168 research outputs found

    A Bag-of-Tasks Scheduler Tolerant to Temporal Failures in Clouds

    Full text link
    Cloud platforms have emerged as a prominent environment to execute high performance computing (HPC) applications providing on-demand resources as well as scalability. They usually offer different classes of Virtual Machines (VMs) which ensure different guarantees in terms of availability and volatility, provisioning the same resource through multiple pricing models. For instance, in Amazon EC2 cloud, the user pays per hour for on-demand VMs while spot VMs are unused instances available for lower price. Despite the monetary advantages, a spot VM can be terminated, stopped, or hibernated by EC2 at any moment. Using both hibernation-prone spot VMs (for cost sake) and on-demand VMs, we propose in this paper a static scheduling for HPC applications which are composed by independent tasks (bag-of-task) with deadline constraints. However, if a spot VM hibernates and it does not resume within a time which guarantees the application's deadline, a temporal failure takes place. Our scheduling, thus, aims at minimizing monetary costs of bag-of-tasks applications in EC2 cloud, respecting its deadline and avoiding temporal failures. To this end, our algorithm statically creates two scheduling maps: (i) the first one contains, for each task, its starting time and on which VM (i.e., an available spot or on-demand VM with the current lowest price) the task should execute; (ii) the second one contains, for each task allocated on a VM spot in the first map, its starting time and on which on-demand VM it should be executed to meet the application deadline in order to avoid temporal failures. The latter will be used whenever the hibernation period of a spot VM exceeds a time limit. Performance results from simulation with task execution traces, configuration of Amazon EC2 VM classes, and VMs market history confirms the effectiveness of our scheduling and that it tolerates temporal failures

    A Hibernation Aware Dynamic Scheduler for Cloud Environments

    Get PDF
    International audienceNowadays, cloud platforms usually offer several types of Virtual Machines (VMs) which have different guarantees in terms of availability and volatility, provisioning the same resource through multiple pricing models. For instance, in the Amazon EC2 cloud, the user pays per hour for on-demand VMs while spot VMs are unused instances available for a lower price. Despite the monetary advantages, a spot VM can be terminated or hibernated by EC2 at any moment. In this work, we propose the Hibernation-Aware Dynamic Scheduler (HADS), to schedule applications composed of independent tasks (bag-of-tasks) with deadline constraints in both hibernation-prone spot VMs (for cost sake) and on-demand VMs. We also consider the problem of temporal failures, that occurs when a spot VM hibernates, and does not resume within a time that guarantees the application's deadline. Our dynamic scheduling approach aims at minimizing the monetary costs of bag-of-tasks applications execution, respecting its deadline even in the presence of hibernation. It is also able to avoid temporal failures, by using task migration and work-stealing techniques. Experimental results with real executions using Amazon EC2 VMs confirm the effectiveness of our scheduling when compared with on-demand VM only based approaches, in terms of monetary costs and execution times. It is also shown that our strategy can tolerate temporal failures

    A dynamic task scheduler tolerant to multiple hibernations in cloud environments

    Get PDF
    International audienceCloud platforms usually offer several types of Virtual Machines (VMs) with different guarantees in terms of availability and volatility, provisioning the same resource through multiple pricing models. For instance, in the Amazon EC2 cloud, the user pays per use for on-demand VMs while spot VMs are instances available at lower prices. However, a spot VM can be terminated or hibernated by EC2 at any moment. In this work, we propose the Hibernation-Aware Dynamic Scheduler (HADS) that schedules Bag-of-Tasks (BoT) applications with deadline constraints in both hibernation prone spots VMs and on-demand VMs. HADS aims at minimizing the monetary costs of executing BoT applications on Clouds ensuring that their deadlines are respected even in the presence of multiple hibernations. Results collected from experiments on Amazon EC2 VMs using synthetic applications and a NAS benchmark application show the effectiveness of HADS in terms of monetary costs when compared to on-demand VM only solutions

    Enhancing reliability with Latin Square redundancy on desktop grids.

    Get PDF
    Computational grids are some of the largest computer systems in existence today. Unfortunately they are also, in many cases, the least reliable. This research examines the use of redundancy with permutation as a method of improving reliability in computational grid applications. Three primary avenues are explored - development of a new redundancy model, the Replication and Permutation Paradigm (RPP) for computational grids, development of grid simulation software for testing RPP against other redundancy methods and, finally, running a program on a live grid using RPP. An important part of RPP involves distributing data and tasks across the grid in Latin Square fashion. Two theorems and subsequent proofs regarding Latin Squares are developed. The theorems describe the changing position of symbols between the rows of a standard Latin Square. When a symbol is missing because a column is removed the theorems provide a basis for determining the next row and column where the missing symbol can be found. Interesting in their own right, the theorems have implications for redundancy. In terms of the redundancy model, the theorems allow one to state the maximum makespan in the face of missing computational hosts when using Latin Square redundancy. The simulator software was developed and used to compare different data and task distribution schemes on a simulated grid. The software clearly showed the advantage of running RPP, which resulted in faster completion times in the face of computational host failures. The Latin Square method also fails gracefully in that jobs complete with massive node failure while increasing makespan. Finally an Inductive Logic Program (ILP) for pharmacophore search was executed, using a Latin Square redundancy methodology, on a Condor grid in the Dahlem Lab at the University of Louisville Speed School of Engineering. All jobs completed, even in the face of large numbers of randomly generated computational host failures

    Kestrel: Job Distribution and Scheduling using XMPP

    Get PDF
    A new distributed computing framework, named Kestrel, for Many-Task Computing (MTC) applications and implementing Virtual Organization Clusters (VOCs) is proposed. Kestrel is a lightweight, highly available system based on the Extensible Messaging and Presence Protocol (XMPP), and has been developed to explore XMPP-based techniques for improving MTC and VOC tolerance to faults due to scaling and intermittently connected heterogeneous resources. Kestrel provides a VOC with a special purpose scheduler for VOCs which can provide better scalability under certain workload assumptions, namely CPU bound processes and bag-of-task applications. Experimental results have shown that Kestrel is capable of operating a VOC of at least 1600 worker nodes with all nodes visible to the scheduler at once. When using multiple sites located in both North America and Europe, the latencies introduced to the round trip time of messages were on the order of 0.3 seconds. To offset the overhead of XMPP processing, a task execution time of 2 seconds is sufficient for a pool of 900 workers on a single site to operate at near 100% use. Requiring tasks that take on the order of 30 seconds to a minute to execute would compensate for increased latency during job dispatch across multiple sites. Kestrel\u27s architecture is rooted in pilot job frameworks heavily used in Grid computing, it is also modeled after the use of IRC by botnets to communicate between compromised machines and command and control servers. For Kestrel, the extensibility of XMPP has allowed development of protocols for identifying manager nodes, discovering the capabilities of worker agents, and for distributing tasks. The presence notifications provided by XMPP allow Kestrel to monitor the global state of the pool and to perform task dispatching based on worker availability. In this work it is argued that XMPP is by design a very good fit for cloud computing frameworks. It offers scalability, federation between servers and some autonomicity of the agents. During the summer of 2010, Kestrel was used and modified based on feedback from the STAR group at Brookhaven National Laboratories. STAR provided a virtual machine image with applications for simulating proton collisions using PYTHIA and GEANT3. A Kestrel-based virtual organization cluster, created on top of Clemson University\u27s Palmetto cluster, was able to provide over 400,000 CPU hours of computation over the course of a month using an average of 800 virtual machine instances every day, generating nearly seven terabytes of data and the largest PYTHIA production run that STAR ever achieved. Several architectural issues were encountered during the course of the experiment and were resolved by moving from the original JSON protocols used by Kestrel to native XMPP equivalents that offered better message delivery confirmation and integration with existing tools

    Contributions to Desktop Grid Computing : From High Throughput Computing to Data-Intensive Sciences on Hybrid Distributed Computing Infrastructures

    Get PDF
    Since the mid 90’s, Desktop Grid Computing - i.e the idea of using a large number of remote PCs distributed on the Internet to execute large parallel applications - has proved to be an efficient paradigm to provide a large computational power at the fraction of the cost of a dedicated computing infrastructure.This document presents my contributions over the last decade to broaden the scope of Desktop Grid Computing. My research has followed three different directions. The first direction has established new methods to observe and characterize Desktop Grid resources and developed experimental platforms to test and validate our approach in conditions close to reality. The second line of research has focused on integrating Desk- top Grids in e-science Grid infrastructure (e.g. EGI), which requires to address many challenges such as security, scheduling, quality of service, and more. The third direction has investigated how to support large-scale data management and data intensive applica- tions on such infrastructures, including support for the new and emerging data-oriented programming models.This manuscript not only reports on the scientific achievements and the technologies developed to support our objectives, but also on the international collaborations and projects I have been involved in, as well as the scientific mentoring which motivates my candidature for the Habilitation `a Diriger les Recherches

    DRAGON: Decentralized fault tolerance in edge federations

    Get PDF
    Edge Federation is a new computing paradigm that seamlessly interconnects the resources of multiple edge service providers. A key challenge in such systems is the deployment of latency-critical and AI based resource-intensive applications in constrained devices. To address this challenge, we propose a novel memory-efficient deep learning based model, namely generative optimization networks (GON). Unlike GANs, GONs use a single network to both discriminate input and generate samples, significantly reducing their memory footprint. Leveraging the low memory footprint of GONs, we propose a decentralized fault-tolerance method called DRAGON that runs simulations (as per a digital modeling twin) to quickly predict and optimize the performance of the edge federation. Extensive experiments with real-world edge computing benchmarks on multiple Raspberry-Pi based federated edge configurations show that DRAGON can outperform the baseline methods in fault-detection and Quality of Service (QoS) metrics. Specifically, the proposed method gives higher F1 scores for fault-detection than the best deep learning (DL) method, while consuming lower memory than the heuristic methods. This allows for improvement in energy consumption, response time and service level agreement violations by up to 74, 63 and 82 percent, respectively

    Reliable and energy efficient resource provisioning in cloud computing systems

    Get PDF
    Cloud Computing has revolutionized the Information Technology sector by giving computing a perspective of service. The services of cloud computing can be accessed by users not knowing about the underlying system with easy-to-use portals. To provide such an abstract view, cloud computing systems have to perform many complex operations besides managing a large underlying infrastructure. Such complex operations confront service providers with many challenges such as security, sustainability, reliability, energy consumption and resource management. Among all the challenges, reliability and energy consumption are two key challenges focused on in this thesis because of their conflicting nature. Current solutions either focused on reliability techniques or energy efficiency methods. But it has been observed that mechanisms providing reliability in cloud computing systems can deteriorate the energy consumption. Adding backup resources and running replicated systems provide strong fault tolerance but also increase energy consumption. Reducing energy consumption by running resources on low power scaling levels or by reducing the number of active but idle sitting resources such as backup resources reduces the system reliability. This creates a critical trade-off between these two metrics that are investigated in this thesis. To address this problem, this thesis presents novel resource management policies which target the provisioning of best resources in terms of reliability and energy efficiency and allocate them to suitable virtual machines. A mathematical framework showing interplay between reliability and energy consumption is also proposed in this thesis. A formal method to calculate the finishing time of tasks running in a cloud computing environment impacted with independent and correlated failures is also provided. The proposed policies adopted various fault tolerance mechanisms while satisfying the constraints such as task deadlines and utility values. This thesis also provides a novel failure-aware VM consolidation method, which takes the failure characteristics of resources into consideration before performing VM consolidation. All the proposed resource management methods are evaluated by using real failure traces collected from various distributed computing sites. In order to perform the evaluation, a cloud computing framework, 'ReliableCloudSim' capable of simulating failure-prone cloud computing systems is developed. The key research findings and contributions of this thesis are: 1. If the emphasis is given only to energy optimization without considering reliability in a failure prone cloud computing environment, the results can be contrary to the intuitive expectations. Rather than reducing energy consumption, a system ends up consuming more energy due to the energy losses incurred because of failure overheads. 2. While performing VM consolidation in a failure prone cloud computing environment, a significant improvement in terms of energy efficiency and reliability can be achieved by considering failure characteristics of physical resources. 3. By considering correlated occurrence of failures during resource provisioning and VM allocation, the service downtime or interruption is reduced significantly by 34% in comparison to the environments with the assumption of independent occurrence of failures. Moreover, measured by our mathematical model, the ratio of reliability and energy consumption is improved by 14%

    Proceedings of the Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015) Krakow, Poland

    Get PDF
    Proceedings of: Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015). Krakow (Poland), September 10-11, 2015
    • 

    corecore