posterior distribution (4.7) can be sampled using MCMC methods such as the

standard random walk algorithm [6]. We now provide a brief review of the Metropolis-

Hastings algorithm used in this contribution. The first step is to define our prior

distribution π0(ξ) and pull a random sample as the starting point of our Markov Chain,

say ξ(0). Subsequent points on the Markov Chain ξk are generated by making a proposal

ξ′ defined by

ξ′ =
√

(1− β2) ξk−1 + βω (4.8)

This is a preconditioned Crank-Nicholson (PCN) proposal with β ∈ R, a tuning pa-

rameter designed to enhance the efficiency of the standard Markov chain algorithm [6].

The value β controls the step size of a proposal. In Eq. (4.8), ω ∈ RNw such that
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ωj ∼ N (0, σ2
PCN ), are vectors of normally distributed random variables with standard

deviation σPCN . The proposal ξ′ is accepted for the next sample in the Markov chain

ξ(k) with the following probability

α(ξ′, ξk−1) = min

{
1,
L(Dobs|ξ′)
L(Dobs|ξk−1)

}
and detJ (x, ξ′)) > 0 (4.9)

otherwise ξk = ξk−1. This process generates a series of samples which have the condi-

tional probability distribution π(ξ|Dobs) which is the distribution of coefficients given

the set of observations Dobs.
Since we will use the ξ(k) in Monte Carlo simulations we require NMC independent

samples. Samples close to one another in a Markov chain are strongly correlated. By

estimating the integrated autocorrelation time for each component of Markov Chain Λi

(see details in [160, Ch. 5.8]) we can approximate a subsampling interval Λ = max(Λi)

for which the samples are independent. Therefore in calculations which follow sampling

only occurs after a burn-in period of b� Λ samples, to remove the influence of initial

start of the chain ξ(0) on the distribution of ξ. Then samples are taken every Λ,

generating the set of NMC independent random wrinkles from π(ξ|Dobs),

Ξ =
{
ξ(b+Λ), ξ(b+2Λ), . . . , ξ(b+NMCΛ)

}
. (4.10)

and Λ is inversely related to β. However, the relationship between β and acceptance

ratio, another diagnostic property of MCMC, is more complex. Acceptance ratio is the

ratio of the number of accepted proposals to the total number of a proposals made.

Intuition suggests that a higher proposal density will lead to a higher percentage of

wiser moves resulting in a greater acceptance ratio. A natural question then arises

- what is the optimal proposal density or acceptance ratio? Reference [82] defines

a metric of efficiency (Langevin diffusion) in terms of acceptance ratio. This metric

effectively quantifies the diffusion rate of a chain through some unknown posterior dis-

tribution. Then the optimal acceptance ratio is one that maximizes the diffusion rate.

The mathematical proof suggests that the asymptotically optimal acceptance ratio is

approximately 0.25 however, in practice a ratio lower than 0.3 may be unachievable

[82]. The value of β can be tuned to achieve this acceptance ratio.

The convergence of the chain to the posterior distribution (4.7), can be monitored

by running multiple independent parallel chains, and observing the convergence of E[Ξ]

(and perhaps higher moments) between all chains. Largely varying means of each chain

would indicate the chains have yet to converge to a stationary distribution, and the

burn-in period should be extended. This is particularly important in our case since
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with multiple independent observations Dobs, the likelihood defined by (4.6) represents

a multi-modal posterior with maxima at each data point.

4.2.3 Monte Carlo Simulations

Having generated a distribution of wrinkle profiles from observed data we are interested

in computing the strength distribution of the defected components, by propagating

these defects through a model and observing the distribution of component failure

load. For this we introduce a finite element model QM (ξ) : X → R which maps a

given wrinkle profile to an engineering quantity of interest, e.g. the expected load or

moment at failure, or the probability of the failure occurring below a prescribed loading

condition. The details of the particular finite element model and setup used in this

contribution are provided in Section 4.3.4. The subscript M indicates the number of

degrees of freedom in that model, so that as M →∞ (under uniform mesh refinement)

the expected value converges for some (inaccessible) random variable Q : X → R, i.e.

E[QM ]→ E[Q]. We therefore seek to estimate

E[Q] =

∫
X
Q(ξ)π(ξ|Dobs) dξ. (4.11)

This can be estimated by NMC posterior samples ξ(i) ∼ π(ξ|Dobs) and the Monte Carlo

estimate

Q̂M =
1

NMC

NMC∑
i=1

QM (ξ(i)) (4.12)

which is a biased estimator with the mean square error

ε(Q̂M )2 = E[Q−QM ]2+
V(Q̂M )

NMC
, such that V[Q̂] ≈ 1

NMC − 1

NMC∑
i=1

(QM (ξ(i))−Q̂M )2.

(4.13)

The first term in this expression represents the bias error in the model, arising from

the quantity of interest Q being approximated by a finite element calculation on a

finite-dimensional grid. This error can be estimated from mesh analysis over a number

of samples, as given in Section 4.3.4. The second term is the sampling error, arising

from approximating E[QM ] with only a finite number of samples. Care should be taken

to balance these two errors to avoid unnecessary and expensive forward FE runs.
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4.3 Industrially Motivated Case Study

A case study based on industrial data is conducted to demonstrate the methodology

described in Section 4.2 and to introduce some bespoke but essential peripheral devel-

opments required to build theoretical models (F (ξ) : X → D and Q : X → R) from

empirical data (B-scans). These developments are explained here in the context of a

model problem derived from an aircraft wing. The following section provides details and

assumptions made in the model by briefly introducing the particular non-destructive

testing (NDT) technique used to access internally contained wrinkles invisible from

the outside. Section 4.3.2 then provides details on the Multiple Field Image Analysis

(MFIA) algorithm that extracts alignment information from NDT results (B-scans).

This is a necessary step prior to wrinkle parameterization as it constitutes the left hand

side of Eq. (4.2). Next, we define an appropriate basis from which the right hand side

of Eq. (4.2) is derived to compute coefficients of best fit. Once parameterization is

complete, all wrinkles considered here can be represented by some linear combination

of the basis. Thus, in the posterior - the distribution of coefficients within the parame-

terized space RNw - one wrinkle only differs from another in the content of its coefficient

vector, a. It is important to understand that the method described in Section 4.2 is

directly applied within this parameterized space. Note, any mathematical operation

applied to a wrinkle hereafter, should be interpreted as a treatment of its corresponding

coefficient vector.

Now we wish to draw some conclusions about the posterior and model its evolu-

tion into a strength distribution in R. An infinity of samples would be required to

find the true distribution of wrinkles but we can produce useful results by pulling an

appropriate number of independent and identically distributed samples or iids from

the posterior. These iids or Monte Carlo samples are passed through an FE model

Q : X → R that outputs a scalar strength. Details of the FE simulation are provided

in Section 4.3.4. Continuous distributions can be approximated from the iids within

some confidence bounds. We attempt to interpret the results thus generated in terms

of Weibull statistics to understand the cumulative effects of misalignments. However,

an engineering result of crucial importance is presented in light of the findings up to

this point. It is a parameterized exponential relationship between the first derivative

of a wrinkle, W ′(x, ξ) and its failure moment. It offers a major time advantage by

replacing lengthy FE calculations with an analytical formula.
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4.3.1 Model Problem and its industrial application

Figure 4-3 (right) illustrates a typical aircraft development program followed by in-

dustry. As more exotic materials and/or technology are introduced into the aerospace

industry, development costs continually increase. In the interest of preserving the

health of the aviation economy, a new initiative encouraging modelling alongside phys-

ical testing is gaining traction. To achieve similar levels of robustness, the modelling

track follows a conceptually similar development pyramid whereby the number of sim-

ulations conducted at the coupon level are much greater than components or systems.

Motivated by this philosophy, one corner of a C-section composite (CFRP) wing spar is

considered for the model problem. Figure 4-3 shows the corner bend coupon as a build-

ing block of a element-level part (spar) to clarify that this study explores the coupon

level exclusively. Additional detail about the model problem is provided in Fig. 4-6.

Upper and lower wing covers, bound together by the fore and aft spars form the fuel

tanks in an aircraft. For a multitude of reasons, fuel must be stored under pressure

which exerts an opening moment along the inner radius of the spar. During man-

ufacture these regions (highlighted in Fig. 4-3) are susceptible to wrinkle formation

rendering them of critical importance for failure initiation. This case study focuses on

characterization of such defects to simulate their effects on part strength using a corner

bend sample representative of the region shown in Fig. 4-3.

Figure 4-3: Schematic of a wing spar highlighting the region of showing a B-scan at a defect
location.

Visualizing and measuring the wrinkles that we intend to model can be particularly

challenging since their parent components may be inconveniently large (> 10m). To
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overcome problems like immersion in ultrasonic imaging, a phased array is used for

scanning. There are two major advantages of a phased array: 1) it eliminates motion

of probes by using multiple sensors arranged so that they can be fired individually to

allow beam steering and wavefront manipulation (focus) [41, 161] and, 2) scanning can

be conducted in-situ. Of greater importance perhaps, are the two key limitations since,

in this case, they simplify our problem.

Firstly, the resultant image produced is a slice through thickness rather than a

volume (see Fig. 4-3 (left)) meaning that we only have two dimensional information

about a wrinkle. Due to the geometry of the spar, wrinkles form in a way that its span

in x2 is orders of magnitude greater than perturbations in x1 and x3. Therefore, within

the vicinity of the B-scan, we can safely assume the wrinkle to be prismatic in x2.

Secondly, the ultrasonic beams are focused at a particular depth such that scans

contain a corresponding high resolution region. Ply boundaries begin to fade into

the surroundings further from the focused band (see lower half of B-scan in Fig. 4-3).

Therefore, at a sampling location outside the focused region, the existence of a global

minimum in gray scale variance is not guaranteed. Since the wrinkle shows no clear

signs of decay in x3 within the subregion, we discard the x3 coordinate of the sampling

points. We have thus reduced the number of dependent variables of the alignment map

to one.

4.3.2 Extracting wrinkle data from B-Scans using Multiple Field Im-

age Analysis (MFIA)

A variety of image processing tools for investigating alignment exist, see for example

the review by Smith et al. [162] and other contributions [161, 163]. In this contribution

we use Multiple Field Image Analysis (MFIA) algorithm introduced by Creighton et al.

[164] to estimate the misalignment of a wrinkled ply at a given position in the B-Scan

image. We briefly review the method and describe some adaptations made to handle

low resolution B-Scan images and the computational efficiency of the original approach

[164].

Multiple Field Image Analysis (MFIA) [164] uses a pixelated gray-scale image. At

a given point x = (x1, x3), a trial fibre is introduced. This is an array of pixels of

length H, centered about x, and orientated at an angle θ to the x1 or x2 axis. At each

sampling point, the algorithm finds the orientation θ of the trial fibre which minimizes

variance in gray scale along its length, i.e. the misalignment at point is the defined by

φ = arg min (J (θ)) , where J (θ) :=
1

H

∫ H/2

−H/2
(G(h, θ)− G(θ))2dh, (4.14)
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Figure 4-4: Estimating alignment at a point by minimizing the integral of the gray scale over
the trial fibre using the MFIA algorithm [164]. Randomly sampled points are used to reconstruct
an alignment over the domain.

G(θ) = 1
H

∫ H/2
−H/2 G(h, θ)dh is the mean gray-scale along the fibre, with G(h, θ) defining

the gray-scale at a point (x1 + h cos θ, x3 + h sin θ) along its length. The procedure is

repeated for an array of sample points x(k) = (x
(k)
1 , x

(k)
3 ) for k ∈ {1, 2, . . . , Nφ} where

Nφ is number of pixels sampled per image.

A single point represents an individual optimization problem defined in Eq. (4.14).

Sampling every pixel is prohibitively expensive, therefore we want a method to selec-

tively distribute sampling points in such a way that concentrate evaluations to regions

of misalignment. To do this we develop a hierarchical approach. The B-scan image

is divided into a coarse rectangular mesh (level j = 0) with m0 cells. We generate a

sequence of levels by uniformly refining the mesh, given mj = 4jm0 on level j. The

method starts by computing the misalignment φ(x
(j)
k ) at n

(i)
j = dN (j)

φ /mje randomly

sampled points in each cell, x
(j)
k ∈ Ωi for k = 1, . . . n

(i)
j , i = 1, . . . ,mj and j = 0. In

each cell Ω(i) we compute the mean absolute misalignment

φ
(j)
i =

1

|X ji |
∑
x∈X ji

|φ(x)|, where the set is defined X ji = {xk : xk ∈ Ωj
i} (4.15)

For each cell on level j we compute the misalignment and its percentage contribution

to the total mean absolute misalignment i.e.

γ
(j)
i = φ

(j)
i /

mj∑
c=1

φ
(j)
c (4.16)

For the next level j+1, N
(j+1)
φ more samples are taken for the four cells Ω(j+1) created
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Figure 4-5: A hierarchical multilevel sampling scheme that is biased towards regions of high
misalignment is used draw sampling locations for the trial fibre. The number of new samples
per cell on every level are proportional to the relative average misalignment observed in that
cell on the previous level. The figure shows level 1 through 3 from left to right and each picture
only shows the samples drawn on that level.

from subdividing Ω
(j)
i we take

n
(j+1)
i = dγ(j)

i N
(j)
φ e (4.17)

more samples where φi is the average misalignment of the ith cell. This is one of the key

peripherals developed for the MFIA framework that allows us to generate a continuous

alignment field from a manageable number of samples.

Remark: We note that MFIA is sensitive to trial fibre length H. In our experience,

H = 3t produces reliable results where t is the average ply thickness in pixels. More-

over, these B-scans are flat representations of cornerbends thus requiring a geometric

transformation to undo the apparent corner opening.

4.3.3 Defining a Wrinkle, Prior and likelihood definition

In the methodology (Section 4.2), the parameterization of a wrinkle defect is left general

(4.1). In this section we refine this definition towards the particular application and

available data that we consider. The wrinkles are defined by the wrinkle functions

W (x, ξ) = g1(x1)g3(x3)

Nw∑
i=1

aifi(x1, λ). (4.18)

where gi(xi) are decay functions (defined in Eq. (4.20)), fi(x1, λ) are the first Nw

Karhunen-Loéve (KL) modes parameterized by the length scale λ and ai the ampli-

tudes. In the results which follow both the amplitude modes and the length scale are

taken as random variables, so that the stochastic vector is defined by ξ = [a1, a2, . . . , aNw , λ]T .

We now briefly discuss the assumptions under which this choice of wrinkle function has

been made.
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• Prismatic in x2. The wrinkle function Eq. (4.18) is assumed to have no x2

dependency, and therefore the wrinkles are prismatic along the width. Inline

with the ASTM standardization [165], four point bend tests were conducted on

52mm wide corner bend samples. In all four samples considered, wrinkles were

prismatic over this coupon width.

• Karhunen-Loéve (KL) modes for wrinkle. KL modes are widely used in

generating random fields, since they generate random functions which display

an underlying spatial correlation structure. We note other choices could also

have been used e.g. piecewise cubic splines, wavelets or Fourier modes. The

set of function fi(x1, λ) are proportional the first Nw (normalized) 1D eigenfunc-

tions associated with the Nw largest eigenvalues of the one-dimensional two-point,

squared exponential covariance operator

C(x, y) = σ2
f exp

(
−(x− y)2

λ2

)
, for any x, y ∈ R (4.19)

The normalizing constant for each mode is the square root of its associated eigen-

values. Further information of KL modes and their use as random fields is widely

available, see for example [51]. We note that owing to their natural ordering (in

decreasing eigenvalue and wavelength) the modes can efficiently represent func-

tions which display behaviour with a characteristic length scale λ yet offer more

flexibility than a simple choice such as sin(λx1). The runs which follow take

Nw = 30, which was chosen since with an approximate value of λ = 12.9mm,

higher KL modes give undulations on a wavelength shorter than pixels of the B-

Scan. Furthermore, from the data we estimate σf = 0.1425, but note the output

of the model is insensitive to the choice of this value.

• Wrinkle Decay out side of B-Scan. For the limited data we have, each B-

Scan is centered to the midpoint of the corner radius x?1 = Rπ/4, and focuses

at a fixed depth x?3 = 4.8mm. For the type of wrinkles considered here, no

perturbations are visible on the inside or outside face of the component and the

wrinkles were always localized to the corner radius. Again, without further data

on their spatial statistics of the wrinkle distribution, we make the simplifying

assumption of introducing decay function in both the x1 and x3 direction (as also

considered in other publications [25, 45], defined by

gi(xi) = exp

(
−
(
xi − x?i
ηgi

)n)
(4.20)
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For the simulations which follow we take ηi = −(x?i )
4/ log(10−6). This choice of

ηi gives the assumption that the wrinkle height is at most 10−6mm outside of

the corner radius and on the inner/outer face. For both x1 and x3 directions,

we choose the hyper-parameter n = 4. This value is selected to provide the best

fit to the observed wrinkle profiles. Better decay functions can be derived from

higher quality scans, however, little difference in output was observed for even

values of n > 4.

With more available data, which includes a broader class of wrinkle defects [10, 25,

35, 36], this definition could be generalized. Yet, here the choice is sufficient to demon-

strate the methodology, and draw some interesting preliminary engineering results.

Now that we have defined our parameterization of a wrinkle, it remains to define

the prior distribution for the random parameters and the parameter Σε for the misfit

function. First, denoted π0(ξ), we define the prior. This is done by analyzing each of

four B-Scans and fitting the wrinkle function (4.18) in the least-squared sense using

an optimizer (e.g. fminsearch in Matlab [166]). This then provides just four values

for each parameter. We approximate the prior as an independent multidimensional

Gaussian distribution with mean taken over all measurements and a variance of all 4

samples multiplied by the student t-test factor to account for uncertainty due to only

four data points. We note that with just 4 samples and a two sided confidence bounds of

95% this is a factor of 3.18. Secondly, in the definition of the misfit function Eq. (4.5),

we require the user-defined correlation matrix Σε, which defines the uncertainty in

the measured data. In our case measurement error comes from two sources (1) the

accuracy of B-Scan data and analysis method (MFIA) (2) the sampling error of the

data since (in our case) we only have 4 samples. To account for the first of these sources

of measurement error we assume that all data points are accurate up to ±2.5◦ ≈
±0.044rad. This was estimated from comparing MFIA outputs to micrographs of

wrinkle sections. Although 2.5◦ seems significant, it is within the error thresold of

the scan itself. Further details are not given on how this is constructed, as it is well

documented that the MCMC outputs are not sensitive to the fine scale accuracy of

Σε. Secondly to account for sample data we rescale Σε by the student t-test factor to

(95%) confidence, which we denote τNφ . We remark that τNφ → 1 and Nφ → ∞, and

in this case Σε is purely driven by the accuracy of the B-Scan data. For our example

we therefore set Σe = τNφ0.044I.
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4.3.4 Finite Element Modelling

For each wrinkle sample generated using the MCMC approach, a finite element anal-

ysis is used to predict the corner bend strength (CBS) of that defected component.

Finite element modelling was conducted using high performance finite element code

dune-composites [3]. In the model, the curved laminates were assumed to have the

nominal width of 52 mm. The plies were assumed to have a thickness of 0.24 mm, with

a 0.015 mm interface layer of pure resin between each ply. This is based upon measure-

ments taken from micrograph images of the curved laminates as described by Fletcher

et al. [44]. The assumed mechanical properties for both the fibrous ply material and

the resin rich interface material are given in Section 4.3.4. A discussion on how they

have been chosen from various sources is given by Fletcher et al. [44].

Modelling the full 3D bending test (according the ASTM standard [astm]) with

rollers and contact analysis would be extremely computationally expensive. Therefore

a simplified model was used. Curved laminates were modelled with shortened limbs; of

length 10mm, approximately equal to the thickness of the laminate. A unit moment was

applied to the end of one limb using a multi-point constraint (MPC), with all degrees

of freedom fixed at the end of the opposite limb. Whilst this does not accurately model

stresses in the limbs, it gives the same stress field towards the apex of the curved

section as a full model with rollers. In this region there is a pure moment (without

shear) caused by the roller displacement. Since this is the critical region where both

wrinkles and failure occurs during the tests, it implies the simplified model is suitable

for predicting CBS. The setup of the model is summarized in Fig. 4-6.

Each finite element model contains approximately 1.1 million 3D 20-node serendip-

ity elements, with 8 elements per ply thickness and 4 in the interply regions adding

up to roughly 2 million nodes (or 6 million degrees of freedom). This model resolution

follows from the mesh convergence study as presented by Reinarz et al. [3]. Failure

of the coupon is measured according to Camanho’s failure criterion [167], whereby a

numeric value is assigned to a particular combination of peak tensile and shear stresses.

F(σ) =

√(
σ+

33

s33

)2

+

(
σ23

s23

)2

+

(
σ13

s13

)2

(4.21)

Here the subscripts denote the direction of stresses in local coordinates and sij denotes

allowable stresses. Note that σ+
33 is set to 0 if the stress component is negative. Failure

occurs when F(σ) = 1. Usually, failure of a system such as Fig. 4-6 occurs due to

delamination which indicates that the peak stresses is likely occur in the resin rich

interply regions. Fletcher et al. have shown that the Camanho failure criterion predicts
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Geometry Ply properties Resin properties

number of plies 39 E11 162 GPa E 10 GPa
radius 22 mm E22, E33 10 GPa ν 0.35
limb length 10 mm G12, G13 5.2 GPa Allowables

ply thickness 0.24 mm G23 3.5 GPa s13, s23 97 MPa
interply thickness 0.015 mm ν 0.35 s33 61 MPa

Table 4.1: Assumed mechanical properties for CFRP material (M21/IMA), where 1 is the
fibre direction in-plane, 2 is perpendicular to the fibre direction in-plane and 3 is out-of-plane.
s33 is the tensile through-thickness strength and s13 is the transverse shear strength.

failure to within 5% of average experimental test values [44] with treated edges to

mitigate premature failure. Here, for simplicity, we discount the edge effects by not

evaluating the failure criterion close to the boundary to isolate the effects of wrinkles.

More precisely, F(σ) is evaluated within a subregion such that x2 ∈ [15mm, 37mm]

which is 15mm away from each edge.

Figure 4-6: FE model showing the true geometry of the part with a sample wrinkle amplified
for visual clarity. Note that it is a fully internal wrinkle with no trace at the surfaces.

4.4 Results

4.4.1 Bayesian Sampling of wrinkles

To improve the exploration of the posterior space we initialize five independent Markov

chains. For the pCN proposal distribution (4.8) we take β = 0.25 and σPCN = 1.

These values were tuned to give an acceptance ratio of approximately 30% as is widely

suggested [82]. We first estimate the integrated autocorrelation time Λ for each chain.

From Fig. 4-7, we note that Λ < 100 in all cases. Random starting positions are sampled
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Figure 4-7: The ACF showing the longest autocorrelation length across all dimensions of
MCMC is illustrated here. Monte Carlo samples of wrinkles are obtained by subsampling every
Λ = 100 samples.

Figure 4-8: (Left) Two-dimensional posterior distributions of the first five coefficients ai in
Eq. (4.1), note 2-D plot axes are plotted on a scale of ±0.25 to visualize dependencies. For
example, the a3 plots suggest that a relatively constant amount of the 3rd KL mode compared
to others is present in all wrinkles studied here. (Right) Posterior distribution of covariance
length scale parameter λ plotted separately.

from the prior, then each chain is ‘burnt-in’ over 10Λ ≈ 1000 MCMC steps. Post burn-

in, each chain is subsampled at intervals of 2Λ till NMC = 200 independent MCMC

samples (or 8, 000 dependent samples per chain) are obtained. Posterior distributions

of the first five coefficients ai from the combined dataset of all chains are visualized in

Fig. 4-8. Fig. 4-9 shows a subset of 8 wrinkles out of the 200 samples from the posterior

distribution along with the four B-scans.
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Figure 4-9: Top row shows B-Scan data, bottom two rows show 8 independent posterior
samples of wrinkles in B-Scan coordinates.

4.4.2 Monte Carlo simulations

As a benchmark we first calculate the CBD for a pristine part, from which we calculate

M?
c = 8.93 kNmm/mm. We also calculate knock downs for each of the B-Scan samples,

by using the maximum a priori (MAP) estimates for each scan

Md = {8.61, 8.88, 8.62, 8.91} kNmm/mm (4.22)

Using the MCMC methodology we generate NMC = 200 independent samples from

the posterior distributions. All simulations were carried out on 400 cores of the HPC

cluster Balena, taking approximately 6 minutes per sample. The cluster comprises

192 nodes, each with two 8-core Intel Xeon E5-2650v2 Ivybridge process running at

2.6 GHz. Therefore total core time was approximately 20 hours of computation. In

practice, simulation time was less since a number of samples could be run in parallel

by using the cluster’s ∼ 3000 available cores.

From these samples we estimate a mean of E[Mc] ≈ 8.72 kNmm/mm, equating to

an average knock down of 2.4%. With a variance of V[Mc] ≈ 0.094 the 200 samples

we estimate the 95% one-sided confidence interval of 0.053 (0.6% of the mean value).

Given that the finite element error at the mesh resolution chosen is approximately 0.5%

(as taken from [3]), the number of samples is sufficient to estimate the mean at the

same accuracy as the discretization error given by the finite element model. Therefore

no further samples were generated.

Whilst the mean seems like a small deviation from pristine strength, the most severe

wrinkle out of 200 samples knocks the strength down by 26%. Therefore, rather than
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the mean itself we are more interested from an engineering viewpoint in the distribution

of strength, particularly in the tails of the distribution, which represent larger knock

downs in strength. Figure 4-10 (left) shows the CDF of strength distribution, along

with Weibull fits; a common engineering way of quantifying material variability.

The Weibull model for failure assumes that fracture initiates at the weakest link. As

Fig. 4-12 shows the existence of a strong nonlinear correlation between the maximum

gradient of a wrinkle and its corresponding Mc, fitting a Weibull curve to the CDF is an

appropriate choice. The Weibull curve, defined by Eq. (4.23), predicts the probability

of failure P ;

P(Mc|MW ,MS) = 1− exp

[
−
(
− Mc

MS

)MW
]

(4.23)

where Mc is the critical moment and MS is a scale parameter. Perhaps the most

important parameter is the Weibull modulus MW that can be thought of as a dispersion

of defects in a part. A high dispersion is interpreted as an amorphous presence of

defects thus lacking a clear origin of failure. As a result, the loading bandwidth over

which all parts fail is relatively narrow. Conversely, a low MW means that defects are

concentrated in certain regions in such way that failure usually originates from these

hot spots.

Figure 4-10 provides a comparison between the distributions obtained by sampling

using the Markov chain methodology (left) in contrast to normal sampling (right)

whereby coefficients ξ(k) are drawn at random from a normal distribution centered

about the observed mean with population standard deviation corrected for n−1 degrees

of freedom with 95% confidence bounds. For samples shown in Fig. 4-10 (left) the

Weibull modulus Mw = 62.9. On the other hand, for samples shown in Fig. 4-10 (right),

the Weibull modulus was found to be Mw = 218.6. The higher modulus indicates an

even more uniform spread of softer regions. The modulus demonstrates the overly

conservative nature of normal sampling. It does not take into account the intrinsic

correlation structure of the coefficients by assuming all coefficients are independent

of each other. As a result, wrinkles generated this way are not likely to resemble

observed defects, therefore, Markov chain sampling is preferred. This is an important

result because it further strengthens the case for application of Bayesian methods to

the wrinkle problem by clearly demonstrating the conservative nature of the current

approach.

4.4.3 An ‘engineering model’ for Corner Bend Strength

In this section we describe how the Bayesian methodology alongside a finite element

model can be used to derive a distribution of corner bend strength due to random
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Figure 4-10: (Left) CDF of critical or failure moment Mc per unit width of a part, where
wrinkle distributions are using the Bayesian framework introduced within this chapter. (Right)
Mc of samples obtained by assuming a Gaussian prior with mean and variance derived from
data.

wrinkle defects, which in turn is parameterized by a Weibull model. We show how

the results from these large finite element calculations can be distilled into a much

simpler engineering approach or ‘look up’ model, which provides some practical means

of assessment on determining the influence of an observed wrinkle.

Figure 4-11 shows the wrinkle extracted from the B-scan in Fig. 4-3 embedded into

the corner bend sample. The magnitude of the wrinkle in the B-scan is misleading since

the pixels represent a length approximately 8 times larger in the vertical in comparison

to the horizontal. In reality, the wrinkle is much smaller as shown in stress plots.

Figure 4-11: Left to right showing σ33, τ13 and τ23 respectively at Ma = 1 kNmm/mm.

An inspection of Fig. 4-11 shows that interlaminar tensile stress (σ33) concentrations

form at peak wrinkle curvature whereas interlaminar shear (τ13, τ23) is concentrated

around maximum wrinkle slope. Moreover, the allowable tensile stress (s33), 60% lower
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Figure 4-12: Approximating the relation between Mc and maximum wrinkle slope with
Eq. (4.24). q = 2.867 and λq = 4.212 for the fitted curve. q = 2.587 and λq = 3.834 for
lower 99% confidence bound.

than allowable shear (s13, s23), lends a greater contribution to F(σ) in Eq. (4.21). We

therefore explore the correlation between maximum slope a knock down in strength.

For this we parameterize the slope-failure dependency with an exponential relationship

defined by

Mc = M?
c exp

[
− W ′(x3)q

λq

]
(4.24)

where M?
c is the strength of the pristine part. Model parameters, q = 2.867 and

λq = 4.212 for the fitted curve in Fig. 4-12, enable prediction of critical moment for

a given maximum gradient. The lower 99% confidence bound for that prediction is

computed with q = 2.587 and λq = 3.834.

4.5 Concluding remarks

This chapter proposes a generalized framework to quantify the effects of wrinkles in

large composite structures. It combines ideas from NDT, image processing, Bayesian

inference and FE modelling to create a rigorous methodology for visualizing, parameter-

izing and computing strength of wrinkles. The methodology is demonstrated through

an industrially motivated case study with field data where we show the over conserva-

tive nature of the current design approach in comparison to the Bayesian, data-driven

method to strengthen the certification by simulation idea.

Two dimensional ultrasonic scans (B-scans) are used to visualize wrinkles that

form inside manufactured parts. They are parameterized using a Karhunen-Loéve

basis due to their suitability for capturing multiple localized features. A possibly

119



true distribution is inferred from observed wrinkles. The forward model - a finite

element model - then determines the strength of a composite corner bend with a wrinkle

embedded in it. Evaluating the forward model for a variety of defects, elucidates

knockdown distribution. Whilst we focus on the influence of wrinkle defects, the general

framework could be readily applied to other types defects, for example porosity provided

an adequate basis is selected.

The theoretical strength for 200 independent MCMC wrinkles is evaluated to give

an expected value approximately 2% lower than the pristine strength. The same test

for normally sampled wrinkles gives a much poorer estimate as the results fail to cap-

ture some of the observed wrinkles. The worst MCMC case however, suffers from a

knockdown of approximately 26%. The cumulative strength distribution is well approx-

imated by a Weibull curve with a relatively high Weibull modulus which is interpreted

as the lack of a dominant failure mechanism or origin. In other words, it is difficult to

find one particular wrinkle parameter universally responsible for failure.

An engineering model is constructed based on the significant negative correlation

found between maximum gradient and critical moment of failure. Owing to its nonlin-

early decreasing nature, the gradient-failure relationship is parameterized by a negative

exponential to produce a directly usable look up chart to estimate knockdown of a par-

ticular wrinkle.

We emphasize that this work demonstrates a method and the selected case study

represents a narrow bandwidth of possible wrinkles due to a small set of observations.

The available training data is a set of scans of pronounced wrinkles only, which makes

it impossible to deduce their probability of occurrence in the first place. Consequently,

all parts simulated here have wrinkles and suffer some strength knockdown. We do

not claim our algorithm provides minimal error since the limited data set restricts

the performance of the algorithm - a problem expected to be mitigated by a richer

data set. Instead, we argue that industry design standards may now be challenged

or reformulated. Moreover, there remains some room to develop application specific

bases and more accurate estimates of decay functions and location parameters. In this

way, building true representations of the parameters at the coupon level affords us a

sampling space from which defects can be generated and embedded into much larger

components models.
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CHAPTER 5

MULTISCALE METHODS FOR

COMPOSITES

5.1 What is a good multiscale model?

In the context of this thesis, a good multiscale model must be able to do two things.

Firstly, it must capture important information across all scales that may lead to an

uncertain mechanical response. Secondly, it must be inexpensive to solve relative to a

corresponding fine scale model with full resolution.

The motivation for multiscale modelling of composites derives from the lack of scale

separation exhibited by them. For instance, introducing a ply at 45◦ in a stack of two

0◦ plies creates bend-twist coupling such that any bending in the new stack will invoke

some degree of twist. To model this modified stack, now requires finite elements that

can resolve stresses and strains in the 45◦ ply in order to capture the twisting behaviour.

As the complexity of stacking sequences increases, interactions between plies give rise

to complicated mechanics. Even the resin rich interply regions become important which

are typically a fraction of the ply thickness. This places an upper limit on the size of

the mesh parameters h which in turn produces large systems of equations to be solved.

Such systems can only be solved iteratively. Furthermore, the contrasting properties

of plies and resin makes this system of equations ill-conditioned. This is important

because ill-conditioning can be beneficial in the sense that a stiffness matrix containing

kernels demonstrates potential for a multiscale approach.

To understand the beneficially ill-conditioned nature in a mathematical way, let
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Figure 5-1: A Gaussian random field showing a more continuous distribution of scales such
that features are not readily distinguishable using discrete lengths scales.

us reconsider the 1 dimensional composite beam problem shown in Fig. 2-14. We

consider a one dimensional isotropic bar with Eresin = 10 GPa and a composite bar

with the same resin used to bind composite layers with Ecomposite = 162 GPa in order

to investigate their eigenvalue spectrum, see Fig. 5-2. The eigenvalue spectrum of the

isotropic material is noticeably smoother than the composite counterpart. From the

perspective of a composite material under load, it is easier to deform the softer resin

rich zones as opposed to the stiffer carbon fibre rich zones. So the softer, resin rich

regions accommodate more strain than the stiffer, carbon fibre dominated zones. This

is represented by the lower part of the spectrum where the eigenvalues are smoothly

increasing because most of the initial strain is absorbed by resin deformation. Beyond

a certain load however, it becomes more energy efficient to share the deformation

between strong and weak zones causing a jump in the spectrum every time a new

energy demanding (composite) mode is excited. For every carbon fibre dominated

eigenmode, there exist several arrangements of resin deformation with similar (slightly

greater) energy requirements which is why the composite eigenspectrum is stepped.

Once a composite eigenmode has exhausted all its resin deformation configurations,

it must invoke the next high energy mode if a solution has not yet been obtained.

In generalizing this idea to heterogeneous materials, the scales may not be separated

but smeared. It is difficult to pick out discrete length scales that describe the overall

structure of the material. For example, Fig. 5-1 shows a 3D Gaussian random field on

a unit cube. On inspection it is clear that the mechanics of this material cannot be

segregated into high and low energy regimes, as the heterogeneities occur across many

length scales throughout the domain. This is reflected in Fig. 5-2 (bottom) which shows

a smoother eigenspectrum for a 1D Gaussian random field. Therefore, ill-conditioning

occurs due to the presence of low energy deformation modes. A good multiscale model

should be able to capture these.

A composite type eigenspectrum resulting from strong spatial variation of material
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Figure 5-2: Eigenvalue spectrum of (left) an isotropic material, (right) a composite and (bot-
tom) a Gaussian random field.

properties gives rise to convergence issues. This can be overcome in one of two ways;

1) refine the mesh till the transition in strain across the material boundary is smoother

or 2) refine the basis to include more information which may be in the form of higher

order elements (p-refinement) or multiscale functions. The former approach known as

h-refinement increases the number of unknowns which, on occasion may be the only

way to a solution, assuming it can be solved. It is the less interesting of two options

because refining a mesh almost always improves the solution. Therefore, this chapter

elaborates on the second approach whereby we wish to improve accuracy via multiscale

enrichment.

In continuum mechanics, the second approach led to the development of higher

order models like Cosserat [30] and strain-gradient continuum [30, 168] and other mul-

tiscale methods like GMsFEM [90], reviewed in Section 2.5. We showed in Chapter 2

the unsuitability of RVEs and other homogenization methods due to restrictive as-

sumptions on the material such as periodicity and scale separation. Spectral methods

such as GMsFEM are the most promising since they provide a naturally ordered list of

deformation modes by solving a suitable eigenvalue problem. They rely on multiscale
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basis functions, obtained from eigenproblems, that form a coarse space which is used

to construct multiscale models. GMsFEM is similar to p-refinement however, unlike

p-refinement, the multiscale basis is physics based from which macroscopically relevant

low energy modes are selected for enrichment. All such methods are model reduc-

tion concepts, the major difference being in the construction of the multiscale bases.

More precisely, the difference is in the choice of eigenvalue problem. In GMsFEM, the

coarse space is a ranked collection of orthogonalized displacement solutions known as

snapshots.

A similar approach is called Multiscale Finite Element Method (MFEM) [169] where

the basis functions on each finite element are adapted to the local properties of its

differential operator. This encodes the fine scale variation into the finite element basis

functions. We note that the idea of using special basis functions for FE methods

is not new and has been used previously in [170, 171], although mostly restricted

to scalar valued porous flow problems. MFEM requires individual realizations for

varying parameters and may not be a viable method in a stochastic sense. However, an

extension of MFEM proposed by Aarnes et al. remedies the issue [172]. The key idea

is to construct multiscale basis functions that not only resolve fine scale information

but also the spatial variability across realizations in a stochastic media. This is done

by computing bases for selected samples from the stochastic permeability field. The

sampling of these realizations however, is not discussed in their paper. In this chapter,

we focus on coarse space construction from the viewpoint of a single realization and

leave the stochastics to Chapter 6.

In Chapter 3, we develop a bespoke two level additive Schwarz preconditioner to

solve large ill-conditioned systems of equations. This is important because the spectral

coarse space used to build the second level of the GenEO preconditioner captures indi-

vidual modes of overall mechanical response and ranks them according to their energy

requirement. The lowest ranked are the zero energy modes which form the Nicolaides

coarse space [126]. Multiscale models built with the Nicolaides coarse space can only

capture translations and rotations but not deformations. Therefore, it is the informa-

tion content of the coarse space that determines the quality of the resulting multiscale

model. For example, in Fig. 2-15 we showed that convergence of an iterative solver is

significantly improved by adding the Nicloaides coarse space on the second level. How-

ever, in a multiscale sense, this coarse space does not contain sufficient information.

Several alternative choices of spaces exist that may be chosen for the second level of

the preconditioner and the multiscale model as discussed in [90]. The eigenproblem in

our multiscale method is identical to GMsFEM (see Eq. (3.13)) except in the choice

of the right hand side matrix. GMsFEM uses the mass matrix whereas our method

125



employs the stiffness matrix AΩ◦j
. We note that the right hand side contains a matrix

product between the subdomain matrix and the partition of unity (PoU) operator,

both of which contribute to the quality of the coarse space built in this way.

The aim of this chapter is to demonstrate via a proof of concept the conversion of

theoretical mathematical methods into real engineering applications. Typically this is

done by solving 2D scalar problems to model porous media with synthetic data sets. In

this chapter, we use the GenEO basis to build multiscale models and explore the effects

of various PoUs in both 2D and 3D. We also demonstrate a prototype for a bespoke

physics based PoU to obtain high quality multiscale models. Stress results obtained via

this multiscale method are post processed to further improve stress solutions locally

through stress recovery.

5.2 Preliminaries

This section is a continuation of the preliminaries in Section 3.2 so we begin with the

system of linear equations Aũ = b. Although, some of the notation was previously

defined in Chapter 3, we reiterate it for convenience.

Let us partition the domain Ω into N non-overlapping subdomains denoted Ω′j
where j = 1, . . . , N and then extend each Ω′j by O layers of elements to build over-

lapping partitions denoted as Ωj such that Ω = ∪Nj=1Ω′j . The overlapped degrees of

freedom in the j-th subdomain then belong to the set

Ω◦j := {x ∈ Ωj : ∃ i 6= j such that x ∈ Ωj} (5.1)

From the example in Fig. 5-3 (right) Ω◦1 = {2, 3, 4}. The internal dofs of a subdomain

are defined by the following set

dof(Ωj) := {k : 0 ≤ k ≤ n such that supp(φk) ⊂ Ωj} (5.2)

and all active dofs on that subdomain are denoted

dof(Ωj) := {k : 0 ≤ k ≤ n such that supp(φk) ∩ Ωj 6= ∅} (5.3)

Let us demonstrate these definitions with a simple 1D example shown in Fig. 5-3

where dof(Ω1) = {1, 2, 3} and dof(Ω1) = {1, 2, 3, 4}. Now, we define the function

space Vh(Ωj) on a subdomain

Vh(Ωj) := {v|Ωj : v ∈ Vh} (5.4)
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Figure 5-3: One dimensional example to clarify definitions in Section 5.2. (Left) Non-
overlapping partitions of Ω. (Right) Partitions of Ω overlapped by one element giving an overlap
2 elements wide.

Figure 5-4: (Left) The domain Ω divided into 64 non-overlapping subdomains Ω′. (Middle)
The solid coloured region shows overlapping subdomain Ωj where the red subregion is denoted
by Ω◦ in our notation and the white subregion is Ωj\Ω◦j . (Right) Close up of Ωj where the
set dof(Ωj) is marked by square black grid points while the spherical green grid points on the
boundaries denote the set dof(Ωj)\dof(Ωj). Note: we assume that all surfaces are Dirichlet
boundaries.
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and restrict Vh(Ωj) to only contain functions with complete support on Ωj . We define

this restricted space as

Vh,0 := {v ∈ Vh(Ωj) : supp(v) ⊂ Ωj} (5.5)

Therefore, a function v ∈ Vh,0(Ωj) exists on a subset of dofs in Ωj . To build a global

basis, we must be able to extend any function v ∈ Vh,0(Ωj) to Vh. This transformation

is achieved by an extension operator RTj : Vh,0(Ωj)→ Vh whose transpose then becomes

the restriction operator Rj : Vh → Vh,0(Ωj). In matrix form, Rj and RT
j are sparse

binary matrices mapping global dofs to local dofs or vice-versa. For our 1D example

shown in Fig. 5-3, the operators would be defined as

R1 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 and R2 =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 (5.6)

With the restriction operator, Neumann matrices on subdomain can be defined as

Aj = RjART
j for j = 1, . . . , N . For large systems, however, constructing A is a time

consuming task which we wish to avoid. The dune-composites package [3] achieves this

by local assembly of Aj on each subdomain. We introduced in Eq. (3.11), a coarse grid

problem that couples all subdomains, giving a two-level preconditioner. Like before,

we require another operator to restrict the fine space Vh to the coarse space VH which

we denote RH : Vh → VH . Once again, its transpose defines a prolongation operation,

both of which in matrix form are RH and RT
H . Now, we must define a suitable coarse

space VH .

5.2.1 Customized coarse space - GenEO

We have highlighted in Chapter 3 that convergence of iterative solvers deteriorates in

the presence of global low energy modes in A and proposed a way to overcome it using

a two level additive Schwarz framework. This is important because the key ingredient

at the second level is the GenEO coarse space. To build this coarse space we need to be

able to do two things,

1. Define a suitable generalized eigenvalue problem on each subdomain. This is

given in Eq. (3.13).

2. Combine the local solutions to build a global coarse space. This is done via a

partition of unity operator given in Definition 3.3.2. We explore two other PoUs
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in this chapter, the definitions of which are given in Section 5.2.2.

In this way we have a coarse space VH that captures a user controlled amount of

fine scale information with which we can formulate our multiscale problem. In matrix

form, the number of columns in the mapping RH is equal to dim(Vh) with Nm rows.

Each row is computed as a matrix product RjXjp
(j)
i for j = 1, . . . , N and i = 1, . . . ,m.

With all the operators defined, we reformulate the problem in the customized coarse

space so that

AH ũH = bH (5.7)

where AH = RHART
H , ũH is the solution vector in VH and bH is the coarse load

vector. Transforming the solution and load vectors from VH to Vh is also achieved with

the extension operator such that the fine scale solution ũ = RT
H ũH . In this way we

recover the fine solution from a coarse solve.

We emphasize that the generalized eigenvalue problems per subdomain are inde-

pendent and can be solved in parallel thus reducing the problem from one expensive

fine scale solve to N independent parallel solves that enable one cheap coarse solve.

However, compatibility of eigenmodes on adjoining subdomains is a necessary require-

ment. It is for this reason that nearest neighbour communication between subdomains

becomes necessary for efficiently parallelized assembly of AH and bH . Therefore, AH

is a small but dense matrix.

5.2.2 Partition of Unity

In Chapter 3 we observe that the influence of the choice of PoU in constructing the

two level additive Schwarz preconditioner has little bearing on the convergence of the

solution. For the tests conducted in Chapter 3, the smooth PoU reduced the iteration

count by 1 at most. However, when building a multiscale model using the GenEO coarse

space, the treatment of overlaps is not trivial and significantly affects the solution. In

order to gain a better understanding of this influence, we create a new solution based

PoU in addition to the smooth and non-smooth.

The formal definition of the non-smooth PoU is given in Definition 3.3.2. A one

dimensional visual example is provided in Fig. 5-5 where the dotted line represents this

PoU. The unsmooth operator is exceedingly simple whereby every node is assigned a

scalar integer ξk equal to the number of subdomains sharing that node. The contri-

bution of any node to all the subdomains it belongs to is equally divided such that

individual contributions are proportional to ξ−1
k . The operators Ξj are encoded as
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Figure 5-5: Visual comparison of the two partition of unity operators in one dimension.

diagonal matrices Xj that satisfy the following criteria

I =
N∑
j=1

RT
j XjRj (5.8)

where I is an identity matrix.

Like the non-smooth PoU, the smooth PoU as defined by Sarkis [142] also introduces

a scalar per node such that

ξ̃k =

1 on all nodes in Ω0
k

1− δ
l on all nodes in Ωδ

k\Ω
δ−1
k ∀ δ ∈ [1, l]

(5.9)

where Ω
m−1
j denotes the inner nodes of the m-th layer of overlap. Unlike the non-

smooth PoU, the smooth PoU is a piecewise linear function in overlaps. With ξ̃k

defined, the local partition is computed as

ξk =
ξ̃k∑

j∈Ω◦k
ξ̃j |Ωlk∩Ωlj

(5.10)

We now demonstrate the two partition of unity operators for the example in Fig. 5-

3. Both PoUs are identical for δ = 1 so they can be expressed for two subdomains with

matrices X1 and X2

X1 =


1 0 0 0

0 1 0 0

0 0 0.5 0

0 0 0 0

 and X2 =


0 0 0 0

0 0.5 0 0

0 0 1 0

0 0 0 1

 (5.11)

The two PoUs presented so far are purely geometrical in nature and can be expected

to represent isotropic overlaps reasonably well. However, they do not capture the

anisotropy in the overlaps which is why the eigenmodes computed over two neighbour-
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ing domains, although compatible, do not represent well the mechanical response of

anisotropic materials. Motivated by this requirement, we define a solution based PoU

which we refer to as uPoU. This particular partition is based on the displacement so-

lution in the overlaps. In order to construct the uPoU on subdomain j, we must define

two new quantities. First, the interior boundary of its overlap ∂Ω◦
j,int. Second, the

exterior boundary of Ω◦j defined as ∂Ω◦
j,ext. The interior and exterior boundaries are

shown in red and black nodes respectively, for an arbitrary 2D subdomain in Fig. 5-6.

This PoU, like any other, must satisfy ∂Ω◦
j,int = 1 and ∂Ω◦

j,ext = 0 along with Eq. (5.8).

An important consideration is that any vector valued solution in the presence of Pois-

son’s effects will invariably generate negative displacements that violate the partition

of unity. As a remedy, we propose decoupling the mechanical response in the principal

directions i.e. remove Poisson’s effects and ensure the stiffness matrix on the overlap

AΩ◦j
is block diagonal. This is equivalent to solving independent scalar valued problems

in each direction. We note that the decoupling only applies to uPoU construction and

the solution includes Poisson’s effects. With these in mind, we can now construct the

uPoU on the jth subdomain using the following recipe,

1. Assemble uncoupled AΩ◦j

2. Apply boundary conditions ∂Ω◦
j,int = 1 and ∂Ω◦

j,ext = 0.

3. Solve for displacements ũh(Ω◦j )

4. Compute global ξ̃k =
∑N

j=1 ũh(Ω◦j ) to get nodal values of uPoU on Ωj

Since ξ̃k is the sum of displacements in Ω◦j for all j, it is not 1 everywhere. In order to

satisfy Eq. (5.8), we recompute ξk using Eq. (5.10).

5.3 Numerical experiments

In this section we demonstrate the performance of GenEO as a mutliscale method.

We begin with two dimensional simulations of a composite laminate, followed by a

heterogeneous material modelled with a Gaussian random field. We use Gaussian

random fields because, like composites they too exhibit insufficient scale separation and

a high contrast spatial variation of material properties thus enabling us to demonstrate

the scope of the method. We then extend the analysis to three dimensional bending of

a composite beam.
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Figure 5-6: The red nodes show the interior boundary ∂Ω◦
j,int while the black nodes show the

exterior boundary ∂Ω◦
j,ext of an arbitrary 2D subdomain.

GenEO coarse space as a multiscale method in 2D

We consider a rectangular two-dimensional domain with vertical Dirichlet boundaries

and horizontal Neumann boundaries. We use this domain to conduct two separate tests

by modelling;

1. A unidirectional composite with properties given in Table 5.1, shown in Fig. 5-7

(top)

2. A heterogeneous material modelled with a Gaussian random field without classical

scale separation, see Fig. 5-7 (bottom).

Since we are particularly interested in the composite case, we will consider it first.

We use these simulations to compare all three partition of unity operators for different

overlaps and dim(VH) in order to demonstrate the performance of GenEO as a multiscale

method. For the composite test, we consider a beam of length Lx = 10mm and thickness

Ly = 1mm, made up of 11 carbon fibre plies 0.08mm in thickness, orientated at 0◦.

They are separated by 0.02mm thick resin rich interplies. The beam is discretized into

a mesh comprising 200 elements in each direction such that there are 40, 000 elements

or 40, 401 nodes adding up to 80, 802 degrees of freedom.

Each interply layer is modelled with 4 linear quadrilateral elements while the plies

are 16 elements thick with mechanical properties provided in Table 5.1. The setup of

the unidirectional laminate with 0◦ plies along the x-axis and the applied constraints

are shown in Fig. 5-7 (top).
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Δ = 1

Δ = 1

Figure 5-7: (Top) 2D composite elastic field showing the layered material with applied con-
straints. The domain is discretized into 4× 4 subdomains and Ω6 is overlaid in a white mesh.
Deformations for Ω6 are shown in Fig. 5-9. (Bottom) Gaussian random field for the same
problem with a high contrast ≈ 100.

Ply properties Resin properties

E11 162 GPa E 10 GPa
E22, E33 10 GPa ν 0.25
G12, G13 5.2 GPa
G23 3.5 GPa
ν12 0.25

Table 5.1: Assumed mechanical properties for CFRP material (M21/IMA), where 1 is the
fibre direction in-plane, 2 is perpendicular to the fibre direction in-plane.
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The mesh is subdivided into N = 16 regular subdomains such that individual

GenEO problems are solved for each to give the required number of eigenmodes. The

eigenmodes from each subdomain are extended with the RT
j operator to build the

second level restriction operator RH to reduce model order according to Eq. (5.7). For

this problem, the RH matrix is 16m×80, 802 in size and A is of size 80, 802×80, 802. In

practice, the full RH and A are never constructed. Instead, only the local contribution

of subdomain j to AH is computed as

A
((j−1)m+k,(i−1)m+k)
H = R

(k)
H,j(Ωj)AjR

T,(k)
H,i (Ωj) ∀ i ∈ N̂ (5.12)

where N̂ is the set of immediate neighbours of subdomain j including itself and k =

[1, 2, . . . ,m].

For a good coarse space, the coarse approximation should converge rapidly to the

fine solution as the dimensionality of the coarse space is increased. For this particular

problem, tests were conducted with m = [5, 10, . . . , 30] modes per subdomain. To

quantify the quality of the coarse representation, we define the error as a difference

between solutions in the energy norm such that

εe = log10

(
uTe Aue

ũThAũh

)
(5.13)

where ue = ũh − RT
H ũH is the difference between the directly obtained fine solution

and fine solution recovered from the coarse solve. Similarly, we compute stress error as

εσ = log10

(
||σv,h − σv,H ||
||σv,h||

)
(5.14)

where subscript v represents Von Mises stress and h and H represent fine scale and

coarse scale solutions respectively. We note that the extension operator is globally

applied to demonstrate good agreement of the coarse and fine solutions. This operation

would normally not be done since its cost is of the same order as an efficient iterative

solver for finding ũh itself. In practice, it often suffices to recover the fine scale solution

in localized regions of interest. With the problem setup, we now discuss the experiment

in more detail.

Convergence of multiscale methods in a domain decomposition setting is strongly

influenced by the way subdomains interact with their neighbours. This interaction is

encoded in the partition of unity operator, the optimal choice for which is currently

unknown. In these experiments, we explore the difference between a piecewise constant,

and two piecewise linear PoUs. We refer to them as non-smooth, smooth and uPoU,
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respectively. Figure 5-8 shows the error convergence for the composite beam test for

all three PoUs for a range of overlaps.

(a) (b)

(c) (d)

Figure 5-8: Sensitivity of GenEO multiscale method to 3 PoUs for the problem shown in Fig. 5-
7(top). (a) Non-smooth PoU (b) Smooth PoU and (c) uPoU. In (d) we present the Von Mises
stress error in L2 norm relative to fine scale solution, assumed to be the truth. The stress error
curves correspond to 50% overlap for all three PoUs and are identified by their markers.

For a floating subdomain (Ω6) i.e. one that does not share any degrees of freedom

with the domain boundaries, the first 6 eigenmodes (excluding rigid body modes and

using the smooth PoU) are pictured in Fig. 5-9 to provide a visual idea of the deformed

shapes when stiffening inclusions are present. We note that the treatment of rigid

body modes is non trivial in the sense that constrained subdomains sharing nodes with

Dirichlet boundaries produce no rigid body modes from the local eigensolve. Transla-

tions and rotations must be added explicitly. The eigenmodes in Fig. 5-9 help illustrate

the sensitivity of the method to the treatment of overlaps. That is to say, the neigh-

bours of Ω6 must deform in ways that are compatible with these modes. Therefore,

the deformation contributed to the overlapped region of Ω6 by its neighbours must be
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Figure 5-9: First 6 eigenmodes in 2D elasticity excluding the zero energy rigid body modes.
The deformations are shown for a subdomain that does not share any nodes with the domain
boundary i.e. floating subdomain marked by a white mesh overlaid on Fig. 5-7(top). Red cells
represent softer interply regions of a laminate and blue cells show carbon fibre layers.

shared amongst them in some proportion, the optimum of which is unknown. So, we

assume that the contributions must be equally shared between neighbours. This gives

us the non-smooth PoU as shown by the dotted line in Fig. 5-5. A major advantage

of the non-smooth or piecewise constant PoU is its simple implementation however,

it is relatively slow to converge to a fixed accuracy i.e. several modes per subdomain

are required. On the other hand, the smooth or piecewise linear PoU is more difficult

to implement but converges much more rapidly as shown in Fig. 5-8. Therefore, for a

given accuracy, dim(Vh) is much smaller for the smooth PoU. However, uPoU outper-

forms the other two PoUs but is more expensive to construct since it requires a solve

for every pair or overlapped subdomains. Consequently, it stores information about

the elastic field in the overlaps making it the most accurate out of the three PoUs

tested here. The difference in accuracy is relatively small when considering errors in

energy norm or even the displacement solution. But, error in the stress solution (see

Fig. 5-8(d)) shows a greater difference since element strains converge at a slower rate

than displacements.

These plots also show the error reduction based on the amount overlap between

two subdomains. For simplicity, consider a 1D case such that any subdomain can have

a maximum of two neighbours. Intuition suggests that increasing the overlap must

improve the solution since the eigenvectors obtained better represent deformations

over a larger region of a subdomain and its neighbours. Mathematically speaking, the

matrix AΩ◦j
on the right hand side of Eq. (3.13) is non-zero only in dofs indexed by

overlapping nodes although it is equal in size to AΩj . Therefore, it is rank deficient and

the maximum number of real eigenvalues is bounded above by rank(AΩ◦j
). A greater

overlap admits more eigenvalues which improves accuracy of the coarse model however,

enriching the coarse space beyond a certain limit, the increase in cost is disproportionate
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to the error reduction. This is confirmed by the plots in Fig. 5-8. However, one should

bear in mind that the overlap must not exceed 50% of a subdomain’s length in a one

dimensional problem so that it does not interact with a subdomain that is not its

immediate neighbour. For this reason, the plots are terminated at 50% overlap.

In all three cases, the finest multiscale model has 480 dofs, reducing the model

order by a factor of 168. The global accuracy achieved in the energy norm with 480

multiscale dofs, is rarely demanded by users within a stochastic framework. Depending

on application, it often suffices to approximate a solution within 1% error tolerance.

Based on these tests, we achieve that for multiscale models that are up to a 1000 times

smaller than the fine model. However, solutions can be improved locally in the regions

of interest. To demonstrate this, we now consider the stress solutions for the composite

beam.

We begin by computing the Von Mises stress for displacement solutions presented

in Fig. 5-10.

σv =
√
σ2

11 − σ11σ22 + σ2
22 + 3σ12 (5.15)

Consider the non-smooth PoU from Fig. 5-5 (dotted line). In this case, the mismatch

in the deformations of Ωj (nodes = [1, 2, . . . , 7]) and its neighbour to the right (nodes

= [3, 4, . . . , 9]) is accommodated in elements 3 and 6 since the elements in between

(elements 4 and 5) contain the average solution of both subdomains. So, there is a

displacement jump in elements at subdomain boundaries. As a result, we recover a

piecewise constant strain over the entire domain with errors concentrated on the edges

of overlaps. This phenomenon, generalized to 2D, can be seen in Fig. 5-10(b) for

stresses obtained with the non-smooth PoU. We would expect this phenomenon to be

eliminated when using a smooth PoU instead but, as shown in Fig. 5-10(c), we observe

similar discontinuity. In fact the error εσ increases for the smooth PoU. This is because

the smooth PoU error convergence stagnates. However, the subdomain boundaries are

much better approximated. This is evidenced by a more significant improvement in

the solution after stress recovery. The stagnation occurs due to the purely geometric

nature of the smooth and non-smooth PoUs since they contain no information about

the mechanics of the material. The error is analogous to the error that would result

from finding a displacement solution by simply interpolating from boundary conditions

over the domain instead of an FE based displacement solution.

On the other hand, the uPoU produces a stress solution Fig. 5-10 (d) that takes

into account the mechanics of the overlaps. By inspection, we can conclude that the

uPoU offers a far more superior performance for the problem at hand. For this reason,

we use the uPoU for the rest of the simulations that follow in this chapter.

Treating the fine scale stress solution as the truth, the error in the uPoU is visu-
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(a)

(b) εσ = 8.3%

(c) εσ = 11.3%

(d) εσ = 2.6%

Figure 5-10: Von Mises stress plots for the layered composite beam shown in Fig. 5-7. (a)
Fine scale solution with 80, 802 dofs (b) Non-smooth PoU, (c) Smooth PoU and (d) uPoU. (b),
(c) and (d) were computed with 480 dofs. The solution in (a) is treated as the truth relative to
which the error εσ is computed.

alized in Fig. 5-12 (top). Peak errors are observed at subdomain boundaries. These

concentrations are artefacts of the independent eigensolves due to Dirichlet boundary

conditions being applied on all subdomain boundaries except global Neumann bound-

aries. In order to correct for this mismatch, a post processing technique called stress

recovery is used.

It is common knowledge that convergence of a finite element displacement solution

is better than convergence of its derivative (strain). As a result, stress solutions are

less accurate than displacement based solutions. In a domain decomposition setting,
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Figure 5-11: Stresses after patch recovery at 50% overlap for all three PoUs.

Figure 5-12: Von Mises stress error relative to the fine scale solution pictured in Fig. 5-
10(top). Both plots shown here are solved using uPoU. (Top) Before stress recovery, L2 norm
error ≈ 2.6%. (Bottom) Post stress recovery, L2 norm error = 2.1%.

this is remedied with a post process called stress or patch recovery, the key steps of

which are as follows:

1. Project the coarse solution onto a region of interest i.e. a subdomain giving

ũh(Ωj). This operation requires nearest neighbour communication due to over-

lapped regions. Say, the neighbours of Ωj are denoted as Ωj,1,Ωj,2, . . .Ωj,k, then

139



we can write this projection as

ũh(Ωj) = RT
H(Ωj)ũH(Ωj) +

k∑
i=1

RT
H(Ω◦j,i)ũH(Ω◦j,i) (5.16)

where the superscript ◦ denotes overlaps.

2. Assemble local stiffness matrix on Ωj .

3. Apply boundary conditions. Let us denote a processor or subdomain boundary

as ∂Ωj = dof(Ωj)\dof(Ωj). All processor boundaries are treated as Dirichlet

boundaries except for those that coincide with global non-Dirichlet boundaries.

We then apply the displacement boundary conditions ũh(∂Ωj) on ∂Ωj and solve

to obtain the corrected solution ûh(Ωj).

4. Project the local solution ûh(Ωj) back to Ω by computing

ûh(Ω) =
N∑
j=1

RT
H(Ωj)ûh(Ωj) (5.17)

In real world applications, the coarse solution is not usually projected back to

the fine scale since the cost is comparable to that of solving the problem iteratively.

Therefore, fine scale solutions are only recovered in regions or subdomains of interest.

To enable a comparison over the entire domain we do however, recover the fine scale

solution everywhere. Using this strategy the error is reduced by an order of magnitude

as shown in Fig. 5-12 (bottom). Here, stress recovery was used to improve the L2

norm error of Von Mises stress over the entire domain from ≈ 2.6% to 2.1%. The

improvement is small because uPoU is sufficiently accurate without stress recovery.

It is important to note that none of the three PoU operators tested here are the

optimum choice for this problem. In fact, the optimal PoU design is a subject of future

work.

Now, we test the method with a random heterogeneous material modelled as a

Gaussian random field. One distinctive difference between composites and random

heterogeneous materials is the lack of scale separation and it is with respect to this

that we wish to demonstrate the performance of GenEO as multiscale method. The

Gaussian random field was created by computing 9 lowest Karhunen-Loéve eigenpairs

for the Matérn covariance function with a correlation length λ = 1.2, smoothness

parameter ν = 0.5 and variance σ = 1.3.

Random heterogeneous materials show better convergence than composites. The

reason for better convergence relative to the composite beam is a smoother eigenspec-
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(a)

(b) εσ = 3.1%.

(c)

Figure 5-13: (a) Fine scale solution for heterogeneous material shown in Fig. 5-7. (b) Multi-
scale (640 dofs) solution projected on the fine grid. (c) Difference between fine and multiscale
solutions.

trum in the absence of scale separation, see Fig. 5-2. Due to this, for a given accuracy,

multiscale models for heterogeneous materials can be much smaller than composites.

In this way we show that GenEO as a multiscale method is not restricted to composites.

For stress analysis, we use only the smooth PoU along with stress recovery to

demonstrate the performance of this multiscale method with respect to random het-

erogeneous materials. The stress field in Fig. 5-13 (top) shows the fine scale Von Mises

stress for the problem given in Fig. 5-7 (bottom) using 15 eigenvectors per subdomain

with 50% overlap. The middle plot shows the multiscale solution post stress recovery

and the bottom plot shows the difference between the two solutions.

Problems smaller than 105 dofs can efficiently be solved on a desktop computer

however, beyond that stiffness matrices and its factors cannot be stored in memory. The

main advantage of this method is that it only requires nearest neighbour communication

and only ever needs to assemble stiffness matrices on individual subdomains at most.

This makes it possible to solve much larger problems on a desktop computer. Crucially,
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(a)

(b) (c)

(d) (e)

Figure 5-14: Visualizing uPoU on Ω7 of the heterogeneous beam with 50% overlap.

it can be readily implemented in parallel.

GenEO coarse space as a multiscale method in 3D

As we are primarily interested in composites, we now demonstrate the performance for

a three-dimensional composite beam with 6 composite plies 0.25mm thick orientated at

0◦ along the x-axis. They are separated by resin rich interply regions 0.0625mm thick.

The mechanical properties for both composite plies and resin are given in Table 5.1,

however, in 3D ν = 0.25. The dimensions of the beam in x, y and z directions are

10mm, 1.8mm and 2mm respectively. The domain is discretized with 60 elements

in each direction giving approximately 700, 000 dofs on the fine scale. The fine scale

problem is decomposed into 216 (N = 6 in each direction) regular subdomains with 50%

overlap. On the coarse scale, we compute m = 25 eigenmodes per subdomain resulting

in 5400 degrees of freedom on the coarse scale. The multiscale model is therefore,

almost 130 times smaller than the fine model. The stress plots for this problem are

given in Fig. 5-15.

Now, we add a wrinkle to the composite beam simulated above. The wrinkle is

defined as

y =
g(x, y)

4
sech2

(
x− Lx

2

)
(5.18)

where g(x, y) is the following envelope function

g(x, y) = exp

(
−
(
x− Lx

2

)2

− 20

(
y − Ly

2

)4
)

(5.19)
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Figure 5-15: Stress plots for 3D composite beam using the smooth PoU.
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Figure 5-16: Wrinkle defined in Eq. (5.18) embedded in a laminate.

to contain the wrinkle entirely within the laminate except in the z-direction where it is

prismatic as shown in Fig. 5-16. The corresponding stress plots are shown in Figs. 5-17

and 5-18 to show a comparison between the smooth PoU and uPoU, respectively.

5.4 Concluding remarks

In this chapter we have demonstrated the performance of GenEO coarse space as a mul-

tiscale method for both two and three dimensional problems. The bespoke multiscale

bases spaces are built using local spectral information stitched together with a partition

of unity operator. The choice of this operator has a significant bearing on the accuracy

of the solution, the optimum choice for which is currently unknown. However, from

our numerical experiments we can conclude that the smooth PoU demonstrates a su-

perior performance relative to the piecewise constant PoU but both are outperformed

by uPoU.

This method permits the construction of coarse models with a fraction of the degrees

of freedom of their fine scale representation, which still produce solutions within 1%

of the fine solution. For the examples presented, particularly the composite case, the

models are reduced by a factor greater than 550 in 2D and 130 in 3D and yet achieve a

solution within 1% of the fine scale solution. Even greater model order reduction was

achieved in the heterogeneous case while maintaining similar accuracy. For composite

or heterogeneous cases, where macroscale modes of deformation can be unclear, as

seen in Fig. 5-9, use of local eigenfunctions in the customized coarse space construction

seems natural. The most important detail about the customized coarse space built in

this chapter is that it becomes available from two-level additive Schwarz implemented

in dune-composites and does not need to be recomputed. The importance of this

availability will become clear in the next chapter.
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Figure 5-17: Stress plots for 3D composite beam containing a wrinkle solved using the smooth
PoU.
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Figure 5-18: Stress plots for 3D composite beam containing a wrinkle calculated with uPoU.
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CHAPTER 6

DATA-DRIVEN MULTISCALE

MODELS FOR HIGH DIMENSIONAL

MCMC

6.1 Introduction

The traditional approach to quantify uncertainty in both, materials and models involves

running several experiments to heuristically characterize the spread of a quantity of

interest (QoI) so that an expected QoI can be estimated with confidence proportional

to the amount of data available. Naturally, sets of test data get smaller as one moves

up the test pyramid (see Fig. 2-1). Consequently, confidence in outputs is lowered and

wider safety margins have to be applied. This is one reason for the drive to construct

virtual twins of the test pyramid that permit a comprehensive grasp of uncertainty

leading to more efficient designs - the third and final challenge this thesis set out in

Chapter 1 which we are now in a position to address.

The question we now ask is that given some observed deformation, what is the

underlying elastic field of that component? We cast this as an inverse problem in

a Bayesian setting. In order to conceptualize the inverse problem, let us consider

a rectangular composite plate tested under compression. We measure the strain or

deflection at a set of predetermined points on its surface during the experiment. The

goal then is to divine a Gaussian field with parameters sampled at random from the

prior so that the model outputs at those predetermined points agree with experimental
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measurements. If the model and experimental outputs agree, within some tolerance,

we can conclude that the elastic field of the composite is well approximated by the

current instance of the random field.

Random parameters or fields are sampled using a MCMC method however, the

scale of calculations presents a sizeable challenge. To achieve proper mixing of a chain

through the posterior, the theoretically optimum acceptance ratio is 0.23 [82]. There-

fore, 77% of the samples drawn will be rejected. The accept-reject step for every sample

requires a solution to the forward model used to define the likelihood function, a compu-

tationally intensive undertaking. For models with more than a few million unknowns,

this cost is unaffordably expensive. One way to relieve the computational burden is by

replacing the model with a cheaper substitute. An alternate way is to draw samples in

a manner that maximizes acceptance ratio without compromising mixing properties of

the chain. The former is addressed in Chapter 5 with the help of which we pursue the

latter strategy in this chapter.

UQ literature for composites is sparse in general so we draw on ideas mostly from

the fields of geothermal reservoir modelling [173], subsurface flow [174], remote sensing

[175] and other similar scalar valued problems. The idea of using cheap replacements

of forward models has been previously explored but limited to low dimensional scalar

valued problems [69]. Surrogates have been applied to inverse problems in different

ways. For example, [70, 176] use generalized polynomial chaos, [177] employed Gaus-

sian process regression and [178–181] used projection-based reductions in model order.

We are interested in the projection-based approach that reduces model order by solving

a projection of the full model in a subspace. Our innovation lies in realizing the suit-

ability of the GenEO spectral coarse space for model order reduction. For our choice of

reduction method, constructing the GenEO coarse space requires solving the full model

at representative samples from the posterior which are not known a priori. The span

of each of their coarse spaces orthogonalized in some way, defines an appropriate sub-

space applicable all over the posterior. Crucially, the quality of the subspace is dictated

by the choice of representative samples. We extend the delayed acceptance approach

designed by Christen and Fox [88], further developed in [69] to quantify uncertainty in

materials and models. We adapt innovations by Cui et al. [69] whereby the coarse space

construction process is embedded into an MCMC algorithm that simultaneously ex-

plores the posterior and selects samples for enriching the coarse space. The enrichment

sample selection is based on the idea that a coarse model for any point in the posterior

can be expected to be a good substitute for all samples near that point. Therefore, a

metric is defined by which we dynamically monitor the quality of the coarse space such

that it can be enriched for any region of the posterior that has not yet been visited by
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Figure 6-1: Representation of Bayesian approach in a simplified 2D parameter space for
some likelihood function. (Left) Sampling from isotropic Gaussian prior π0(ξ). (Right) MCMC
sampling from posterior π(ξ|Dobs).

the Markov chain. Compared to the classical approach whereby subspaces are built of-

fline, the adaptive approach is computationally more efficient as the coarse space built

this way is tailored to a particular posterior thus requiring a smaller basis to retain the

accuracy within a concentrated region of the parameter space. Representative samples

in the offline approach are usually drawn from the prior and so need to be much richer

to compete with online enrichment.

An added benefit of this MCMC strategy is that we obtain a coarse space tailored

to a particular model. We use this to run a coarse MCMC process and provide a

comparison of results showing how well coarse MCMC approximates the actual distri-

butions. This is useful because we can estimate an unknown distribution at a much

lower cost using a tailored coarse space for model order reduction thus bypassing full

scale evaluations entirely.

6.2 Standard Markov Chain Monte Carlo

Standard MCMC process for sampling posteriors using Metropolis-Hastings random

walk is described in Section 4.2.2. In a Markov chain, samples close to one another

Algorithm 1 Metropolis-Hastings algorithm

1 generate the first proposal ξ0 whi le

2 0 ≤ k ≤ n given ξk , generate a proposal
3 ξ′ from given proposal distribution

4 q(ξ′|ξk) Accept
5 ξ′ with the probability

6 αξ(ξ
k, ξ′) = min

{
1, π(ξ

′)q(ξk|ξ′)
π(ξk)q(ξ′|ξk)

}
k = k + 1 end % end whi l e
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are strongly correlated but we require independent samples to estimate expectations

of functions. By estimating the integrated autocorrelation time for each component

of a chain Λi, we can approximate a subsampling interval Λ = max(Λi) for which the

samples are independent. The number of independent samples in a chain is called

its effective sample size or ESS. Computational efficiency of an MCMC algorithm is

defined by ESS per unit CPU time. The efficiency of standard MCMC is driven by two

factors;

1. Cost of the forward model F (ξ): The number of MCMC samples drawn for a

given CPU budget is directly proportional to the cost of solving the forward

model. If the cost of evaluating the posterior probability density in Eq. (4.7)

can be reduced with a faster evaluation of F (ξ), we can improve computational

efficiency. We explore this idea further in Section 5.2.1.

2. The autocorrelation time of a chain: For a finite length Markov chain, ESS is

inversely proportional to Λ which can be reduced, for instance, by exploiting the

gradient information of the posterior on-the-fly [182] thus making more effective

proposals. Here too it is beneficial to have a quicker solve of F (ξ) from which

gradients can be computed at a reduced cost. However, in this contribution we

choose to reduce Λ by using the delayed acceptance MCMC methodology [88] for

reasons described in Section 6.3.

6.3 Multiscale Markov Chain Monte Carlo

In Section 6.2 we identified two factors that improve the efficiency of MCMC - faster

forward solves and shorter autocorrelation time. We begin by exploring the idea of

reducing F (ξ) solve time which we later combine with delayed acceptance MCMC to

reduce autocorrelation time of a chain.

In Chapter 3, we claimed that the GenEO preconditioner produces a well-conditioned

system accelerating convergence of Krylov solvers, particularly for large anisotropic sys-

tems. The success of the two-level additive Schwarz method depends on the quality of

the GenEO coarse space. In Chapter 5 we observed that a good coarse space also doubles

as an effective reduced order or multiscale representation of the full model. Here, we

use the multiscale model to reduce both, forward solve time and autocorrelation time.

To help understand the algorithm we define two Markov chains - the primary chain

called ξ-chain and the secondary or subchain denoted the η-chain. The η-chain only ex-

ists between two neighbouring samples of the ξ-chain, ξi−1 and ξi such that η1 = ξi−1,

see Fig. 6-2. The key idea is that the ξ-chain computes expensive fine scale solutions
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Figure 6-2: The solid contours denote some (true) posterior distribution π and the dashed
contours mark a coarse approximation of it πH . Generally these are unknown quantities but
we draw them here to demonstrate the delayed acceptance MCMC scheme. The stars denote
two consecutive samples in the ξ-chain (red arrow) pulled from π while the black dots show the
subchain or η-chain (dashed black arrows) sampling from πH between ξi−1 and ξi.

Algorithm 2 Delayed acceptance MCMC

1 pass a proposal ξk−1 from ξ-chain toη-chain such that η0 = ξk−1

2 f o r j = 0 :L−1 Given ηj , generate new proposal onη-chain η′ from given proposaldistribution

q(η′|ηj)
3 accept with probabilityαη(η′,ηj−1) = min

{
1, πm(η′)q(ηj |η′)

πm(ηj)q(η′|ηj)

}
end hand ηj over to ξ-chain such

thatξ′ = ηj accept withprobabilityαξ(ξ
′, ξk−1) = min

{
1, π(ξ

′)πm(ξk−1)

π(ξk−1)πm(ξ′)

}
ξk = ξ′

withprobability αξ andξk = ξk−1 with probability1− αξ
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to the forward model F (ξ) thus exploring the full posterior distribution. The η-chain

evaluates coarse approximations FH(η), enabling it to construct a computationally

cheaper posterior approximation. Here, FH(η) : ũH → dobs.

Given the approximate forward model FH(ξ) based on the customized coarse space,

we must redefine the misfit function and approximate posterior distribution. The ap-

proximate misfit is as before with the forward model replaced by its approximation

ΦH(η) =
1

2

∣∣∣∣∣∣Σ− 1
2 (FH(η)−Dobs)

∣∣∣∣∣∣
2

(6.1)

and the resulting posterior approximation has the form

πH(η|Dobs) =
1

ZH
exp(−ΦH(η))π0(η) (6.2)

and once again, ZH need not be computed.

Now, let us assume we have a sufficiently rich coarse space constructed using the

method described in Eq. (3.13), equation Eq. (5.7) can be solved to approximate the

displacement field with some error threshold ε. For the i-th iteration of MCMC sam-

pling, we exploit the shorter run time of the η-chain to explore the posterior using the

pCN random walk whereby a proposal has the form given in Eq. (2.7) The proposal η′

is accepted for the next sample ηk with the following probability

αη(η
′,ηk−1) = min

{
1, exp

(
ΦH(ηk−1)− ΦH(η′)

)}
(6.3)

If the current sample is rejected then ηk = ηk−1. This chain is run for a predetermined

number of steps L, chosen such that its initial and final states are uncorrelated. The last

step of the subchain is treated as a new proposal ξ′ = ηL of the ξ-chain and is passed

through the accept/reject step Eq. (6.4) using the ratio of full posterior density to the

approximate posterior density to ensure the ξ-chain samples from the full posterior.

αξ(ξ
′, ξi−1) = min

{π(ξ′|Dobs)πH(ξi−1|Dobs)
π(ξi−1|Dobs)πH(ξ′|Dobs)

}
(6.4)

Again, if ξ′ is rejected, ξi = ξi−1.

As we are only interested in the independent samples drawn from the full posterior,

we wish to ensure that the ξ-chain has a minimal rejection rate i.e. acceptance ratio

close to 1. One can imagine that if the subchain samples from a distribution which is a

poor approximation of the full posterior, more samples are likely to be rejected by the

ξ-chain reducing the effective sample size. Naturally, the accuracy of the approximate

posterior is driven by the accuracy of the coarse model. The question then becomes,
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how can we build a sufficiently accurate coarse model without prior knowledge of the

posterior to maintain statistical efficiency?

To improve the statistical efficiency, we use adaptive reduced basis enrichment de-

veloped by Cui et al. [69] with a slight variation. After each accept/reject test on the

ξ-chain, we compute the model error in the coarse solve by treating the F (ξi) as the

truth.

tH(ξi) =
∣∣∣∣∣∣Σ− 1

2
ε (F (ξi)− FH(ξi)

∣∣∣∣∣∣
∞

(6.5)

If this error exceeds a prescribed threshold ε, we augment the coarse space with the

current solution ũ(i) also called a snapshot. This can be interpreted as a new eigenmode,

previously unseen. However, it is not orthonormal to the existing coarse space. So we

must orthonormalize the coarse space. This is a non-trivial step that allows us to retain

control of the maximum allowable error.

6.3.1 Multiscale model

Here we use the multiscale model we built in Chapter 5. We wish to clarify that

this chapter is intended as a proof-of-concept rather than a thorough treatment of

multiscale MCMC. So, we restrict our multiscale model in order to facilitate laying

the groundwork for a fully parallel multiscale MCMC implementation within the dune

framework which is part of the future work. In this chapter we implement a sequential

version and discuss the extension to a fully parallel platform.

The first restriction is applied on the coarse space RH . We will consider only the

zero energy modes per subdomain (Nicolaides coarse space) as it affords us a simpler

way of implementing Dirichlet boundary conditions. The non-zero energy modes per

subdomain are replaced by local solutions which are essentially a combination of local

eigenmodes. The mutliscale model then learns the topology of the posterior and is

capable of adapting the coarse space online. This offers significant advantages over the

traditional offline coarse space as discussed in Section 2.5.

Coarse space learning and Gram-Schmidt orthonormalization

Suppose we have a reduced order model AH constructed from an initial coarse space

RH that produces tH(ξi) > ε. This condition informs the algorithm that the coarse

space is not rich enough and triggers the coarse space update process. The update

process is designed to simply add a snapshot to RH but the implementation is non-

trivial. At the start of the update process, the coarse space is augmented with the

current snapshot to give R′H , the dimension of which exceeds dim(RH) by 1. There

are two important considerations here. First, the initial coarse space comprises zero
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energy modes which are also included in the snapshot. To prevent double accounting,

the zero energy modes are subtracted from the snapshot. Second, the snapshot must be

orthonormal to the coarse space in the absence of zero energy modes. This is achieved

via a Gram-Schmidt process. In this way, we develop a data-adjusted coarse space.

This strategy allows delayed acceptance MCMC to achieve two important objectives

simultaneously; a) full posterior exploration and b) online model order reduction.

6.3.2 The algorithm

Algorithm 3 Delayed acceptance MCMC

1 generate the first proposal ξ1 k = 2 whi le k < N

2 η1 = ξk−1 compute
3 FH(η1) % reduced order model
4 f o r i = 2 : L generate new proposal η′

5 compute FH(η′) evaluate acceptanceprobability

6 αη(ηi−1,η′) i f
7 (αη > r ) % r i s a random number uni formly d i s t r i b u t i o n
8 between [ 0 , 1 ]

9 ηi = η′ e l s e

10 ηi = ηi−1 end % end i f
11 end % end f o r

12 set ξ′ = ηL evaluate
13 F (ξ′) evaluate acceptance probability

14 αξ(ξ
k−1, ξ′) i f

15 (αξ > r) % r i s a random number uni formly d i s t r i b u t i o n
16 between [ 0 , 1 ]

17 ξk = ξ′ e l s e

18 ξk = ξk−1 end % end i f
19 compute model error tH i f (tH > ε) update coarsespace end k = k + 1 end % end whi le

6.4 Numerical experiments

Any factory manufactured composite structure is expected to contain some degree of

out-of-plane waviness however, not all such perturbations are seen as wrinkles even

though they have an effect on part performance. In addition, that part is also expected

to have other defects or variations in its elastic properties across its domain. The

variety of defects however, is too wide to be rigorously classified into wrinkles, voids

and so on. Therefore, as a generalization step, we assume that all these variations

can be modelled with finite dimensional Gaussian random fields. We note that a

Gaussian random field may not be the optimum description of a laminate but as this is

a demonstration of methodology, we do not require a thorough treatment of the elastic
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field as long as it contains the salient features such as high contrast anisotropy and

localized variations. Furthermore, the method presented in this chapter is not bound

to Gaussian representations. If a finite dimensional parametric description of a field

exists, it can be plugged into this method.

In order to demonstrate the concept proposed in this chapter, we consider a 2D

elasticity problem. Let the domain be Ω = [0, 1]2, with vertical Dirichlet boundaries

and horizontal Neumann boundaries. One Dirichlet boundary is fixed while the other

is displaced by 1 in the x-direction. The domain is discretized using a structured mesh

with constant mesh parameter h = 1/200. This produces a total of 40,000 elements

with over 80,000 dofs. The elastic field over the domain is defined by a random Gaussian

field, the weights of which constitute the unknowns to be determined. We consider a

100 dimensional field with 100 unknowns to demonstrate the proof of concept.

The random field is defined as

k(x) =

Nd∑
i=1

ξi
√
λiφi(x) (6.6)

where Nd = 100 is the dimensionality of this random field, ξ = [ξ1, ξ2, . . . , ξNd ] is a

random vector that defines the weights assigned to each basis. In order to construct

the basis functions, we first build a covariance matrix C over the domain Ω. In this

particular example, we use the Matérn covariance function such that

Cij = σ2 exp

(
1 +

√
3r

`

)
exp

(
−
√

3r

`

)
(6.7)

where r is the radial distance between points i and j. Here, σ2 = 4 and ` = 1.25×10−3m.

Then we compute eigenfunctions φ(x) of C corresponding to Nd largest eigenvalues λ

which, scaled by
√
λ produce the required basis vectors, the first nine of which are

shown in Fig. 6-3. We note that the choice of covariance function is user dependent

and can be substituted with any other suitable kernel. The computation of C is an

expensive task with a memory requirement inversely proportional to hd, where d is the

dimension of Ω. However, as our mesh is constant, we compute C and its eigende-

composition offline prior to MCMC and store the basis functions. This is one reason

why a multilevel MCMC approach that continuously adapts h would become infeasible

for large problems, as the covariance matrix would need to be recomputed every time

mesh adaptation occurs.

To test the method, we use a random vector ξr to create a reference random field.

This random field, shown in Fig. 6-4, we consider to be our truth that the delayed ac-

ceptance MCMC algorithm must infer. The corresponding finite element displacement
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1

Figure 6-3: Basis functions used to create a Gaussian random field. All plots range between
-1 and 1 on the domain [0, 1]2.
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solution for the reference field is our quantity of interest. We chose the displacement

solution as the direct observation for two reasons; firstly, using techniques such as dig-

ital image correlation, a richer surface displacement field of a test specimen can be

obtained as opposed to say, strain measurements. Secondly, using displacements saves

significant computation effort as it avoids strain calculations.

Figure 6-4: The reference elastic field created using the basis functions shown in Fig. 6-3.
This is treated as the truth to be determined by solving the inverse problem.

To construct the multiscale model, the problem domain is divided into a 4× 4 grid

of structured subdomains with 25 elements of overlap. In the numerical experiments

of Chapter 5, we refer to this overlap as the 50% overlap case which we have shown

achieves the greatest accuracy. So, for a total of 16 subdomains, the initial coarse

space matrix RT
H is of size 80, 801× 48. As a result, all fine or ξ-chain samples require

evaluating 80, 801× 80, 801 sized models but the first sample on the coarse or η-chain

is reduced to 48× 48 dense matrix. The subchain length is fixed at 50 such that every

50th sample is evaluated by both chains and the error indicator tH(ξ) is checked. If

it exceeds ε, and the current sample has been accepted, the solution is added to RT
H

which is then normalized. The normalization step is non trivial. Before the first update

occurs, RT
H includes only zero energy modes per subdomain therefore, any solution that

is added to the coarse space must first be stripped of the zero energy modes as they

have already been accounted for. In the absence of zero energy modes, every solution

that is added is orthonormalized with respect to all other solutions added previously

using the Gram-Schmidt process. The number of updates are governed by the accuracy
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Figure 6-5: Mean field for computed parameters

demanded from the multiscale model. We demonstrate the performance of the method

for ε = 10−1.

We use here the pCN proposal to draw a fresh sample for the η-chain. This too

is user defined and can be substituted with any other form of proposal. One may use

elaborate schemes such as delayed rejection to procure a new sample for the η-chain

since the delayed acceptance algorithm ensures that every sample passed to the ξ-chain

comes from the true posterior and not its approximation. Therefore, further gains can

be achieved by increasing the efficiency of the η-chain. Since this chapter is intended

as a proof-of-concept, these possible gains are not investigated any further and remain

the subject of future work.

To verify the methodology, we compare the delayed acceptance algorithm to the

standard MCMC algorithm which samples from the true posterior using pCN propos-

als with the same sampling parameters. In order to make a fair comparison, we carry

out an equal number of model evaluations for both algorithms. The first 2000 sam-

ples of the delayed acceptance chains constitute the burn-in period and are discarded.

Since the η-chain length is fixed at 50 samples, the first 1×105 samples of the standard

chains are also discarded. We run multiple chains with randomized start points for each

algorithm, all with a pCN step size of 0.009. The step size can be tuned to achieve

a desirable acceptance ratio however, smaller values increase autocorrelation length

of a chain thus reducing the effective sample size (ESS). Alternatively, large values
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can increase ESS but only up to a limit beyond which proposals generated are so far

away that their likelihood is almost always worse and chances of accepting it diminish.

Consequently, the acceptance rate drops and autocorrelation length is again increased.

The step size chosen here is based on multiple short runs (not reported), optimized to

achieve the largest ESS whilst efficiently exploring the posterior without stagnation.

Under these parameters, the average acceptance rate of the standard MCMC chains

is 55%. This means that 45% of the full model evaluations are rejected before un-

correlated samples are extracted. Comparatively, the average acceptance ratio of the

delayed acceptance chains is 99%. It makes use of almost all full model evaluations

thus improving statistical efficiency relative to standard MCMC.

Another loss of efficiency comes in the form of autocorrelation length of a chain

which is inversely proportional to ESS. As mentioned previously, the only negotiation

of ESS a standard MCMC chain with pCN proposal permits is tuning the step size

which has limited potential. Comparatively, the delayed acceptance scheme offers more

flexibility. Autocorrelation length of the ξ-chain can be reduced by increasing the length

of the η-chain. This has two advantages. First, the effective sample size is increased.

Second, the path to the next effective sample can be traversed faster as the number

of evaluations of the coarse model exceed the number of full model evaluations. The

average cost of solving this particular fine model is 0.35s. The corresponding coarse

model solve time, after the updates have been completed, is 0.0028s.

The acceptance rate of the ξ-chain is determined by the accuracy of the coarse model

which in turn is controlled by the user defined error threshold ε. The error indicator tH

serves as a measure of quality of the multiscale model relative to the fine scale model.

If tH > 0.1, an update is triggered. The plot in Fig. 6-6 shows the distribution of tH .

The variance of the error indicator is 2.3 × 10−4 for over 2000 independent samples

which suggests a very accurate multiscale model. In other words, it may suffice to use

a greater error threshold thus reducing the number of updates. However, altering the

update threshold value affects the efficiency of the algorithm. It is easy to imagine that

a higher threshold would trigger fewer updates and the coarse model would be cheaper

to solve. But, too large a threshold would be more forgiving of bad samples which

in turn would increase sampling error thus requiring more samples to achieve a given

accuracy. So, the choice of the threshold value is problem specific, depending on what

level of accuracy is affordable or desirable.

In Fig. 6-7(top), we see 4 chains progressing through the posterior and the reduc-

tion in true scaled error as the accuracy of the multiscale model improves. Figure 6-

7(bottom) shows the error convergence with every update for each of the 4 chains.

The values plotted are of t̂H which represents the average error of the chain between
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Figure 6-6: Probability density of the error between fine scale and multiscale models tH . The
variance in error V(tH) = 2.3× 10−4.

two consecutive updates to make the data clearer. On average each chain updates the

coarse space RT
H 328 times.

The multiscale model used to solve the first sample on the η-chain comprises only

zero energy modes thus producing an inaccurate solution, the maximum error of which

exceeds the update threshold. Therefore, coarse space updates begin from the first

sample. In the initial stages of the Markov chain, the coarse space is updated for nearly

every new sample till it contains a sufficient number of snapshots that it can accurately

approximate a multiscale solution. So, most of the updates lie within the burn-in period

of the chain. Since the chain is moving towards the posterior and every new sample is

significantly different from its predecessor, previously computed snapshots are unable

to represent the solution for new samples and thus the current snapshot is added to the

coarse space. In this way, the coarse space continuously learns about the posterior. This

phenomenon is visualized in Fig. 6-8 where the black dots mark the snapshots chosen

to update the coarse space. The update process also explains the decrease in the rate of

error reduction beyond approximately 100 updates, as seen in Fig. 6-7(bottom). Once

it settles into the posterior, the updates become increasingly infrequent till they stop

entirely. This is because, once within the posterior, the samples do not differ as much

as they do in the burnin. One might argue that some of the samples in the posterior

are very close to each other and only one of those should suffice to make the coarse
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Figure 6-7: Top: Actual scaled error tH for a chain can be seen converging to the user
provided threshold ε = 10−1. Bottom: Error reduces as the multiscale model learns the posterior
distribution. The error plotted here, t̂H , is the mean of the scaled error tH of a chain between
two consecutive updates. The plots are shown for 4 chains.
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Figure 6-8: Black dots highlight the samples where the updated condition was triggered and
the solution added to the coarse space with respect to the first two parameters p1 and p2. The
red dots mark all other samples drawn by the MCMC process. Note the burn-in where almost
every sample requires an update.

space applicable to that region. However, samples that appear close to each other in

Fig. 6-8 are only close with respect to the first two parameters. In at least one pair

of parameters, they must be sufficiently far apart so as to trigger an update of the

multiscale model. As a results, the multiscale model acquires enough information over

time that with each update it becomes applicable to a larger region of the posterior.

As the size of the coarse space increases and its quality improves, the effect of a single

snapshot diminishes and fewer updates are required till the updates stop entirely. The

plot in Fig. 6-9 visualizes the increasing sparsity of updates for one of the delayed

acceptance chains. It also shows visually, the percentage of updates before and after

burn-in.

At the end of a delayed acceptance MCMC process, we are left with a coarse space

tailored to the posterior distribution of parameters. We now use this coarse space to

achieve further gains by completely bypassing full model evaluations. However, a coarse

model built from this coarse space can only sample from the approximate posterior πH

and will therefore have some bias. In the following test, we investigate the performance

of this approximate or coarse MCMC. For this test, the coarse space is used to construct

directly the multiscale model which is solved in the standard MCMC setting using pCN
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Figure 6-9: The x-axis shows sample of a chain and the vertical lines mark the samples
where coarse space updates occurred. As the chain propagates, the frequency of updates reduces
visualized here by the vertical lines becoming sparse as the coarse space learns about the posterior
distribution. The vertical black line marks the burn-in length of the chain.

proposals with the same step size as before. Importantly, no full model evaluation is

ever conducted by any of the coarse chains. The coarse space used here has a dimension

of 376, the sum of 328 updates from the posterior and 48 zero energy modes. Six chains

are initiated with random initial conditions and each evaluates 5× 105 coarse models.

In Fig. 6-10, we show the comparison of estimated posterior densities for all pairs

of the first 9 parameters out of 100 for all three algorithms; standard MCMC (black),

delayed acceptance MCMC(blue) and coarse MCMC(red). This demonstrates the sam-

pling accuracy of the three algorithms. The black line represent results generated using

standard MCMC to sample the full posterior. This we treat as our reference algorithm.

The delayed acceptance MCMC results are shown in red which coincide with the black

contours as this too samples from the full posterior. However, the slight differences

that can be seen in some of the marginal densities are probably due to Monte Carlo

error. The blue contours representing coarse MCMC show the marginal densities when

samples are drawn from an approximate posterior. This bias would reduce as the coarse

space dimension increases but that defeats the purpose of having a cheaper to solve

coarse model.

We provide Table 6.1 to numerically demonstrate convergence of the all three
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Figure 6-10: Posterior densities for the first 9 parameters of the random field.
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ESS ESS/s mean σSE 95% confidence bounds

MCMC without DA 3436 0.08 0.8791 0.0032 [0.8728, 0.8854]
MCMC with DA 2514 0.6 0.8723 0.0039 [0.8647, 0.8798]
Coarse MCMC 2726 2.5 0.8810 0.0045 [0.8722, 0.8897]

Table 6.1: Convergence properties of all three MCMC algorithms tested for the first parameter
p1.

MCMC processes. We only study convergence in terms of the most dominant pa-

rameter p1 to aid readability. The table shows that 95% confidence bounds for the

mean value of p1. In order to compute confidence bounds, we require the sampling

error σSE which is defined as

σSE =

√
V(p1)

ESS
(6.8)

where V(p1) is the variance of p1. The overlapping confidence bounds show that all

three algorithms converge to the mean. From this we can conclude that running any of

the three MCMC algorithms will simulate the distribution of the parameters correctly

with 95% confidence.

From Table 6.1 we can also compare the sampling accuracy of the algorithms. We

observe that standard MCMC without DA has the lowest sampling efficiency as it

requires approximately 13 seconds to draw an independent sample from the posterior.

Comparatively, delayed acceptance MCMC pulls an independent sample in 1.7 seconds

thus arriving at the next independent sample 7.5 times faster. The coarse MCMC

algorithm requires even less time per independent sample. It offers a speed up factor

of 31, requiring only 0.38s to the next independent sample.

6.4.1 Parallel implementation

To validate the methodology presented in this chapter, we test the delayed acceptance

MCMC algorithm on a single processor. More precisely, the forward model is solved on

one processor. The ultimate aim is uncertainty quantification for large models such as

the wingbox problem (see Section 3.5.3) which is impossible to solve using one processor

only. Furthermore, the sequential implementation of delayed acceptance MCMC masks

its true potential so that major gains are not immediately clear.

In the current implementation, for each forward solve, the full stiffness matrix is

assembled to which the reduction operator RT
H is applied thus obtaining the multiscale

model. In dune-composites, the full stiffness matrix is never assembled, only the local

stiffness matrix is. Consequently, the full coarse space does not need to be assembled

either but it does require nearest neighbour communication. Therefore, the cost of
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building the multiscale model restricted to one processor is of the order n2 however the

cost of obtaining the solution scales linearly which is shown by the weak scaling test in

Fig. 3-9. This is one avenue for efficiency gain. In this sequential example, the cost of

building the multiscale model on average is 1.43s. Dividing the computation between

16 processors, the approximate cost will be 0.09s. Combining that with the coarse solve

gives a total time of 0.092s. This is nearly 4 times faster than the fine solve time of

0.35s. Importantly, the speed up factor increases as the problem size grows due to the

rates at which the cost of fine and coarse model solves increases.

On a wingbox type simulation, where we are primarily interested in the mechanics

of the region containing defects, we can exploit the parallel setup for further speed up.

In the example above, the solution is queried at 441 grid points where the solutions of

the two models are compared to find the worst error. This requires another expensive

operation of elongating the multiscale solution to recover the fine scale solution. In the

wingbox simulation, this too can be avoided by only recovering the fine solution in the

region of interest.

We have shown in Chapter 5, the multiscale model can be reduced by a factor of

over 500 thus the cost of solving it will be much faster than a fine solve especially when

the bottleneck of entire matrix assembly is bypassed. However, such problems now re-

quire preconditioned iterative solvers. The number of iterations depends on the quality

of the preconditioner. Since the cost of delayed acceptance MCMC is dominated by

fine solves, we wish to improve upon them. This can be achieved by learning the pre-

conditioner. As the coarse space is learnt over the posterior, the second level restriction

operator can be applied in reverse as an elongation operator to continuously improve

the second level of a two level additive Schwarz preconditioner. In this way, the cost

of fine solves can be maintained or prevented from increasing. In fact, as the reusabil-

ity of the preconditioner increases, the setup cost will eventually be amortized. In

this way, uncertainty quantification can be implemented within the dune-composites

framework.

It is important to note that additional errors will appear in a parallel implemen-

tation of this methodology. As we have shown in Chapter 5, the partition of unity

operator has a significant influence on the solution. Therefore, the mutliscale solution

calculated in this way will lose some accuracy however the choice of partition of unity

has little effect on the preconditioned CG solve of the fine scale model. So, the cost

of evaluating the full model would change insignificantly since we show that alterna-

tive partition of unity operators affect the convergence of CG by at most 1 iteration.

However, the cost of evaluating the multiscale model could fluctuate depending on the

accuracy of the coarse space which in turn determines the number of required updates.
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Nevertheless, the cheaper model is expected to be at least a few hundred times smaller

and thus much faster.

6.5 Concluding remarks

In this chapter, we have demonstrated a proof of concept for data adjusted model re-

duction to quantify uncertainty in material modelling. The ultimate goal is to integrate

this approach into the dune-composites module in order to perform UQ analysis on

large composite structures where it becomes necessary to use available data in a way

that reduces computational burden since large scale models are already on the edge of

current computational capabilities.

In this approach, we address two bottlenecks of MCMC algorithms; the cost of

solving forward models and the autocorrelation time of a chain. The former is reduced

by replacing several expensive forward solves by cheaper multiscale solves. The latter is

addressed by coupling the multiscale model with the delayed acceptance MCMC frame-

work. In order to achieve this, we adapt existing algorithms to more efficiently explore

posterior distributions. Firstly, the delayed acceptance algorithm draws independent

samples from the true posterior at a lower cost than standard MCMC. Secondly, coarse

MCMC samples from an approximate posterior at a much lower cost but introduces a

bias. The amount of bias that is acceptable depends on the application.

The key idea underlying both algorithms is the self learning coarse space tailored to

the problem at hand. As opposed to typical methods that learn from the prior offline,

this method learns from the posterior in a more targeted way by updating the coarse

space on-the-fly thus improving accuracy as it progresses. Using this approach we

demonstrate that both algorithms accelerate MCMC beyond the capabilities of offline

approaches since coarse spaces built online can be much smaller to represent regions of

high probabilities.

Finally, we provide a discussion about the parallel implementation of these algo-

rithms to achieve our ultimate goal. We believe that the numerical analysis presented

in this chapter undersells the concept as it masks its true potential. In a large scale

parallel setting, the delayed acceptance holds great promise and will be implemented

in the future release of dune-composites.
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CHAPTER 7

CONCLUDING REMARKS AND

FUTURE WORK

The advantages offered by composites are well known however, exploiting them to

our benefit is becoming increasingly challenging as the scale of applications grows. The

challenges investigated in this thesis are outlined in Chapter 1. In this work, we address

three challenges pertaining to composite modelling simultaneously identifying avenues

of future work from which the composite industry would benefit greatly.

In Chapter 3, we tackle the first two challenges i.e. the scale of calculations and

material anisotropy. Existing parallel solvers’ limitations in terms of scalability and per-

formance are the primary reasons why large problems lie outside their scope. We offer

a collaboratively developed high performance package dune-composites that shows

near optimal scaling on over 15,000 cores. With this package we can efficiently solve

real world problems in excess of 200 million degrees of freedom in minutes. In the

context of composite laminates, 200 million degrees affords us the resolution to model

sub millimeter wrinkles say, in metre scale aircraft wingbox, see Section 3.5.3. The

package is validated by a standard benchmark test in the field of subsurface flow called

SPE10.

With this capability, we investigated the effects of wrinkle defects that produce

variability in materials (part of challenge 3). So far, wrinkles have been modelled

in a deterministic way described by sinusoidal waveforms. We are aware of only one

study that employs Fourier series. In Chapter 4, we showed the inadequacy of such

descriptions of wrinkles and provide a novel parameterization that captures salient
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features such as their non-periodic nature. We extended an existing method to extract

wrinkle information from ultrasonic scans and present a method to predict the strength

knockdown caused by their presence. We showed that, given sufficient data, a lookup

chart can be created to estimate knockdown based on maximum wrinkle slope thus

bypassing expensive model evaluations.

The remainder of challenge 3 is addressed in Chapters 5 and 6 where we explored

variability in models. We demonstrate the procedure for building a multiscale model

from the GenEO coarse space which itself is a byproduct of a solve using the two-

level additive Schwarz preconditioner within dune-composites. A key ingredient for

a multiscale model built in this way is the partition of unity operator that specifies

how subdomains are stitched together. In order to understand their importance, we

investigated the performance of two purely geometric and one solution based PoU.

From our tests, we concluded that the solution based PoU outperforms the others but

comes at the cost of an additional solve. The smooth geometric PoU is a close second

but the solution may require post processing which too can include an additional solve.

However, post processing need only be done on a region of interest within the problem

domain. So, the choice of PoU is largely determined by application. Importantly, we

do not claim that any of the partitions tested are optimal which remains the subject

of future work. These multiscale models are shown to reduce model orders by factors

as great as 550 in 2D and 130 in 3D.

Model order reduction is particularly useful in order to quantify uncertainty. The

prohibitive cost of multiple evaluations of a fine scale model makes UQ infeasible so we

exploit the cheaper model which still retains sufficient accuracy. The cheaper model

is embedded in a delayed acceptance MCMC framework which does two things well.

Firstly, it learns the posterior distribution on the fly and is therefore able to achieve

good accuracy that is tailored to the particular problem being solved such that the

multiscale model remains cheap to solve. Secondly, it increases statistical efficiency

by filtering out samples with low likelihoods at a much lower cost. This particular

avenue for UQ is treated as a proof of concept in this thesis. The full scale parallel

implementation in dune-composites is a part of the future work that will follow.

7.1 Future work

7.1.1 Nonlinear mechanics

The current limitations of this work open up new areas of research that we now discuss

so as to motivate researchers to further the field of composite modelling. The work

presented here is focussed on linear material behaviour and nonlinear mechanics such
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as failure or fatigue modelling have not been implemented although implementation

of cohesive zone models is currently underway. However, FE modelling of fracture

mechanics has well documented problems. There are 3 notable issues;

• mesh dependency i.e. crack paths can vary significantly when the mesh parameter

is changed

• usually a crack must be seeded within the problem domain and its path of prop-

agation must be preallocated

• the choice of failure criteria affects initiation and propagation

Peridynamics is a novel particle based method developed by Silling et al. [183] in

order to address these issues by modelling microscale behaviour but that approach

makes it computationally expensive for a problem of say, wingbox dimensions (see

Section 3.5.3). However, coupling cheaper macro scale FEM with peridynamics models

localized to cracks is a promising direction of future research.

Peridynamics is a nonlocal alternative to classical continuum mechanics which is

mathematically consistent for both continuous and discontinuous displacement fields.

A typical peridynamic solution procedure involves discretizing the domain into inter-

connected particles. Crucially, each particle x has a horizon Hx such that all other

particles that lie within the horizon are connected to x, see Fig. 7-1. Numerous models

have been developed that describe the mechanics of these connections but we will not

discuss details about them. Interested readers are referred to [184, 185].

Here, we consider the simplest peridynamic model known as the Prototype Microe-

lastic Brittle (PMB) model, derived in [186] where particles are essentially connected

by springs. Consider a 2 particle system as shown in Fig. 7-2. Let u(x, t) be the

displacement of particle x at time t and y(x, t) be its position. Then the equation of

equilibrium within the peridynamic framework is written as

ρ(x)ü(x, t) =

∫
Hx
f(ξ, η)dV (7.1)

where ρ(x) is the density of particle x, and

f(ξ, η) =
1

2

18K

πδ4

||ξ + η|| − ||ξ||
||ξ|| (7.2)

where ξ = y(x′, t) − y(x, t) and η = u(x′, t) − u(x, t). The fraction 18K
πδ4

is called the

micromodulus, denoted c, which in this model is based on the bulk modulus of the

material K and horizon radius δ. Equation (7.2) gives the scalar force experienced by
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Figure 7-1: An arbitrary body showing a particle and the relevant features in a peridynamic
framework.

f

s

µ = 0

µ = 1

c

Figure 7-2: Left: Two particle PMB model where c is the micromodulus or stiffness of the
spring. Right: Constitutive law for the spring connection.
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Figure 7-3: Left: A peridynamic subdomain embedded within a finite element domain. Right:
More detailed drawing of the peridynamic subdomain showing the handshake region in red and
the unconstrained peridynamic particles in green.

each particle in the two particle system. The force vector is obtained by computing

f(η, ξ) = f(η, ξ)
η + ξ

||η + ξ|| (7.3)

The bond stretch, s = ||ξ+η||−||ξ||
||ξ|| is the peridynamic equivalent of one dimensional

strain and it is the quantity used to define failure criteria. In the PMB model, the

bond has a linear elastic response as shown in Fig. 7-2(right). Once a bond exceeds its

critical stretch value, it is permanently broken. The ratio of the number of broken bonds

to the total number of bonds a particle has, is its damage parameter. Mathematically,

this is written as

ϕ(t, η, ξ) = 1−
∫
Hx µ(t, η, ξ)dVx∫

Hx dvx
(7.4)

where µ is a binary value equal to 1 while a bond is intact, 0 otherwise.

Using the peridynamic theory, we propose a multiscale formulation to model failure

whereby a subregion of a problem domain where defects may exist and failure initiation

is likely to occur. Consider a domain Ω ∈ R2 with a peridynamic ΩP model embedded

within. The problem can be written as; find u(x) ∈ R2 such that

∇ · σ(u) + r(u) = 0 ∀x ∈ Ω (7.5)

with a function h(x) defining boundary conditions on Dirichlet boundaries ∂ΩD and

g(x) defining Neumann boundary conditions on ∂ΩN with the standard FE constitutive

law (see Eqs. (3.3) and (3.4)). In the absence of body forces, r(u) is considered a force

corrector which is obtained from the local peridynamic model. Essentially, at the

macroscale, a crack exists in the form of internal forces pushing the crack surfaces

away from each other. Naturally, this corrector only applies where the peridynamic

model is defined such that r(u) = 0 ∀x ∈ Ω\ΩP .
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At the microscale, ΩP is discretized into a lattice of particles defined by the set

X := {xk : k = 1, 2, . . . , N ∈ ΩP } (7.6)

The particles are further divided into the handshake region Ω̂P and unconstrained

region Ω̃P = ΩP \Ω̂P as seen in Fig. 7-3. Macroscale deformations are interpolated

onto the particles using the macroscale shape functions φj(x) such that

y(x, t = 0) =

n∑
j=1

uh(x)φj(x) (7.7)

Importantly, microscale boundary conditions are only applied on the handshake region

and the peridynamics solution uP (x) is obtained via energy minimization. Using L2

projection, we obtain a macroscale approximation ûh(x) by computing

(uP ,vh) = (ûh,vh)∫
ΩP

uP (x)vh dΩP =

∫
ΩP

ûh(x)vh dΩP

ûh(x) = uh(x) ∀x ∈ Ω\ΩP

(7.8)

In order to solve the integral in Eq. (7.8) we treat all the particles as equally weighted

quadrature points for the macroscale finite element that contains them. With the

projected solution, we can now write the force corrector in matrix form

K(ûh(x)− uh(x)) = r(uh) ∀x ∈ Ω (7.9)

Finally, we have all the ingredients to define the nonlinear iteration scheme. Let uih(x)

denote the i-th iteration. The system of equations then becomes

Kuih + r(uih) = f (7.10)

Kui+1
h + r(ui+1

h ) = f where ui+1
h = uih + ∆uh (7.11)

Subtracting Eqs. (7.10) and (7.11), we get

K∆uh + r(ui+1
h ) = r(uih) (7.12)

and rearrange to compute the solution

K∆uh = r(uih)− r(ui+1
h ) (7.13)
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Figure 7-4: Solution strategy for multiscale modelling of failure using peridynamics on the
microscale and FEM on the macroscale.

Solution converges as RHS → 0. The coupled multiscale strategy is summarized in

Fig. 7-4 and has the following steps,

1. Solve macroscale FEM to get u(x) ∀x ∈ Ω

2. Interpolate macroscale solution onto microscale, y(x, 0) ∀ X and apply boundary

conditions

3. Solve peridynamic system to get uP (x, T ) ∀ X

4. Project microscale solution back to macroscale to get ûh ∈ Ω

5. Calculate force corrector r(uh)

Let us look at an example to clarify the coupled procedure. In Fig. 7-5 (top), a

macroscale finite element grid is shown with a microscale grid embedded within. A

crack is seeded between the blue and yellow band on Fig. 7-5(middle) which are equal

in width to the radius of the horizon such that no bonds cross the blue-yellow particle

interface. As in Fig. 7-3(right), the red particles lie in the handshake region which must

be greater than δ so as to avoid numerical instabilities which may cause premature

failure at the boundary. The bottom picture in Fig. 7-5 shows the macroscale solution

after the force corrector has been applied. At the microscale the crack is evident and

propagates without a predefined path. At the macroscale, it is seen in the form of

relatively large displacements. We note that it is not necessary to seed a crack in the

microgrid but it is helpful for proving a concept as it makes the problem predictable.

176



Figure 7-5: Coupled multiscale example

The peridynamic subproblem is solved using a molecular dynamics code called

LAMMPS. This particular implementation along with examples can be found in [187].

The LAMMPS code was combined and built with dune-composites to solve the cou-

pled nonlinear problem.

7.1.2 Grids, subdomains and PoUs

Another limitation of the thesis is the strict adherence of dune-composites to struc-

tured grids on the fine level and structured subdomains on the coarse level. There are
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two reasons to justify non-existence of unstructured grids and irregular subdomains

within dune-composites. On the fine grid level, discretization of composite laminates

using unstructured grids is very challenging for large problems. A much greater amount

of data has to be stored in memory regarding the mesh whereas in structured grids that

information can be computed as and when required. Besides memory requirements,

the lack of sufficient scale separation in laminates compromises the stress solution if

the mesh resolution is low in regions of high stress gradients such as interlaminar resin

rich zones. In a structured grid, these regions can be meshed in the standard way

using elements of constant size, at first. A geometric transformation is then applied to

distort the mesh in a desired way thus achieving a sufficiently high resolution where

required. Transforming unstructured grids in this way is far more difficult especially

for conforming meshes.

On the subdomain level, the difficulty lies in discretizing meshes into overlapping

subdomains, both regular and irregular. In the case of regular subdomains carved out of

structured grids, the way subdomains are arranged affects the convergence of iterative

solvers and an optimal decomposition for an arbitrary domain is not yet known. As we

cannot have unstructured grids, some regularity is automatically imposed on the shape

of subdomains which can no longer be completely arbitrary. But we cannot say whether

the optimal decomposition will comprise regular or irregular subdomains. However, a

major cost benefit in constructing the second level of the GenEO preconditioner stems

from the structure of subdomains that is exploited to minimize communications be-

tween processors. With unstructured subdomains, a loss in efficiency is likely. This

concern is deepened further when we consider the way subdomains are stitched together

using a PoU operator. Treatment of overlaps has been observed to have a significant

influence on the solution obtained from the GenEO multiscale model although, it does

not affect much the quality of the GenEO preconditioner. In the context of large scale

uncertainty quantification where multiscale models become indispensable, assuming

that we somehow have an optimal arrangement of subdomains, we can then ask what

is the optimal way to stitch them together? This too is unknown.
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APPENDIX A

CODE BLOCKS FOR CHAPTER 3

In this appendix we provide C++ code blocks referenced in Chapter 3. These are

meant to aid understanding and help users manipulate the dune-composites source

code for their benefit.

Algorithm 4 User defined function called Model::LayerCake()

1 void inline LayerCake (){ std:: string example01a_Geometry =

2 "stackingSequences/example1a.csv";

3 LayerCakeFromFile(example01a_Geometry); GeometryBuilder ()

; }

Algorithm 5 Model::isDirichlet()

1 bool inline isDirichlet(FieldVec& x, const int dof){ return

(x[0] <

2 1e-6); }
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Algorithm 6 Model::evaluateNeumann()

1 inline void evaluateNeumann(const FieldVec& x, FieldVec& h,

const

2 FieldVec& normal) const{ h = 0.0; // initialise to zero

double T =

3 R[0].L[2]; // Thickness if (x[2] > T - 1e-6){ h[2] += q;

} }

Algorithm 7 Model:evaluateWeight()

1 inline void evaluateWeight(FieldVec& f, int id) const{ f =

0; }

Algorithm 8 Find maximum vertical deflection

1 template <class GO , class V, class GFS , class C> void inline

2 postprocess(const GO& go, V& u, const GFS& gfs , const C& cg

){ using

3 Dune:: PDELab :: Backend :: native; double local_u3_max = 0.0;

for (int i

4 = 0; i < native(u).size(); i++){ // Loop over each vertex

double u3

5 = std::abs(native(u)[i][2]); if (local_u3_max < u3) {

local_u3_max

6 = u3; } } MPI_Allreduce (& local_u3_max , &QoI , 1,

MPI_DOUBLE ,

7 MPI_MAX , MPI_COMM_WORLD); }

Algorithm 9 Failure calculation according to Camanho criterion

1 template <....> void inline postprocess (...){ // material

allowables in

2 MPa const std::vector <double > p = {61., 97., 94.}; double

Fm = 0.0;

3 for (int i = 0; i < stress_mech.size(); i++){ double F =

4 Camanho(stress_mech[i], elemIndx2PG[i], p); if (Fm < F)

{ Fm = F;

5 } } double Fm_all; MPI_Allreduce (&Fm, &Fm_all , 1,

MPI_DOUBLE ,

6 MPI_MAX , MPI_COMM_WORLD); Q = pressure / Fm_all; //

Failure load }
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171. Babuška, I., Caloz, G. & Osborn, J. E. Special finite element methods for a

class of second order elliptic problems with rough coefficients. SIAM Journal on

Numerical Analysis 31, 945–981 (1994).

172. Aarnes, J. & Efendiev, Y. Mixed Multiscale Finite Element Methods for Stochas-

tic Porous Media Flows. SIAM Journal on Scientific Computing 30, 2319–2339

(2008).

173. Cui, T., Fox, C. & O’Sullivan, M. Bayesian calibration of a large-scale geother-

mal reservoir model by a new adaptive delayed acceptance Metropolis Hastings

algorithm. Water Resources Research 47 (2011).

174. Berger, J., Dawid, A., Smith, D. & West, M. Markov chain Monte Carlo-based ap-

proaches for inference in computationally intensive inverse problems in Bayesian

Statistics 7: Proceedings of the Seventh Valencia International Meeting 181

(2003).

175. Haario, H. et al. Markov chain Monte Carlo methods for high dimensional inver-

sion in remote sensing. Journal of the Royal Statistical Society: series B (statis-

tical methodology) 66, 591–607 (2004).

176. Marzouk, Y. M. & Najm, H. N. Dimensionality reduction and polynomial chaos

acceleration of Bayesian inference in inverse problems. Journal of Computational

Physics 228, 1862–1902 (2009).

195



177. Bayarri, M. J. et al. Predicting vehicle crashworthiness: Validation of computer

models for functional and hierarchical data. Journal of the American Statistical

Association 104, 929–943 (2009).

178. Galbally, D., Fidkowski, K., Willcox, K. & Ghattas, O. Non-linear model reduc-

tion for uncertainty quantification in large-scale inverse problems. International

journal for numerical methods in engineering 81, 1581–1608 (2010).

179. Lipponen, A., Seppanen, A. & Kaipio, J. P. Electrical impedance tomography

imaging with reduced-order model based on proper orthogonal decomposition.

Journal of Electronic Imaging 22, 023008 (2013).

180. Lieberman, C., Willcox, K. & Ghattas, O. Parameter and state model reduction

for large-scale statistical inverse problems. SIAM Journal on Scientific Comput-

ing 32, 2523–2542 (2010).

181. Wang, J. & Zabaras, N. Using Bayesian statistics in the estimation of heat source

in radiation. International Journal of Heat and Mass Transfer 48, 15–29 (2005).

182. Girolami, M. & Calderhead, B. Riemann manifold langevin and hamiltonian

monte carlo methods. Journal of the Royal Statistical Society: Series B (Statis-

tical Methodology) 73, 123–214 (2011).

183. Silling, S. A. Reformulation of elasticity theory for discontinuities and long-range

forces. Journal of the Mechanics and Physics of Solids 48, 175–209 (2000).

184. Silling, S. A. & Askari, E. A meshfree method based on the peridynamic model

of solid mechanics. Computers & structures 83, 1526–1535 (2005).

185. Silling, S. A. et al. Peridynamic states and constitutive modeling. Journal of

Elasticity 88, 151–184 (2007).

186. Seleson, P. & Parks, M. On the role of the influence function in the peridynamic

theory. International Journal of Multiscale Computational Engineering 9, 689–

706 (2011).

187. Parks, M. L., Lehoucq, R. B., Plimpton, S. J. & Silling, S. A. Implementing peri-

dynamics within a molecular dynamics code. Computer Physics Communications

179, 777–783 (2008).

196


	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Outline of this thesis

	Literature review
	Wrinkles and non destructive testing
	Uncertainty quantification
	Markov chain Monte Carlo

	Solvers
	Iterative solvers

	Preconditioning
	Multilevel preconditioners
	Domain decomposition preconditioners

	Modern multiscale methods
	Concluding remarks

	dune-composites - an open source, high performance package for solving large-scale anisotropic elasticity problems
	Introduction - Why do we need dune-composites?
	Preliminaries : Anisotropic elasticity equations and their finite element discretisation
	A robust, scalable, parallel iterative solver for composite structures
	Krylov subspace methods preconditioned with two-level additive Schwarz methods
	A robust coarse space via Generalised Eigenproblems in the Overlaps (GenEO)
	Implementation of GenEO on a High Performance Computer

	Using and extending dune-composites
	Defining a Model
	Internals of dune-composites

	Examples
	Example 1: A flat composite plate
	Example 2 : Corner unfolding – validation & performance comparison with Abaqus (up to 32 cores) 
	Example 3 : Large composite structure – parallel efficiency of dune-composites (up to 15,360 cores)
	Subsurface flow applications: Strong scaling for the SPE10 benchmark

	Concluding remarks

	A Bayesian framework for assessing the strength distribution of composite structures with random defects
	Introduction
	Bayesian approach to construct defect distributions from measured data
	Parameterizing a wrinkle defect
	Posterior Sampling using a Metropolis-Hastings algorithm
	Monte Carlo Simulations

	Industrially Motivated Case Study
	Model Problem and its industrial application
	Extracting wrinkle data from B-Scans using Multiple Field Image Analysis (MFIA)
	Defining a Wrinkle, Prior and likelihood definition
	Finite Element Modelling

	Results
	Bayesian Sampling of wrinkles
	Monte Carlo simulations
	An `engineering model' for Corner Bend Strength

	Concluding remarks

	Multiscale methods for composites
	What is a good multiscale model?
	Preliminaries
	Customized coarse space - GenEO
	Partition of Unity

	Numerical experiments
	Concluding remarks

	Data-driven multiscale models for high dimensional MCMC
	Introduction
	Standard Markov Chain Monte Carlo
	Multiscale Markov Chain Monte Carlo
	Multiscale model
	The algorithm

	Numerical experiments
	Parallel implementation

	Concluding remarks

	Concluding remarks and future work
	Future work
	Nonlinear mechanics
	Grids, subdomains and PoUs


	Code blocks for chapter 3
	References

