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ABSTRACT 

An ongoing challenge in advanced materials design is the development of 

accurate multiscale models that consider uncertainty while establishing a link between 

knowledge or information about constituent materials to overall composite properties.  

Successful models can accurately predict composite properties, reducing the high 

financial and labor costs associated with experimental determination and accelerating 

material innovation.  Whereas early pioneers in micromechanics developed simplistic 

theoretical models to map these relationships, modern advances in computer technology 

have enabled detailed simulators capable of accurately predicting complex and multiscale 

phenomena.   

This work advances domain knowledge via two means: firstly, through the 

development of high-fidelity, physics-based finite element (FE) models of composite 

microstructures that incorporate uncertainty in predictions, and secondly, through the 

development of a novel inverse analysis framework that enables the discovery of 

unknown or obscure constituent properties using literature data and Gaussian process 

(GP) surrogate models trained on FE model predictions.  This work presents a 

generalizable approach to modeling a diverse array of composite subtypes, from a simple 

particulate system to a complex commercial composite.   

The inverse analysis framework was demonstrated for a thermoplastic composite 

reinforced by spherical fillers with unknown interphase properties.  The framework 

leverages computer model simulations with easily obtainable macroscale elastic property 
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measurements to infer interphase properties that are otherwise challenging to measure.  

The interphase modulus and thickness were determined for six different thermoplastic 

composites; four were reinforced by micron-scale particles and two with nano-scale 

particles.   

An alginate fiber embedded with a helically symmetric arrangement of cellulose 

nanocrystals (CNCs) was investigated using multiscale FE analysis to quantify 

microstructural uncertainty and the subsequent effect on macroscopic behavior.  The 

macroscale uniaxial tensile simulation revealed that the microstructure induces internal 

stresses sufficient to rotate or twist the fiber about its axis.  The reduction in axial elastic 

modulus for increases in CNC spiral angle was quantified in a sensitivity analysis using a 

GP surrogate modeling approach.  

A predictive model using GP regression was employed to investigate the link 

between input features and the mechanical properties of fiberglass-reinforced magnesium 

oxychloride (MOC) cement boards produced from a commercial process.  The model 

evaluated the effect of formulation, crystalline phase compositions, and process control 

parameters on various mechanical performance metrics.   
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CHAPTER 1  

INTRODUCTION AND BACKGROUND 

1.1 Introduction  

Broader Motivation - An Integrated Approach to Material Innovation and Engineering 

Design 

Recent initiatives have identified emerging disciplines, such as Integrated 

Computational Materials Engineering (ICME), which advocate for a promising paradigm 

where “computational materials science tools [are integrated] into a holistic 

system that can accelerate materials development, transform the engineering design 

optimization process, and unify design and manufacturing.”1  A significant component of 

ICME requires the quantification of uncertainty introduced at each level of the developed 

predictive models and simulations.  Similar goals are echoed in the Materials Genome 

Initiative, with the objective “to accelerate the discovery, design, development, and 

deployment of new materials, at a fraction of the cost, by harnessing the power of data 

and computational tools in concert with experiment.”2  These objectives undergird the 

motivation of this dissertation.  

While realizing such objectives is in its infancy and will require ongoing multi-

disciplinary research, this dissertation develops methods in pursuit of these goals.  This 

work systematically explores how advanced numerical techniques and computational 

tools can be utilized in combination with experimental data to unravel the complex 

relationships in composite materials and structures across different length scales.  Figure 
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1-1 depicts the subdomains this research encompasses to address the ongoing challenges.  

The presented work expands on traditional modeling approaches by developing high-

fidelity, physics-based, and data-driven multiscale models for composite materials to 

include uncertainty quantification while significantly reducing the financial and labor 

costs associated with experimentally determining composite properties.  The results 

demonstrate an improved framework for accelerating the design and development of 

high-performance composite materials.  

 

Figure 1-1.  Overview of research areas, showing the three subdisciplines (Model Development, 
Experimental Data, and Design of Experiments) that are integrated to produce a deeper understanding 

of composite material performance and characterization. 
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1.2 Theoretical Background 

1.2.1 Composite Materials 

Composite materials are a subclass of engineered materials that combine the 

properties of two or more different constituents to produce enhanced functional attributes.  

The constituents usually consist of a matrix phase and a filler or reinforcement phase(s), 

each giving the composite system unique mechanical, electrical, thermal, or chemical 

properties.  The choice of constituent materials and their arrangement within the matrix 

are crucial in tailoring the final properties of composites. 

The advancement of composite materials is recognized for its transformative 

potential across a broad spectrum of industries.  The inherent advantages come from the 

ability to craft materials with unique properties derived from combinations of constituent 

materials.  Such a task is achieved by strategically selecting and integrating the 

constituent phases of the composite.  However, the final performance of a composite 

material is more complex than an additive composition of the constituent phase 

properties.  A comprehensive understanding of the behavior of composite materials 

necessitates bridging the gap between multiple length scales spanning from the atomic to 

the micro and macro scales.  

Shortcomings of Traditional Modeling Approaches 

Historically, micromechanics has been the primary field for predicting how 

individual phases interact to influence a composite's overall properties.  Early pioneers 

relied on simplistic theoretical models that, while providing foundational knowledge, fell 
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short of accurately predicting composite behavior under complex and realistic conditions.  

Matrix and filler properties are typically known with a high degree of certainty and can 

often be measured experimentally.  Initiatives to organize these properties into large 

databases are underway.3–6  However, the combination of these properties and their 

contributions to the overall composite properties is not straightforward.  Furthermore, the 

presence of a three-dimensional interphase, which can form at the two-dimensional 

interface between the constituent phases, significantly complicates matters.7–16   

The interphase mediates load transfer and stress distribution between the filler and 

the matrix, a mechanism that distinguishes composites from homogeneous materials.17  

Interphase properties, such as the layer thickness and stiffness, are largely unknown, 

difficult to predict a priori, and introduce additional complexities and variations in 

mechanical behavior that simplistic models cannot adequately capture.  As a result, 

predicting composite performance necessitates a consideration of the interphase 

properties and subsequent interactions with the adjacent phases.  Sophisticated modeling 

techniques and experimental methodologies are required to account for these intricate 

interfacial effects.  The investigation of interphase-related phenomena remains an active 

and challenging area of research. 

Classical predictive models provide point estimates of composite properties based 

on knowledge of subcomponent attributes.  These models often fail to incorporate 

uncertainty in the subcomponent attributes and uncertainty about how these attributes 

combine to result in a new material with unique properties.  If interphase formation is 
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present, additional uncertainty is introduced into model predictions.  Quantifying these 

uncertainties is crucial for optimizing the performance of composite materials and 

providing safe estimates about performance in the final engineered structure.  The rise of 

high-performance computing and numerical methods has presented an opportunity to go 

beyond these traditional models, culminating in the development of detailed simulators 

capable of predicting complex and multiscale phenomena. 

1.2.2 Mechanics of Composites 

This section reviews the fundamental principles in continuum mechanics relevant 

to this work.   

1.2.2.1 Strain, Stress, and Equilibrium Criteria 

Strain 

Strain is a measure of deformation representing the displacement between 

particles in a material body.  Two types of strain are defined for small deformations: 

normal and shear.  The normal strain measures the change in length of a small line 

element, and can be defined mathematically as the change in length divided by the 

original length.  In the limit, as the change in length approaches zero, the strain is given 

by: 

 ϵ  =   lim
Δ l→ 0

Δ 𝑙𝑙
𝑙𝑙
  (1) 

For a three-dimensional problem with 𝑢𝑢, 𝑣𝑣, and 𝑤𝑤 as the displacements in the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 

directions, the normal strains can be defined as: 
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ϵ𝑥𝑥𝑥𝑥 =
∂𝑢𝑢
∂𝑥𝑥

 

ϵ𝑦𝑦𝑦𝑦 =
∂𝑣𝑣
∂𝑦𝑦

 

ϵ𝑧𝑧𝑧𝑧 =
∂𝑤𝑤
∂𝑧𝑧

 

(2) 

The shear strain measures the change in angle between initially perpendicular line 

elements of a material body.  By taking into account strain symmetries in three 

dimensions, the engineering shear strains can be computed as follows: 

γ𝑥𝑥𝑥𝑥 =
∂𝑢𝑢
∂𝑦𝑦

+
∂𝑣𝑣
∂𝑥𝑥

= γ𝑦𝑦𝑦𝑦 

γ𝑦𝑦𝑦𝑦 =
∂𝑣𝑣
∂𝑧𝑧

+
∂𝑤𝑤
∂𝑦𝑦

= γ𝑧𝑧𝑧𝑧 

γ𝑧𝑧𝑧𝑧 =
∂𝑤𝑤
∂𝑥𝑥

+
∂𝑢𝑢
∂𝑧𝑧

= γ𝑧𝑧𝑧𝑧 

Stress  

Stress measures the internal forces in a material and is defined as the force exerted 

per unit area within materials.  If σ represents the stress, 𝐹𝐹 the force, and 𝐴𝐴 the area over 

which the force is applied, the stress is given by: 

 σ =
𝐹𝐹
𝐴𝐴

 (3) 

Stress, like strain, is a second-order tensor in three-dimensional space and can thus be 

specified with nine components where 𝑖𝑖, 𝑗𝑗 = 1,2,3 correspond to (1→x, 2→y, 3→z).  It is 

often represented in matrix form as: 
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(4) 

The diagonal components are normal stresses (forces per unit area acting perpendicular to 

the faces of the element), and the off-diagonal terms are shear stresses (forces per unit 

area acting parallel to the faces).   

Equilibrium Conditions  

For a three-dimensional differential material element to be in equilibrium, the sum 

of all the forces in each orthogonal direction must equal zero (𝐹𝐹 = 𝑚𝑚𝑚𝑚, where 𝑎𝑎 = 0).  If 

𝐵𝐵𝑖𝑖 represents the body forces in the i-th direction acting on the volume of the body 

(gravity, electric, and magnetic fields), the equilibrium conditions can be expressed as: 

 

𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝐵𝐵𝑥𝑥 = 0 

𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝐵𝐵𝑦𝑦 = 0 

𝜕𝜕𝜎𝜎𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜎𝜎𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜎𝜎𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

+ 𝐵𝐵𝑧𝑧 = 0 

(5) 

1.2.2.2 Linear Constitutive Relationships 

Hooke's Law is just one of many constitutive relationships used to describe solid-

state mechanical behavior.  While this is a fundamental relationship for linearly elastic 

materials within their elastic limit, it may not accurately represent the behavior of more 

complex materials.  In material mechanics, linear behavior refers to the property of a 
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material to exhibit a linear relationship between the applied force (or stress) and the 

resulting deformation (or strain).  When a material displays linear behavior (typically at 

small strains), Hooke's Law becomes applicable, and the deformation produced in the 

material is directly proportional to the applied force within its elastic limit.  Other 

constitutive relationships address different material properties and deformation scenarios.  

Non-linear elasticity models, for example, are used to describe the behavior of materials 

that exhibit non-linear elastic behavior, whereas plasticity models describe the behavior 

of materials under plastic deformation.  Viscoelastic materials necessitate specialized 

constitutive relationships that consider both elastic and viscous behavior.  As a result, the 

constitutive relationship chosen depends on the specific material, its properties, and the 

range of loading conditions it will encounter during applications. 

In linear elasticity theory, Hooke's law describes a constitutive relationship that 

maps strain fields in a pure material, ϵ, to stress fields, σ.  Hooke's law in a three-

dimensional space can be expressed in index notation as σ𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ϵ𝑖𝑖𝑖𝑖.  The stiffness 

tensor, 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, is a fourth-rank tensor whose elements describe the proportional changes to 

a (bounded and self-equilibrated) material stress field for a respective strain field.  In 

continuum mechanics, the second-rank Cauchy stress and strain tensors completely 

define a material's stress and strain states and can be expressed as a matrix.  Due to stress  

and strain symmetries that exist in an orthonormal coordinate system (𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3) 

corresponding to (1→x, 2→y, 3→z), the matrices are commonly reduced in rank to 

column-vectors using Voigt notation.18 
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(6) 

Thus, the generalized Hooke's law can be expressed in matrix form as: 

 

 

(7) 

where the elements, 𝐶𝐶𝑖𝑖𝑖𝑖, represent the 'elastic constants' of an infinitesimally small, 

homogeneous material volume.  Note - The factor of two in front of the shear strain 

components (where 𝑖𝑖 ≠ 𝑗𝑗) indicates 2ϵ𝑖𝑖𝑖𝑖 = γ𝑖𝑖𝑖𝑖, where γ𝑖𝑖𝑖𝑖 represents the engineering 

shear strains and ϵ𝑖𝑖𝑖𝑖 represents the tensor shear strains.  Caution and consistency must be 

used when interfacing with various software environments that define ϵ differently.  For 

example, ANSYS Mechanical APDL uses ϵ (output as EPEL) to represent the 

engineering shear strains for the simplicity of output.19  The same care must be taken to 

ensure the relative ordering of the shear stresses with strains is consistent, 

�σ𝑦𝑦𝑦𝑦 → σ𝑥𝑥𝑥𝑥 → σ𝑥𝑥𝑥𝑥� with �ϵ𝑦𝑦𝑦𝑦 → ϵ𝑥𝑥𝑥𝑥 → ϵ𝑥𝑥𝑥𝑥�, as well as the ordering of σ and ϵ with the 

reported structure of the stiffness matrix. 

The inverse relationship of Hooke's law describes strains resulting from a stress 

state with proportionality defined by the compliance tensor, 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖.  The inverse of the 
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stiffness matrix is the compliance matrix, with [𝑆𝑆] = [𝐶𝐶]−1.  Similarly, the constitutive 

relationship is represented in matrix form. 

 

 

(8) 

1.2.2.3 Stiffness Tensor Symmetries 

The stiffness tensor of a Hookean material has 81 independent elements; however, 

stress and strain symmetries reduce this number to 36 unique entries.  Major symmetries 

from the strain energy function reduce the compliance, 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, and stiffness matrices to 21 

independent elastic constants and requires that 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑗𝑗𝑗𝑗 and 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑗𝑗𝑗𝑗.  A material with 

these symmetries and physical properties that vary depending on the measurement axes is 

called an anisotropic material.  Further reductions in the number of independent constants 

can be made if the material exhibits planes of symmetry.  For a generally anisotropic 

material: 
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. 

(9) 

Orthotropic materials have three planes of symmetry perpendicular to each other.  

These planes are defined by the principal material axes: x, y, and z.  Along these planes, 

the material properties remain the same, and this leads to specific relationships between 

the material constants, resulting in nine independent elastic constants.  In orthotropic 

materials, there is no coupling between the normal stresses (𝜎𝜎1, 𝜎𝜎2, 𝜎𝜎3) and the shear 

strains (𝜖𝜖4, 𝜖𝜖5, 𝜖𝜖6).  Hooke's Law in compliance form for an orthotropic material, 

expressed in terms of meaningful engineering constants, is:  

 

 

(10) 

where (𝐸𝐸1,𝐸𝐸2,𝐸𝐸3) are the Young's or elastic moduli in the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 directions, 

respectively, and (ν12, ν13, ν21, ν23, ν31, ν32) are the Poisson's ratios.  (𝐺𝐺23,𝐺𝐺13,𝐺𝐺12) are 

the shear moduli. 
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An isotropic material possesses an infinite number of planes of symmetry, which 

means it exhibits the same properties and behavior in all directions.  A material with 

these symmetries can be expressed in terms of just two independent elastic components, 

and the corresponding form of Hooke’s law is:   

 

 

(11) 

where the shear modulus is expressed in terms of the elastic modulus and Poisson’s ratio 

with 𝐺𝐺 = 𝐸𝐸
2(1+ν). 

1.2.2.4 Hooke's Law in Expanded - Algebraic Form 

The components of stress can be calculated as linear combinations of the 

components of strain by expanding Hooke’s law, in matrix notation, into a system of 

linear equations: 

 

 

(12) 

The six equations contain a total of 36 elastic constants.  Of course, from the symmetry in 

Equation (7), the equations for an anisotropic material could be expressed in terms of 21 

independent elastic constants, with 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑗𝑗𝑗𝑗.  The determination of a materials stiffness 

matrix is possible through tedious experimental deformations and simultaneous 
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measurements of stress.  As the number of independent elastic constants grows, the 

number and complexity of the required experiments grow. 

1.2.3 Analytical and Semi-Analytical Models 

The effective properties of composite materials can be predicted by analytical and 

semi-analytical models.  While these models have the advantage of computational 

efficiency, simplicity, and interpretability, they rely on oversimplified assumptions about 

the nature of the microstructure and thus are only applicable over narrow classes of 

composites.  A non-exhaustive survey of several different models is presented below.  

For a more extensive resource, see Ortolano et al. 20.  The basic steps to analytically 

computing effective properties involve 1) developing a simplified model, 2) exploiting 

fundamental continuum mechanics principles, and 3) estimating the local fields with a 

heterogeneous material in terms of known boundary conditions.21   

1.2.3.1 Voigt and Reuss Bounds 

The Voigt upper bound (also known as the Rule of Mixtures) assumes that the 

strain is uniform throughout the composite, referred to as an iso-strain condition.22  This 

assumption corresponds to a perfectly bonded material where the different phases deform 

identically when the composite is loaded.  The effective elastic modulus 𝐸𝐸eff
𝑉𝑉  in Voigt's 

model is given by the volume fraction weighted sum of the individual phase moduli, 

represented as: 

 𝐸𝐸eff
𝑉𝑉 = �𝑓𝑓𝑖𝑖𝐸𝐸𝑖𝑖

𝑛𝑛

𝑖𝑖

, (13) 
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where 𝑓𝑓𝑖𝑖  is the volume fraction and 𝐸𝐸𝑖𝑖 is the modulus of the i-th phase.  It is ideal for 

modeling the axial properties of unidirectional composites in which the fibers (the rigid 

phase) are long and continuous, and the matrix (the soft phase) deforms to match the 

strain in the fibers.  The Voigt model tends to exaggerate the properties of composites 

with discontinuous or randomly oriented particulate phases. 

The Reuss lower bound (also known as the Inverse Rule of Mixtures) assumes an 

iso-stress condition, where the stress is uniform throughout the composite.23  In this 

model, the material phases are considered perfectly bonded, such that they all bear the 

same load.  The effective modulus 𝐸𝐸eff
𝑅𝑅  in Reuss's model is calculated using a simple 

harmonic mean as follows: 

 𝐸𝐸eff
𝑅𝑅 = ��

𝑓𝑓𝑖𝑖
𝐸𝐸𝑖𝑖

𝑛𝑛

𝑖𝑖

�
−1

. (14) 

The Reuss model is commonly used to approximate the transverse properties of a 

unidirectional composite.  In this case, the matrix, which is often continuous in the 

transverse direction, carries a significant portion of the load, and the bulk material 

behaves as if it were under the same stress as the matrix.   

Despite their simplicity, these models serve as the foundation for more complex 

models of composite behavior and provide theoretical bounds of plausible values for 

effective composite properties.   
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1.2.3.2 Eshelby’s Equivalent Inclusion Model 

John D. Eshelby's solution of the elastic fields of an ellipsoidal inclusion 

embedded in an infinite medium provided the foundation for many micromechanical 

models and marked a pivotal development in the field.24  The resulting model is generally 

referred to as Eshelby’s equivalent inclusion model and was derived from the solutions to 

two problems.  The model is based on several assumptions, including linear elasticity, 

isotropy, and the absence of inclusion-inclusion interactions, which limits the 

applications to dilute regimes.   

Problem 1:  Eshelby imagined an infinite material body with uniform isotropic 

elastic properties.  A portion of the body (an inclusion) undergoes a transformation called 

an eigenstrain.  An eigenstrain is defined as a strain that produces a change in size and/or 

shape, such that if the surrounding matrix material were absent, the resulting state would 

be that of a homogenous strain.  The restraint of deformation by the surrounding matrix 

produces a stressed state inside the inclusion.  Through a series of imaginary cutting, 

straining, and welding operations, and by assuming the shape of the inclusion is 

ellipsoidal, Eshelby found that the stress inside the inclusion was uniform.  The uniform 

strain in the inclusion ε𝑖𝑖𝑖𝑖∗  is related to the stress-free strain ε𝑘𝑘𝑘𝑘
(0) through Eshelby’s tensor 

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:20 

 ε𝑖𝑖𝑖𝑖∗ = 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: ε𝑘𝑘𝑘𝑘
(0) (15) 

Problem 2:  Applying the concepts from Problem 1 to an inhomogeneity, where 

the ellipsoidal inclusion has elastic constants different from the matrix, Eshelby derived 
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closed-form solutions for the elastic stress and strain fields inside and outside the 

inclusion in terms of 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖.  Eshelby’s tensor only depends on the matrix elastic properties 

and the relationship between the major and minor axis of the ellipsoid.20  Analytical 

expressions for the components of Eshelby’s tensor for simple geometries (sphere, 

elliptic cylinder, penny shape, flat ellipsoid, oblate spheroid, prolate spheroid) are 

provided in Mura.25 

1.2.3.3 Mori-Tanaka Model 

The Mori-Tanaka model is an analytical homogenization model used to estimate 

the effective properties of composite materials.  The model is an extension of Eshelby's 

equivalent inclusion method with additional assumptions that account for the interaction 

between multiple inclusions.  Benveniste26 reformulated the model presented by Mori and 

Tanaka27 to provide a direct approach to compute effective elastic moduli.  The effective 

elastic properties, represented by the fourth-order stiffness tensor, 𝑪𝑪 are calculated by:28 

 𝑪𝑪 = �𝑽𝑽𝒎𝒎𝑪𝑪𝒎𝒎 + 𝑽𝑽𝒇𝒇𝑪𝑪𝒇𝒇𝑨𝑨��𝑽𝑽𝒎𝒎𝑰𝑰 + 𝑽𝑽𝒇𝒇〈𝑨𝑨〉�
−𝟏𝟏

 (16) 

where 𝑰𝑰 is the fourth-order tensor identity tensor, 𝑪𝑪𝒇𝒇 and 𝑪𝑪𝒎𝒎 are the fourth-order stiffness 

tensors for the fiber and matrix materials, and the Eshelby strain-concentration tensor 𝑨𝑨 is 

given in terms of the Eshelby’s tensor 𝑺𝑺: 

 𝑨𝑨 = �𝑰𝑰 + 𝑺𝑺(𝑪𝑪𝒎𝒎)−𝟏𝟏(𝑪𝑪𝒇𝒇 − 𝑪𝑪𝒎𝒎)�−𝟏𝟏 (17) 
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1.2.3.4 The Kerner Equation 

The Kerner equation provides a solution for the shear modulus 𝐺𝐺𝑐𝑐 of a composite 

consisting of a suspension of grains.29  The grains are assumed to be spherical, perfectly 

bonded to the matrix material, and distributed spatially at random.  The model expresses 

the shear modulus in terms of the matrix shear modus,  𝐺𝐺𝑚𝑚, particle and matrix volume 

fractions, 𝑉𝑉𝑝𝑝 and 𝑉𝑉𝑝𝑝 respectively, and the Poisson's ratio of the matrix 𝜈𝜈𝑚𝑚.  If the shear 

modulus of the grain exceeds that of the matrix, the composite shear modulus can be 

approximated in the following manner.30 

 𝐺𝐺𝑐𝑐 = 𝐺𝐺𝑚𝑚 �1 +
𝑉𝑉𝑝𝑝
𝑉𝑉𝑚𝑚

15(1 − 𝜈𝜈𝑚𝑚)
(8 − 10𝜈𝜈𝑚𝑚)�

 (18) 

 

1.2.3.5 The Cox Shear Lag Model 

The model proposed by Cox,31 often known as the Cox shear lag model, assumes 

a microstructure of aligned discontinuous fibers, where the load is transferred from the 

matrix to the fiber by shear stress along the fiber surface.  The fibers carry the tensile 

stresses and are not transmitted at the axial ends as normal stresses.30,32  If the axial 

composite strain 𝜀𝜀𝑐𝑐 is assumed to generate an average stress in the matrix with 

proportionality defined by the matrix modulus 𝐸𝐸𝑚𝑚, the longitudinal (fiber-aligned 

direction) composite elastic modulus for high aspect ratio fibers can be calculated as: 

 𝐸𝐸𝑐𝑐 = 𝐸𝐸𝑚𝑚(1 − 𝑉𝑉𝑓𝑓) + 𝐸𝐸𝑓𝑓𝑉𝑉𝑓𝑓 �1 −
tanh 𝑧𝑧
𝑧𝑧 � (19) 
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where 𝑧𝑧 = 𝑙𝑙
2𝑟𝑟
� 2𝐺𝐺𝑚𝑚
𝐸𝐸𝑓𝑓 ln(𝑅𝑅/𝑟𝑟)

�
1/2

, 

with 𝑙𝑙 defining the length of the fibers, 𝑟𝑟 the radius, and 𝑅𝑅 half of the inter-fiber distance. 

 

1.2.4 Finite Element-Based Homogenization of Composite Materials 

FE-based homogenization is an alternative numerical strategy for modeling and 

predicting composite effective properties and behavior.33–38  FE methods are considerably 

more versatile in terms of composite geometries, number of phases, and types of 

constitutive models that can be simulated.  This flexibility enables greater fidelity than 

analytical and semi-analytical micromechanical models while requiring significantly 

fewer computational resources than Molecular Dynamics (MD)-based methods.  

Despite the computational capability provided by today's high-speed computers, 

analyzing boundary value problems involving materials with a large number of 

heterogeneities remains a difficult task.  A practical solution to overcoming this barrier is 

to replace the heterogeneous composite with an equivalent material model in a process 

known as homogenization.  Homogenization methods consider the development of 

constitutive laws that link physical quantities operating across different length scales.   

The critical assumption is that the heterogeneous materials can be statistically 

classified as homogeneous (or as an ‘effective’ or ‘equivalent’ homogeneous material) at 

sufficiently large macroscopic length scales.  For this assumption to hold, the 

macroscopic length scale of the composite engineered structure (~100 – 102 meters; i.e., 

wind turbine blade, automobile body, airplane wing) must be many orders of magnitude 
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larger than the characteristic length scale of the microstructure or heterogeneity inherent 

to the material (10-9 – 10-3 meters; i.e., matrix-filler interphase thickness, fiber diameter, 

lamina thickness).39,40 

This section gives a brief introduction to the finite element method and reviews 

two different FE-based homogenization methods. 

1. Asymptotic Expansion Homogenization Theory (Not to be confused with the 

broad terminology “homogenization,” which refers to the replacement of a 

heterogeneous composite with an equivalent material) 

2. Standard Representative Volume Element Approach (The method used 

throughout this dissertation) 

1.2.4.1 Finite Element Analysis 

The finite element method (FEM) is a robust numerical method for solving 

complex engineering and physical science problems.  It is a valuable tool for analyzing 

physical systems and effectively approximates elliptical partial differential equations over 

intricate geometries and domains.  In 1956, Turner et al.41 introduced one of the first 

applications of the finite element method in aeronautical engineering to model the wing 

skin using three-noded triangular elements.42  Its applications have since expanded to 

include electromagnetics, fluid dynamics, and solid mechanics.   

The concept underlying FEM is the subdivision of the domain of interest into a 

collection of smaller and simplified domains called finite elements.  These elements are 

interconnected at nodes and collectively form a mesh over the original domain.  The 
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system's constitutive behavior is approximated over these elements, resulting in a 

problem amenable to a computer solution.  The precision of the FEM solution is highly 

dependent on the quality of the mesh and the suitability of the trial functions; therefore, 

verification and validation are essential components of any FEM analysis.  Finite element 

analysis (FEA) is the application of FEM to a particular problem and includes the 

following general steps:33,34   

1. Formulation of the Problem: The first step is mathematically formulating the 

physical problem.  Typically, this entails identifying the domain of interest, defining the 

boundary and initial conditions, and formulating the governing differential equations. 

2. Discretization: The continuous domain is subdivided into a finite number of 

smaller regions known as elements.  The collection of these elements is called a mesh, 

and adjacent meshes intersect at nodes.  

3. Trial (basis) Functions: A simple trial function within each element 

approximates the field variable (such as temperature in a heat transfer problem or 

displacement in a structural analysis problem).  This function is typically a polynomial, 

and its form is determined by the field variable values at the element's nodes.  The trial 

solution for the entire domain is the collection of these functions for all elements. 

4. Formulating the System of Equations: A system of linear equations can be 

obtained by substituting the trial solution into the governing differential equation and 

applying the method of mean-weighted residuals (often the Galerkin method).  Typically 

expressed in matrix form, this system is known as the global stiffness matrix equation. 
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5. Solve the System of Equations: The equations are then solved to determine the 

field variable's nodal values.  For large models, iterative solvers like the Gauss-Seidel and 

the conjugate gradient methods are frequently employed. 

6. Post-processing: Nodal solutions are used to compute field variables at any 

point within each element by interpolating with the element shape functions.  Other 

quantities of interest, such as stresses in a structural problem, can then be computed from 

the field variable.  Results are frequently represented graphically using contour plots, 

deformed shape plots, and vector fields.  

1.2.4.2 Asymptotic Expansion Homogenization Theory 

Asymptotic expansion homogenization (AEH) theories have been formalized and 

are rooted in applied mathematics.43  The theory is not exclusive to predicting composite 

properties; it forms the basis of many scientific and engineering fields.  Since materials 

are made up of atoms or molecules, the fundamental assumption of continuous media in 

mechanics and physics can be understood as homogenization.  The mathematical theory 

of homogenization has applications in various fields that deal with finely heterogeneous 

media.  The concept has been applied in heat transfer, fluid flow in porous media, and 

electromagnetism.40,44–46   

As depicted in Figure 1-2, AEH is a method for representing effective material 

properties using a bifurcated analysis of a composite material at two distinct spatial 

scales: the microscopic or local scale (𝑦𝑦) where an arbitrary characteristic property 𝜑𝜑 

varies rapidly and the macroscopic or global scale (x) where the function varies slowly or 
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is constant.47  The ratio of the length of a unit vector at the local scale to that at the global 

scale is described by 𝑦𝑦 = 𝑥𝑥/𝜀𝜀, where ε is a small parameter.  The quantity 1/ε is 

intuitively understood as a magnification factor that would scale characteristic 

inhomogeneity dimension to that of the engineered structure.  The governing equations of 

the composite behavior are expanded in powers of the small parameter. 

ϕ(𝑥𝑥) = ϕ0(𝑥𝑥) + ϵϕ1(𝑥𝑥, 𝑥𝑥/ϵ) + ϵ2ϕ2(𝑥𝑥, 𝑥𝑥/ϵ) + ⋯ 

Hassani and Hinton48 formulate the AEH method in a finite element framework and 

derive the elastic constants for an isotropic material with rectangular voids.  Hollister and 

Kikuchi47 compare finite element implementations of the AEH approach to the standard 

mechanics approach.  

 

 
 

 

Figure 1-2.  Schematic of asymptotic expansion homogenization of material properties.  At the local 
scale y, the heterogeneous material has a rapidly varying and periodic field of an arbitrary characteristic 
property 𝜑𝜑.  This material can be represented at the global scale x by an effective material with constant 

or slowly varying fields.  The ratio of the length of a unit vector at the local scale to that at the global 
scale is described by 𝑦𝑦 = 𝑥𝑥/𝜀𝜀, where 𝜀𝜀 is a small parameter.  
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1.2.4.3 Standard Representative Volume Element Approach 

The FE-based homogenization approach developed and used throughout this 

dissertation involves the process of calculating and mapping effective material properties 

through a decoupled FE analysis of a composite at two spatial levels: local and global.47  

The methodology simulates the geometry of a statistical representative volume element 

(RVE) using Digimat-FE49 and uses ANSYS Mechanical50 to calculate stress 

distributions produced by the local-level microstructural features during virtual RVE 

displacement.  The objective is to compute the volume averaged local stress and strain 

fields within the RVE to calculate the effective material properties, which are 

subsequently determined as the constitutive relationships between these stress and strain 

fields.  By applying loads or deformations to the RVE, stress-strain responses can be 

calculated by solving well-known governing equations at the Gauss integration points of 

the finite elements.   

A simulation at the global level would employ the use of a spatially homogenized 

material with the effective material properties determined from the local-level analysis.  

FE homogenization methods require the analysis of a periodic RVE that is large enough 

to capture the microstructural heterogeneities of a composite but small enough to function 

as a volume element of continuum mechanics.51  Hill defines an RVE as “a sample that is 

structurally entirely typical of the whole mixture on average and contains a sufficient 

number of inclusions for the apparent overall moduli to be effectively independent of the 

surface values of traction and displacement, as long as these values are macroscopically 
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uniform.”52,53  An example RVE, generated in Digimat-FE is shown in Figure 1-3 for a 

spherical silica reinforced epoxy matrix.54 

 

Figure 1-3.  An example representative volume element (right), generated in Digimat-FE is shown as a 
representation for a spherical silica reinforced epoxy matrix.  Micrograph (left) from Wang et al.54 

 

Loading Conditions 

Six independent loading conditions (LCs) are defined for each RVE.  These are 

prescribed to generate three periodic, uniaxial strains in the three principal directions and 

three shearing modes.55  The applied strain value (< 5%) is arbitrarily small since the 

constituent materials are defined as linearly elastic.   

Calculation of the Effective Elastic Modulus: 

The complete effective material stiffness matrix, 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒, is obtained by applying 

linear elastic constitutive relationships and solving the system of linear equations below.  

An application of Hooke’s law at the microscopic level47, in conjunction with strain 

energy equivalence principles56, allows a mapping of the volume-averaged RVE strain 
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field, 𝜀𝜀6̅𝑥𝑥6, to that of the stress field, 𝜎𝜎�6𝑥𝑥6, with proportionality defined by 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒, a 36-

element stiffness matrix.  The volume-averaged fields of the microscopically 

heterogeneous RVE are calculated from equations below.  

 𝜀𝜀𝑖̅𝑖𝑖𝑖 =
1

𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅
� 𝜀𝜀𝑖𝑖𝑖𝑖(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅

𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅

 (20) 

 𝜎𝜎�𝑖𝑖𝑖𝑖 =
1

𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅
� 𝜎𝜎𝑖𝑖𝑖𝑖 (𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅

𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅

 (21) 

 

These averaged fields give the (macroscopically) uniform stress and strain states 

that an equivalent or effective homogenous medium would develop under identical 

loading.  Thus, the elastic properties of the effective material are related to the RVE 

fields and can be expressed in matrix form as follows. 

 [ 𝜎𝜎�6𝑥𝑥6 ] = � 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 �[ 𝜀𝜀6̅𝑥𝑥6 ] (22) 

Each column of 𝜀𝜀6̅𝑥𝑥6 and 𝜎𝜎�6𝑥𝑥6 is obtained by computing equations (20) and (21) 

using ANSYS Parametric Design Language (APDL) macros, adapted from Barbero,33 for 

each of the six loading conditions.  The matrices were constructed as shown below: 
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 𝜀𝜀6̅𝑥𝑥6  =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝜀𝜀𝑥𝑥𝑥𝑥
𝐿𝐿𝐿𝐿1 𝜀𝜀𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿2 ⋯ ⋯ ⋯ 𝜀𝜀𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿6

𝜀𝜀𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿1 𝜀𝜀𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿2 ⋯ ⋯ ⋯ 𝜀𝜀𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿6

𝜀𝜀𝑧𝑧𝑧𝑧𝐿𝐿𝐿𝐿1  ⋮ ⋮  ⋮  ⋮ ⋮
𝜀𝜀𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿1  ⋮  ⋮ ⋮  ⋮ ⋮
𝜀𝜀𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿1  ⋮  ⋮  ⋮ ⋮ ⋮
𝜀𝜀𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿1 𝜀𝜀𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿2 ⋯ ⋯ ⋯ 𝜀𝜀𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿6⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (23) 

 𝜎𝜎�6𝑥𝑥6  =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝜎𝜎𝑥𝑥𝑥𝑥

𝐿𝐿𝐿𝐿1 𝜎𝜎𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿2 ⋯ ⋯ ⋯ 𝜎𝜎𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿6

𝜎𝜎𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿1 𝜎𝜎𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿2 ⋯ ⋯ ⋯ 𝜎𝜎𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿6

𝜎𝜎𝑧𝑧𝑧𝑧𝐿𝐿𝐿𝐿1  ⋮ ⋮  ⋮  ⋮ ⋮
𝜎𝜎𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿1  ⋮  ⋮ ⋮  ⋮ ⋮
𝜎𝜎𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿1  ⋮  ⋮  ⋮ ⋮ ⋮
𝜎𝜎𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿1 𝜎𝜎𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿2 ⋯ ⋯ ⋯ 𝜎𝜎𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿6⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (24) 

Equation (22) results in a system of 36 linear equations that are solved for the 

unknown components of 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒.  The effective compliance matrix, 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒, is then calculated 

as the inverse of the stiffness matrix. 

 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 =  𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒  −1 (25) 

If the effective compliance matrix is assumed to be generally orthotropic 

(𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 ≈ 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜), one can deduce meaningful engineering constants.  The assumption is 

much less stringent than treatment as an isotropic material and preserves directionally 

dependent material elasticity in three orthogonal directions.  The compliance matrix takes 

the following form for an orthotropic material with three planes of symmetry. 
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 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝐸𝐸𝑥𝑥

−
𝜈𝜈𝑦𝑦𝑦𝑦
𝐸𝐸𝑦𝑦

−
𝜈𝜈𝑧𝑧𝑧𝑧
𝐸𝐸𝑧𝑧

0 0 0

−
𝜈𝜈𝑥𝑥𝑥𝑥
𝐸𝐸𝑥𝑥

1
𝐸𝐸𝑦𝑦

−
𝜈𝜈𝑧𝑧𝑧𝑧
𝐸𝐸𝑧𝑧

0 0 0

−
𝜈𝜈𝑥𝑥𝑥𝑥
𝐸𝐸𝑥𝑥

−
𝜈𝜈𝑦𝑦𝑦𝑦
𝐸𝐸𝑦𝑦

1
𝐸𝐸𝑧𝑧

0 0 0

0 0 0
1

2𝐺𝐺𝑥𝑥𝑥𝑥
0 0

0 0 0 0
1

2𝐺𝐺𝑥𝑥𝑧𝑧
0

0 0 0 0 0
1

2𝐺𝐺𝑦𝑦𝑦𝑦⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (26) 

The elastic and shear moduli, 𝐸𝐸𝑖𝑖 and 𝐺𝐺𝑖𝑖𝑖𝑖 respectively, are calculated from 

Equation (26), as well as the Poisson’s ratios, 𝜈𝜈𝑖𝑖𝑖𝑖.   

1.2.5 Gaussian Process Models 

Gaussian process (GP) models have attracted widespread interest as a versatile 

supervised machine learning technique due to their robust predictive performance and 

their ability to quantify uncertainty in predictions for a range of input parameter types.  

As a stochastic model, GPs can be viewed as distributions over functions and are utilized 

in numerous applications, including regression, classification, and optimization.  GPs are 

often used as a surrogate model to approximate computationally demanding computer 

models at a reduced computational expense.57–60   

A GP specifies a prior distribution over functions, which can be converted into a 

posterior distribution after observing data and updating the prior using Bayes theorem.  A 

Gaussian process is completely specified by its mean function and covariance function 
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(kernel).  The mean function is typically taken as zero (though it does not have to be), 

and the covariance function is chosen to reflect the assumptions about the function we are 

modeling.  The mathematical formulation of GPs in the context of GP regression is given 

in Chapter 4, Section 4.2.2.   

1.2.6 Bayesian Inference 

Bayesian inference is a statistical inference approach that uses Bayes' theorem to 

update a hypothesis' probability estimate when new data or information becomes 

available.  The cornerstone of Bayesian inference is Bayes' theorem, which can be 

formulated as:61 

 
𝑃𝑃(𝐻𝐻|𝐸𝐸)  =  

𝑃𝑃(𝐸𝐸|𝐻𝐻)  ⋅  𝑃𝑃(𝐻𝐻)
𝑃𝑃(𝐸𝐸) , 

(27) 

where: 

- 𝑃𝑃(𝐻𝐻|𝐸𝐸) is known as the posterior and representes the probability of hypothesis 

H being true given the evidence E 

- 𝑃𝑃(𝐸𝐸|𝐻𝐻) is the likelihood of observing evidence E, given that hypothesis H is 

true 

- 𝑃𝑃(𝐻𝐻) is known as the prior and represents the probability of hypothesis H being 

true before considering any evidence 

- 𝑃𝑃(𝐸𝐸) is the probability of observing evidence E, regardless of any specific 

hypothesis. 
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1.3 Dissertation Outline 

The methods developed herein rely on experimental data, finite element (FE) 

analysis, Bayesian inference, and Gaussian process machine learning models to maximize 

insight into physical phenomena.  This work expands our understanding of the structure-

property relationships in heterogeneous media, focusing on quantifying and propagating 

uncertainty about constituent properties throughout model predictions.   

This dissertation presents a generalized approach to modeling different composite 

subtypes and is demonstrated for a range of composites, from simple particulate systems 

to complex commercial composites.  An outline of the dissertation is given in Figure 1-4 

and highlights the overlapping methods utilized in each application area.     

 

 

Figure 1-4.  Outline of the dissertation, highlighting the application areas and overlap of the methods 
employed throughout each application. 
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Chapter 2 introduces a robust framework for the modeling and characterization of 

a composites’ interphase.  The framework couples FE analysis with Bayesian inference 

while leveraging easily obtainable measurements of a composite's bulk elastic properties 

to infer information about the interphase, which is difficult to determine experimentally.   

Chapter 3 explores a multiscale model of anisotropic cellulose nanocrystals 

(CNCs) embedded in an alginate fiber to understand the effect of CNC alignment on the 

overall mechanical response of the composite.  The model covers two length scales: the 

microscale, where CNC alignment is captured using a representative volume element 

(RVE), and the macroscale, where the long-range ordering of RVEs in a helical pattern 

around the alginate fiber axis is simulated in a macroscopic fiber model. 

Chapter 4 presents the application of Gaussian process regression in predicting 

the mechanical properties of a commercial composite: fiberglass-reinforced magnesium 

oxychloride (MOC) cement boards.  The model assesses the effects of formulation, 

crystalline phase compositions, and process control parameters on the composite's 

mechanical performance. 
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CHAPTER 2  

INFERRING EFFECTIVE INTERPHASE PROPERTIES IN COMPOSITES BY INVERSE 

ANALYSIS 

2.1 Abstract  

Composite materials consist of a matrix reinforced by one or more fillers, each 

having unique material properties.  Coated and uncoated fillers possess an interphase 

region between the matrix and filler with distinct but poorly known physio-chemical 

properties.  Determination of the physical properties of this region is essential for the 

modeling and design of composite materials, especially when considering nanoscale 

reinforced systems where the interphase may comprise a significant volume fraction of 

the overall composite.  Direct measurements of the interphase properties are challenging, 

and most experimental methods involve abrasive techniques that alter local mechanical 

properties or suffer from experimental bias.   

This study proposes a comprehensive framework to numerically model the 

interphase effects and infer the key mechanical properties of the interphase region from 

experimental measurements of the composite elastic modulus, a macroscale property that 

can be readily measured.  This framework, depicted in Figure 2-1, is demonstrated for a 

matrix reinforced by randomly distributed spherical particles using finite element (FE) 

analysis but is generalizable to any mechanical composite system.   

Representative volume elements are analyzed under periodic strains, and the 

resulting stresses are used to determine the effective stiffness (or modulus) of the 
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simulated composite.  Gaussian process regression is used to generate computationally 

efficient surrogate models that approximate the FE model output.  The surrogate models 

are then explored through statistical inverse analysis to infer the interphase thickness and 

modulus that best match macroscale experimental data of six different composite 

systems.  This work presents the obtained results from calibrated FE analysis as an 

alternative for the mechanical characterization of interphase regions.  The calibrated 

results show good agreement with the experimental measurements of the composite 

modulus and account for 

particle size-dependent 

elastic behavior.  

Furthermore, the 

relationship between filler 

particle size and the 

interphase thickness and 

modulus is explored. 

2.2 Introduction 

A composite can be defined as a material consisting of two or more physically 

and chemically distinct constituent materials that, when combined, yield overall 

properties different than each constituent.  Composite materials have been widely 

adopted for engineering products owing to their tunable characteristics.62–65  While pure 

Figure 2-1.  Visual depiction of the framework presented in Chapter 2 
highlighting the finite element model, Gaussian process surrogate 

model, and the Bayesian Inference results. 
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materials may exhibit a few desirable properties, they often lack in others or fail to meet 

essential constraints, limiting their applicability in engineered designs.   

The simplest composite material consists of a matrix reinforced by a filler. 

Changing the volumetric ratio of these two constituents, among many other parameters, 

such as the aspect ratio and orientation of the filler, provides a highly tunable system 

capable of addressing the increasing demands of modern engineered designs.  More 

recently, incorporating nanometer-sized fillers has enabled a higher degree of tunability 

and expanded the performance space of traditional filled systems.7,66,67  The 

distinguishing advantage nanoparticles provide when compared to traditional 

macroparticles, is related to the increased interfacial phenomena of the constituents.  

Interfacial phenomena can be broadly classified into two categories: sizing- or coating-

induced phenomena and matrix-perturbed phenomena.   

A sizing or coating is an intentional layer applied to a filler during manufacturing 

to improve compatibility or binding between the dissimilar filler and matrix materials.  

These coatings aid in processability and filler-matrix interfacial adhesion, facilitating 

load transfer from matrix to filler.  The overall properties of composites containing 

coated fillers can depend on the filler size as it affects the surface-area-to-volume ratio of 

the filler.  This effect is often pronounced for nanoparticles with a significant free surface 

area, leading to a higher interphase volume fraction of the coating.  

On the other hand, matrix-perturbed phenomena arise when a filler’s presence 

induces a localized perturbation in the matrix properties near the interface, creating a 
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region with properties significantly different from the bulk matrix.  When the presence of 

an interface confines polymer chains, they take on different free energies (due to an 

entropic change from restricted chain conformations) when compared to polymer chains 

in the bulk matrix phase.  The resulting interfacial conformation depends on several 

factors, such as the radius of gyration for neighboring matrix molecules, filler-matrix 

interaction energies, filler-filler particle distances, cohesive interactions within the bulk 

polymer, and the filler size, curvature, and roughness, among others.8,68–70  

A filler embedded in a polymer matrix can also induce polymer crystallization 

well into the bulk matrix.9  Transcrystallization is an example where the surface of a filler 

provides a sufficient density of heterogeneous nucleation sites to induce crystallization 

perpendicular to the filler surface.  The density of nucleating sites at the interface 

laterally confines the crystallization resulting in a columnar (in the case of a fiber) 

crystalline layer that grows radially from the fiber surface.71  The formation of 

transcrystalline layers is difficult to predict a priori as it depends on many factors related 

to the nature of the filler-matrix pair and processing conditions.  These factors include 

polymer tacticity, filler-matrix epitaxy, filler surface roughness, filler-matrix thermal 

coefficient mismatch, and the composition and surface energy of the filler surface.71 The 

altered morphology leads to interfacial regions exhibiting mechanical, thermal, optical, or 

electrical properties that differ from the bulk matrix.   

The perturbed interfacial regions are more accurately described by non-continuum 

mechanisms66 but are commonly simplified as an “effective interphase” of a finite 
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thickness with homogenous or gradually varying properties.10–13,72–76  Thus, a two-phase 

composite system dominated by interfacial phenomena can be modeled as a three-phase 

system consisting of a matrix, filler, and an interphase layer.  If the mechanical properties 

of the interphase are weaker than those of the matrix phase, a coating or sizing agent 

might be employed. An important distinction between sizing- or coating-induced 

phenomena and matrix-perturbed phenomena is that the former describes an interphase 

consisting of an intentionally added coating, while the latter describes the creation of a 

“pseudo” layer of matrix material. Both classes of phenomena can be modeled as an 

effective interphase, and both may lead to filler size-dependent material properties.   

Filler size-dependent properties can originate from changes in the interphase 

volume fraction.  For example, reducing a filler particle’s size that is coated with an 

interphase of constant thickness might result in the domination of composition by the 

interphase (Appendix A, Figure A-1).  The domination of interphase regions can lead to 

dramatically different overall composite material properties; thus, it is important to 

accurately account for the properties of the interphase when developing accurate 

micromechanical models.  The issue then lies in determining the actual volume fraction 

(or thickness) of the interphase in addition to the physical properties.  
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This work proposes a comprehensive inverse analysis framework to infer 

interphase properties from easily obtained macro-level experimental measurements of the 

composite elastic modulus by leveraging high-fidelity computer model simulations.  The 

approach utilizes a Gaussian process (GP) as a surrogate model to capture the 

relationships between the inputs and outputs of the computationally demanding model 

realizations at a reduced cost.  Using GP emulators avoids constraints on the functional 

form, allowing the training data to decide the emulator response surface.  Additionally,  

GP emulators readily offer statistical approximations about the uncertainty in 

predictions.  The framework presented in this work determines the values of the 

Figure 2-2.  Roadmap of the proposed framework to infer the effective interphase thickness and modulus 
from experimental measurements of a composite’s elastic modulus. 



 37

  

 

interphase thickness and modulus that give the closest agreement to experimental 

measurements of the elastic modulus of a composite material, a property that can be 

readily measured experimentally.  The framework,  shown in Figure 2-2, involves (1) 

developing finite element (FE)-based computer models of a periodic microstructure 

reinforced by spherical particles with an interphase region, (2) computing the effective 

elastic properties of the representative volume element (RVE) over a large material 

parameter space, (3) training a GP surrogate model on the FE observations, (4) 

interrogating the surrogate model to seek the optimal calibration parameter values (i.e., 

interphase thickness and modulus) and (5) quantifying uncertainty in the model 

predictions with the calibrated values. Herein, the proposed framework is demonstrated 

for a matrix reinforced by randomly distributed spherical particles but is generalizable to 

any composite system.   

Framework Generalizability 

The proposed framework is designed to characterize interphases' effective 

behaviors in thermoset and thermoplastic composites.  While these two types of polymers 

give rise to different interphase characteristics, the framework's statistical RVE approach 

is flexible enough to accommodate both scenarios.  Previous studies have demonstrated 

the modeling of heterogeneous interphases as homogeneous "effective" interphases, 

which can capture the effective contribution of the interphase to macroscopic 

mechanics.10–13,72–76  This framework does not aim to simulate heterogeneous interphases 

directly but instead utilizes their mechanical contributions to infer the effective interphase 
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properties.  The framework can be applied to various composite systems, including both 

thermoset and thermoplastic matrices, as well as particulate and fiber reinforcements, as 

long as an RVE can be simulated and macroscopic elastic properties can be obtained over 

a range of filler sizes and volume fractions.  Herein, the proposed framework is 

demonstrated for thermoplastic matrices reinforced by randomly distributed spherical 

particles but is generalizable to any composite system for which 1) a statistical RVE can 

be simulated and 2) macroscopic elastic properties can be obtained over a range of filler 

sizes and volume fractions.   

2.3 Background Perspectives 

Attempts to experimentally measure interphase properties are challenging, 

especially for the case of matrix-induced phenomena.  Atomic force microscopy and 

nanoindentation have been used to probe this region and correlate changes in load-

displacement curves with that of the matrix, filler, and interphase regions.11,12  Kim et 

al.12 compared three interphase characterization techniques: nanoindentation, 

nanoscratch, and thermal capacity jump measurements and found that nanoindentation 

tests produced significant variations between specimens and were not sensitive enough to 

distinguish the effects between various silane coupling agents in a glass fiber/polymer 

resin composite.  Agreeable trends were found between heat capacity-based and 

nanoscratch measurements, although the former predicted larger values of the interphase 

thickness.  While these experimental techniques can be insightful, they require significant 
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assumptions, can be confounded by sample preparation, include measurement bias, and 

are limited to certain classes of materials and properties to be measured.   

An alternative approach to determining interphase properties involves rigorous 

computational methods.8,72,74  Odegard et al.72 used coarse-grained molecular dynamics 

(MD) simulations to calculate radially varying density profiles in interphase regions.  

They show how spontaneous molecular rearrangements of polymer around a filler 

particle can result in significant mechanical property perturbations from the bulk 

polymer.  Figure 2-3 shows an idealization of the radial density variations that are 

characterized as an effective interphase.  While this region is discrete and non-

homogenous, an equivalent-continuum model of an interphase layer was used to account 

Figure 2-3. Schematic of radial density variations within the effective 
interphase.  Adapted from Odegard et al.71 
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for these discrete effects.  The interphase thickness and elastic modulus were determined 

directly from the MD simulations.   

The experimental and rigorous MD simulation-based methods for determining 

interphase properties become costly when evaluating a wide range of matrix and filler 

properties, geometric configurations, processing conditions, and other tailoring methods 

used to fine-tune heterogeneous materials.  A summary of various experimental and MD 

simulation studies to measure or calculate interphase properties can be found in Table 2-1 

Table 2-1.  Summary of various approaches used to measure or calculate properties of interphases. 

Reference Material System Method Interphase 
Thickness 

Interphase 
Modulus 

Particle/Fiber 
Size 

8 
Ghanbari 

et al. 

Silica nanoparticle / 
polystyrene MD Simulation ~ 2 nm - 4-nm nanoparticle 

72 
Odegard et 

al. 

Silica nanoparticle / 
polyimide MD Simulation 12 Å 2.4 GPa 15-Å nanoparticle 

74 
Yu et al. Alumina / epoxy MD Simulation ~ 6 Å 3-10 GPa 6-10 Å, spherical 

particles 

77 
Khodadadi 

et al. 

Carbon nanotubes 
(CNTs) / epoxy 

MD Simulation 

2.25 Å - 

Cylindrical 
Diameter: 

5.42 Å 
Length: 
164.8 Å 

Carbon nano 
diamond particles 
(CNPs) / epoxy 

2.35 Å - 
Sphere 
Radius: 

11 Å 
15 

Williams 
et al. 

Carbon fiber / epoxy Tensioned-fiber 
method 0.7 µm 0.825 GPa 7-nm fiber 

78 
Munz et 

al. 

Carbon fiber / 
polyphenylenesulfide 

(PPS) 

Scanning force 
microscopy 
(SFM) with 
sinusoidal 

displacement 
modulation 

(DM) 

20 – 80 nm - ~ 15-µm fiber 
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12 
Kim et al. 

Glass fiber / polymer 
resin (with various 

silane coupling 
agents) 

Nanoindentation 1 µm 
Gradient 
4.3 – 80 

GPa 

9 µm fiber Nanoscratch 0.8 - 1.5 
µm - 

Thermal 
capacity jump 
measurement 

1.3 – 1.6 
µm - 

11 
Bedi et al. 

Stainless steel (SS) 
wire, brass wire, 

carbon fiber (CF) / 
epoxy (with and 
without carbon 

nanotube (CNT) 
sizing) 

Nanoindentation 

Without 
CNTs: 

2 – 8 µm 

CF: 
Gradient 
3.5 GPa – 

60 GPa 
 

SS: 
Gradient 
3.5 – 8 

GPa 

SS wire: 500-µm 
 

Brass wire: 160 
and 250-µm 

 
CF: 7-µm 

 

With 
CNTs: 

5 - 10 µm 

SEM-EDS 

Without 
CNTs: 

0.25 µm – 
7 µm - With 

CNTs: 
0.6 – 21 

µm 

79 
Vollenberg 

and 
Heikens 

Glass and alumina 
spheres / polymer 

Series model fit 
from 

measurements 
of elastic 
modulus 

Assumed 3 
µm 

100-µm 
Glass: 

1.7 GPa 
0.035-µm 
Alumina: 

6 GPa 

Glass beads: 
4, 30, 100-µm 

 
Alumina spheres: 

0.035, 0.4-µm 
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Analytical, semi-analytical, and empirical micromechanical models are widely 

used as an alternative to the resource-intensive experimental and MD simulation-based 

approaches.  Analytical models, such as Mori-Tanaka27, approximate overall composite 

properties using assumed stress/strain relationships between the filler and matrix, usually 

derived as extensions to Eshelby’s equivalent-inclusion concept.24  The computational 

efficiency of explicit and closed-form solutions comes at the expense of idealized 

representations of the heterogeneous media.  These micromechanical models are 

fundamentally simplistic and 

are, thus, limited in the 

features they can describe.  

In some cases, they predict 

behavior that violates the 

established symmetries of 

the stiffness and compliance 

tensors.80  Figure 2-4 

presents data from 

Vollenberg and Heikens79 

and illustrates the disparity 

of three analytical models, 

Mori-Tanaka and the Voigt and Reuss models.  These models are a function of inclusion 

volume fraction and not particle size despite clear experimental particle size-dependent 

Figure 2-4. Experimental data of the elastic modulus for glass 
beads in polystyrene from Vollenberg and Heikens17 highlighting 
the effects of particle size on the elastic modulus and the inability 

to account for this effect with simple analytical models like the 
Mori-Tanaka and the Voigt and Reuss Bounds.   
Em = 3.45 GPa Ef = 70 GPa vm = 0.34 vf = 0.22 
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properties.  The significant size dependency not captured by the two-phase Mori-Tanaka 

model suggests the presence of an interphase layer. 

FE analysis is an alternative numerical approach to modeling the properties and 

performance of composite systems.51,77,81–83  FE methods have much greater flexibility in 

the composite geometries, number of phases, and classes of constitutive models that can 

be simulated and have been used to model a composite’s interphase.83  These capabilities 

promote higher fidelity than the analytical and semi-analytical micromechanical models 

while having computational demands that are significantly lower than MD simulation-

based computational approaches.  FE approaches to predicting effective composite 

properties offer a balanced tradeoff between micromechanical accuracy and geometric 

flexibility, enabling the accurate representation of composite materials with feasible 

demands on computational resources. 

2.4 Methods 

2.4.1 Finite Element-Based Homogenization 

The homogenization approach used in the proposed framework is the process by 

which effective material properties are calculated through a decoupled analysis of a 

composite at two spatial levels: local and global (Appendix A, Figure A-2).47  FE-based 

homogenization methods simulate local-level microstructural features, tying local stress 

and strain fields within the RVE to the average stress and strain of the RVE.  The 

effective material properties are calculated as the constitutive relationships between these 

stress and strain fields.  A simulation at the global level would employ the use of a 
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spatially homogenized material with the effective material properties determined from the 

local-level analysis.  FE homogenization methods require the analysis of a periodic RVE 

that is large enough to capture the microstructural heterogeneities of a composite but 

small enough to function as a volume element of continuum mechanics.51 By applying 

loads or deformations to the RVE, stress-strain responses can be calculated by solving 

well-known governing equations at the Gauss integration points of the finite elements.   

This study uses FE homogenization to determine the effective material properties 

of particulate composites reinforced with spherical glass particles containing an 

interphase layer.  The FE model developed herein contains eight input parameters: 

interphase modulus, interphase Poisson’s ratio, interphase relative thickness, matrix 

modulus, matrix Poisson’s ratio, filler modulus, filler Poisson’s ratio, and filler volume 

fraction.  The output from the FE model is the effective elastic properties, as calculated in 

Section 2.4.1.2.  For this system, we categorize the inputs into those known with a low 

degree of uncertainty and others with a high degree of uncertainty.  The matrix modulus, 

matrix Poisson’s ratio, filler modulus, filler Poisson’s ratios, and volume fraction are 

known with a high degree of certainty and are considered fixed.  The interphase 

Poisson’s ratio is assumed to be equivalent to the matrix.  The interphase modulus and 

interphase (relative) thickness have a high degree of uncertainty and are ideal candidates 

to be inferred from the experimental data.   
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2.4.1.1 Exploration of Model Parameter Space via Design of Experiments 

In forward propagation of model input uncertainties, the design of computer 

experiments guides how the parameter space will be explored through computer model 

realizations.84  The design of experiments was influenced by the structure of the data 

from physical experiments and is explained briefly. 

Experimental Data for Calibration: 

The physical experimental data came from the work of Vollenberg and Heikens79 

for six different composites (summarized in Table 2-2), each consisting of a different 

combination of filler and matrix, with a five percent experimental error for each 

observation.79 In each experimental data set, separate experiments measured the change 

in Young’s, or elastic modulus, against filler volume fraction, Vf, for different particle 

sizes, as shown in Figure 2-4.  The matrix modulus, Em, filler modulus, Ef, matrix 

Poisson’s ratio, νm, and filler Poisson’s ratio, νf, were fixed in each experiment.  The filler 

volume fraction and particle size are independent control variables manipulated during 

experiments for a given material. 
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Table 2-2.  Summary of experimental data from Vollenberg and Heikens79 

Composite Abbreviation 𝑬𝑬𝒎𝒎 
[GPa] 

𝑬𝑬𝒇𝒇 
[GPa] 𝝂𝝂𝒎𝒎 𝝂𝝂𝒇𝒇 𝑽𝑽𝒇𝒇 Particle Sizes 

[µm] 
Glass-

Polystyrene G-PS 3.45 70 0.34 0.22 0-0.25 4, 30, 100 

Glass-
Polycarbonate G-PC 2.15 70 0.38 0.22 0-0.25 4, 30, 100 

Glass-Styrene-
acrylonitrile G-SAN 3.80 70 0.33 0.22 0-0.15 4, 30, 100 

Glass-
Polypropylene G-PP 1.56 70 0.42 0.22 0-0.25 4, 30, 100 

Alumina-PS A-PS 3.45 200 0.34 0.22 0-0.15 0.035, 0.4 
Alumina-SAN A-SAN 3.80 200 0.33 0.22 0-0.15 0.035, 0.4 

 

Modeling of the Interphase Layer: 

The interphase layer was modeled as a distinct region of the matrix influenced by 

the filler particle.  The interphase Poisson’s ratio was assumed to be equal to that of the 

matrix.82  Each composite was assumed to have a different interphase thickness and 

modulus with freedom to vary with particle size.  The interphase thickness was sampled 

as a relative quantity equal to the ratio of the simulated interphase thickness to the 

simulated particle radius.  It is important to note that FE RVEs are agnostic to length 

scales, and the specified dimensions are relative entities within the simulation domain.  

Since the size of the RVE was defined as 40 inclusions (See Section 2.4.1.3), increasing 

the volume fraction of the filler entails enlarging the simulated particle relative diameter.  

Defining the interphase thickness as a relative thickness enabled an equivalent interphase 

volume fraction (i.e., a function of the simulated particle size and interphase thickness) to 

be simulated at various volume fractions.   
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Sampling of the Relevant Parameter Space: 

A design of experiments approach was used to efficiently select inputs for the FE 

model over a large parameter space for each composite, enabling input-output data to 

condition a GP surrogate model.  By training separate GPs for each composite, the eight-

parameter FE model could be represented by a three-parameter GP with a reduced set of 

inputs: volume fraction, interphase modulus, and interphase relative thickness.  The 

parameter type and upper and lower bounds for the FE model inputs are summarized in 

Table 2-3.  Within these bounds, a Latin hypercube sampling (LHS)85 scheme (n=228) 

explored the parameter space due to its desirable space-filling properties.  Because the 

interphase stiffness was unknown, the sampled bounds represent plausible values 

between 0.01 GPa and 50 GPa, reflecting a spectrum of possible interphase stiffnesses, 

from highly deformable to highly rigid.4  The bounds for relative thickness were chosen 

out of consideration for FE computational expense and geometric limitations.  At small 

relative interphase thicknesses (<0.05), extremely fine meshing is required to represent 

the thin layer accurately, and computational demand becomes prohibitive.  Geometric 

restrictions also limit the interphase thickness (interphase thickness ≤ 0.25 at volume 

fractions of ~ 0.25) due to interphase placement collisions with other filler particles.   
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Table 2-3.  Lower and upper bounds sampled for each parameter. 
Predictor Input Type Symbol Lower Bound Upper Bound 

Matrix Modulus Control 𝐸𝐸𝑚𝑚 Fixed, from Exp 
Data 

Fixed, from Exp 
Data 

Filler Modulus Control 𝐸𝐸𝑓𝑓 Fixed, from Exp 
Data 

Fixed, from Exp 
Data 

Matrix Poisson’s Ratio Control 𝜈𝜈𝑚𝑚 Fixed, from Exp 
Data 

Fixed, from Exp 
Data 

Filler Poisson’s Ratio Control 𝜈𝜈𝑓𝑓 Fixed, from Exp 
Data 

Fixed, from Exp 
Data 

Filler Volume Fraction Control 𝑉𝑉𝑓𝑓 0†, 0.05 0.25 
Interphase Poisson’s 

Ratio Control 𝜈𝜈𝑖𝑖 Fixed, = 𝜈𝜈𝑚𝑚 Fixed, = 𝜈𝜈𝑚𝑚 

Interphase Modulus Calibration 𝐸𝐸𝑖𝑖 0.01 GPa 50 GPa 
Interphase Relative 

Thickness Calibration 𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖 0#, 0.05 0.25 
#Special case lower bound 

 

In addition to the LHS, it was determined that two special cases with a lower 

parameter bound of zero were required.  A zero-filler volume fraction lower bound was 

obtained by setting the overall modulus directly equal to the fixed matrix modulus and 

sampling the two calibration parameters via LHS (n=70).  A lower bound of zero 

interphase relative thickness was sampled by generating 2-phase RVEs (Figure S3) 

consisting of only matrix and filler, where the volume fraction and interphase modulus 

were sampled via LHS (n=75).  

Batch Sequential Surrogate Model Improvement:  

When training a surrogate model on the FE outputs, the initial number of samples 

used in the design of experiments may be too small to accurately represent the underlying 

computer model in unsampled areas of the parameter space.  The maturity of a surrogate 
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model is typically evaluated through cross-validation.  We adopted a batch-wise 

strategy86 to expand the initial design until the desired cross-validation performance was 

obtained.  After training the surrogate model on the initial sample of FE observations, the 

design space was probed, selecting batches (n=15) of parameter values that resulted in the 

maximum variance, as estimated by the surrogate model.  New FE observations were 

then collected at the parameter values, and the process was repeated until satisfactory 

cross-validation was obtained (Section 2.4.2.2). 

2.4.1.2 Homogenization using Representative Volume Elements 

Digimat-FE49 was used to generate three-dimensional, cubical RVEs of composite 

microstructures with randomly distributed spherical inclusions.  In this case, the 

characteristic RVE consisted of a matrix reinforced by equal-sized, randomly distributed, 

non-intersecting spherical particles. The interphase was modeled as a concentric spherical 

coating of constant thickness surrounding each filler particle.  Interphases were permitted 

to overlap but not other filler particles (i.e., permissible inter-particle distance ≥ 

interphase thickness).   The matrix, filler, and interphase were treated as linearly elastic, 

isotropic materials with perfectly bonded interfaces.  Geometric periodicity was enforced, 

requiring filler and interphase intersections at the RVE boundaries to be cleaved and 

continued so that they enter the RVE from the opposite parallel surface.  The geometric 

RVE (Parasolid) was exported from Digimat to ANSYS-Static Structural, Release 19.0.50  

The transfer of ANSYS Workbench scripts from Digimat-FE was automated to 

import the geometric model, assign meshing controls and material parameters, enforce 
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periodic boundary conditions, apply loading conditions (LCs), and insert post-processing 

macros.  Ten-node quadratic tetrahedral elements (SOLID187) were assigned to three-

dimensional RVE components.  Eight-node contact elements (CONTA174) were used to 

represent bonded contact between intersecting three-dimensional target surfaces 

(TARGE170).  Examples of the meshed RVEs and loading modes are shown in Figure 

2-5. 

 

Figure 2-5.  Example RVEs of particulate composites reinforced with spherical particles containing an 
interphase undergoing periodic, a) uniaxial and b) shear deformations.  The colored contours represent the 

Equivalent (von-mises) stress.  The particles within the RVE are uniformly sized; however, their 
appearances may vary due to the irregularities resulting from the cutting process at the RVE boundary. 

 

Six independent LCs were defined for each RVE.  These were prescribed to 

generate three periodic, uniaxial strains in the three principal directions and three 

shearing modes.55  The applied strain value (< 5%) was arbitrarily small since the 

simulation material was defined as linearly elastic.  The stiffness and compliance 

matrices are reduced to two independent components for a truly isotropic material with 

infinite planes of symmetry.  These constants could be determined by applying only one 
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LC.87,88  Using one LC reduces the overall computational budget, but directionally-

dependent material properties are not predicted.  It is important to note that the randomly 

positioned inclusion microstructures are not perfectly isotropic.  The presented method 

below utilizes a general approach, where the six loading scenarios are used to calculate 

the complete stiffness matrix.  This is useful to determine the degree to which the RVE 

represents a truly isotropic material.  Furthermore, this method would be necessary for 

RVEs with non-isotropic microstructures like fiber-reinforced composites or particulate 

composites with clustering and other directionally dependent behavior.   

Calculation of the Effective Elastic Modulus: 

Herein, the complete effective material stiffness matrix, 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒, was obtained by 

applying linear elastic constitutive relationships and solving the system of linear 

equations below (see Appendix A, AD-1).  An application of Hooke’s law at the 

microscopic level47, in conjunction with strain energy equivalence principles56, allows a 

mapping of the volume-averaged RVE strain field, 𝜀𝜀6̅𝑥𝑥6, to that of the stress field, 𝜎𝜎�6𝑥𝑥6, 

with proportionality defined by 𝐶𝐶𝑒𝑒𝑓𝑓𝑓𝑓, a 36-element stiffness matrix.  The volume-

averaged fields of the microscopically heterogeneous RVE are calculated from equations 

(28) and (29).  

 𝜀𝜀𝑖̅𝑖𝑖𝑖 =
1

𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅
� 𝜀𝜀𝑖𝑖𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅

𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅

 (28) 
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 𝜎𝜎�𝑖𝑖𝑖𝑖 =
1

𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅
� 𝜎𝜎𝑖𝑖𝑖𝑖 (𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅

𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅

 (29) 

These averaged fields give the (macroscopically) uniform stress and strain states 

that an equivalent or effective homogenous medium would develop under identical 

loading.  Thus, the elastic properties of the effective material are related to the RVE 

fields and can be expressed in matrix form as follows. 

 [ 𝜎𝜎�6𝑥𝑥6 ] = � 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 �[ 𝜀𝜀6̅𝑥𝑥6 ] (30) 

Each column of 𝜀𝜀6̅𝑥𝑥6 and 𝜎𝜎�6𝑥𝑥6 was obtained by computing equations (28) and (29) 

using ANSYS Parametric Design Language (APDL) macros, adapted from Barbero,33 for 

each of the six loading conditions.  The matrices were constructed as shown in equations 

(31) and (32). 

 𝜀𝜀6̅𝑥𝑥6  =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝜀𝜀𝑥𝑥𝑥𝑥
𝐿𝐿𝐿𝐿1 𝜀𝜀𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿2 ⋯ ⋯ ⋯ 𝜀𝜀𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿6

𝜀𝜀𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿1 𝜀𝜀𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿2 ⋯ ⋯ ⋯ 𝜀𝜀𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿6

𝜀𝜀𝑧𝑧𝑧𝑧𝐿𝐿𝐿𝐿1  ⋮ ⋮  ⋮  ⋮ ⋮
𝜀𝜀𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿1  ⋮  ⋮ ⋮  ⋮ ⋮
𝜀𝜀𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿1  ⋮  ⋮  ⋮ ⋮ ⋮
𝜀𝜀𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿1 𝜀𝜀𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿2 ⋯ ⋯ ⋯ 𝜀𝜀𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿6⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (31) 

 𝜎𝜎�6𝑥𝑥6  =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝜎𝜎𝑥𝑥𝑥𝑥

𝐿𝐿𝐿𝐿1 𝜎𝜎𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿2 ⋯ ⋯ ⋯ 𝜎𝜎𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿6

𝜎𝜎𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿1 𝜎𝜎𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿2 ⋯ ⋯ ⋯ 𝜎𝜎𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿6

𝜎𝜎𝑧𝑧𝑧𝑧𝐿𝐿𝐿𝐿1  ⋮ ⋮  ⋮  ⋮ ⋮
𝜎𝜎𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿1  ⋮  ⋮ ⋮  ⋮ ⋮
𝜎𝜎𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿1  ⋮  ⋮  ⋮ ⋮ ⋮
𝜎𝜎𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿1 𝜎𝜎𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿2 ⋯ ⋯ ⋯ 𝜎𝜎𝑦𝑦𝑦𝑦𝐿𝐿𝐿𝐿6⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (32) 
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Equation (30) results in a system of 36 linear equations that is solved for the 

unknown components of 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒.  The effective compliance matrix, 𝑆𝑆𝑒𝑒𝑒𝑒𝑓𝑓, is then calculated 

as the inverse of the stiffness matrix. 

 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 =  𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒  −1 (33) 

The effective compliance matrix was assumed to be generally orthotropic 

(𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 ≈ 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜), enabling one to deduce meaningful engineering constants.  This 

assumption is much less stringent than treatment as an isotropic material and preserves 

directionally dependent material elasticity in three orthogonal directions.  For an 

orthotropic material with three planes of symmetry, the compliance matrix takes the 

following form. 

 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝐸𝐸𝑥𝑥

−
𝜈𝜈𝑦𝑦𝑦𝑦
𝐸𝐸𝑦𝑦

−
𝜈𝜈𝑧𝑧𝑧𝑧
𝐸𝐸𝑧𝑧

0 0 0

−
𝜈𝜈𝑥𝑥𝑥𝑥
𝐸𝐸𝑥𝑥

1
𝐸𝐸𝑦𝑦

−
𝜈𝜈𝑧𝑧𝑧𝑧
𝐸𝐸𝑧𝑧

0 0 0

−
𝜈𝜈𝑥𝑥𝑥𝑥
𝐸𝐸𝑥𝑥

−
𝜈𝜈𝑦𝑦𝑦𝑦
𝐸𝐸𝑦𝑦

1
𝐸𝐸𝑧𝑧

0 0 0

0 0 0
1

2𝐺𝐺𝑥𝑥𝑥𝑥
0 0

0 0 0 0
1

2𝐺𝐺𝑥𝑥𝑥𝑥
0

0 0 0 0 0
1

2𝐺𝐺𝑦𝑦𝑦𝑦⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (34) 

The elastic and shear moduli, 𝐸𝐸𝑖𝑖 and 𝐺𝐺𝑖𝑖𝑖𝑖 respectively, were calculated from (34), 

as well as the Poisson’s ratios, 𝜈𝜈𝑖𝑖𝑖𝑖.  Ideally, for an isotropic material, one would expect 

𝐸𝐸𝑥𝑥 = 𝐸𝐸𝑦𝑦 = 𝐸𝐸𝑧𝑧.  However, the FE model will inevitably deviate slightly from isotropy due 
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to non-symmetric RVEs and random particle placement.  We report the numerical model 

prediction of the effective elastic modulus as the average of 𝐸𝐸𝑥𝑥,𝐸𝐸𝑦𝑦, and 𝐸𝐸𝑧𝑧 with 

variability associated with the degree of non-isotropic behavior.  These homogenized 

material properties were used for model calibration and validation against experimental 

data (Sections 2.4.2.3 and 2.5.2).  We consider this average property of the computer 

model output on which we condition our GP.  

Mesh Refinement Study: 

The ANSYS Patch 

Conforming89 meshing algorithm 

was used to mesh each RVE.  A 

mesh refinement study90 was 

performed to ensure an appropriate 

mesh size was used.  A single RVE 

was simulated with iterative mesh 

size refinement to ensure 

convergence of the calculated 

elastic modulus.  Mesh size was 

determined based on solve time, 

numerical stability, and solution accuracy.  The results in Figure 2-6 demonstrate the 

tradeoffs between the number of elements, solution accuracy, and solve time.  The mesh 

size yielding the least number of elements (125683) and the shortest solve time in Figure 

Figure 2-6.  Mesh refinement study showing the 
convergence of the calculated elastic modulus as the 
number of elements is increased (reduced mesh size), 

compared to the increases in solve time.  The dashed red 
line indicates the selected, optimal mesh size. 
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2-6 was chosen as it only creates an error of ~ 0.1% from the calculated value at the 

highest level of refinement sampled.  

2.4.1.3 Determination of Representative Volume Element Size 

We define the “size” of the RVE by the number of inclusions it contains.  To 

determine a suitable RVE size, the number of randomly filled spherical particles with an 

interphase layer inside a cubical domain of arbitrary length was incrementally increased 

from 1 to 100 while holding the 

meshing density (Appendix A, 

AD-2), relative interphase 

thickness, and volume fraction 

constant.  A typical epoxy matrix 

reinforced by silica spheres at a 

volume fraction of 25% was used 

as the representative composite 

material.  The interphase relative 

thickness and elastic modulus 

were set to 0.1 and 15 GPa, 

respectively, representing values in the mid-range of their corresponding parameter 

bounds.   

For each RVE size, three separate RVEs were generated, each with a different 

random configuration of spherical fillers.  The effective moduli for each RVE were 

Figure 2-7.  Statistical convergence of effective elastic moduli 
as the size of the RVE is expanded.  Each data point is 

calculated as an average modulus of three randomly filled 
RVEs.  Error bars indicate the standard deviation due to 

randomly drawn RVEs.  The dashed red line indicates the 
selected, optimal number of inclusions in the RVE. 
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calculated in triplicate per Section 2.4.1.2 and averaged for each RVE size.  A 

satisfactory statistical convergence of the effective material properties was used to select 

the appropriate RVE size.  Figure 2-7  shows the convergence of the elastic and shear 

moduli as the RVE is expanded.  The error bars indicate the standard deviation of the 

calculated moduli across triplicate RVE predictions.  If we assume the effective 

properties for the largest RVE size represent the best statistical representation of a 

randomly filled system, then we can compare the accuracy of the solution at other sizes to 

this value.  A size of 40 inclusions was selected as optimal, as RVEs with at least 40 

inclusions yielded moduli statistically equivalent to the RVEs with 100 inclusions and 

had small deviations between random RVE realizations.  Simulating a smaller number of 

inclusions permits larger mesh sizes and reduced computational expense but increases 

effective property variance due to random inclusion placement and error due to RVEs 

that poorly represent a randomly filled, isotropic composite.        

2.4.2 Bayesian Inference of Interphase Parameters 

2.4.2.1 Gaussian Process Surrogate Model 

For this analysis, the Kennedy O’Hagan model84 was employed, which is a two-

stage model that first develops a Gaussian process (GP) surrogate model based upon 

training data, and then calibrates the necessary parameters, as well as a discrepancy 

function that represents the bias of the surrogate model to reality. The first step of 

performing the statistical analysis is to build a surrogate model that effectively predicts 

the output values based on a given set of inputs. GP models are chosen in this framework 
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as they are excellent interpolators and provide an effective means of uncertainty 

quantification.91 

Prior to the training of the GP model, an ANOVA based sensitivity analysis was 

performed to determine which parameters are critical to include in the surrogate model. 

The results of sensitivity analysis in Table 2-4 for the G-PS composite suggest that none 

of the parameters should be removed from the model. 

Table 2-4.  Sensitivity analysis of model features to data 

Model Feature 𝑹𝑹𝟐𝟐 (as a percentage) ** 

Interphase Modulus 44.5 

Interphase Relative Thickness 22.9 

Filler Volume Fraction 32.6 
** Can be considered as a percentage contribution to the variation in the data. 

The collection of FE simulations is then used to train the GP in which the 

parameters are selected, as detailed in Section 2.4.1.1. Each input and output is 

normalized to have a mean of zero and a standard deviation of one so that each parameter 

is represented equally.  It is assumed that there is a small variation in successive 

simulations from identical control inputs, as discussed in Section 2.4.1.3, so the surrogate 

model should reflect a white noise component.  This is used to describe the simulation 

more accurately and improve the conditioning of the posterior covariance matrix to avoid 

numerical inaccuracy. 

Since it is reasonable to expect that the output has a smooth relationship with the 

inputs, a square exponential radial kernel is selected, as it produces infinitely 

differentiable realizations.84 To allow each input to have an individualized effect on the 
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output, a product exponential kernel  𝑘𝑘(𝑥𝑥, 𝑦𝑦) = τ 𝑒𝑒𝑒𝑒𝑒𝑒{ − ∑ 𝑑𝑑𝑖𝑖|𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|23
𝑖𝑖=1 } is selected 

rather than an isotropic radial exponential kernel. In the context of functional estimation, 

one can interpret 𝜏𝜏  as a measure of the variation of the function, and each di can be 

interpreted as a measure of the smoothness of the output with respect to each input with 

values closer to zero, indicating a smoother relationship. 

Estimation is performed through a Bayesian design, and posterior distributions are 

approximated via the Metropolis-Hastings algorithm.84 Prior distributions for the 

smoothness parameters are selected to encourage the parameters to stay close to zero so 

that the resulting surface generated does not overfit the data and captures general trends. 

2.4.2.2 Cross-Validation of the Gaussian Process Surrogate Model 

Cross-validation of the GP is necessary to accurately evaluate the surrogate 

model’s ability to model behavior outside of training data.  A GP model with too few 

training observations will not fully capture the underlying computer model features and 

could be prone to overfitting.  One can train the GP on a subset of the training data by 

using hold-out data and testing model accuracy on the held-out data.  This cross-

validation strategy will give a measure of conformity to the true FE solution in areas 

where observed data was withheld from the GP training.  A random permutation hold-out 

method was used for cross-validation.  In each random permutation, 10% of the FE 

observations were withheld for testing, and 90% were used for training.  The hold-out 

method was repeated for a total of four splits.  
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The cross-validation results are shown in Figure 2-8.  By plotting the true values, 

determined by the FE model, versus the GP predictions, we can observe the fidelity of the 

surrogate.  The average slope and R2 from the four permutations were 1.02 and 0.989, 

respectively, with y-intercepts close to zero, indicating good agreement between the GP 

predictions and the withheld FE observations. 

 

Figure 2-8.  Cross-validation of the GP using four random permutations of training and testing subsets.  Linear 
fits of each split are plotted as solid lines.  Slopes close to unity with y-intercepts of zero indicate a good ability 

of the GP to predict the true finite element observations. 



 60

  

 

Predictions (or slices) drawn from the trained GP surrogate model (i.e., 

predictions across one dimension while holding the other parameters constant) are shown 

in Figure 2-9.  The results confirm that the trained GP surrogate predictions align with the 

expected behavior as follows:   

Figure 2-9a.  As the filler volume fraction approaches zero, the surrogate model 

estimates an elastic modulus close to the matrix modulus.  This is expected, as 

there should be no reinforcing effects from filler or interphase contributions when 

only the matrix is present.   

Figure 2-9b.  A constant elastic modulus is observed for a relative thickness of 

zero as the interphase modulus is varied.  Variations in the interphase modulus 

should not affect the overall elastic modulus when the interphase is insignificant. 

Figure 2-9c. Consistent with expected behavior, increasing the interphase 

modulus at non-zero volume fractions and interphase thicknesses increases 

overall modulus.  

Figure 2-9d.  As expected, increasing the interphase thickness (interphase volume 

fraction) increases the overall modulus when the interphase modulus is greater 

than that of the matrix modulus. 
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Figure 2-10 shows two-dimensional slices of the interphase calibration parameters 

while holding the volume fraction constant (additional angle in SI). When the interphase 

modulus is greater than that of the matrix modulus (3.45 GPa), any relative thickness 

increase increases the overall effective elastic modulus.  This observation agrees with the 

expected behavior.  Increasing the thickness when the interphase modulus is less than the 

matrix modulus results in a slight decrease in overall modulus because a higher modulus 

Figure 2-9.  One-dimensional slices from fully trained GP across the (a) filler volume fraction, (b) 
interphase modulus at zero thickness, (c) interphase modulus at non-zero thickness, (d) relative thickness 
of interphase.  Results validate expected physical behavior is predicted.  Values in the legend represent 

the fixed, constant values assigned to the variables. 
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matrix is replaced with a lower modulus interphase.  The complex surfaces predicted in 

Figure 2-10 highlight the advantages of a non-parametric surrogate modeling approach.  

In addition, the stochastic nature of this approach permits the quantification of 

uncertainty, thereby driving statistical inference, which is discussed in the next section.  

 

 

Figure 2-10.  Two-dimensional slices at various fixed volume fractions, illustrating the effects of 
the two calibration parameters on the overall effective elastic modulus.  The heat map indicates 

the confidence intervals estimated from the posterior distribution at a given set of inputs.  
Em = 3.45 GPa Ef = 70 GPa vm = 0.34 vf = 0.22 
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2.4.2.3 Bayesian Inference 

The methodology is illustrated using the experimental data for the G-PS 

composite (See Appendix A for the results from the other five composites in Table 2-2).  

This experiment contains observations of Young’s modulus for varying filler volume 

fractions and for particles of size 4, 30, and 100-µm.  In an elementary sense, one may 

think of Young’s modulus as a weighted volume average of the filler, interphase, and 

matrix modulus.  Therefore, as relative interphase thickness increases, the effect of 

interphase modulus becomes more pronounced, which indicates that the effects of 

relative interphase thickness and interphase modulus are reciprocal in describing elastic 

modulus.  To avoid this confounding effect, considerations were made to limit the values 

which the parameters could take during calibration.  For a given composite system under 

the same processing conditions, prior published research suggested that the interphase 

thickness remains relatively constant for similar particle sizes.74   

To effectively constrain the parameters, the calibration parameters are defined as 

follows: 

- θi the interphase modulus for particle size 𝑖𝑖.  This value is sought for the particle 

sizes 4, 30, and 100-µm particles (i.e., θ4,  θ30,  θ100)   

- 𝜌𝜌0 and 𝜌𝜌1, the variables that define the relationship between absolute thickness 

and particle radius as follows: 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜌𝜌0 + 𝜌𝜌1 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.  
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The benefit of this parameterization approach that focuses on absolute interphase 

thickness is the ability to evaluate particle size effects on the interphase thickness while 

reducing the number of parameters and mitigating the risks of overfitting (i.e., a two-

parameter model for three particle sizes). It is important to note that this approach still 

considers the possibility that absolute thickness does not depend on particle size (in the 

case 𝜌𝜌1 = 0).  This formulation provides a means of evaluating whether absolute 

thickness is a function of particle size for a given material system, which is described 

later in greater detail.  Calibration parameters are assumed to follow a truncated normal 

distribution a priori with large variance to encourage exploration of the constrained 

domain.92 The upper and lower bounds for each interphase modulus parameter coincide 

with those in Table 2-3. The bounds for ρ0 and  ρ1 are set so that each resulting absolute 

thickness, when converted to relative thickness, remains in the bounds for relative 

thickness given in Table 2-3. 

The model for calibration includes a discrepancy GP for each particle size, which 

is included to capture the model bias against experimental data.  If one were to assume 

there is no experimental error in data collection, the discrepancy would capture the bias 

of the surrogate model to reality.  However, as Vollenberg and Heikens79 note, there is a 

5% experimental error in data collection, implying that the discrepancy also captures the 

experimental error. The magnitude of the discrepancy also indicates how effective the FE 

simulation represents the experimental data.  Histograms of the posterior distributions of 

the calibration parameters are shown in Figure 2-11 and Figure 2-12.  The posterior 
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distributions of the absolute thickness for each particle size are available as functions of 

the posterior distributions of ρ0 and ρ1 and are additionally given in Figure 2-11. 

 

Figure 2-12.  Approximate posterior distributions for the slope and intercept parameters 
for absolute thickness as a function of particle size for the glass-polystyrene composite. 

Figure 2-11.  Approximate posterior distributions of the interphase modulus and absolute thickness for each 
particle size for the glass-polystyrene composite. 
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As shown in Figure 2-12, the calibrated non-zero slope parameter suggests that 

the filler particle size influences the interphase thickness, but this notion will be 

formalized later.  The posterior mode estimates for the parameters are summarized in 

Table 2-5. 

Table 2-5.  Estimated calibration parameters for the glass-polystyrene composite 
 

 

 

 

Recalling that the calibration parameters were estimated while forcing the 

discrepancy function to have a minimal effect, model bias is captured via Gaussian 

processes.84  Shown below in Figure 2-13 are the plots of the discrepancy functions for 

each particle size.  Recalling that the experimental error is around 5% and the 

experimental data is between 3-7 GPa, the corresponding absolute measurement error is 

between 0.2-0.4 GPa.  Thus, observing the range of the discrepancy in the plots suggests 

that the calibrated model is performing reasonably well. 

Cross-validation was performed to further observe the model's effectiveness by 

holding out a single observation from the experimental data for each particle size and 

recalibrating the augmented data set.  As sample sizes were limited in the data set for 

each composite material, cross-validation was performed on the G-PP data, as it 

contained the most observations for each particle size.   

Parameter Estimate 
θ4 9.3 GPa 
θ30 6.1 GPa 
θ100 3.1 GPa 
ρ0 0.10 µm 
ρ1 0.012 
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Table 2-6 compares the calibrated parameters via holding out an observation with 

the calibration parameters under the whole data set.  The differences in the calibration 

parameters are minimal with respect to their standard errors, which suggests that the 

model performs well. 

Table 2-6.  Comparison of the posterior estimates of the calibration parameters for purposes of cross-
validation.  ††   

 
Eint, 4-

µm 
[GPa] 

Eint, 
30-µm 
[GPa] 

Eint, 
100-µm 
[GPa] 

Intercept Slope 
Abs. 

Thick., 4-
µm [µm] 

Abs. 
Thick., 
30-µm 
[µm] 

Abs. 
Thick., 
100-µm 

[µm] 
Holdout 

Data 
12 

(1.1) 
4.6 

(0.35) 
1.6 

(0.37) 
0.094 

(0.010) 
0.015 

(0.0022) 
0.13 

(0.0084) 
0.32 

(0.029) 
0.84 

(0.11) 

Full Data 14 
(1.11) 

4.4 
(0.319) 

1.4  
(1.8) 

0.092 
(0.0077) 

0.013 
(0.0022) 

0.12 
(0.0088) 

0.30 
(0.033) 

0.76 
(0.11) 

†† the reported values are the mode of the posterior distributions with standard deviations shown in 

parenthesis 

Figure 2-13.  The Gaussian process discrepancy functions as a function of volume 
fraction with 95% confidence bands. 
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The assumed linear relationship of interphase thickness as a function of particle 

size provides the ability to assess whether the absolute thickness depends on particle size.  

Results of some studies have suggested that particle size does not affect absolute 

thickness for similarly sized particles.74 This would correspond to ρ1 = 0. Thus, to 

evaluate the dependence of absolute thickness on particle size for a given material, it 

suffices to test the hypothesis that ρ1 = 0.  This can be achieved by constructing a 

(1 − α) × 100% credible interval for the posterior distribution for a given level of 

certainty α.  

A 95% highest posterior density (HPD) credible interval for the posterior 

distribution for ρ1 for the G-PS composite is given by (0.0097,0.021), which does not 

contain zero.  This suggests that particle size influences the interphase thickness of the G-

PS system.  The positive slope indicates that the interphase thickness increases as a 

function of the filler size.   

2.5 Results and Discussion 

2.5.1 Inferred Interphase Parameters 

Recalling from Section 2.4.2.3, the intercept and slope calibration parameters, 𝜌𝜌0 

and 𝜌𝜌1, define the relationship between absolute thickness and particle radius where:  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜌𝜌0 + 𝜌𝜌1 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.  The inferred values (mode) of the 

interphase modulus and thickness, slope, and intercept parameters for each composite are 

shown in Table 2-7 for particles greater than 1 micron and Table 2-8 for particles less 

than 1 micron.   
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Table 2-7.  Inferred interphase modulus, thickness, slope, and intercept for the glass composites. ‡‡ 

Composite 
Eint,  

4-µm 
[GPa] 

Eint, 
30-µm 
[GPa] 

Eint, 
100-µm 
[GPa] 

Intercept Slope 

Abs. 
Thick., 
4-µm 
[µm] 

Abs. 
Thick., 
30-µm 
[µm] 

Abs. 
Thick., 
100-µm 

[µm] 

G-PS 9.3 
(0.34) 

6.1 
(0.30) 

3.1 
(0.26) 

0.10 
(0.0097) 

0.012 
(0.0029) 

0.13 
(0.0079) 

0.29 
(0.039) 

0.72 
(0.13) 

G-PC 20. 
(1.1) 

22 
(1.4) 

17  
(1.4) 

0.24 
(0.012) 

-0.0041 
(0.0020) 

0.23 
(0.011) 

0.18 
(0.029) 

0.025 
(0.098) 

G-SAN 11 
(1.7) 

14 
(1.3) 

15  
(1.8) 

0.26 
(0.020) 

0.093 
(0.012) 

0.44 
(0.0096) 

1.7 
(0.16) 

4.9 
(0.58) 

G-PP 14 
(1.1) 

4.4 
(0.32) 

1.4 
 (1.8) 

0.092 
(0.0077) 

0.013 
(0.0022) 

0.12 
(0.0088) 

0.30 
(0.033) 

0.76 
(0.11) 

‡‡ the reported values are the mode of the posterior distributions with standard deviations shown in 

parenthesis.  EPS = 3.45 GPa, EPC = 2.15 GPa, ESAN = 3.80 GPa, EPP = 1.56 GPa 

 

Table 2-8.  The inferred interphase modulus, thickness, slope, and intercept for the alumina composites. §§ 

Composite Eint, 0.035-
µm [GPa] 

Eint, 0.4-
µm [GPa] Intercept Slope Abs. Thick., 

0.035-µm [µm] 
Abs. Thick., 
0.4-µm [µm] 

A-PS 24 
(1.7) 

21 
(1.2) 

0.00057 
(8.4e-5) 

0.26 
(0.0016) 

0.0051  
(7.9e-5) 

0.052 
(0.00029) 

A-SAN 40. 
(2.1) 

40. 
(2.0) 

-0.00013 
(6.6e-5) 

0.26 
(0.0020) 

0.0044 
(5.9e-5) 

0.052 
(0.00037) 

§§ the reported values are the mode of the posterior distributions with standard deviations shown in 

parenthesis.  EPS = 3.45 GPa, ESAN = 3.80 

We can interpret whether the interphase interactions increase or decrease the 

overall composite stiffness by examining the relative magnitudes of the calibrated 

interphase moduli compared to the corresponding bulk matrix modulus.  For the 100-µm 

G-PS composite, the interphase modulus was calibrated to be 3.1 GPa, compared to the 
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matrix modulus of 3.45 GPa, indicating that interfacial interactions reduced the stiffness 

of the matrix.  This was also observed in the G-PP composite.  Increases in polymer 

density generally result in increases in elastic properties.72,79,93,94  Accordingly, possible 

explanations for the reduced interphase stiffness of the 100-µm G-PS and G-PP 

composites could be reductions in the polymer density near the particle surface due to 

composite processing, entropically driven depletion zones69,95 or some other phenomena.  

For the remaining composites and particle sizes studied, the effective interphase is 

predicted to have an increased modulus compared to the pure matrix, suggesting a region 

of increased polymer density compared to the pure matrix.  

The calibrated interphase modulus for the PS and PP composites increased as the 

reinforcing particle size decreased to varying degrees depending on the polymer phase 

(Table 7).  This trend was observed in MD simulations of an alumina/epoxy 

nanocomposite.74  For the SAN and PC composites, the inferred interphase moduli do not 

exhibit the same particle size dependency, particularly when accounting for the standard 

deviation of the inferred parameter.  Vollenberg and Heikens note that in the case of SAN 

and PC, a noticeable physical adhesion between the matrix and filler occurs, and due to 

the nonpolar nature of PS and PP, there is very poor adhesion between the matrix and 

filler.  Based on this disparity, the inferred interphase moduli suggest that more favorable 

matrix filler compatibility will decrease particle size dependency.  This is further 

supported by evidence where particle surface modification to enhance matrix 

compatibility decreases particle size dependency on the composite modulus.72,79 Any 
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discrepancies in particle size effects on interphase properties are confounded by polymer 

processing methods, which likely influence the interphase properties and cannot be 

accounted for in this case. 

Using the inferred slope and intercept for each composite, the interphase volume 

fraction can be approximated as a linear function of particle size and filler volume 

fraction by assuming monodisperse, spherical reinforcement with concentric interphase 

(plotted for each composite in Figure S10 of the SI).  Although the calibrated interphase 

thickness typically increased with increasing particle size, for all composites except the 

A-SAN, the interphase volume fraction decreased with increasing particle size due to the 

differences in the number of particles at a given volume fraction.  In other words, smaller 

particles are predicted to facilitate a larger volume fraction of interphase at a given filler 

volume fraction despite having a thinner interphase.   

Theoretically, the inferred y-intercept parameters in Table 2-7 and Table 2-8 

describe the interphase thickness as the reinforcing particle size reduces to zero.  

However, this mathematical description has little physical significance; (1) this value is 

extrapolated far from the particle sizes on which it was inferred, and (2) it is impossible 

to have a filler particle size of zero.  The slope parameter is more insightful and explains 

how particle size influences interphase thickness.  The highest posterior density (HPD) 

credible interval92 for the posterior distributions of the slope parameters are in Table 2-9 

for each composite system.  For all except the G-PC composite, the slope parameter was 

positive.  This indicates that increasing filler particle size for most composites increases 
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the inferred interphase thickness.  For the G-PC composite, the interval contained zero, 

indicating that the particle size had no statistically significant effect on the interphase 

thickness.   

Table 2-9.  95% Highest posterior density (HPD) credible interval for the posterior distribution 
 of the slope parameter 

Composite Slope Lower 
Credible Interval 

Slope Upper 
Credible Interval 

G-PS 0.0097 0.021 
G-PC -0.0051 0.0017 

G-SAN 0.051 0.12 
G-PP 0.0086 0.017 
A-PS 0.25 0.26 

A-SAN 0.26 0.26 
 

2.5.2 Comparison with Experimental Data 

GP predictions of the effective elastic modulus at the inferred interphase 

thicknesses and interphase moduli for the G-PS composite are shown in Figure 2-14 as a 

slice across the relevant volume fractions.  The results indicate good agreement within 

the experimental error (~ 5%) of the data.  The “No Interphase” slice is drawn from the 

GP by setting the relative thickness equal to zero.  The inferred interphase modulus for 

the 100-µm particle was 3.1 GPa, below the matrix modulus of 3.45 GPa for polystyrene.  

As explained in the previous section, we expect the “No Interphase” slice to lie above 

that of the reduced interphase modulus, 100-µm curve.  The surrogate model predictions 

in Figure 2-14 agree with this expectation.   

The calibrated interphase parameters effectively capture the particle-size-

dependent elastic behavior.  It is important to recall that the FE observations used to 
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inform the GP in the “No Interphase” parameter space (relative thickness of zero) are 

generated from 2-phase RVE simulations of only matrix and filler.  The interphase 

modulus is set at more-or-less arbitrary values within the sampled parameter bounds in 

this parameter space.  It is possible that different fixed values of the interphase modulus 

could yield slightly different curves for the “No Interphase” slice, but the differences are 

expected to be small since this region of the parameter space was thoroughly sampled in 

the design 

of 

experiments.  

 

2.6 Conclusion 

This work introduced a comprehensive framework to infer the effective moduli 

and thickness from readily obtained experimental measurements of a composite’s elastic 

modulus.  The framework involved building FE-based micromechanical models of a 

Figure 2-14.  Comparison of the calibrated and experimental results for the glass-
polystyrene composite.  Continuous curves are from the GP, sliced across the filler 

volume fraction with fixed values of the calibrated interphase thickness and modulus.  
The markers indicate experimental measurements.  
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periodic RVE.  A three-phase RVE consisting of a matrix, filler, and an interphase layer 

was simulated over a large parameter space to generate the relationship between the 

control/calibration parameters and the effective elastic modulus.  After training a 

Gaussian process surrogate model on the FE model output, the GP model was calibrated 

against experimental data to infer the most likely interphase thickness and modulus 

values.   

This framework was demonstrated for a polystyrene composite reinforced by 

randomly distributed spherical glass beads of 4, 30, and 100 microns.  Results were also 

shown for five other composite systems.  The effects of the reinforcing particle size on 

the inferred interphase thickness and modulus were explored.  The inferred interphase 

parameters agree well with the experimental measurements of the composite elastic 

modulus and can account for the particle size-dependent elastic behavior observed in the 

composite systems.  The proposed framework is generalizable and can be adapted to 

simulate any periodic composite microstructure.  
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CHAPTER 3  

MULTISCALE FINITE ELEMENT ANALYSIS OF HELICALLY SYMMETRIC 

CELLULOSE NANOCRYSTAL-REINFORCED ALGINATE COMPOSITE FIBERS 

3.1 Abstract 

Cellulose nanocrystals (CNCs) incorporated into wet-spun calcium alginate fibers 

can result in the spiral alignment of CNCs about the alginate fiber axis.  In this study, the 

effect of the CNC alignment on the mechanical behavior of the calcium alginate fiber 

composite is examined using finite element (FE) analysis at two different length scales, 

1) at the “micro” level where the CNCs within a representative volume element (RVE) 

can be considered as cylindrical aligned with one another at a fixed angle off of the fiber 

axis, and 2) at the “macroscale” where the longer-range alignment of RVEs forms a 

helically symmetric spiral around the alginate fiber axis.   

The stiffness of the RVE at the micro-level is evaluated using virtual periodic 

displacements to determine the resulting stresses and, thus, the effective stiffness tensor.  

The effective stiffness at each integration point within the global fiber model is specified 

by the sectorial division of the macroscale fiber model with regions of stiffness 

determined by analytically computed rotations of the effective stiffness tensor for a single 

micro-level RVE, such that the resulting rotations align with the mesoscale spiral 

symmetry.   



 76

  

 

The macroscale fiber model is loaded with virtual displacements to simulate 

loading in uniaxial tension, and the corresponding stress distributions generated in the 

fiber are calculated to model the effect of the CNC alignment on the macroscopic 

mechanical response of the fiber.  The developed framework is generalizable to other 

composites with multiple scales of order.  The results establish a structure-property link 

relating microstructural heterogeneity to macroscopic mechanical behavior, which is 

especially relevant for biomaterials, which usually have high degrees of uncertainty and 

heterogeneity.  

3.2 Introduction 

3.2.1 CNC Alignment and Effects on Mechanical Properties 

Alginate is a natural polymer isolated from brown seaweed that can be spun into 

calcium alginate fibers through a wet-spinning process.96  The fibers are widely used in 

wound dressings, as they are non-toxic, provide excellent moisture management, and can 

act as a hemostatic agent due to ion-exchange processes with wound exudate.97–101  To 

improve alginate fibers' relatively low mechanical properties, cellulose nanocrystals 

(CNCs) have been incorporated into the wet-spinning process.96,102  CNCs are renewable, 

bio/environmentally friendly, and cost-effective reinforcement with high tensile strength 

(~10 GPa) and modulus (~140 GPa).96,102–107  They are prepared via acid hydrolysis of 

the amorphous regions between crystalline cellulose blocks, as represented in Figure 

3-1.108,109 
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 Urena-Benavides and Kitchens96 observed spiral alignment of CNCs about the 

alginate fiber axis resulting from processing, as indicated by wide-angle x-ray diffraction 

(WAXD) measurements of the azimuthal peak width corresponding to the (2,0,0) 

reflection from the cellulose Iβ crystal.102  The alignment of the CNCs was found to 

depend upon the CNC loading and the apparent jet stretch of the fiber.96  Higher loadings 

increased the tendency to form spiral configurations (oriented away from the fiber axis), 

while processing at a higher jet stretch tended to increase CNC alignment with the fiber 

axis.  The CNC alignment about the fiber axis, idealized in Figure 3-2,  resulted in a 

helical morphology that altered the composites’ elastic modulus, tenacity, and toughness. 

Figure 3-1.  Representation of the preparation of CNCs via acid 
hydrolysis. 
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Chen et al.110 noted similar observations in a system of dry-spun cellulose acetate 

(CA) fibers reinforced by CNCs.  Using 2D XRD, the alignment of the CNCs about the 

fiber axis was quantified with Herman’s order parameter (S)102,111,112 and was found to 

increase with CNC loading until a critical loading of ~ 30 wt %.  As expected, the 

mechanical properties correlated strongly with CNC alignment with the fiber axis until 

the critical loading.  The failure mechanism at concentrations beyond the critical loading 

was attributed to stress concentrations from defects such as CNC agglomeration, fiber 

porosity, and irregular fiber diameter and cross-sectional shape.  Increased shear during 

the spinning process increased CNC alignment with the fiber axis.  

Figure 3-2.  Schematic representation idealizing the helical 
morphology of the CNC calcium alginate fiber.  Figure taken from 

Urena-Benavides and Kitchens59 
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3.2.2 Motivation  

The spiral alignment of CNCs around the alginate fiber axis can significantly 

influence the composite's overall performance.  This work establishes a model to 

understand and quantify the impact of CNC alignment by using finite element (FE) 

analysis at both the micro and macroscales.  The proposed methodology offers notable 

advantages compared to traditional methods like the Mori-Tanaka27 model.  The micro-

level analysis involves the direct simulation of a representative volume element (RVE) 

which captures geometric features such as the alignment of the CNCs, agglomeration 

effects due to inclusion placement, and stress concentrations near filler-filler interfaces 

and filler boundaries.  The effect of polydisperse CNCs is captured by allowing the size 

of the simulated CNC to be sampled from a normal distribution about a mean size.  The 

methodology also provides a means to quantify uncertainty about the spiral angle or 

volume fraction, which is assessed through a systematic search over a design space.  

Furthermore, RVE-based analyses are readily adaptable to simulate nonlinear material 

behavior and complex microstructures.  

3.3 Methods 

3.3.1 Microscale FE Model 

Digimat-FE49 was used to generate three-dimensional, rectangular RVEs of the 

composite microstructure by randomly distributing cylindrical inclusions representing the 

CNCs.  The characteristic RVE consisted of an alginate matrix reinforced by forty non-

intersecting cylindrical inclusions with a length drawn from a normal distribution 
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corresponding to a mean of 130 nm and a standard deviation of 63 nm.96,102,107,113  The 

diameter was specified by maintaining an aspect ratio of 9.56.  The orientation of the 

CNCs was defined as fixed, with angles theta and phi.  As shown in Figure 3-3, theta 

characterized the deviation of the principal orientation vector of the inclusion from the 

fiber axis, while phi characterized the position or the rotation of the CNC about the fiber 

axis.  

 

 

 

 

 

The matrix and filler were treated as linearly elastic (small strain approximation) 

isotropic materials with perfectly bonded interfaces.  Geometric periodicity was enforced, 

requiring filler intersections at the RVE boundaries to be cleaved and continued so that 

they enter the RVE from the opposite parallel surface.  To analyze the effect of CNC 

alignment and loading on the overall elastic properties, a design of experiments (DoE) 

Figure 3-3.  Definition of theta and phi, which characterize the fixed alignment vector of 
the inclusions. 
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was conducted in which the relevant micro-level parameter space was sampled using full 

factorial sampling.  The homogenized effective elastic properties were determined over 

this design space as in Section 2.4.1, and a Gaussian process (GP) surrogate model was 

trained on the inputs and outputs of the FE micro-level model.  The material 

properties96,102,107,113 and sampled parameter space are summarized in Figure 3-4. 

 

 

 

 

 

 

 

3.3.2 Mapping from Micro to Macroscale 

The multiscale analysis entails mapping the homogenized material properties to 

transition from the micro- to the macroscale.  As illustrated in Figure 3-5, the global 

anisotropic stiffness matrix is expected to be a function of 𝜃𝜃 and 𝜑𝜑.  Mapping was 

performed by computing the anisotropic effective stiffness tensor at the micro-level for 

one RVE for a given set of fixed parameters, rotating the fourth-order stiffness tensor 

using Euler rotations114–117, and mapping the rotated tensor to each Gauss integration 

point of the macroscopic fiber model.  In practice, this was achieved in ANSYS50 by 

partitioning the fiber into “pie slices” of 𝑑𝑑𝑑𝑑 from zero to 360 degrees, where each slice is 

Figure 3-4.  Material properties assigned to the matrix and filler, along with the 
bounds specified by the design of experiments.   
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assigned a unique material corresponding to its rotated anisotropic stiffness tensor.  A 

total of 20 sectorial divisions were used.  Too many divisions lead to small, irregular 

meshes at the boundaries where each material is joined in the center of the fiber 

(radius=0).  Each unique material profile’s generation, assignment of anisotropic stiffness 

matrix, and importation into ANSYS was automated via Python batch code to import the 

materials as “Engineering Data.” 

 

Figure 3-5.  Mapping of the microscale RVE to the global macroscale fiber model. 
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3.3.3 Macroscale Fiber Model 

The macroscale FE model representing the CNC-reinforced alginate composite 

was simulated as a cylinder with a length of 30 mm and a diameter of 400 microns.  The 

entire workflow was automated using ANSYS Workbench scripting, including; the 

generation of materials, assignment of stiffness matrix, drawing of the fiber geometry in 

SpaceClaim, assignment of materials corresponding to each partition to the appropriate 

body, and post-processing commands.  The model was meshed using ten-node quadratic 

tetrahedral elements (SOLID187) assigned to three-dimensional RVE components.  

Eight-node contact elements (CONTA174) represented bonded contact between 

intersecting three-dimensional target surfaces (TARGE170).  A sweep method was used, 

and the meshing was refined near the ends of the fiber where stress concentration was 

expected due to applied boundary conditions.  A uniaxial tension test was simulated by 

constraining all nodal degrees of freedom of the negative z-direction surface nodes and 

displacing the nodes on the opposite parallel surface in the positive z-direction at 5% 

strain.  All rotational and the x and y translational nodal displacements on the displaced 

surface were unconstrained to visualize the rotational effects of the helical CNC 

symmetry.   

3.4 Results and Discussion 

An example microscale RVE of perfectly aligned CNCs in the fiber direction is 

shown in Figure 3-6, undergoing one of six loading conditions (uniaxial loading in the z-

direction) used to evaluate the effective or homogenized elastic stiffness matrix.  The 
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colored contours represent the accumulation of von-Mises stress as the RVE is loaded.  

The three plots on the left side show the matrix and filler for a single RVE at the 

beginning, middle, and end of the loading, while those on the right have the matrix 

material hidden from view. 

 

3.4.1 Elastic Modulus Sensitivity to CNC Spiral Angle and Circumferential Position 

The sensitivity of the homogenized elastic modulus in the z-direction (𝐸𝐸𝑧𝑧, aligned 

with the macroscale fiber axis) to the CNC spiral angle and circumferential position, 𝜃𝜃 

and 𝜑𝜑, respectively, was assessed by the surrogate model trained on data from the micro-

level FE model.  Slices across the varied parameters, 𝜃𝜃 and 𝜑𝜑, were taken while fixing 

the filler volume fraction.  The results are shown in Figure 3-7 for a fixed volume 

Figure 3-6.  Example microscale RVE of perfectly aligned CNCs in the fiber direction undergoing one of 
six loading conditions (uniaxial loading in the z-direction) used to evaluate the effective or homogenized 
elastic stiffness matrix.  The colored contours represent the accumulation of von-Mises stress as the RVE 

is loaded.  The three plots on the left side show the matrix and filler for a single RVE at the beginning, 
middle, and end of the loading while those on the right have the matrix material hidden from view. 
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fraction of filler 𝑉𝑉𝑓𝑓.  The results indicate, as expected, a decrease in the axially aligned 

modulus when the CNCs are oriented away from the fiber direction by an increase in 𝜃𝜃.  

Furthermore, this modulus is insensitive to rotations about the circumference by an angle 

𝜑𝜑.   

Figure 3-7.  Gaussian process surrogate predictions for the elastic modulus in the z-
direction (𝐸𝐸𝑧𝑧) as a function of the CNC spiral angle and circumferential position, 𝜃𝜃 and 
𝜑𝜑, respectively.  The volume fraction of filler was fixed at 0.25.  Curves represent the GP 

posterior mean, shaded regions represent 95% confidence intervals, and the markers 
represent the underlying training data from the micro-level RVE. 
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3.4.2 Elastic Modulus Sensitivity to CNC Spiral Angle and Volume Fraction 

The sensitivity of the 𝐸𝐸𝑧𝑧 to the volume fraction was visualized in Figure 3-8 by 

taking parameter slices from the GP across the relevant domains of 𝜃𝜃 and 𝑉𝑉𝑓𝑓 while the 

circumferential position, 𝜑𝜑, was fixed at zero degrees.  As expected, increases in the 

volume fraction of CNCs increase the 𝐸𝐸𝑧𝑧.  This effect is mitigated when the CNCs are 

oriented at large spiral angles away from the fiber direction.   

 

Figure 3-8.  Gaussian process surrogate predictions for the elastic modulus in the z-direction 
(𝐸𝐸𝑧𝑧) as a function of the CNC spiral angle and volume fraction, 𝜃𝜃 and 𝑉𝑉𝑓𝑓, respectively.  The 
circumferential position, 𝜑𝜑, was fixed at zero degrees.  The surface plot represents the GP 

posterior mean, the heat map represents 95% confidence intervals, and the markers represent the 
underlying training data (shown for all values of 𝜑𝜑 = 0 − 360°) from the micro-level RVE. 
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3.4.3 Validation of the Microscale FE Model 

The microscale FE model was validated by comparing the 𝐸𝐸𝑧𝑧 determined by 

analytically computed rotations of a stiffness tensor (for the RVE corresponding to 

perfectly aligned CNCs in the fiber direction at a fixed 𝑉𝑉𝑓𝑓) to the 𝐸𝐸𝑧𝑧 predicted at 

equivalent values of 𝜃𝜃 and 𝜑𝜑 by the finite element model.  The results in Figure 3-9 

indicate similar predicted values and trends and, thus, good agreement between the FE 

model predictions and analytical solution. 

 

3.4.4 Macroscale Fiber FE Model Results  

The homogenized stiffness tensor calculated for a particular rotation of 𝜃𝜃 and 𝜑𝜑 

was mapped to the macroscale model representing the helically symmetric CNC-Alginate 

composite undergoing a virtual uniaxial fiber tension test.  The evolution of von-Misses 

Figure 3-9.  Validation of the FE model by comparing the 𝐸𝐸𝑧𝑧 from analytically computed rotations of a 
stiffness tensor (at a fixed 𝑉𝑉𝑓𝑓) to the 𝐸𝐸𝑧𝑧 predicted at equivalent values of 𝜃𝜃 and 𝜑𝜑 by the finite element 

model.  Similar values and trends indicate good agreement. 
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stress and its subsequent effect on the rotation of the fiber about its axis is shown in 

Figure 3-10.  The globally anisotropic nature of the mapped stiffness throughout the fiber 

induces a rotation about the fiber z-axis.  This effect is entirely due to the microstructural 

order since nodal degrees of freedom (on the positive z surface) were only constrained in 

the positive z-direction.   

 

The twisting of the fiber matches the expected behavior for the prescribed loading 

conditions; however, in an actual uniaxial fiber tension test, mechanical grips at the fiber 

ends would constrain rotations about the z-axis, and instead, internal stresses would 

accumulate.  The macroscopic fiber behavior confirms the transmission of the 

configurational information from the microscale to the macroscale.   

Figure 3-10.  The macroscale fiber model undergoing uniaxial loading in the z-direction mapped with helical 
symmetry of the stiffness tensor which was calculated from the microscale FE model.  The colored contours 
represent the accumulation of von-mises stress as the RVE is loaded.  The three plots show matrix and filler 

stresses that accumulate during the beginning, middle, and end of the loading.   
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It should be noted that the fixed support used to constrain the negative-z surface 

leads to an over-constraint of the surface.  Over-constrained edge effects occur when a 

structure is over-restrained or fixed at its edges rigidly.  In such cases, fixed supports 

restrict the material's natural lateral deformation and displacements, resulting in excess 

localized stress near the edges.  The Poisson effect drives this effect and is quantified by 

the Poisson’s ratio.  The Poisson effect expresses the tendency of a material to contract or 

expand in directions perpendicular to loading.  These over-constrained edge effects can 

drastically affect the structure's behavior and overall performance, causing lateral 

deviations from idealized behavior. 

3.5 Conclusions 

The impact of the helical alignment of cellulose nanocrystals (CNCs) on the 

macroscopic mechanical behavior of wet-spun calcium alginate fibers was studied in this 

chapter.  Finite element (FE) analysis was performed on models at two separate length 

scales to map the micro-level configuration information to the macro-level.  The effective 

stiffness of a representative volume element (RVE) was calculated at the microscale by 

considering the fixed alignment of CNCs at angles 𝜃𝜃 and 𝜑𝜑 from the fiber axis.  Longer-

range RVE alignment was mapped to the macroscale by considering a helically 

symmetric spiral around the composite fiber axis.   

The microscale model was validated based on analytical solutions for rotations of 

the RVE's effective stiffness tensor.  The sensitivity of the effective elastic properties to 

the volume fraction of filler, 𝜃𝜃, and 𝜑𝜑 was evaluated using a Gaussian process surrogate 
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model.  The homogenized effective stiffness tensors of the helically aligned CNCs 

induced a rotation in the macroscopic fiber model due to the symmetries of the generated 

stress that accumulated during uniaxial tension.  The proposed methodology illustrates a 

robust approach to simulating multiscale phenomena and quantifying the effect of 

uncertain parameters on macroscopic mechanical behavior, a critical component for 

analyzing biomaterials with high degrees of uncertainty and heterogeneity. 
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CHAPTER 4  

GAUSSIAN PROCESS REGRESSION FOR PREDICTING MAGNESIUM OXYCHLORIDE 

CEMENT BOARD PERFORMANCE 

4.1 Introduction 

4.1.1 Background on Magnesium Oxychloride Cement Boards 

The non-hydraulic cement magnesium oxychloride (MOC or Sorel cement), first 

reported by Sorel118 in 1867, has reemerged as an alternative to conventional building 

materials such as plywood, gypsum, oriented strand board (OSB), and Portland cement 

board.119  MOC is an attractive material owing to its rapid setting times, high specific 

flexural and compressive strengths120,121, good thermal, fire, and abrasion resistance, 

compatibility with diverse filler materials122, and acoustic dampening123.  MOC is 

primarily used in construction as wall insulation panels, roofing elements, floor tile, and 

backer board.124  Other applications include use as an abrasive agent in grinding wheels 

and as a reinforcing and binding agent in lightweight, high-strength rubberized 

concrete.125,126  MOC has been explored as a potential resorbable orthopedic biomaterial 

for bone repair since it exhibits good biocompatibility and antibacterial 

characteristics.127–130 

MOC is formed by mixing an aqueous solution of magnesium chloride with light-

burnt magnesium oxide (magnesia) powder.131  The reaction proceeds with the formation 

of a number of crystalline phases determined by molar ratios of the ternary 

MgO•MgCl2•H2O mixture, curing temperature and humidity, and magnesia 
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reactivity.122,131  Phases 3 and 5 are primarily responsible for the hardening and strength 

of the final cement, with the latter being the dominant and preferred phase regarding 

mechanical properties.121,131  The curing process produces mechanically interlocking and 

interpenetrating needle-shaped crystals characterized as scroll-tubular whiskers that result 

in a space-filling, dense microstructure of low porosity.123,131,132  The desired reaction to 

produce Phase 5 MOC competes with the formation of Phase 3 and brucite (Mg(OH)2).  

Excess water in the reaction mixture can favor the production of a mechanically loose 

brucite phase, while excess MgO can lead to reduced workability and incomplete 

hydration.121,133,134  Excess MgCl2 drives the formation of Phase 3 MOC and can lead to 

free chlorides in the cured cement.135  As MOC ages in the presence of CO2, there is a 

potential for carbonation at the surface to form a semi-protective layer of chlorartinite, a 

crystalline phase that has been suggested to preserve the mechanical integrity of MOC in 

moist conditions.136–138  

3MgO + MgCl2 + 11H2O → 3Mg(OH)2⸱MgCl2⸱8H2O (Phase 3) 

5MgO + MgCl2 + 13H2O → 5Mg(OH)2⸱MgCl2⸱8H2O (Phase 5) 

MgO + 2H2O → Mg(OH)2 (Brucite) 

Commercial MOC boards for building applications commonly incorporate fillers 

like wood flour and perlite to reduce the material's cost and density, improve the paste's 

workability, and increase thermal insulation and acoustic dampening.  Wood flour can 

reduce brittleness and increase toughness, improving the ability of the material to hold 

nails or screws without fracture.122,139  Foaming and de-foaming agents may be added to 
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the mixture to modulate the board's workability and final porosity (density).  Adding 

foaming agents increases the air entrainment in the mixture resulting in a lower board 

density at the expense of reducing the mechanical properties through a disruption in the 

interlocking MOC needles.140  MOC can be reinforced for structural support with glass 

fibers due to its relatively low pH (pH ~ 10-11), providing an advantage over traditional 

Portland cement boards (pH ~ 12-13), where an alkaline attack on glass is 

possible.122,141,142  Chemical additives, such as soluble phosphates, are used to improve 

the strength retention and water stability of MOC in moist environments.122,143  Through 

the judicious selection and combination of these components, MOC cements offer an 

advanced, customizable composite material for building applications with tunable 

performance properties that balance durability, processability, and environmental 

resilience. 

Despite the numerous advantages of MOC cement boards, several challenges 

have limited their widespread adoption as a construction material: uncertainty in 

formulations due to variability in raw material quality, availability, and prices; excess 

free chlorides can be corrosive on metallic building materials; MOC exposed to water is 

susceptible to degradation; and variations in mechanical properties due to compositional 

and phase changes over the life of the material.  Understanding the factors that dictate the 

mechanical properties of MOC and the development of effective formulations and 

manufacturing processes is crucial to its broader adoption in the construction industry. 
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4.1.2 Motivation 

The wide gamut of fillers and additives used in commercial-grade MOC boards 

results in complex mixtures with modified compatibility, workability, curing rate, and 

hydration dynamics.  Each component introduces additional variability and uncertainty in 

the final composite's mechanical, chemical, and physical properties by further 

complicating the sensitive stoichiometric reactions, selectivity, and hydration 

mechanisms.  The complicated nature of these multi-component mixtures results in a 

composite board with properties that are difficult to predict a priori.  Furthermore, 

varying raw material purities and production controls confound the accurate 

quantification of the uncertainty in final board properties.  It is, therefore, critical to 

understand how these factors influence MOC board performance to optimize their 

formulations and production processes.  

Traditional approaches to understanding how constituent materials influence 

macroscopic composite mechanical properties rely on analytical or semi-analytical 

models, such as the Mori-Tanka27 or Halpin-Tsai144.  Mean field theories relate local 

stress and strain fields experienced by inclusions to averaged fields experienced at the 

macroscopic level.  These are often based on or are extensions of Eshleby’s24 closed form 

solution for the elastic field generated in an ellipsoidal inclusion subjected to a 

homogenous strain.  Models in these categories are advantageous in their computational 

tractability but are inherently simplistic and limited in scope.  They can provide accurate 

predictions but are usually only valid for narrow classes of materials over an even 
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narrower range of properties.  For example, the Mori-Tanka model, widely regarded as 

one of the most dependable analytical models, fails to estimate multi-phase and high-

volume fraction composite properties adequately. 145,146   

Numerical techniques have been employed in the homogenization process to 

ascertain the macroscopic or effective properties of composite materials and offer more 

accurate and robust predictions than conventional methods.34–36,87,145–149  Finite element 

based-methods can simulate complex filler-matrix combinations and geometries by 

directly simulating the composite microstructure or representative volume element 

(RVE).  While advancements in computing technology have increased the feasible 

modeling space for numerical micromechanical approaches, high computational demands 

still limit RVE complexity.  This limitation is pronounced for microstructures exhibiting 

hierarchical length scales of order.  Many composites exhibit heterogeneity at multiple 

length scales, spanning the nano-, micro-, and macro-scale.  In such a case, RVE 

homogenization must be performed at each length scale, increasing the computational 

complexity.37,77,145,145,150–154   

In this work, we propose to use Gaussian process (GP) regression to learn the 

relationships between the input (features) and output (targets) to model the effects of 

process control parameters, formulation, and composition on multiple mechanical 

performance metrics for fiber-reinforced MOC boards.  The primary benefit of this 

approach is in the flexibility and nature of the inputs the model needs to make 

predictions.  Analytical, semi-analytical, and homogenization-based approaches require 
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knowledge about constituent material properties, which might not be known to a high 

degree of certainty in the case of the complex multi-component MOC composite.  

Properties that are known may vary due to heterogeneity in raw materials.  The material 

and geometric microstructure of the numerous crystalline and amorphous phases would 

need to be measured with reasonable accuracy for these traditional micromechanical 

models to be implemented.  Even with a thorough understanding of these properties, the 

fundamental assumptions behind the models would not adequately capture the intricate, 

heterogeneous bonding and stress distribution mechanisms present within the actual 

composite material.  Given the complex nature of the MOC-filler system and the 

uncertain constituent properties, GP regression enables the performance of the final board 

to be inferred directly from the available data, avoiding the need for explicit 

microstructural modeling.   

GP regression offers flexibility in modeling complex and non-linear relationships 

between input features and material properties.155,156  Unlike analytical methods that rely 

on simplifying assumptions or closed-form equations, GPs capture intricate patterns and 

adapt to various data distributions without explicitly defining the underlying functional 

form.157  GPs offer more interpretability than alternative machine-learning models, such 

as neural networks, through intuitive feature relevance determination and kernel analysis, 

which is important when working with medium-sized data sets.158–161  Additionally, GPs 

provide probabilistic predictions with uncertainty estimates, enabling a more 

comprehensive understanding of the confidence in the predictions. 
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4.2 Methods 

Methods Overview: 

In this study, a predictive model was developed using GP regression to learn the 

relationships between various input features on target variables representing the 

mechanical properties of fiberglass-reinforced MOC cement boards.  The training data 

was obtained from the production and testing of MOC boards constructed under various 

process controls using two different formulations in which the filler material 

compositions were varied.  The input variables include board thickness, density, free 

chloride percentage, 5-phase MOC percentage, amorphous percentage, reaction 

selectivity, fiberglass strength, and formulation type.  The output variables included 

flexural strength, modulus of elasticity, brittleness index, lateral nail resistance, specific 

flexural strength, specific lateral nail resistance, and the specific lateral nail resistance 

normalized by thickness.  The output targets were treated as independent, with a single 

GP (and its associated hyperparameters) being trained for each output.   

Since the dataset contained mixed data types, the GP kernel structure was 

constructed as a combination of two squared-exponential kernels, one over a continuous 

numerical domain and the other over a categorical domain space.  Different mathematical 

combinations of the two kernels were tested.  Correlations among input variables and the 

resultant effects on the model outputs were assessed via automatic relevance 

determination (ARD).  Hyperparameter selection was performed by optimization of the 

marginal likelihood, and cross-validation was used to compare the performance of the 
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different kernel structures.  The cross-validation results were evaluated based on 

performance metrics to determine the most optimal kernel combination for a model 

output target.  The final performance for each model was evaluated using held-out 

validation test datasets.   

4.2.1 Board Production and Data Collection 

The complete collected dataset (n=80) came from the production and testing of 

fiberglass-reinforced MOC cement boards.  The production of the fiberglass-reinforced 

MOC cement boards was conducted in accordance with US Patent US7867597B2140 and 

US10696595B2162.  Two different formulations of the boards were produced, Formula A 

and Formula B, where each formulation is distinguished by its unique weight fraction of 

filler materials.  The cement boards were produced by mixing magnesium chloride with 

water to form a brine solution and then mixing the resultant solution with magnesium 

oxide, perlite, and a binding agent (e.g., wood flour) to form a wet ‘mud’ that was laid 

onto flat polymer sheets in layers with defined thickness.  The paste was further 

reinforced by layering a polyester mesh and fiberglass scrim on the top and bottom of the 

screeded mud to form a reinforced MOC board of uniform and controlled thickness.  The 

exact filler compositions are proprietary but were within the specified bounds in the 

referenced patents.  Three different fiberglass scrims were sampled and are delineated by 

their tensile strengths (75, 105, and 150 lbs/in).  The thickness and density (ASTM 

C1185-08163) of the samples were determined from fully cured test specimens.  The free 
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chloride percentages were determined by assessing the water-soluble chloride content in 

accordance with ASTM C1218-20.164 

The formulation and fiberglass inputs were treated as control parameters since 

these were directly manipulated to understand their effect on board performance.  Several 

input features are not directly controlled through processing but vary due to controlled 

parameters.  These are best described as derived parameters and include board thickness, 

density, free chloride percentage, 5-phase MOC percentage, amorphous percentage, and 

selectivity.  For example, the measured board thickness might be a function of the 

process target board thickness as well as the formulation and other uncontrolled 

parameters (noise) that inevitably occur during processing.  All other processing 

conditions, such as the curing temperature, humidity, and production speed, were 

controlled within equipment tolerances. 

4.2.1.1 Determination of MOC Board Composition via X-Ray Diffraction (XRD) 

The crystalline composition of each board was determined by quantitative X-ray 

diffraction (XRD) using the D2 PHASER (Bruker AXS) coupled with DIFFRAC.TOPAS 

(Bruker AXS) software.165  The composition was analyzed by fitting diffractograms via 

Rietveld refinement166 with crystalline profiles representing 5 Phase MOC, 3 Phase 

MOC, MgOH, chlorartinite, MgO, and hydromagnesite along with an amorphous profile 

to capture any amorphous phase from incomplete crystallization, side reactions or filler 

materials.  Selectivity was computed as the ratio of 5 Phase MOC to the sum of phases 

from expected side reactions.   
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(35) 

 

4.2.1.2 Board Performance Metrics 

The mechanical performance of the boards was measured using a Shimadzu 10kN 

precision universal tester with appropriate fixtures to determine flexural strength (ASTM 

C1185-08163), modulus of elasticity (ASTM D1037-12167), brittleness index, and lateral 

nail resistance (ASTM D1037-12167).  The brittleness index was calculated as the inverse 

of the failure strain from the 3-point break test.  The specific mechanical properties were 

calculated by dividing by the sample density. 

 

4.2.2 Gaussian Process Regression 

Gaussian process (GP) regression is a nonparametric, Bayesian approach to 

learning input-output mappings from empirical data.  It is a supervised machine learning 

method that provides probabilistic predictions with greater model interpretability than 

conventional methods, such as neural networks.  Interpretability is important in this 

specific application because it allows the relationship between each input feature and the 

corresponding influence on the output to be structured and quantitatively accessed.  GP 

regression also outperforms neural networks when training datasets are smaller.168,169   

The derivations and notations herein follow the function-space view, presented by 

Rasmussen and Williams170, which is equivalent to the weight-space view.  A GP is 

formally defined as “…a collection of random variables, any finite number of which have 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
5 𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑀𝑀𝑀𝑀 %

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐶𝐶ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 3 𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻)%
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a joint Gaussian distribution.”170  A GP is entirely specified by its mean function m(x) 

and covariance function (or kernel), 𝑘𝑘(𝑥𝑥, 𝑥𝑥′).  In this study, a single GP was trained for 

each target output variable.  The Python library GPy171 was used to handle the building 

and optimization of the GPs.  

The collected training dataset 𝒟𝒟 (from section 4.2.1) for a single output target 

consisted of 𝑛𝑛 observations, 𝒟𝒟 = {(𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖)|𝑖𝑖 = 1, … ,𝑛𝑛}, where each input 𝑥𝑥 is represented 

as a D-dimensional vector over the input space 𝒳𝒳 ∈ ℝ𝐷𝐷 corresponding to an output 𝑦𝑦.  

The task of the regression problem was to learn the real process 𝑓𝑓(𝑥𝑥), which mapped the 

inputs to the outputs, and then make predictions at a new input 𝑥𝑥∗.  The mean function 

𝑚𝑚(𝑥𝑥) was defined as the expected value of our real process 𝑓𝑓(𝑥𝑥) and was assumed to be 

zero.161,170  The covariance function can be considered as a measure of similarity between 

input 𝑥𝑥 and an alternate input 𝑥𝑥′.  The GP was defined by its mean function and 

covariance of the outputs. 

 𝑚𝑚(𝑥𝑥) = 𝔼𝔼[𝑓𝑓(𝑥𝑥)] = 0 

𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = 𝔼𝔼��𝑓𝑓(𝑥𝑥) −𝑚𝑚(𝑥𝑥)��𝑓𝑓(𝑥𝑥′) −𝑚𝑚(𝑥𝑥′)�� = cov[𝑓𝑓(𝑥𝑥),𝑓𝑓(𝑥𝑥′)] 
(36) 

Since the collected observations were assumed to be noisy, the real process was 

allowed to differ from the observations by additive independent, identically distributed 

(iid) Gaussian noise 𝜀𝜀 with variance 𝜎𝜎𝑛𝑛2.  Thus, the GP regression problem took the form, 

 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) +  𝜀𝜀, where 𝑓𝑓~𝒢𝒢𝒢𝒢(0,𝑘𝑘(𝑥𝑥, 𝑥𝑥′)) and 𝜀𝜀 ~iid 𝒩𝒩(0,𝜎𝜎𝑛𝑛2). (37) 

The covariance functions used in this study were combinations of the popular 

squared-exponential (SE) kernel, 𝑘𝑘𝑆𝑆𝑆𝑆 , and a SE-ARD (automatic relevance 
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determination172) kernel, 𝑘𝑘𝑆𝑆𝑆𝑆−𝐴𝐴𝐴𝐴𝐴𝐴, each defined over subdomains of the input space 

where the Gaussian noise can be absorbed into the kernel as the noise level parameter, 

𝜎𝜎𝑛𝑛2, 

 𝑘𝑘𝑆𝑆𝑆𝑆(𝑥𝑥, 𝑥𝑥′) = 𝜎𝜎𝑓𝑓2exp�−
(𝑥𝑥 − 𝑥𝑥′)2

2𝑙𝑙2
� + 𝜎𝜎𝑛𝑛2𝛿𝛿𝑥𝑥𝑥𝑥′ , 

𝑘𝑘𝑆𝑆𝑆𝑆−𝐴𝐴𝐴𝐴𝐴𝐴(𝑥𝑥, 𝑥𝑥′) = �𝜎𝜎𝑑𝑑2exp�−
(𝑥𝑥𝑑𝑑 − 𝑥𝑥𝑑𝑑′ )2

2𝑙𝑙2
�

𝐷𝐷

𝑑𝑑=1

= 𝜎𝜎𝑓𝑓2exp�−
1
2
�

(𝑥𝑥𝑑𝑑 − 𝑥𝑥𝑑𝑑′ )2

𝑙𝑙𝑑𝑑2

𝐷𝐷

𝑑𝑑=1

� + 𝜎𝜎𝑛𝑛2𝛿𝛿𝑥𝑥𝑥𝑥′  . 

(38) 

The covariance functions are expressed in terms of hyperparameters 𝜃𝜃 =

(𝜎𝜎𝑓𝑓2,𝜎𝜎𝑛𝑛2, 𝑙𝑙𝑑𝑑 , … 𝑙𝑙𝐷𝐷), representing the output or signal variance, the noise level parameter, 

and the characteristic lengthscales for each dimension 𝑑𝑑, respectively.  The covariance 

functions in Equation (38) express the covariance between outputs as a function of the 

inputs (and hyperparameters).  The selection of hyperparameters is discussed below 

(Section 4.2.2.3).  Once the hyperparameters are chosen, the covariance matrix 𝐾𝐾(𝑋𝑋,𝑋𝑋) 

(or Gram matrix) can be evaluated from the input data for all pairs of inputs resulting in 

an 𝑛𝑛 x 𝑛𝑛 matrix, 

 
𝐾𝐾(𝑋𝑋,𝑋𝑋) = �

𝑘𝑘(𝑥𝑥1, 𝑥𝑥1) 𝑘𝑘(𝑥𝑥1, 𝑥𝑥2) ⋯ 𝑘𝑘(𝑥𝑥1, 𝑥𝑥2)
𝑘𝑘(𝑥𝑥2, 𝑥𝑥1) 𝑘𝑘(𝑥𝑥2, 𝑥𝑥2) ⋯ 𝑘𝑘(𝑥𝑥2, 𝑥𝑥𝑛𝑛)

⋮ ⋮ ⋱ ⋮
𝑘𝑘(𝑥𝑥𝑛𝑛, 𝑥𝑥1) 𝑘𝑘(𝑥𝑥𝑛𝑛, 𝑥𝑥2) ⋯ 𝑘𝑘(𝑥𝑥𝑛𝑛, 𝑥𝑥𝑛𝑛)

�  

or with noise,𝐾𝐾(𝑋𝑋,𝑋𝑋) + 𝜎𝜎𝑛𝑛2𝐼𝐼. 

(39) 

To make predictions 𝑓𝑓∗ at a set of new query points, 𝑋𝑋∗, the joint distribution can 

be calculated from an augmented matrix containing the previous covariance matrix 

updated with the covariance between the training and new query points given by, 
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 �
𝑦𝑦
𝑓𝑓∗�~𝒩𝒩�0, �𝐾𝐾(𝑋𝑋,𝑋𝑋) + 𝜎𝜎𝑛𝑛2𝐼𝐼 𝐾𝐾(𝑋𝑋,𝑋𝑋∗)

𝐾𝐾(𝑋𝑋∗,𝑋𝑋) 𝐾𝐾(𝑋𝑋∗,𝑋𝑋∗)
��. (40) 

By conditioning the joint Gaussian prior distribution on the observations, 

𝑓𝑓∗|𝑋𝑋,𝑦𝑦,𝑋𝑋∗~𝒩𝒩�𝑓𝑓∗� ,cov(𝑓𝑓∗)�, the following predictive equations for the mean 𝑓𝑓∗�  and 

covariance cov(𝑓𝑓∗) can be derived, completely specifying the GP.   

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 →  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

𝑓𝑓∗� = 𝐾𝐾(𝑋𝑋∗,𝑋𝑋)[𝐾𝐾(𝑋𝑋,𝑋𝑋) + 𝜎𝜎𝑛𝑛2𝐼𝐼]−1𝑦𝑦 

cov(𝑓𝑓∗) = 𝐾𝐾(𝑋𝑋∗,𝑋𝑋∗)−𝐾𝐾(𝑋𝑋∗,𝑋𝑋)[𝐾𝐾(𝑋𝑋,𝑋𝑋) + 𝜎𝜎𝑛𝑛2𝐼𝐼]−1𝐾𝐾(𝑋𝑋,𝑋𝑋∗) 

(41) 

4.2.2.1 Data Preprocessing 

The collected data set contained no missing values.  The continuous (or numerical 

parameters) features were standardized by subtracting the mean and dividing the 

difference by the standard deviation.  The input feature representing formulation was 

treated as a categorical feature by constructing two dummy variables using one-of-k 

binary encoding.  This encoding adds ‘k’ additional input dimensions (one for each 

category) where the active dummy variable is specified by a one, and all other dummy 

variables are set equal to zero.  

4.2.2.2 Kernel Structure 

The input space, 𝒳𝒳, spanned a total of nine dimensions (including dummy 

variables) as determined by the prescribed formulations and the controlled or derived 

parameters.  The input space was further divided into two subdomains: one over the 

numerical dimensions 𝒳𝒳𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑤𝑤 and one over the categorical dimensions 𝒳𝒳𝑐𝑐𝑐𝑐𝑐𝑐 ∈ 𝑢𝑢.  A 
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valid compound kernel over 𝒳𝒳 can be obtained by the sum and product of kernels defined 

over the subdomains, 𝒳𝒳𝑛𝑛𝑛𝑛𝑛𝑛 and 𝒳𝒳𝑐𝑐𝑐𝑐𝑐𝑐.173  Figure 4-1 details the model inputs, outputs, 

and various kernel structures tested.  It was suspected that multiple local optima would 

exist when learning the optimal set of hyperparameter values, especially for the highest 

complexity compound kernel (sum + product, SE-ARD over both categorical and 

numerical domains), and the model behavior would be sensitive to the learning process.  

The highest complexity compound kernel was repeated to evaluate the model robustness 

to hyperparameter learning, where a new set of hyperparameters was learned and 

compared with the previous set.  

 

Figure 4-1.  Model input features, output targets, and a summary of the various compound kernel combinations 
evaluated.  
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4.2.2.3 Hyperparameter Optimization 

Since the GP is a nonparametric model representing a real, unknown process, the 

appropriate set of hyperparameter values is unknown and must be learned or inferred 

from the data.  The general process of choosing these values is referred to as 

hyperparameter optimization.  Alternate nomenclature includes hyperparameter tuning, 

training, learning, or inferring.  The optimal set is often chosen by maximizing the partial 

derivatives of the marginal likelihood with respect to the hyperparameters.  Rasmussen 

and Williams170 give the marginal likelihood as 

 log𝑝𝑝(𝑦𝑦|𝑋𝑋,𝜃𝜃) =  −
1
2
𝑦𝑦𝑇𝑇𝐾𝐾𝑦𝑦−1𝑦𝑦 − log�𝐾𝐾𝑦𝑦� −

𝑛𝑛
2

log 2𝜋𝜋 (42) 

where 𝐾𝐾𝑓𝑓 is the noise-free covariance matrix and 𝐾𝐾𝑦𝑦 = 𝐾𝐾𝑓𝑓 + 𝜎𝜎𝑛𝑛2𝐼𝐼 is the covariance matrix 

accounting for noisy observations.  The marginal likelihood in Equation (42) comprises 

three interpretable terms.  The first term, which includes the targets, 𝑦𝑦, penalizes to 

encourage accurate predictions.  The second term is a function of the inputs and 

covariance function and penalizes complex models (longer lengthscales favored), while 

the third is a normalization constant.  The natural inclusion of a trade-off between the 

data-fit and complexity terms increases the resilience of this approach to overfitting.  

Taking the partial derivative with respect to the hyperparameters yields 

 𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

log 𝑝𝑝(𝑦𝑦|𝑋𝑋,𝜃𝜃) =  1
2

tr��𝛼𝛼𝛼𝛼𝑇𝑇 − 𝐾𝐾𝑦𝑦−1�
𝜕𝜕𝐾𝐾𝑦𝑦
𝜕𝜕𝜃𝜃𝑗𝑗

� where 𝛼𝛼 = 𝐾𝐾𝑦𝑦−1𝑦𝑦. (43) 
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The set of optimal hyperparameters 𝜃𝜃 was obtained by minimizing the negative 

log-likelihood via a scaled conjugate gradient (SCG) optimizer.  Since the marginal 

likelihood may have multiple local minima, the initial guess for 𝜃𝜃 was adjusted during a 

number of optimization restarts.  One hundred restarts were used during cross-validation 

(Section 4.2.3), and ten restarts were used during validation (Section 4.2.4). 

4.2.3 Cross-Validation Scheme 

Cross-validation was used to assess the performance and as a proxy for the 

generalization error for each kernel selection.  A model’s generalizability refers to its 

ability to perform well on completely unseen data, known as a test or validation dataset.  

Cross-validation is often used when access to a true validation dataset is unavailable, or 

the acquisition of additional data is expensive or unobtainable.  Cross-validation includes 

the following general steps: 

1. A full dataset is shuffled and partitioned into a training and testing set with 

the proportion defined by the practitioner (commonly 80:20 or 70:30, train-

test split) 

2. A predictive model is trained on the training set 

3. Predictions are made using the inputs associated with the test set 

4. Error and other performance metrics are calculated by comparing the 

predicted values with that of the test values (true values) 

5. Steps 1-4 are repeated until satisfactory convergence of the performance 

metrics is obtained 
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The total number of observations in the collected dataset was small (𝑛𝑛 = 80); 

therefore, a 90:10 train-test split was selected for cross-validation.  The full dataset was 

used to estimate the hyperparameters by optimizing over one hundred random restarts of 

the initial guess.  The estimated parameters were fixed for all successive shuffle-splits.  

The covariance matrix was calculated from the training dataset (90% of the full dataset), 

and the cross-validation performance was evaluated as a cumulative average of the 

performance metrics over the 500 shuffle-splits.  A flowchart of the cross-validation 

methodology is shown in Figure 4-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2.  Flowchart of the methodology used for cross-
validation.  
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Model Performance Metrics 

Each GP consisted of a particular kernel structure for a single target output.  Once 

the hyperparameters for each GP have been selected, the model's performance can be 

assessed by comparing the predicted target outputs from the GP posterior mean to the 

true held-out target values.  The following model performance metrics174 (averaged over 

the number of shuffle-splits) were used to assess the fidelity of each kernel structure for 

each output: 

- Slope: 𝑚𝑚 of the linear regression line fit to a plot of the predicted values vs. true 

values where  𝑚𝑚 = ∑ �(𝑥𝑥ᵢ−𝑥̄𝑥)(𝑦𝑦ᵢ−ȳ)�𝑛𝑛
𝑖𝑖=1
∑ ((𝑥𝑥ᵢ−𝑥̄𝑥)2)𝑛𝑛
𝑖𝑖=1

 and a horizontal bar denotes the average 

value of that expression over the set of 𝑛𝑛 samples for the independent 𝑥𝑥ᵢ and 

dependent variables 𝑦𝑦ᵢ.  The slope is unitless, and a slope closer to unity usually 

indicates better performance (for the reason of “usually,” see references, 175,176). 

- Y-intercept: 𝑏𝑏 of the linear regression line fit to a plot of the predicted value vs. 

true value where  𝑏𝑏 = ȳ −𝑚𝑚𝑥̄𝑥.  An intercept closer to zero usually indicates 

better performance (for the reason of “usually” see references, 175,176).  The y-

intercept takes on the units of the dependent variable. 

- R2: or Coefficient of Determination where 𝑅𝑅2 = 1 −
∑ �𝑦𝑦𝑝𝑝−𝑦𝑦𝑒𝑒�

2𝑛𝑛
1

∑ (𝑦𝑦𝑒𝑒−𝑦𝑦𝑒𝑒���� )2𝑛𝑛
1

= 1 −

𝑆𝑆𝑆𝑆𝑆𝑆
∑ (𝑦𝑦𝑒𝑒−𝑦𝑦𝑒𝑒���� )2𝑛𝑛
1

 and 𝑦𝑦𝑝𝑝, 𝑦𝑦𝑒𝑒, and 𝑦𝑦𝑒𝑒�  denote the predicted output, observed true value, 

and the average observed true value.  SSE represents the sum of squared errors.  

An R2 value describes the proportion, from zero to unity, of the total variance 
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in the observed data that can be explained by the model, with higher values 

indicating that the model more accurately captures or explains the patterns and 

trends in the data. 

- RMSE: or Root Mean Square Error where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ �𝑦𝑦𝑝𝑝−𝑦𝑦𝑒𝑒�
2𝑛𝑛

1
𝑛𝑛

.  It is 

interpreted as a measure of how much the predicted values deviate, on average, 

from the observed values; thus, a lower RMSE indicates better predictive 

performance.  The RMSE is measured in the same units as the dependent 

variable and emphasizes larger errors (since the errors are squared first before 

taking the square root).  This penalizes outliers more heavily than MAE.  This 

metric is more useful when large errors are detrimental.  

- MAE: or Mean Absolute Error where 
∑ �𝑦𝑦𝑝𝑝−𝑦𝑦𝑒𝑒�𝑛𝑛
1

𝑛𝑛
.  MAE measures the average 

magnitude of the residuals (i.e., the differences between the observed and 

predicted values) without considering their direction.  MAE is a more natural 

measure of average error than RMSE.177 

4.2.4 Validation Scheme 

Model validation was performed by shuffling the full dataset and removing 10% 

to be withheld entirely from the training process as a validation dataset.  Model training 

consisted of optimizing the hyperparameters (Section 4.2.2.3) on the 90% of data 

reserved as a training dataset over ten random restarts of the initial guess.  The covariance 

matrix was also constructed from the 90% training dataset.  Validation metrics were 
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computed by comparing the predicted values from the GP mean to the true values 

withheld in the independent test dataset.  The validation performance was averaged over 

ten shuffle-splits, each time re-training a new set of hyperparameters.  The performance 

metrics were those defined for cross-validation.  A flowchart of the validation 

methodology is shown in Figure 4-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3.  Flowchart of the methodology used for model 
validation. 
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4.3 Results and Discussion 

4.3.1 Evaluating Model Performance via Cross-Validation 

The first three shuffle-split iterations of cross-validation (for an example kernel,  

𝑘𝑘 = 𝑘𝑘𝑆𝑆𝑆𝑆−𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑘𝑘𝑆𝑆𝑆𝑆−𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 ), where the true value is plotted against the predicted value, is 

shown in Figure 4-4 as an example.  Each row of graphs contains one iteration 

corresponding to one random configuration of test-train data.  Each column of graphs 

corresponds to an output variable, from left to right: flexural strength, modulus of 

elasticity, brittleness index, lateral nail resistance, specific flexural strength, specific 

lateral nail resistance, and the specific lateral nail resistance normalized by thickness.   

Visually one can access the performance of a target variable for a given kernel by 

comparing the linear fit to the 𝑦𝑦 = 𝑥𝑥 line which denotes a perfect prediction.  The third 

column of graphs corresponds to the evaluation of the Brittleness Index performance, 

which appears to perform the worst as evidenced by deviation from the perfect fit line 

and large 95% confidence intervals associated with the posterior mean predictions.  

While a qualitative performance measure can be assessed from these three iterations, a 

more accurate performance of the kernels is quantitively measured by averaging the 

performance metrics over five hundred shuffle-split iterations. 
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Figure 4-4.  The first three shuffle-split iterations of cross-validation where the true value is plotted against the predicted value.  The 𝑦𝑦 = 𝑥𝑥 line denotes a perfect 
prediction.  Each row of graphs contains one iteration corresponding to one random configuration of test-train data.  Each column of graphs corresponds to an output 

variable, from left to right: flexural strength, modulus of elasticity, brittleness index, lateral nail resistance, specific flexural strength, specific lateral nail resistance, and
the specific lateral nail resistance normalized by thickness.  Error bars denote 95% confidence intervals about the mean. 
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An important distinction must be made when discussing the ‘training’ of a GP as 

contrasted with other types of training in the machine learning literature.  The training of 

a GP could be thought of as two distinct processes, one where 1) the hyperparameters are 

estimated from a training dataset and 2) the covariance or Gram matrix is calculated from 

a training dataset.  These two components of ‘training’ are often performed on the same 

dataset; however, with a GP, this need not be.  Within the context of cross-validation and 

validation, the Gram matrix will always be calculated from the training dataset alone 

because predicting values that the model has already ‘seen’ is trivial and not a useful 

metric.  However, it is possible to learn the hyperparameters using the full dataset (rather 

than a subset, i.e., training dataset) while using the limited training dataset to compute the 

Gram matrix.   

This study used the full dataset in cross-validation to estimate GP 

hyperparameters, an approach similar to ‘pre-training’ or ‘pre-optimization’ within the 

broader machine learning literature.178,179  This is contrasted with the validation 

methodology, which optimizes for a new set of hyperparameters each iteration.  Since the 

hyperparameters are not retrained each successive shuffle-split iteration, the 

computational cost is reduced, and the total number of shuffle-splits (500) can be large, 

resulting in a cumulative average performance metric that is robust to any specific 

configuration (or shuffle) of training data.  This is demonstrated in Figure 4-5 for the 

most complex kernel, the sum + product kernel (ARD for both numerical and categorical 
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dimensions), where the cumulative average performance metrics approach a convergent 

value.   

The results in Figure 4-5 demonstrate that a significant bias, as indicated by rapid 

oscillations, in the performance metrics exists when the total number of shuffle-split 

Figure 4-5.  The cross-validation performance metrics for the sum + product kernel defined as 𝑘𝑘 =
𝑘𝑘𝑆𝑆𝑆𝑆−𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑘𝑘𝑆𝑆𝑆𝑆−𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑘𝑘𝑆𝑆𝑆𝑆−𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑘𝑘𝑆𝑆𝑆𝑆−𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛  calculated as a cumulative average at each iteration.  
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iterations is small.  This is expected as the configuration of the training-test split alters the 

domain on which the model is trained and the domain on which predictions are made.  

There is a significant variance in the model error estimates at a low number of iterations 

due to the configurational bias of the test-train split.  This variance is induced by changes 

to the values the model must extrapolate and interpolate.  A GP might perform well at 

interpolating within a trained input space but can usually only extrapolate accurately from 

its domain about the distance of one length scale hyperparameter away from its 

respective dimension.161,170,172  The length scale hyperparameter of a squared-exponential 

kernel, estimated during optimization, encodes the average length over which a GP will 

decay back to its specified mean (in this study, zero).  Therefore, the model error will 

increase if the prediction of held-out data requires extrapolation due to training on a 

subset (limited domain).  Despite learning hyperparameters from the full dataset, 

interpolation performance is also affected by altering the covariance matrix at each 

iteration.  The cumulative cross-validation metrics over the 500 shuffle-splits are given in 

Appendix C for the remaining kernel structures evaluated.    

The final performance metric for cross-validation is taken as the cumulative 

average at iteration=500, and the performance for prediction of the flexural (and specific) 

strength for each kernel is summarized in Figure 4-6 (tabulated values are given in 

Appendix C).  The performance associated with predicting the modulus of elasticity and 

brittleness index is shown in Figure 4-7 and Figure 4-8 for the lateral nail resistance, 

specific lateral nail resistance, and specific lateral nail resistance / thickness.  The kernel 
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structures in these figures are arranged from left to right by decreasing R2 (the best-

performing kernel on the left). 

Figure 4-6.  Cross-validation performance of flexural (and specific) strength for each kernel averaged over 500 
shuffle-split iterations arranged from left to right by decreasing R2. 

Figure 4-7.  Cross-validation performance of modulus of elasticity and brittleness index for each kernel averaged 
over 500 shuffle-split iterations arranged from left to right by decreasing R2. 
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A few general trends can be observed from the figures.  As expected, kernel 

performance for a given model output as measured by R2 corresponded almost perfectly 

with the ranking by the other metrics.  In other words, increases in R2 almost always 

coincided with decreases in RMSE and MAE, slopes closer to unity, and y-intercepts 

closer to zero.  Interestingly, the ranking of kernel performance by R2 was identical for 

Figure 4-8.  Cross-validation performance of lateral nail resistance, specific lateral nail resistance, and specific lateral 
nail resistance / thickness for each kernel averaged over 500 shuffle-split iterations arranged from left to right by 

decreasing R2. 
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all forms of lateral nail resistance (including specific and normalized thickness).  This 

might be expected since ‘specific’ and ‘specific normalized by thickness’ lateral nail 

resistance is a function of the density and thickness, both of which are included as inputs 

to the model; however, the same trend is not observed with flexural and specific flexural 

strength.  Also notable, for all forms of lateral nail resistance, the y-intercept tended to be 

less than the RMSE or MAE, contrary to the trend established by the other outputs.  For 

all outputs in general, the more complex kernel structures having more parameters (i.e., 

Sum + Product) tended to perform the best.  By taking the best-performing kernel for 

each output as determined by R2, the outputs can be compared to one another and ranked 

according to how easily they can be predicted from the data given the assumptions of the 

GP.  From highest predictive capacity to least: 

Lateral Nail Resistance → Specific Lateral Nail Resistance → Modulus of Elasticity → 

Specific Lateral Nail Resistance / Thickness → Specific Flexural Strength → Flexural 

Strength → Brittleness Index 

4.3.2 Model Sensitivity to Hyperparameter Tuning 

Figure 4-9 compares the optimal set of length scale hyperparameters for the most 

complex kernel structure learned from the full dataset to a repeated instance of the same 

kernel structure.  Both kernels were optimized over one hundred restarts of the initial 
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guess.  The noted kernel consists of two SE-ARD kernels, one over the categorical 

domain and one over the numerical domain.  It is defined as:  

𝑘𝑘 = 𝑘𝑘𝑆𝑆𝑆𝑆−𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑘𝑘𝑆𝑆𝑆𝑆−𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑘𝑘𝑆𝑆𝑆𝑆−𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑘𝑘𝑆𝑆𝑆𝑆−𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛  

and contains 23 hyperparameters.  The ARD kernel lets each input feature have its own 

characteristic length scale, the inverse of which serves as a proxy for the feature's value 

or relevance in the regression process.  When the length scale becomes infinitely large, it 

implies no correlation between the latent function values along that dimension.170,172,180  

Therefore, the inverse of a large length scale can be thought of as a measure of its 

relevance to the prediction.  This feature-specific length scale is computed automatically 

during model training, thus the phrase "Automatic Relevance Determination."    

The interpretability of the model hyperparameters distinguishes GPs from the 

myriad of machine learning methods and assists the practitioner in feature selection, 

providing intuition about underlying data.181–183  In Figure 4-9, the similar proportional 

Figure 4-9.  Automatic relevance determination (ARD) plots for the most complex kernel evaluated.  The 
relevance of each input dimension is proportional to the inverse of its characteristic length scale.  The ARD plot 
is given as an example and corresponds to the kernel trained on the Specific Lateral Nail Resistance / Thickness. 
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ARD contributions by each dimension (inverse of the lengthscale) for the repeated kernel 

demonstrate the robustness of the hyperparameter estimation under the specified 

optimization framework.  It should be noted that this measures how robust the 

hyperparameter estimation is to the optimization for a given dataset, not how robust the 

estimation is to a changing dataset, as one would encounter in successive iterations of 

cross-validation. 

4.3.3 Validation of Model 

In contrast to the methodology used for cross-validation, model validation was 

performed by holding out a true ‘unseen’ validation dataset where the hyperparameters 

are re-trained each successive test-train split using only the limited training dataset.  The 

performance evaluated during validation gives a more accurate measurement of how well 

the model fitting procedure (including the hyperparameter tuning) generalizes to new 

data.  Validation also measures how robust the model is to the hyperparameter estimation 

for a changing training dataset.  Successive validation (shuffle-split) iterations yielding 

significantly different hyperparameter values indicate sensitivity to the training subset, 

and thus, a point estimate of the hyperparameters may not be accurate.   

The validation performance metrics are summarized in Figure 4-11, Figure 4-10, 

and Figure 4-12 (tabulated values are given in Appendix C).  The ranking of kernel 

structures with each output tended to be more disordered than in cross-validation.  This 

was expected as the performance metrics were only averaged over ten shuffle-split 

iterations.  Instead of ranking kernel structure performance within an output, the 
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validation results give an overall idea of how well the kernels perform, as a collective, on 

unseen data.   

Figure 4-10.  Validation performance of flexural (and specific) strength for each kernel averaged over 10 shuffle-split 
iterations arranged from left to right by decreasing R2. 

Figure 4-11.  Validation performance of modulus of elasticity and brittleness index for each kernel averaged over 10 
shuffle-split iterations arranged from left to right by decreasing R2. 
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The results indicate that the proposed kernels perform exceptionally well at 

predicting lateral nail resistance properties and the modulus of elasticity, reasonably well 

flexural strength properties, and the worst at the brittleness index.  Table 4-1 compares 

Figure 4-12.  Validation performance of lateral nail resistance, specific lateral nail resistance, and specific lateral 
nail resistance / thickness for each kernel averaged over 10 shuffle-split iterations arranged from left to right by 

decreasing R2. 
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the cross-validation and validation performance for the best-performing kernel for each 

mechanical property. 

Table 4-1.  Comparison of cross-validation and validation performance for best-performing kernel 
Output R2 Cross-validation R2 Validation 

Lateral Nail Resistance 0.940 0.940 
Specific Lateral Nail Resistance 0.925 0.921 

Modulus of Elasticity 0.898 0.908 
Specific Lateral Nail Resistance / Thickness 0.892 0.86 

Specific Flexural Strength 0.735 0.691 
Flexural Strength 0.732 0.659 
Brittleness Index 0.692 0.535 

4.3.4 Feature Analysis 

The sensitivity and importance of each input feature on each model output can be 

assessed by examining the ARD contributions, as shown in Figure 4-9, and by taking 

one-dimension slices from the fully trained GP across the relevant input parameter space 

while holding all other parameters constant.  Because these parameters must be fixed, the 

most reasonable approach is to fix each at their respective median values.   

Since the formulation is a categorical variable, it was fixed at either a one or zero 

for each set of parameter slices.  The ‘slicing’ across the formulation is an abstract idea 

that can be intuitively understood as blending Formula A to Formula B for a given output 

giving an idea of the comparative magnitudes each formulation has for each output.  

Slicing across the formulations was performed by varying the one-of-k encoding 

representing Formula A [0→1] while simultaneously varying the encoding for B as 

[1→0].  In practice, predictions would always occur at a one or zero, as any other value is 
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a hypothetical construct.  One-dimensional slices are shown in Figure 4-13 - Figure 4-19 

for an example kernel 𝑘𝑘 = 𝑘𝑘𝑆𝑆𝑆𝑆−𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑘𝑘𝑆𝑆𝑆𝑆−𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 .  The underlying training data is plotted as 

markers colored according to their formulation (red for Formulation A and blue for 

Formulation B.  The continuous curves represent the GP posterior mean and the shaded 

regions 95% confidence intervals about the mean.   
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Figure 4-13.  One-dimensional slices of Flexural Strength for Formula A (top) and Formula B (bottom).  Fixed parameters are held at median values. 

A 

B 
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Figure 4-14.  One-dimensional slices of Spc. Flexural Strength for Formula A (top) and Formula B (bottom).  Fixed parameters are held at median values. 

A 

B 
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Figure 4-15.  One-dimensional slices of Modulus for Formula A (top) and Formula B (bottom).  Fixed parameters are held at median values. 
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B 
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Figure 4-16.  One-dimensional slices of Brittleness Index for Formula A (top) and Formula B (bottom).  Fixed parameters are held at median values. 
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B 
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Figure 4-17.  One-dimensional slices of Lateral Nail Resistance for Formula A (top) and Formula B (bottom).  Fixed parameters are held at median 

values. 
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B 
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Figure 4-18.  One-dimensional slices of Spc. Lateral Nail Resistance for Formula A (top) and Formula B (bottom).  Fixed parameters are held at median values. 
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Figure 4-19.  One-dimensional slices of Spc. Lateral Nail Resistance/Thickness for Formula A (top) and Formula B (bottom).  Fixed 

parameters are held at median values. 
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B 
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Some notable observations are: 

- Comparing the curves for Formula A vs. B with the underlying training data, it

is observed that the model accurately separates the mean based on the active

category.

- The GP intuitively quantifies uncertainty about unknown input domain areas

with sparse training data.

- The GP intuitively quantifies the data's spread resulting from noisy

observations.

- Increasing the fiber-glass reinforcement strength increased the composite

flexural strength, as expected.

- Mechanical properties sensitive to thickness and density are accurately

predicted to be insensitive when normalized by the respective thickness or

density.

- All mechanical performance metrics were insensitive to free chloride

percentage and selectivity (across the domains sampled by the training data).

- An increase in the 5-Phase MOC percentage generally improved all the

mechanical performance metrics for both formulations except for the lateral nail

resistance properties.

- The lateral nail resistance was highly correlated with thickness as expected.

Thicker boards generally provide more material for the nails to distribute the
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load, resulting in higher resistance to lateral forces.  This effect was mitigated 

after normalizing by the thickness.  

- The complex non-linear surfaces predicted by the model highlight the 

advantages of the nonparametric statistical model. 

4.4 Conclusion 

In this work, a predictive model was built using Gaussian Process (GP) regression 

to understand the relationships between various input features and the mechanical 

properties of fiberglass-reinforced MOC cement boards.  The model was trained using 

data obtained from the production and testing of MOC boards with different process 

controls and formulations.  The input variables included board thickness, density, free 

chloride percentage, MOC 5-phase percentage, amorphous percentage, reaction 

selectivity, fiberglass strength, and formulation type.  The output variables consisted of 

flexural strength, modulus of elasticity, brittleness index, lateral nail resistance, specific 

flexural strength, specific lateral nail resistance, and specific lateral nail resistance 

normalized by thickness.  Each output was modeled separately using a GP with its 

associated kernel and hyperparameters.  

Different combinations of kernels were tested, and correlations among input 

variables were assessed using automatic relevance determination and visualization of 

one-dimensional slices across the input feature space.  The test kernel structures consisted 

of additive and product combinations of squared-exponential kernels (and SE-ARD) over 

continuous numerical and categorical features.  The most optimal kernel combination for 
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each model output was determined based on performance metrics from cross-validation, 

and the final performance of each model was evaluated using held-out validation test 

datasets.   

Based on the validation results, the proposed kernels performed exceptionally 

well at predicting lateral nail resistance properties (R2=0.940) and the modulus of 

elasticity (R2=0.908), reasonably well flexural strength properties (R2=0.691), and the 

worst at the brittleness index (R2=0.535).  The application of GP regression to predict the 

performance of fiber-reinforced MOC cement boards is an innovative approach that 

improves our understanding of the material and the factors that lead to enhanced 

performance and utility in the industry.   
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CHAPTER 5  

CONCLUSIONS AND FUTURE DIRECTIONS 

5.1 Future Work 

This research has provided significant strides in the development of 

comprehensive frameworks that predict the mechanical behavior of composite materials 

while quantifying and propagating uncertainty throughout predictions.  Through the 

combination of computational methods, including finite element analysis and Gaussian 

process regression, it was shown that it is possible to infer the interphase properties of 

composite materials, model the effects of helically symmetric microstructures on 

macroscopic behavior, and develop accurate predictive models for complex composite 

systems.  The nature of scientific exploration suggests that every answer opens new 

questions.  Future research could expand upon the foundation built in this dissertation in 

several important directions: 

1.  Non-linear behavior:  The applications of the research presented in this work 

only needed to assume linear elastic behavior, which usually approximates material 

behavior in small strain regimes.  The FE-based framework is easily adaptable and 

particularly well suited for expansion to the non-linear regime of composite materials, 

which could enable the prediction and calibration for many other classes of composites 

and constitutive relationships. 

2.  Exploring other machine learning algorithms:  The presented work has 

effectively utilized Gaussian process regression for surrogate modeling and predictions, 
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which is relevant to an engineer interested in model parameter interpretability.  However, 

the rapidly evolving landscape of machine learning (ML) provides many other algorithms 

that may offer different or more precise insights into related tasks.  Each ML method has 

its own advantages and requirements.  Selecting the most suitable ML algorithm would 

depend on the specifics of the problem, including the nature and amount of data 

available, the complexity of the task, and the balance between prediction accuracy and 

model interpretability.  Furthermore, a combination of multiple models, also known as 

ensemble methods or hybrid models, might provide better performance by leveraging the 

strengths of different ML techniques.  

3.  Optimization of MOC board formulation:  A prospective line of research could 

revolve around perfecting the formulation of the MOC cement boards by employing 

Multi-Objective optimization techniques.  These techniques aim to find the best trade-

offs when dealing with conflicting objectives, and they are especially suited to problems 

where no single solution optimizes all objectives simultaneously.  The optimization 

process could center on multiple objectives, namely maximizing performance attributes 

(such as mechanical strength, durability, and stability) while simultaneously minimizing 

cost, density, and even product variability.  These goals often conflict: enhancing 

performance characteristics may necessitate more expensive materials or processes or 

increases in density.  Conversely, minimizing costs or density may negatively impact 

performance.  A detailed model of the relationships between MOC board formulation, its 

performance characteristics, cost, and density will be essential for this optimization.  The 
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computational models developed in this research could provide valuable insights into 

these relationships.   

The optimization procedure would likely require a suitable algorithm for Multi-

Objective Optimization, such as Pareto-based evolutionary algorithms or swarm 

intelligence techniques, which can effectively navigate the trade-off surface to identify 

the Pareto-optimal solutions.184–188  These represent the set of solutions for which no 

other solution exists that is better in all objectives, as shown in Figure 5-1, thus providing 

a range of optimal choices depending on the relative importance of the objectives.  The 

result would enable informed decision-making in MOC board design and manufacturing 

process, improving product performance and cost-effectiveness. 

 

 

Figure 5-1.  Illustration of the Pareto front, for a multi-objective optimization problem. 
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4.  Correlated Outputs:  The Gaussian process (GP) models developed in this 

work treated each output as independent, creating a distinct GP for every output.  

However, different output variables may exhibit correlations in many physical systems, 

including composite materials.  For example, the strength and stiffness of a composite 

could be influenced by similar factors and thus could be correlated.  Ignoring these 

correlations may lead to sub-optimal models and underutilized data.   

A future direction could be to improve the GP models by considering correlations 

between different output variables.  This could be accomplished by utilizing Multi-task 

GPs, a class of models that have been specifically developed to model and predict 

multiple outputs that are potentially correlated.  Multi-task GPs extend the standard GP 

models by modeling the functions that represent each output and the cross-correlations 

between these functions.  The correlation is typically expressed in terms of a covariance 

function (or kernel), much like in standard GPs, but now the covariance is a function of 

both the input and the output tasks.  This allows the model to share information across 

tasks, improving the model's predictive performance, especially when some tasks have 

fewer observations than others. 

5.2 Conclusion  

Each chapter in this dissertation focused on various aspects of multiscale 

composite material modeling, providing unique insights into the intricacies of the 

relationship between structure and properties.  In Chapter 2, a novel framework was 

proposed to model the interphase effects and infer the key mechanical properties of the 
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interphase region from experimental measurements of the composite’s bulk elastic 

modulus.  The framework demonstrated the ability to match experimental data within 

experimental error and revealed insights into the relationship between filler particle size 

and interphase properties.  Chapter 3 investigated the effect of CNC alignment in an 

alginate matrix on the composite's mechanical behavior.  A multi-scale model was 

developed that captured the helical microstructural alignment of the CNCs and its effect 

on the macroscopic mechanical behavior of the composite.  The results show the 

significant influence of microstructural heterogeneity on the macroscopic properties.  

Chapter 4 developed a predictive model using Gaussian process regression to understand 

the relationship between various input features and the mechanical properties of 

fiberglass-reinforced MOC cement boards.  The model showed promising results in 

predicting multiple mechanical properties, providing a valuable framework for 

optimizing the production process. 

The work presented in this dissertation significantly expands composite materials 

research, paving the way for more accurate predictions that consider uncertainty, rapid 

material discovery, and the optimization of engineered structures.  Future research 

endeavors will further strengthen the impact of the reported work.  
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Appendix A. Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comment: Figure A-1 demonstrates how the interphase volume fraction changes 

significantly with particle size for a fixed interphase thickness.  Note that this interphase 

volume fraction can potentially exceed the  5 % vol. of filler used in this scenario.  As the 

particle size is reduced, the interphase volume fraction starts to dominate the composite 

composition.  This domination of interphase regions can lead to dramatically different 

overall composite material properties; thus, it is essential to accurately account for the 

properties of the interphase when developing accurate micromechanical models. 

Figure A-1.  Calculation of the interphase volume fraction for a composite 
with constant interphase thicknesses for spherical filler particles at a 

volume fraction of 0.05. 
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Figure A-3.  Improvement of the GP by adding 75 additional FE observations when the interphase 
thickness was zero, i.e., only matrix and filler were included in the RVE. 

 

                

 
 

 
Figure A-2.  Schematic of material homogenization.  At the local scale, the heterogeneous material has a 
rapidly varying and periodic field of material properties.  This material can be represented at the global 

scale by an effective material with constant fields. 
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Figure A-4.  The following are given for the glass-polycarbonate composite: a) approximate posterior 
distributions of the interphase modulus and absolute thickness for each particle size as indicated above, b) 

approximate posterior distributions for the slope and intercept parameters for absolute thickness as a function 
of particle size, and c) a comparison between the calibrated results and experimental results. Continuous 

curves are from the GP, sliced across the filler volume fraction with fixed values of the calibrated interphase 
thickness and modulus.  The markers indicate experimental measurements. 

thickness and modulus.  
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Figure A-5.  The following are given for the glass-SAN composite: a) approximate posterior distributions 
of the interphase modulus and absolute thickness for each particle size as indicated above, b) approximate 

posterior distributions for the slope and intercept parameters for absolute thickness as a function of 
particle size, and c) a comparison between the calibrated results and experimental results.  Continuous 

curves are from the GP, sliced across the filler volume fraction with fixed values of the calibrated 
interphase thickness and modulus.  The markers indicate experimental measurements. 
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Figure A-6.  The following are given for the glass-PP composite: a) approximate posterior distributions of 
the interphase modulus and absolute thickness for each particle size as indicated above, b) approximate 

posterior distributions for the slope and intercept parameters for absolute thickness as a function of particle 
size, and c) a comparison between the calibrated results and experimental results.  Continuous curves are 

from the GP, sliced across the filler volume fraction with fixed values of the calibrated interphase 
thickness and modulus.  The markers indicate experimental measurements. 
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Figure A-7.  The following are given for the alumina-polystyrene composite: a) approximate 
posterior distributions of the interphase modulus for each particle size, b) absolute thickness 
for each particle size, and c) a comparison between the calibrated results and experimental 
results.  Continuous curves are from the GP, sliced across the filler volume fraction with 
fixed values of the calibrated interphase thickness and modulus.  The markers indicate 

experimental measurements. 
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Figure A-8.  The following are given for the alumina-SAN composite: a) approximate 
posterior distributions of the interphase modulus for each particle size, b) absolute thickness 
for each particle size, and c) a comparison between the calibrated results and experimental 
results.  Continuous curves are from the GP, sliced across the filler volume fraction with 
fixed values of the calibrated interphase thickness and modulus.  The markers indicate 

experimental measurements. 
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Figure A-9.  Alternate angle of two-dimensional slices at various fixed volume fractions, 
illustrating the effects of the two calibration parameters on the overall effective elastic 
modulus.  The heat map indicates the confidence intervals estimated from the posterior 

distribution at a given set of inputs.  
Em = 3.45 GPa Ef = 70 GPa vm = 0.34 vf = 0.22 
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Appendix A. Discussion 

AD-1. 

The stiffness tensor of a material obeying Hooke’s law has 81 independent 

elements; however, stress and strain symmetries reduce this number to 36 unique entries. 

These entries can be represented in matrix notation.189  Major symmetries from the strain 

energy function reduce the compliance, 𝑆𝑆, and stiffness matrices to 21 independent elastic 

constants and requires that 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑗𝑗𝑗𝑗 and 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑗𝑗𝑗𝑗,.  A material with these symmetries 

and physical properties that vary depending on the axes of measurement is referred to as 

Figure A-10.  Interphase volume fraction vs filler volume fraction plotted using the calibrated 
slope and intercept for each of the six composites. 
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an anisotropic material.  Further reductions in the number of independent constants can 

be made if the material exhibits planes of symmetry. 

AD-2. 

The meshing density (number of elements per inclusion) was held approximately 

constant as the number of inclusions in the RVE was increased.  This was achieved by 

scaling the mesh size by the simulated particle size.   
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The code to generate the macroscale fiber model with 20 ‘pie-slice’ subdivisions in 
ANSYS SpaceClaim. 

File name = ‘dissertation_20_pie_slice_geometry_drawer.scscript’ 

# Python Script, API Version = V17 
 
# Set Sketch Plane 
selection = Selection.Create(CoordinateSystem1) 
result = ViewHelper.SetSketchPlane(selection, Info1) 
# EndBlock 
 
# Sketch Point 
point = Point2D.Create(MM(0), MM(0)) 
result = SketchPoint.Create(point) 
# EndBlock 
 
# Sketch Circle 
origin = Point2D.Create(MM(0), MM(0)) 
result = SketchCircle.Create(origin, MM(0.2)) 
# EndBlock 
 
# Rename 'Point' to 'Origin' 
selection = Selection.Create(Curve1) 
result = RenameObject.Execute(selection,"Origin") 
# EndBlock 
 
# Sketch Line 
start = Point2D.Create(MM(1.22460635382238E-17), MM(0.2)) 
end = Point2D.Create(MM(0), MM(0)) 
result = SketchLine.Create(start, end) 
# EndBlock 
 
# Solidify Sketch 
mode = InteractionMode.Solid 
result = ViewHelper.SetViewMode(mode, Info2) 
# EndBlock 
 
# Extrude 20 Edges 
selection = Selection.Create(Curve2, Curve3, Curve4, Curve5, Curve6, Curve7, Curve8, 
Curve9, Curve10, Curve11, Curve12, Curve13, Curve14, Curve15, Curve16, Curve17, 
Curve18, Curve19, Curve20, Curve21) 
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options = ExtrudeEdgeOptions() 
options.PullSymmetric = False 
options.Copy = False 
options.ExtrudeType = ExtrudeType.None 
result = ExtrudeEdges.Execute(selection, MM(30), options, Info3) 
# EndBlock 
 
# Extrude 20 Faces 
selection = Selection.Create(Face1, Face2, Face3, Face4, Face5, Face6, Face7, Face8, 
Face9, Face10, Face11, Face12, Face13, Face14, Face15, Face16, Face17, Face18, 
Face19, Face20) 
options = ExtrudeFaceOptions() 
options.KeepMirror = True 
options.KeepLayoutSurfaces = False 
options.KeepCompositeFaceRelationships = True 
options.PullSymmetric = False 
options.OffsetMode = OffsetMode.IgnoreRelationships 
options.Copy = False 
options.ForceDoAsExtrude = False 
options.ExtrudeType = ExtrudeType.Add 
result = ExtrudeFaces.Execute(selection, MM(30), options, Info4) 
# EndBlock 
 
# Create Datum Plane 
selection = Selection.Create(Face21) 
result = DatumPlaneCreator.Create(selection, True, Info5) 
# EndBlock 
 
# Create Datum Plane 
origin = Point.Create(MM(0.2), MM(0), MM(0)) 
zDir = Direction.DirX 
result = DatumPlaneCreator.Create(origin, zDir, True, Info6) 
# EndBlock 
 
# Delete Objects 
selection = Selection.Create(DatumPlane1) 
result = Delete.Execute(selection) 
# EndBlock 
 
# Delete Objects 
selection = Selection.Create(DatumPlane2) 
result = Delete.Execute(selection) 
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# EndBlock 
 
# Create Datum Plane 
origin = Point.Create(MM(0.2), MM(0), MM(30)) 
zDir = Direction.DirY 
result = DatumPlaneCreator.Create(origin, zDir, False, Info7) 
# EndBlock 
 
# Create Datum Plane 
origin = Point.Create(MM(0.190211303259031), MM(-0.0618033988749895), MM(30)) 
zDir = Direction.Create(0.309016994374947, 0.951056516295154, 0) 
result = DatumPlaneCreator.Create(origin, zDir, False, Info8) 
# EndBlock 
 
# Create Datum Plane 
origin = Point.Create(MM(0.16180339887499), MM(-0.117557050458495), MM(30)) 
zDir = Direction.Create(0.587785252292473, 0.809016994374948, 0) 
result = DatumPlaneCreator.Create(origin, zDir, False, Info9) 
# EndBlock 
 
# Create Datum Plane 
origin = Point.Create(MM(0.117557050458495), MM(-0.161803398874989), MM(30)) 
zDir = Direction.Create(0.809016994374947, 0.587785252292473, 0) 
result = DatumPlaneCreator.Create(origin, zDir, False, Info10) 
# EndBlock 
 
# Create Datum Plane 
origin = Point.Create(MM(0.0618033988749895), MM(-0.190211303259031), MM(30)) 
zDir = Direction.Create(0.951056516295154, 0.309016994374948, 0) 
result = DatumPlaneCreator.Create(origin, zDir, False, Info11) 
# EndBlock 
 
# Create Datum Plane 
origin = Point.Create(MM(1.22460635382238E-17), MM(-0.2), MM(30)) 
zDir = Direction.DirX 
result = DatumPlaneCreator.Create(origin, zDir, False, Info12) 
# EndBlock 
 
# Create Datum Plane 
origin = Point.Create(MM(-0.0618033988749895), MM(-0.190211303259031), 
MM(30)) 
zDir = Direction.Create(0.951056516295154, -0.309016994374947, 0) 
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result = DatumPlaneCreator.Create(origin, zDir, False, Info13) 
# EndBlock 
 
# Create Datum Plane 
origin = Point.Create(MM(-0.117557050458495), MM(-0.16180339887499), MM(30)) 
zDir = Direction.Create(0.809016994374948, -0.587785252292473, 0) 
result = DatumPlaneCreator.Create(origin, zDir, False, Info14) 
# EndBlock 
 
# Create Datum Plane 
origin = Point.Create(MM(-0.161803398874989), MM(-0.117557050458495), MM(30)) 
zDir = Direction.Create(0.587785252292473, -0.809016994374947, 0) 
result = DatumPlaneCreator.Create(origin, zDir, False, Info15) 
# EndBlock 
 
# Create Datum Plane 
origin = Point.Create(MM(-0.190211303259031), MM(-0.0618033988749895), 
MM(30)) 
zDir = Direction.Create(0.309016994374948, -0.951056516295154, 0) 
result = DatumPlaneCreator.Create(origin, zDir, False, Info16) 
# EndBlock 
 
 
# Delete Objects 
selection = Selection.Create(Body41) 
result = Delete.Execute(selection) 
# EndBlock 
 
# Slice Bodies by Plane 
selection = Selection.Create(Body42) 
datum = Selection.Create(DatumPlane13) 
result = SplitBody.Execute(selection, datum, Info27) 
# EndBlock 
 
# Slice Bodies by Plane 
selection = Selection.Create(Body42, Body43) 
datum = Selection.Create(DatumPlane14) 
result = SplitBody.Execute(selection, datum, Info28) 
# EndBlock 
 
# Slice Bodies by Plane 
selection = Selection.Create(Body42, Body43, Body44, Body45) 
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datum = Selection.Create(DatumPlane15) 
result = SplitBody.Execute(selection, datum, Info29) 
# EndBlock 
 
# Slice Bodies by Plane 
selection = Selection.Create(Body42, Body43, Body44, Body45, Body46, Body47) 
datum = Selection.Create(DatumPlane16) 
result = SplitBody.Execute(selection, datum, Info30) 
# EndBlock 
 
# Slice Bodies by Plane 
selection = Selection.Create(Body42, Body43, Body44, Body45, Body46, Body47, 
Body48, Body49) 
datum = Selection.Create(DatumPlane17) 
result = SplitBody.Execute(selection, datum, Info31) 
# EndBlock 
 
# Slice Bodies by Plane 
selection = Selection.Create(Body42, Body43, Body44, Body45, Body46, Body47, 
Body48, Body49, Body50, Body51) 
datum = Selection.Create(DatumPlane18) 
result = SplitBody.Execute(selection, datum, Info32) 
# EndBlock 
 
# Slice Bodies by Plane 
selection = Selection.Create(Body42, Body43, Body44, Body45, Body46, Body47, 
Body48, Body49, Body50, Body51, Body52, Body53) 
datum = Selection.Create(DatumPlane19) 
result = SplitBody.Execute(selection, datum, Info33) 
# EndBlock 
 
# Slice Bodies by Plane 
selection = Selection.Create(Body42, Body43, Body44, Body45, Body46, Body47, 
Body48, Body49, Body50, Body51, Body52, Body53, Body54, Body55) 
datum = Selection.Create(DatumPlane20) 
result = SplitBody.Execute(selection, datum, Info34) 
# EndBlock 
 
# Slice Bodies by Plane 
selection = Selection.Create(Body42, Body43, Body44, Body45, Body46, Body47, 
Body48, Body49, Body50, Body51, Body52, Body53, Body54, Body55, Body56, 
Body57) 
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datum = Selection.Create(DatumPlane21) 
result = SplitBody.Execute(selection, datum, Info35) 
# EndBlock 
 
# Slice Bodies by Plane 
selection = Selection.Create(Body42, Body43, Body44, Body45, Body46, Body47, 
Body48, Body49, Body50, Body51, Body52, Body53, Body54, Body55, Body56, 
Body57, Body58, Body59) 
datum = Selection.Create(DatumPlane22) 
result = SplitBody.Execute(selection, datum, Info36) 
# EndBlock 
 
# Rename 'Solid11' to 'Solid2' 
selection = Selection.Create(Body45) 
result = RenameObject.Execute(selection,"Solid2") 
# EndBlock 
 
# Rename 'Solid111' to 'Solid3' 
selection = Selection.Create(Body47) 
result = RenameObject.Execute(selection,"Solid3") 
# EndBlock 
 
# Rename 'Solid1111' to 'Solid4' 
selection = Selection.Create(Body49) 
result = RenameObject.Execute(selection,"Solid4") 
# EndBlock 
 
# Rename 'Solid111111' to 'Solid5' 
selection = Selection.Create(Body53) 
result = RenameObject.Execute(selection,"Solid5") 
# EndBlock 
 
# Rename 'Solid111111' to 'Solid6' 
selection = Selection.Create(Body54) 
result = RenameObject.Execute(selection,"Solid6") 
# EndBlock 
 
# Rename 'Solid111111' to 'Solid7' 
selection = Selection.Create(Body56) 
result = RenameObject.Execute(selection,"Solid7") 
# EndBlock 
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# Rename 'Solid111111' to 'Solid8' 
selection = Selection.Create(Body60) 
result = RenameObject.Execute(selection,"Solid8") 
# EndBlock 
 
# Rename 'Solid111111' to 'Solid9' 
selection = Selection.Create(Body62) 
result = RenameObject.Execute(selection,"Solid9") 
# EndBlock 
 
# Rename 'Solid11111' to 'Solid10' 
selection = Selection.Create(Body63) 
result = RenameObject.Execute(selection,"Solid10") 
# EndBlock 
 
# Rename 'Solid1' to 'Solid11' 
selection = Selection.Create(Body64) 
result = RenameObject.Execute(selection,"Solid11") 
# EndBlock 
 
# Rename 'Solid1' to 'Solid12' 
selection = Selection.Create(Body65) 
result = RenameObject.Execute(selection,"Solid12") 
# EndBlock 
 
# Rename 'Solid1' to 'Solid13' 
selection = Selection.Create(Body66) 
result = RenameObject.Execute(selection,"Solid13") 
# EndBlock 
 
# Rename 'Solid1' to 'Solid14' 
selection = Selection.Create(Body67) 
result = RenameObject.Execute(selection,"Solid14") 
# EndBlock 
 
# Rename 'Solid' to 'Solid15' 
selection = Selection.Create(Body68) 
result = RenameObject.Execute(selection,"Solid15") 
# EndBlock 
 
# Rename 'Solid1' to 'Solid16' 
selection = Selection.Create(Body69) 
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result = RenameObject.Execute(selection,"Solid16") 
# EndBlock 
 
# Rename 'Solid16' to 'Solid17' 
selection = Selection.Create(Body70) 
result = RenameObject.Execute(selection,"Solid17") 
# EndBlock 
 
# Rename 'Solid111' to 'Solid18' 
selection = Selection.Create(Body71) 
result = RenameObject.Execute(selection,"Solid18") 
# EndBlock 
 
# Rename 'Solid9' to 'Solid19' 
selection = Selection.Create(Body61) 
result = RenameObject.Execute(selection,"Solid19") 
# EndBlock 
 
# Rename 'Solid11111' to 'Solid20' 
selection = Selection.Create(Body72) 
result = RenameObject.Execute(selection,"Solid20") 
# EndBlock 
 
# Create New Part 
selection = Selection.Create(Part4) 
result = ComponentHelper.CreateNewComponent(selection, Info52) 
# EndBlock 
 
# Move Solid1 
selections = Selection.Create(Body26) 
component = Selection.Create(Part5) 
result = ComponentHelper.MoveBodiesToComponent(selections, component, False, 
Info53) 
# EndBlock 
 
# Move Solid2 
selections = Selection.Create(Body27) 
component = Selection.Create(Part5) 
result = ComponentHelper.MoveBodiesToComponent(selections, component, False, 
Info54) 
# EndBlock 
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# Move Solid3 
selections = Selection.Create(Body28) 
component = Selection.Create(Part5) 
result = ComponentHelper.MoveBodiesToComponent(selections, component, False, 
Info55) 
# EndBlock 
 
# Move Solid4 
selections = Selection.Create(Body29) 
component = Selection.Create(Part5) 
result = ComponentHelper.MoveBodiesToComponent(selections, component, False, 
Info56) 
# EndBlock 
 
# Move Solid5 
selections = Selection.Create(Body30) 
component = Selection.Create(Part5) 
result = ComponentHelper.MoveBodiesToComponent(selections, component, False, 
Info57) 
# EndBlock 
 
# Move Solid6 
selections = Selection.Create(Body31) 
component = Selection.Create(Part5) 
result = ComponentHelper.MoveBodiesToComponent(selections, component, False, 
Info58) 
# EndBlock 
 
# Move Solid7 
selections = Selection.Create(Body32) 
component = Selection.Create(Part5) 
result = ComponentHelper.MoveBodiesToComponent(selections, component, False, 
Info59) 
# EndBlock 
 
# Move Solid8 
selections = Selection.Create(Body33) 
component = Selection.Create(Part5) 
result = ComponentHelper.MoveBodiesToComponent(selections, component, False, 
Info60) 
# EndBlock 
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# Move Solid9 
selections = Selection.Create(Body34) 
component = Selection.Create(Part5) 
result = ComponentHelper.MoveBodiesToComponent(selections, component, False, 
Info61) 
# EndBlock 
 
# Move Solid10 
selections = Selection.Create(Body35) 
component = Selection.Create(Part5) 
result = ComponentHelper.MoveBodiesToComponent(selections, component, False, 
Info62) 
# EndBlock 
 
# Move Solid11 
selections = Selection.Create(Body36) 
component = Selection.Create(Part5) 
result = ComponentHelper.MoveBodiesToComponent(selections, component, False, 
Info63) 
# EndBlock 
 
# Move Solid12 
selections = Selection.Create(Body37) 
component = Selection.Create(Part5) 
result = ComponentHelper.MoveBodiesToComponent(selections, component, False, 
Info64) 
# EndBlock 
 
# Move Solid13 
selections = Selection.Create(Body38) 
component = Selection.Create(Part5) 
result = ComponentHelper.MoveBodiesToComponent(selections, component, False, 
Info65) 
# EndBlock 
 
# Move Solid14 
selections = Selection.Create(Body39) 
component = Selection.Create(Part5) 
result = ComponentHelper.MoveBodiesToComponent(selections, component, False, 
Info66) 
# EndBlock 
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# Move Solid15 
selections = Selection.Create(Body40) 
component = Selection.Create(Part5) 
result = ComponentHelper.MoveBodiesToComponent(selections, component, False, 
Info67) 
# EndBlock 
 
# Move Solid16 
selections = Selection.Create(Body73) 
component = Selection.Create(Part5) 
result = ComponentHelper.MoveBodiesToComponent(selections, component, False, 
Info68) 
# EndBlock 
 
# Move Solid17 
selections = Selection.Create(Body74) 
component = Selection.Create(Part5) 
result = ComponentHelper.MoveBodiesToComponent(selections, component, False, 
Info69) 
# EndBlock 
 
# Move Solid18 
selections = Selection.Create(Body75) 
component = Selection.Create(Part5) 
result = ComponentHelper.MoveBodiesToComponent(selections, component, False, 
Info70) 
# EndBlock 
 
# Move Solid19 
selections = Selection.Create(Body76) 
component = Selection.Create(Part5) 
result = ComponentHelper.MoveBodiesToComponent(selections, component, False, 
Info71) 
# EndBlock 
 
# Move Solid20 
selections = Selection.Create(Body77) 
component = Selection.Create(Part5) 
result = ComponentHelper.MoveBodiesToComponent(selections, component, False, 
Info72) 
# EndBlock 
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The code used to assign material properties to the appropriate section, generate 
named selections, mesh and refine, assign boundary conditions, and generate post-
processing commands in ANSYS-WB Mechanical. 

NOTE - Some features could not be automated and are, thus, commented out.  Any errors 
can be manually corrected in the ANSYS Mechanical GUI.   
File name = ‘dissertation_workbench_act_assign_mats_loads_post.py’ 
 
#region UI Action 
with Transaction(True): 
    body_40 = DataModel.GetObjectById(40) 
    body_40.Material = "CNC_Alginate_0" 
#endregion 
 
#region UI Action 
with Transaction(True): 
    body_43 = DataModel.GetObjectById(43) 
    body_43.Material = "CNC_Alginate_1" 
#endregion 
 
#region UI Action 
with Transaction(True): 
    body_46 = DataModel.GetObjectById(46) 
    body_46.Material = "CNC_Alginate_2" 
#endregion 
 
#region UI Action 
with Transaction(True): 
    body_49 = DataModel.GetObjectById(49) 
    body_49.Material = "CNC_Alginate_3" 
#endregion 
 
#region UI Action 
with Transaction(True): 
    body_52 = DataModel.GetObjectById(52) 
    body_52.Material = "CNC_Alginate_4" 
#endregion 
 
#region UI Action 
with Transaction(True): 
    body_55 = DataModel.GetObjectById(55) 
    body_55.Material = "CNC_Alginate_5" 
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#endregion 
 
#region UI Action 
with Transaction(True): 
    body_58 = DataModel.GetObjectById(58) 
    body_58.Material = "CNC_Alginate_6" 
#endregion 
 
#region UI Action 
with Transaction(True): 
    body_61 = DataModel.GetObjectById(61) 
    body_61.Material = "CNC_Alginate_7" 
#endregion 
 
#region UI Action 
with Transaction(True): 
    body_64 = DataModel.GetObjectById(64) 
    body_64.Material = "CNC_Alginate_8" 
#endregion 
 
#region UI Action 
with Transaction(True): 
    body_67 = DataModel.GetObjectById(67) 
    body_67.Material = "CNC_Alginate_9" 
#endregion 
 
#region UI Action 
with Transaction(True): 
    body_70 = DataModel.GetObjectById(70) 
    body_70.Material = "CNC_Alginate_10" 
#endregion 
 
#region UI Action 
with Transaction(True): 
    body_73 = DataModel.GetObjectById(73) 
    body_73.Material = "CNC_Alginate_11" 
#endregion 
 
#region UI Action 
with Transaction(True): 
    body_76 = DataModel.GetObjectById(76) 
    body_76.Material = "CNC_Alginate_12" 
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#endregion 
 
#region UI Action 
with Transaction(True): 
    body_79 = DataModel.GetObjectById(79) 
    body_79.Material = "CNC_Alginate_13" 
#endregion 
 
#region UI Action 
with Transaction(True): 
    body_82 = DataModel.GetObjectById(82) 
    body_82.Material = "CNC_Alginate_14" 
#endregion 
 
#region UI Action 
with Transaction(True): 
    body_85 = DataModel.GetObjectById(85) 
    body_85.Material = "CNC_Alginate_15" 
#endregion 
 
#region UI Action 
with Transaction(True): 
    body_88 = DataModel.GetObjectById(88) 
    body_88.Material = "CNC_Alginate_16" 
#endregion 
 
#region UI Action 
with Transaction(True): 
    body_91 = DataModel.GetObjectById(91) 
    body_91.Material = "CNC_Alginate_17" 
#endregion 
 
#region UI Action 
with Transaction(True): 
    body_94 = DataModel.GetObjectById(94) 
    body_94.Material = "CNC_Alginate_18" 
#endregion 
 
#region UI Action 
with Transaction(True): 
    body_97 = DataModel.GetObjectById(97) 
    body_97.Material = "CNC_Alginate_19" 
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#endregion 
 
NS1 = DataModel.Project.Model.AddNamedSelection() 
NS1.ScopingMethod = GeometryDefineByType.Worksheet 
GenerationCriteria = NS1.GenerationCriteria 
Criterion1 = Ansys.ACT.Automation.Mechanical.NamedSelectionCriterion() 
Criterion1.Action = SelectionActionType.Add 
Criterion1.EntityType = SelectionType.GeoFace 
Criterion1.Criterion = SelectionCriterionType.LocationZ 
Criterion1.Operator = SelectionOperatorType.Equal 
Criterion1.Value = Quantity("30 [mm]") 
GenerationCriteria.Add(Criterion1) 
NS1.Generate() 
 
NS1 = DataModel.Project.Model.AddNamedSelection() 
NS1.ScopingMethod = GeometryDefineByType.Worksheet 
GenerationCriteria = NS1.GenerationCriteria 
Criterion1 = Ansys.ACT.Automation.Mechanical.NamedSelectionCriterion() 
Criterion1.Action = SelectionActionType.Add 
Criterion1.EntityType = SelectionType.GeoFace 
Criterion1.Criterion = SelectionCriterionType.LocationZ 
Criterion1.Operator = SelectionOperatorType.Equal 
Criterion1.Value = Quantity("0 [mm]") 
GenerationCriteria.Add(Criterion1) 
NS1.Generate() 
 
 
#region Details View Action 
mesh_35 = Model.Mesh 
mesh_35.TransitionOption = 1 
#endregion 
 
#region Details View Action 
mesh_35.SpanAngleCenter = 1 
#endregion 
 
#region Details View Action 
mesh_35.InitialSizeSeed = 2 
#endregion 
''' 
#region Context Menu Action 
Named_selections = DataModel.GetObjectsByName("Selection") 
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refinement_172 = mesh_35.AddRefinement() 
refinement_172.ScopingMethod = DataModel.GetObjectsByName("Selection") 
 
#endregion 
 
#region Context Menu Action 
refinement_174 = mesh_35.AddRefinement() 
refinement_174.ScopingMethod = "Selection_2" 
#endregion 
''' 
#region Context Menu Action 
mesh_35.GenerateMesh() 
#endregion 
 
 
#region Context Menu Action 
solution_164 = DataModel.GetObjectById(164) 
equivalent_elastic_strain_rst181 = solution_164.AddEquivalentElasticStrainRST() 
#endregion 
 
#region Context Menu Action 
equivalent_stress_182 = solution_164.AddEquivalentStress() 
#endregion 
''' 
#region Context Menu Action 
geometry_34 = Model.Geometry 
element_orientation_183 = geometry_34.AddElementOrientation() 
#endregion 
''' 
 
#region Context Menu Action 
analysis_163 = DataModel.GetObjectById(163) 
displacement_175 = analysis_163.AddDisplacement() 
#endregion 
 
#region Context Menu Action 
fixed_support_177 = analysis_163.AddFixedSupport() 
#endregion 
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APPENDIX C 
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The cumulative cross-validation metrics were evaluated over the 500 shuffle-splits 
for the remaining kernel structures. 
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Tables of the cross-validation performance for each kernel evaluated: 
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Tables of the validation performance for each kernel evaluated: 
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