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ABSTRACT 

ENHANCING RELIABILITY 
WITH LA TIN SQUARE REDUNDANCY 

ON DESKTOP GRIDS 

Nathan Patrick Johnson 
April 15, 2010 

Computational grids are some of the largest computer systems in existence today. 

Unfortunately they are also, in many cases, the least reliable. This research examines the 

use of redundancy with permutation as a method of improving reliability in 

computational grid applications. Three primary avenues are explored - development of a 

new redundancy model, the Replication and Permutation Paradigm (RPP) for 

computational grids, development of grid simulation software for testing RPP against 

other redundancy methods and, finally, running a program on a live grid using RPP. An 

important part of RPP involves distributing data and tasks across the grid in Latin Square 

fashion. Two theorems and subsequent proofs regarding Latin Squares are developed. 

The theorems describe the changing position of symbols between the rows of a standard 

Latin Square. When a symbol is missing because a column is removed the theorems 

provide a basis for determining the next row and column where the missing symbol can 

be found. Interesting in their own right, the theorems have implications for redundancy. 
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In terms of the redundancy model, the theorems allow one to state the maximum 

makespan in the face of missing computational hosts when using Latin Square 

redundancy. The simulator software was developed and used to compare different data 

and task distribution schemes on a simulated grid. The software clearly showed the 

advantage of running RPP, which resulted in faster completion times in the face of 

computational host failures. The Latin Square method also fails gracefully in that jobs 

complete with massive node failure while increasing makespan. Finally an Inductive 

Logic Program (ILP) for pharmacophore search was executed, using a Latin Square 

redundancy methodology, on a Condor grid in the Dahlem Lab at the University of 

Louisville Speed School of Engineering. All jobs completed, even in the face of large 

numbers of randomly generated computational host failures. 
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CHAPTER 1 

INTRODUCTION 

Malaria, climate forecasts, particle simulation, astronomical star search, DNA 

and protein analysis, cryptography, the search for alien life; these are just a few of the 

problems under attack by the largest and most powerful computer in the world. The 

computer is not an incredibly expensive machine sequestered at some large institution. 

Part of it in fact might be on the desk in front of you because the largest computer system 

in the world is a volunteer desktop grid. 

In one twenty-four hour period on February 18,2010, the average throughput for 

BOINC, the Berkeley Open Infrastructure for Network Computing grid middleware 

system, was 4,326.99 Teraflops. The fastest traditional supercomputer in the world, 

according to the Nov. 17,2009 release of the TopSOO list, was the Cray XTS-HE Jaguar 

at Oak Ridge National Laboratory with a theoretical peak of 2.3 petaflops or 2,300 

Teraflops. 

As computational power in the form of desktop computers has become ubiquitous 

and less expensive, the unused cycles of such systems have become an available resource 

for serious computing efforts. Why then aren't most computationally intensive jobs sent 

to such computational grids? In particular, the problem of reliability limits the usefulness 
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of desktop and volunteer systems. While recent research has focused on improving grid 

middleware schedulers and algorithms, and more recently on cloud computing, much 

remains to be done 

This research explores a method of building reliability into grid applications --

generally described as RPP, the Replication and Permutation Paradigm -- by changing the 

way that data and tasks are arranged and distributed to the various hosts that make up the 

grid. Specific objectives from this research include: 

1. The concepts of reverse mirroring and a Latin Square 
arrangement of data/tasks is explored in a set-theoretic 
model. 

2. Grid simulation software is constructed and used to evaluate 
reliability of the model versus other types of replication or 
over-provisioning in the face of randomly generated host 
failures. 

3. The upper bound for job length in the face of a known 
number of host failures using the Latin Square data and task 
distribution is shown by mathematical induction. 

4. Finally the practicality of running actual grid jobs with a 
Latin Square configuration is shown in a case study by 
reproducing a previous job on an actual Condor grid where 
host errors are introduced. 

The research shows that reliability and even efficiency can be greatly improved 

using the methods outlined here. Job length may be predicted and a grid job will 

complete even when all ofajob's computational hosts but one have failed 

1.1 Overview of Grid Computing 

Desktop and volunteer grids are a subset of grid systems and are generally 

considered to be "computational grids" where the main purpose is to distribute 

computationally intensive tasks. This research is most concerned with such 
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computational grids. In general, however, grids are a wide-ranging subset of distributed 

computing and provide "sharing, selection, and aggregation" of a variety of resources in a 

"seamless, integrated computational and collaborative environment ... that performs 

resource discovery, scheduling, and the processing of application jobs." [1] This is shown 

in Figure 1.1. 

Figure 1.1: A high-level view of the Grid showing users interacting with the Grid 
resource broker which then discovers resources, handles scheduling and processes 

jobs (adapted from [1]). 

Ian Foster and others write in [2] that: 

"The real and specific problem that underlies the Grid concept is 
coordinated resource sharing and problem solving in dynamic, 
multi-institutional virtual organizations. The sharing that we are 
concerned with is not primarily file exchange but rather direct 
access to computers, software, data, and other resources, as is 
required by a range of collaborative problem-solving and resource 
brokering strategies emergmg m industry, SCIence, and 
engineering. " 
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His definition bears similarities to a new computing paradigm, which is also 

based on the idea that computation should be provided as a utility - cloud computing. 

Grids differ from computational clusters, such as Beowulf clusters [3], in that they 

are not tightly coupled with dedicated internal networks, generally have heterogeneous 

hardware and are not centrally managed. Grids differ also from clouds as in "cloud 

computing," although the relationship is less clear. In general a cloud computing model 

involves a set of services offered on a network for a fee, which frees local enterprises 

from the cost of maintaining hardware and other infrastructure. The idea of "transparent 

access to resources on a pay-per-use basis" [4] is one that has been proposed for grid 

systems as well. [5] Generally, however, one thinks of a cloud as providing services on a 

virtualized machine where hardware can by dynamically configured to variable loads. 

Another central idea of cloud computing is integration into the user's computer and 

routine so that cloud services are innocuous and easily accessed. 

Although these may be goals for grid computing as well, these ideas are not 

central to the paradigm of a "computational grid" where aggregation of computational 

resources for large jobs is of central interest. There are many types of grids, and 

taxonomy is discussed in the next chapter. 

As mentioned previously the largest and least expensive of grid systems are also 

the least reliable in terms of hardware and resources. Such desktop and volunteer grids 

offer great potential for helping to solve some of the most intractable computational 

problems. The difficulty presented by lack of reliability was borne out in previous 

research at the University of Louisville where machine failures extended the time and 
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effort needed to retrieve results from an Apple Xgrid of machines spread across the 

Commonwealth of Kentucky.[6] 

1.2 Organization of Dissertation 

Discussion of the research continues in Chapter 2 with an investigation of related 

work in grid computing. Chapter 3 presents a basic model for data and task replication 

across desktop grids. Chapter 4 extends the model with a proof by mathematical 

induction of the maximum makespan (time required to finish all tasks in an overall job) 

given the number of host failures. Chapter 5 discusses comparison of various methods of 

using redundancy or over-provisioning for reliability in a software simulation of a grid 

system as well as discussion of development of the grid software. Chapter 6 describes a 

case study using a Latin Square data and task distribution methodology to conduct 

pharmacophore search on a Condor [7] grid at the University of Louisville Speed School 

of Engineering. Finally, Chapter 7 presents conclusions and directions for future research. 
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CHAPTER 2 

SURVEY OF RELATED LITERATURE 

Because the motivation of this research involves producing reliable application 

software for desktop grids, previous and current work involving desktop and volunteer 

systems will be examined, followed by a survey of the literature with regard to 

redundancy and checkpointing as a method of aiding reliability. More specifically what 

follows here is: a discussion of the definition of grid computing in Section 2.1, a 

discussion of a very broad taxonomy of grid systems in Section 2.2, a brief history of the 

development of grid systems in Section 2.3, a discussion of desktop and volunteer grid 

systems in Section 2.4, a discussion of unreliability in desktop and volunteer grids in 

Section 2.5 and some ways researchers have moved toward greater desktop grid 

reliability in Section 2.6. The final Section, 2.7, describes research involving the central 

ideas of replication and permutation. 

2.1 What is a Grid? 

The term "Grid Computing" was first used in a seminal paper "The Grid: 

Blueprint for a new computing infrastructure." [8] The idea was that a computational grid 

would make computing power as available on the computational grid as electric power is 

on the power grid. Ian Foster, who's becoming recognized as the "father" [9] of grid 

computing, Carl Kesselman and Steven Tuecke , all of Argonne National Labs at the 
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University of Chicago, have done much of the seminal work in grid computing as well as 

producing the popular Globus Toolkit middleware. [10] Foster and others also have 

attempted to define grid computing, to characterize the need for it and to provide a 

framework to think about the concept of grid computing. 

In 2002 Foster pointed out the need for a clear definition [11]: 

"Grids have moved from the obscurely academic to the highly 
popular. We read about Compute Grids, Data Grids, Science Grids, 
Access Grids, Knowledge Grids, Bio Grids, Sensor Grids, Cluster 
Grids, Campus Grids, Tera Grids, and Commodity Grids. The 
skeptic can be forgiven for wondering if there is more to the Grid 
than, as one wag put it, a "funding concept"-and, as industry 
becomes involved, a marketing slogan. If by deploying a scheduler 
on my local area network I create a "Cluster Grid," then doesn't my 
Network File System deployment over that same network provide 
me with a "Storage Grid?" Indeed, isn't my workstation, coupling 
as it does processor, memory, disk, and network card, a "PC Grid?" 
Is there any computer system that isn't a Grid? 

Foster defines a Grid in [11] as a system that: 

• Coordinates resources that are not subject to centralized 
control... For example a grid user might use two computers that 
have different system administrators and that are owned by 
different entities. 

• Uses standard, open, general-purpose protocols and interfaces ... 
Such a standard would provide solutions to developers for 
authentication, authorization, resource discovery and access. 

• Delivers nontrivial qualities of service including throughput, 
availability, security and resource allocation so that the system 
is of greater value than simply the use of its parts. 

He points out some systems that do not qualify as grids include Sun's "Sun Grid 

Engine" and Veridian's "Portable Batch System." Indeed it has become fashionable to 

refer to perfectly good computational cluster computers, particularly if they are not 

stowed in a single rack, as "Grids." Of course there are other definitions of grid 
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computing; it should be pointed out that they tend to share the concept that the systems 

are operated by different administrative organizations. 

In "Grid Characteristics and Uses: A Grid Definition," Bote-Lorenzo and 

colleagues gather numerous academic sources in their investigation and support for their 

definition of a grid. In [12] they define a grid as "a large-scale graphically distributed 

hardware and software infra-structure composed of heterogeneous networked resources 

owned and shared by multiple administrative organizations which are coordinated to 

provide transparent, dependable, pervasive and consistent computing support to a wide 

range of applications. These applications can perform either distributed computing, high 

throughput computing, on-demand computing, data-intensive computing, collaborative 

computing or multimedia computing." 

In "What is a Grid?" [13] Grimshaw says: 

"From a hardware perspective a Grid is a collection of distributed 
resources connected by a network, possibly at different sites and in 
different organizations. Those resources may include terascale 
supercomputers, instruments such as telescopes and microscopes, 
computer-controlled factory floor tools, mid-level servers, desktop 
machines, laptops, PDAs, and even someday devices such as video 
cameras, cell phones, and kitchen appliances. 

"What distinguishes these resources is that they have a network 
interface and some software that grid-enables the device. Thus, one 
could say that from a hardware perspective potential Grid resources 
range from toasters to teraflops. One could argue that the above 
definition of Grid is what we used to call a distributed system. I do 
not dispute that it is what we used to call a distributed system. To 
me Grids are the evolution of distributed systems to a wide area, 
multi-organizational context." 
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He goes on to say that the objective of Grid middleware is to virtualize resources, 

provide access and, in general, deal with the physical characteristics of the Grid. Grid 

middleware should allow users and applications to access Grid resources in a transparent 

manner. "The first and most important aspect of the problem is how do you name and 

access these resources? This has been a problem in distributed systems for over two 

decades. The solution is to develop an integrated, global naming scheme where all 

resources, applications, hosts (CPU's), storage, files, people, security policies, etc., are all 

named in a consistent manner." Naming is one of the cornerstones of OGSI [3] the Grid 

standard being developed in the Global Grid Forum. 

In the 2007 paper, "Defining the grid: a snapshot on the current view," 

Stockinger, discusses the results of a survey of more than 40 grid researchers around the 

world [14]: 

"We can consider the grid as the combination of distributed, high­
throughput and collaborative systems for the effective sharing and 
distributed coordination of resources which belong to different 
control domains" [Maria S. Perez, Technical University of Madrid]. 
"Generally, a Grid provides a "distributed computing power 
infrastructure. It is supposed to provide researchers (users) with a 
single entry point to launch jobs" [Laurent Falquet, Swiss Institute 
of Bioinformatics]. "Simply put, Grid means "distributed 
computing across multiple administrative domains" [Dave Snelling, 
Fujitsu UK]. "Sometimes the Grid is also called to be the software 
environment [Geoffrey Fox, Indiana University] that integrates, 
virtualizes, and manages distributed resources (software and 
hardware)." Another view is that a Grid is "a velY large scale 
resource management system" [Andrea Domenici, University of 
Pisa]. 

According to the Global Grid Forum's Open Grid Services Architecture glossary, 

a grid is "A system that is concerned with the integration, virtualization, and management 
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of services and resources in a distributed, heterogeneous environment that supports 

collections of users and resources (virtual organizations) across traditional administrative 

and organizational domains (real organizations)." 

CoreGRID [15] is The European Research Network on Foundations, Software 

Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer 

Technologies. It is operated as a European Research Laboratory (known as the 

CoreGRID Research Laboratory) and defines a grid as: "A fully distributed, dynamically 

reconfigurable, scalable and autonomous infrastructure to provide location independent, 

pervasive, reliable, secure and efficient access to a coordinated set of services 

encapsulating and virtualizing resources (computing power, storage, instruments, data, 

etc.) in order to generate knowledge." 

In his seminal 2002 paper "The Grid: A new infrastructure for 21 st century 

science" [16], Foster points to some of the services this new sort of computational 

infrastructure makes available including: 

• Science portals where web based clients or other methods 
provide simple ways of running remote software packages 

• Distributed computing where numerous computers are 
"harnessed" together to provide computational power for 
large problems 

• Large-scale data analysis 
• Analysis of the output of various instruments where large 

numbers of computers are needed to sift though the output 
of telescopes and other scientific apparatus 

• Collaborative work as in the Access Grid project, an open 
source conferencing system developed at Argonne National 
Labs as well as other places, that allows scientists to discuss 
and visualize their work 
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Another way to look at the grid is in terms of protocols. In [2] the grid is 

described as a layered set of protocols similar to the manner in which the more familiar 

Internet Protocol Architecture is often described. 
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Figure 2.1: The grid architecture and the relationship to the Internet protocol 

architecture (adapted from [2]). 

The grid architecture is described as follows: 

• The Fabric layer defines a range of local resource types such 
as "computational resources, storage systems, catalogs, 
network resources, and sensors." A "resource" may be a 
logical entity, such as a distributed file system, computer 
cluster, or distributed computer pool ... "Local resources 
should provide mechanisms that allow discovery of their 
state and capabilities and resource management 
mechanisms. " 

• The Connectivity layer defines communication protocols 
generally drawn from the TCP/IP stack. In terms of 
authentication this layer should provide single sign on, 
delegation of user rights to programs, integration with local 
resource security and user-based trust relationships so that 
users can move from one resource provider to another 
without security interaction between the individual systems. 

• The Resource layer provides a small number of protocols 
can be used to attain access to the underlying local 
resources. Information protocols can be implemented to get 
information about resource configuration, load and cost etc. 
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Management protocols negotiate access to a resource 
including requirements such as advanced reservation, 
operations like process creation, operation status and 
termination. 

• The Collective protocol layer contains protocols and 
services, application programming interfaces and 
development kits that call protocols in the resource and 
connectivity layers. Examples cited by Foster include 
directory services of resources by name or, for example, by 
load; scheduling and brokering services for placing tasks on 
resources; monitoring and diagnostic services; data 
replication services to place data for best performance and 
reliability; grid enabled programming systems that allow 
access to various grid services; workload management and 
collaboration systems; software discovery services; 
accounting and payment services; and collaboration services 
such as the access grid, a collaborative audio and video 
enabled meeting environment. 

• Finally the application layer may use many other languages 
and frameworks in addition to calls to the various grid 
services and resources. 

In [17] Asadzadeh, Buyya and others examme four global grid systems and 

software toolkits. They organize the grid middleware into a four layered stack. 

The authors define the layers in [17; 18] as follows: 

• The Grid Fabric layer includes distributed resources such as 
supercomputers or PCs running various operating systems, 
networks, storage devices and scientific instruments such as 
telescopes or sensor networks. 

• Core Grid middleware provides a consistent method of 
accessing distributed resources in the fabric layer by 
providing services including remote process management, 
co-allocation of resources, storage access, information 
registration and discovery, security, and aspects of Quality 
of Service like resource reservation and trading. 

• User-level Grid middleware utilizes the services provided by 
the lower-level middleware to provide higher level services 
including application development environments, 
programming tools and resource brokers for managing 
resources and scheduling application tasks for execution on 
global resources. 
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• Grid applications and portals are typically developed using 
various languages and utilities. A bioinforrnatics problem 
for example would require computational power and access 
to remote data sets. Other types of programs may need to 
interact with scientific instruments. Grid portals on the web 
offer interfaces to job submission services and methods to 
collect the results. 
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Figure 2.2: A layered grid architecture and components (adapted from [17]) . 

In addition the authors provide a hierarchical list of grid projects according to the 

layer of services provided by the project. A few selected examples from their listed 

projects - along with some current updates -- include: 
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Integrated Grid systems: 

• BOINC, Berkley - Provides tools for creating and managing 
volunteer grid projects. 

• Javelin, UCSB -- A Java-based system. 
• XtremWeb, Paris-Sud University - A global computing 

(cycle-stealing) environment. 
• Unicore, Germany - A java environment for accessing HPC 

resources. 
• World Community Grid - Currently migrating projects to 

BOINC platform. 

Core Middleware: 

• Cosm, Mithral -- A P2P toolkit. 
• Globus, Globus Alliance of Argonne National Labs and 

others - A secure set of tools for accessing distributed 
resources. 

• Gridbus, University of Melbourne - A project of the active 
GRIDS lab intended to merge grid technology with business 
needs; the lab also offers a grid simulator, Gridsim. 

• Legion, University of Virginia - An object oriented system. 

User-level Middleware: 

• Condor-G, University of Wisconsin 
• Nimrod-G, Monash University 

Major grid application efforts include TeraGrid, European DataGrid, CERN and 

many national grid projects such as D-Grid in Germany, GARUDA in India, National 

Grid Service in the UK, the China Grid Project and many others. Communities of grid 

researchers and developers also have evolved an effort to produce standards. The Open 

Grid Forum (OGF) [19] was formed from the merger of the Global Grid Forum (GGF) 

and the Enterprise Grid Alliance (EGA). OGF is responsible for the OGSA, OGSI, and 

JSDL standards among others. The GGF had a rich history and established international 

presence within the academic and research communities along with a growing 
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participation from industry. EGA was a consortium focused on developing and promoting 

enterprise grid solutions. The GGF grew out of SC98, the annual supercomputing 

conference. The first such group, the Grid Forum, merged in 2000 the European Grid 

Forum (eGrid) and the Asia-Pacific Grid Forum to form the Global Grid Forum. 

Enabling Grids for E-scienceE (EGEE) [20] connects some 70 institutions in 27 

countries across Europe to create a reliable, robust grid infrastructure, middleware and 

"to attract, engage and support a wide range of users from science and industry, and 

provide them with extensive technical and training support." Grid 5000 is a French grid 

project which provides a base system for experiments into grid scheduling and reliability 

among other issues. [21] 

2.2 A Partial Taxonomy of Grid Systems 

Any taxonomy presented here is not an attempt to place a firm template across the 

rapidly changing field of grid computing where even the definition of the term "grid" 

differs according to purpose and viewpoint of the writer, but rather an attempt to find 

some frame of reference for interpreting the literature and narrowing the field of interest 

to something manageable. Grids might be broadly categorized according to two modes of 

analysis, either some metrics that define how the grid is constructed such as size, 

geographic separation and "connectedness of nodes," or by some qualitative analysis of 

functionality such as computation or data service. 

Taxonomies of grid systems exist in terms of particular properties -- including 

taxonomies of workflow management systems [22] and taxonomies of resource 
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management systems for grids, and some of these propose general taxonomies for grid 

systems in more general terms as well. Krauter, Buyya and Maheswaran classify grid 

systems [23] according to functionality because design of resource management systems 

is to some degree a function of the use to which the system will be placed. Their 

taxonomy includes: 

• Computational Grids - Provide more computational power 
in aggregate than is available on single systems. 

• Distributed Supercomputing - Computational tasks are 
executed in parallel on multiple machines. 

• High Throughput - Streams of jobs are sent to nodes on the 
grid to complete the pool of jobs as quickly as possible. 

• Data Grid - Provides services relating to storage 
management and data access over a wide area. 

• Service Grid - Groups and provides services from a number 
of machines. 

• On Demand - Pulls together a variety of resources to 
provide new services. 

• Collaborative - Users and applications are connected III 

workgroups. 
• Multimedia - Real-time media services are provided across 

machines in the grid. 

While this is a solid taxonomy and summary of the current situation in grid 

development so far as functionality is concerned, it doesn' t address the issue of the 

capabilities of various types of grids and the challenges facing grid researchers in these 

areas. 

Another way to approach taxonomy is to seize upon Foster' s definition of a grid 

and consider the number and qualities of the administrative domains that comprise the 

particular grid in question. The administrative aspect is that which differentiates a grid 

from a cluster and to some degree determines other factors including the grid 

middleware. The term grid middleware is defined in [17] as the software layer that 
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resides on top of the heterogeneous set of operating system resources in the grid 

providing uniform functionality and services to grid applications and distributed systems. 

It is arguable that the set of services provided is to some extent dependent on the number 

of administrative domains in the grid, which in turn affects the reliability of the 

computational resources upon which the grid middleware and other software is based. 

Indeed this is a logical way to examine the issue and tends to crop up in the literature. In 

their 2002 paper, Baker, Buyya and Laforenza [1] categorize existing grid projects in a 

hierarchical manner composed of ". . . integrated Grid systems, core middleware, user­

level middleware, and applications/application driven efforts. Selected ones are further 

grouped into country/continents wise . .. " They make no claim oftaxonomy although their 

classification system provides a nice framework for discussion of the various capabilities 

and types of grids and is indicative of the way researchers and others classify grid 

systems in their dialogue. 

In [24] the writers suggest that "Grids can be classified in two ways, according to 

their architecture and coverage. Considering their coverage we can define two main 

categories: global grids and enterprise grids." In terms of architecture they point out that 

global grids require more security, have more heterogeneous resources, among other 

things, and because enterprise grids, although they might comprise different 

administrators in a worldwide setting consisting of different departments, they generally 

are owned by a single overall organization. Once more their use of this sort of thinking in 

their paper is indicative of the way many think about grid computing. It might be possible 

to classify grid systems by administrative domains. In fact, doing so provides some 

insight into the type of grid and its capabilities. 
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Essentially an administrator, for the purpose of this list, is defined as someone 

with the power to start or stop computational resources and remove them from the grid. A 

taxonomy then might be organized from the standpoint of computer administration. 

Consider the following classification system proposed here: 

• Category 1 - Includes government operated grids composed 
of the professionally administered high performance 
computing systems in their countries. Typically this would 
be a grid of supercomputers and other clusters connected by 
specialized high speed networks for academic or 
government research. 

• Category 2 Includes inter-organizational systems 
composed of high performance computing systems and 
networks in various countries or organizations that cross 
national and other organizational boundaries. These are 
arguably stable based on formal agreements. 

• Category 3 Includes intra-organizational systems 
including enterprise, academic and other organizations or 
virtual organizations where high performance computational 
resources, though diverse and heterogeneous, are 
professionally managed by a set of administrators who work 
for the organization. 

• Category 4 - Includes intra-organizational desktop grid 
(cycle-stealing) systems where the individual user has the 
power to start and stop a computational resource. The 
individual user who works on the desktop has power to 
remove it from the grid system if by no other means than by 
turning it off. Additionally most of these systems suspend 
grid functionality when the system is in use locally. Please 
note however that in these systems users generally are 
employed by the organization or organizations that created 
the grid. They aren' t likely to be intentionally malicious. 

• Category 5 - Includes global or volunteer grid systems and 
peer to peer systems where individual desktop computer 
users volunteer their systems' unused computational cycles 
to a global grid system. In these systems the implication is 
that computational resources will come and go from the grid 
very frequently and some might even be considered 
malicious. 
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Some might argue, on a very sound basis, that this list is in fact inverted because, 

somewhat counter-intuitively, the most powerful systems computationally are those in 

Category 5. In any case, various pieces of this informal taxonomy of grid systems are 

often found in discussion of the various types of grid systems, desktop grids, global grids, 

enterprise grids, national grid projects etc. in the literature. 

In point of fact, the interest here is in the computational grids. Or in the case of 

the above taxonomy based on administrative domains, the interest in our research is in 

Category 4 and Category 5, desktop grids and volunteer systems. Because the major 

interest in this research is in these two basic types of grid systems there is further 

discussion of desktop and global grids in a section specifically related to them. 

Today there has been an evolution of the grid concept to include a global 

computing infrastructure often composed of large research centers connected by very fast 

networks such as the TeraGrid [25] and others. Several countries and research units have 

projects such as these. Some of these are computational grids and generally speaking are 

the most mature of the grid technologies. The very largest grids, however, in both 

computing power and numbers of nodes connected to the grids, are desktop and volunteer 

grids. Sometimes referred to as cycle scavenging grids, desktop grids offer a largely 

untapped resource for computational power. They also offer numerous challenges. 
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2.3 The Origin of the Grid 

The term "grid" came into use in the mid-90's amid a computational world 

composed of High Performance Computing (HPC) and various types of computational 

clusters from IBM's RS6000 series of machines to off-the-shelf Beowulf clusters. [8;26] 

In the 1980's Parallel Virtual Machine ran on distributed systems and was able to 

dynamically spawn processes to be executed. Later the Message Passing Interface (MPI), 

standard became the more widely used method of executing parallel computations on 

tightly coupled distributed systems. The term "grid" is often erroneously applied to these 

sorts of systems - loosely coupled clusters of computers, and sometimes misused to refer 

to tightly-coupled systems running "grid" software. Classic "Beowulf' type clusters 

typically spawn the same program from a master node to several worker nodes where 

each worker computes a different dataset and where the nodes communicate with one 

another when necessary to complete their own computations. 

Because of the need for continuous reliable communication these systems often 

have internal proprietary networks and are made as reliable as possible in terms of node 

availability. In general the loss of one node causes the entire parallel program to block. 

Because program speedup is generally bounded on such systems by 

communication [27] and network constraints as well as by Amdahl's Law [28], only so 

many nodes can be applied to a problem before no more speedup occurs. It should be 

noted that Amdahl ' s work was reexamined in 1988 by Gustafson who pointed out that 

increasing the amount of work with faster and faster processors actually reduces the 
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impact of the serial portion of the code and increases efficiency. "As a first 

approximation, we have found that it is the parallel or vector part of a program that scales 

with the problem size. Times for vector start-up, program loading, serial bottlenecks, and 

I/O that make up the serial component of the run do not grow with problem size." [29] 

Still the point remains the same. 

There is a subclass of problems that avoids the communication problem, however, 

because there is no communication between subprocesses. This class of problems has 

been referred to as "embarrassingly parallel." During the 90's and into the early part of 

the 21 sl century it became necessary for scientists and engineers to have access to a 

variety of systems, some of them tightly coupled clusters, some shared memory 

machines, some providing large amounts of storage from widely distributed geographical 

locations. Many of the problems under consideration were multidisciplinary in nature and 

involved people in different locations. And many were simply so computationally 

complex and large that the cost of the computation in a traditional computing center was 

simply too great for most researchers. Desktop and volunteer systems began to make an 

appearance. 

In Evolution of the Grid [30], De Roure and others discuss three generations of 

grid computing which will be summarized here. The first generation of the grid began as 

an attempt join together supercomputer sites including the CAS A project [31], F AFNER 

and 1-WA Y[32]. FAFNER, Factoring via Network-Enabled Recursion, was an attempt to 

factor large numbers by splitting and distributing tasks. 1-WAY, Information Wide Area 

Year, was an attempt to link supercomputers using a resource broker. Work began on 
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both around 1995. The tenn generally in use at the time was "metacomputing, " [33] 

popularized by Larry Smarr, fonner director of the National Center for Supercomputing 

Applications, around 1990. Following a 1997 workshop, "Building a Computational 

Grid," at Argonne National Laboratory in September 1997 in 1998, Ian Foster of 

Argonne National Laboratory and Carl Kesselman of the University of Southern 

California published "The Grid: Blueprint for a New Computing Infrastructure," [8] the 

seminal work on grid computing. 

De Roure points to the second generation of grid development as outline in the 1 st 

Edition of Foster's 1998 book -- and which to a large degree has been realized. He points 

to three issues that had to be confronted: heterogeneity, scalability and adaptability. Grid 

middleware solved many of these problems by hiding the underlying operating systems 

and machine types and providing a standard environment for users. A couple of projects 

have been most important in tenns of providing middleware solutions to many of the 

problems inherent in the 2nd generation grid. Some of the middleware and systems 

developed during this period include Globus [10;34], Legion [35] and Condor [7]. 

Globus is a "low-level toolkit (that) provides basic mechanisms such as communication, 

authentication, network infonnation, and data access. These mechanisms are used to 

construct various higher level metacomputing services." 

Legion is an object oriented approach from the University of Virginia. Work 

began on the project in 1993. It was first released in 1997 and exists today as A vaki 

Corporation. At its inception, Grimshaw and others described Legion in this way [35]: 
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"When complete, Legion will provide a single, coherent virtual 
machine that addresses such issues as scalability, programming 
ease, fault tolerance, security, and site autonomy. Legion is a 
conceptual base for the sort of metasystem we seek. Our vision of 
Legion is a system consisting of millions of hosts and billions of 
objects co-existing in a loose confederation united through high­
speed links. Users will have the illusion of a very powerful desktop 
computer through which they can manipulate objects." 

UNICORE (Uniform Interface to Computer Resources) [36] in Germany was 

another second generation system. "The idea behind UNICORE is to support the users by 

hiding the system and site specific idiosyncrasies and by helping to develop distributed 

applications. Distributed applications within UNICORE are defined as multi-part 

applications where the different parts may run on different computer systems 

asynchronously or sequentially synchronized," according to Romberg. 

De Roure points out that the second generation of the grid saw the development of 

a variety of tools and utilities providing services to users, as well as resource schedulers 

and other middleware. But De Roure also discusses a "more holistic" view of the grid 

with automation that, among other things, reconfigures itself dynamically, recovers from 

malfunction, protects against attack, implements open standards and optimizes resource 

use. 

The 3rd generation grid incorporates Web Services along with some of the 

emerging standards from the World Wide Web Consortium, including things like SOAP, 

Simple Object Access Protocol, and Universal Description Discovery and Integration 

(UDDI) and others. His third generation grid also includes the Open Grid Services 

Architecture [37] which is gaining popularity as a standard. OGSA "defines a uniform 

exposed service semantics (the Grid service); defines standard mechanisms for creating, 
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naming, and discovering transient Grid service instances; provides location transparency 

and multiple protocol bindings for service instances; and supports integration with 

underlying native platform facilities" among other things. 

De Roure's 3rd Generation Grid also includes collaboration within virtual 

organizations [2] with various interactive services such as those provided by the Access 

Grid collaborative environment. The Access Grid [38] is an open source conferencing 

system that includes multiparty meetings with multi-source video and audio and 

presentation materials. 

2.4 Desktop Grids and Volunteer Computing 

While the concept of the grid might involve bringing high performance research 

computers together for the use of scientists and institutions from around the nation or the 

world, for the time being at least, these are not the most powerful computer systems in 

the world. Desktop grids, cycle scavenging systems, volunteer computing systems, peer­

to-peer grids and global computing initiatives all are terms that refer to some of the 

largest systems in existence. In general these systems involve the use of software to 

harness the resources inherent in the unused cycles of various desktop computers in an 

organization, virtual organization or individual, whether on the internet or a local LAN. 

As such they meet our definition of a grid because each computer is under the control of 

the primary desktop user and hence are not centrally administered. A user might simply 

tum the system off while a computation is in progress for example. 
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These systems differ from clusters of desktop computers specifically "racked" for 

use as a "grid" under the control of a single system administrator. This indeed would not 

meet our definition of a grid because a central administrator would control the 

availability of individual machines in the cluster. It also would not provide the most 

important benefit - stealing otherwise unused or "free" cycles in a machine that 

otherwise would not be available to the grid users. In any case, attempts have been made 

to bring heterogeneous computing resources together for some time. Such "cycle 

stealing" systems have been used as early as the P ARC (Xerox Palo Alto Research 

Center) Worm. [39] 

Most traditional desktop grid systems, particularly enterprise systems which are 

owned by a single entity such as a corporation or university, operate by assigning tasks to 

daemons on worker hosts in the grid from a central server. Spawning of tasks generally 

depends on workload of the host to determine whether the host is available. Most systems 

allow tasks to be suspended when the keyboard on the computational host is used in order 

to avoid an unfavorable impact on the desktop user. Although task distribution operates 

somewhat differently on certain volunteer systems and P2P systems, job suspension and 

other concerns remain the same. 

As discussed previously, the term "grid" has a marketing as well as a technical 

connotation. More recently the term grid has been used when businesses purchase 

inexpensive desktop computers explicitly and solely for use in a so-called "grid" and then 

link them with commercial middleware, forming a system where cycles aren't harvested 

so much as cultivated for use by the organization. Such a system might more aptly be 
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termed a loosely-coupled cluster, perhaps more reminiscent of a Beowulf system [3] 

running grid middleware than the usual definition of a desktop grid. Why? Because in 

this case the computational resources are generally homogeneous, not distantly 

distributed and often in the same room, and reliable in the sense that the complete 

administration privilege of all computational resources resides with the administrator of 

the grid system. For our purposes, at least, these systems lack the more interesting 

problems associated with desktop grids of the classic definition. 

Extremely large and widely distributed desktop grids are very useful for a subset 

of computational problems where communication between processes is not a significant 

issue. Although some work has been done in the area of a reliable message passing 

interface library for grid computing [40], many grid successes to date have involved large 

embarrassingly parallel computational problems. An embarrassingly parallel problem is 

one in which there is no communication between parallel tasks. In grid computing this 

sort of process is sometimes referred to as a Bag of Tasks (BoT) application. In such 

cases the speedup curve is relatively linear in relation to the number of processors used to 

solve the computation. Communication, other than some constant amount for setup and 

retention of results, does not exist. Often these are data parallel applications where the 

same program is sent to nodes on the grid, and, intentional redundancy notwithstanding, 

each computer considers a different dataset. 

Volunteer computing IS a term used for what have become the largest 

computational systems in the world where individual users on the internet volunteer the 

unused cycles of their desktop computers to some research effort. Because such efforts 
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harness the unused cycles of desktop computers worldwide they sometimes are referred 

to as "global computing" [41] systems. 

In his paper about BOINC, Berkeley Open Infrastructure for Network Computing 

[42], which is now the underlying framework powering several volunteer computing 

projects, David Anderson points out that: 

"No longer is the mass of computing power sIttmg in 
supercomputer systems at large institutions. Instead it is distributed 
in hundreds of millions of personal computers and game consoles 
belonging to the general public. Public-resource computing (also 
known as "Global Computing" or "Peer-to-peer computing") uses 
these resources to do scientific supercomputing." 

In the mid-1990's two distributed systems used volunteered cycles to solve 

computational problems, GIMPS, the Great Internet Mersenne Prime Search, looked for 

Mersenne Primes [43] and distributed.net's software cracked encryption standards [44], 

announcing on 14 July 2002 that the RC5-64 key had been found after some 1,757 days. 

The system used the equivalent of 45,998 2GHz AMD Athlon XP machines at peak 

processing power and involved 331,252 people and their computers. 

The first volunteer computing system that garnered a large amount of public 

attention was the SETI@Home project, in which volunteer computing is used to analyze 

radio signals in the search for extraterrestrial life. Plans for SETI@home were announced 

in 1998 with 3.91 million users of the client software in 226 countries by Aug. 2002. [45] 

SETI@home had performed l.87 * 1021 t10ating point operations, the largest computation 

on record by 2002. SETI@home is being rewritten using BOINC, which provides 

middleware for volunteer computing projects. [42;46] Volunteers participate by running a 
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BOINC client program on their computer. The BOINC framework is being used by a 

number of other projects including Climateprediction.net [47], the Large Hadron Collider 

project CERN (LHC@home) [48] , Predictor@home [49], an attempt to predict protein 

structure from protein sequence, and many, many others. A well-kept list of global 

computing projects is maintained by Kirk Pearson [SO]. 

BOINC, the relatively new volunteer computing software, has proved helpful to 

researchers and numerous BOINC projects have come into existence. Rather than 

researchers writing software for each of their projects, they can use BaINe. "In a single 

stroke," David Anderson ofUC Berkley told Science Magazine, "this has slashed the cost 

of creating a public-resource computing project from several hundreds of thousands of 

dollars to a few tens of thousands." [Sl] An interesting feature of BOINC is that clients 

register for multiple projects and can determine the percentage of time they want their 

machine to devote to a particular BOINC project. 

XtremWeb is an older but somewhat similar middleware system [S2] that was 

motivated by the needs of physicists at the Pierre Auger Observatory to run the same 

simulation program on 6.105 different inputs. The equivalent computing power was 6.106 

hours on a 300Mhz PC each year. The XtremWeb was a platform for experimenting with 

global computing capabilities. 

Commercial compames also have offered enterprise desktop grids including 

Entropia [S3] and United Devices, which began in Austin, Texas in 1999 and now 

operates as Univa UD merging with Univa on September 17, 2007. Univa Corporation 

was founded in 2004 by Carl Kesselman, Ian Foster, and Steve Tuecke, who have been 
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heavily involved with the Globus project and who have researched and written about grid 

computing since its inception. In 2004, IBM and United Devices started the World 

Community Grid [54] project which operates a number of volunteer computing projects 

including FightAIDS@Home. 

Anderson points out that commercial systems for volunteer and "desktop grid" 

computing, such as United Devices and Entropia, "have roughly the same server 

functions as BOINC, and use relational databases to store task and participant data .... " 

However, "these schedulers have functions that differ from BOINC's; they deal with 

complex workflows rather than single tasks, and they do not deal with redundancy and 

credit." [55] 

More traditional desktop grid systems (if one can refer to anything so new to 

human society and culture as "traditional") differ in some respects from the major global 

and volunteer systems. The middleware used for more general desktop grids likely isn't 

suitable for global volunteer computing efforts. [42] Although BOINC might be useful 

for desktop grids. The main difference between the two is one of trust and to some extent 

homogeneity and volatility. Most traditional desktop grids or cycle stealing systems occur 

within the boundaries of some organization, even if it is a large one such as a university 

or large corporate enterprise. Groups of administrators likely install the grid software and 

control its removal. Although the grid software automatically starts and stops grid tasks 

on individual machines as users touch their keyboards, the use of the machine by the grid 

software is hidden and transparent to the user of the desktop machine. The machines can 

be assumed not to be malicious because they are owned by the organization. This in no 
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way means they can be considered reliable however, and reliability is an issue that will be 

examined later. Networks tend to be faster and more reliable than in the case of volunteer 

computing. 

In [56] the authors attempt a taxonomy of desktop grid systems in which they 

refer to both volunteer computing and desktop grids under the heading of "centralized" 

desktop grids. Newer systems utilizing peer to peer job dissemination are broadly 

categorized as "distributed." They list several such P2P systems including CCOF (Cluster 

Computing On The Fly) [57], Organic Grid [58] , Messor [59] and Paradropper [60]. 

Pointing out there has been no taxonomy of desktop grids as of 2007, the authors 

make a distinction between what this paper has termed volunteer computing and desktop 

computing "according to organization, platform, scale, and resource provider properties." 

Global volunteer systems would be distinguished from classic desktop grids by scale, 

Internet vs. internal LAN, and by resource provider -- workers in the enterprise in one 

case and volunteer computer owners in the other. 

There are a plethora of grid technologies and middleware. A detailed description 

and comparison of four of them -- Gridbus, Globus, Legion, and Unicore - some of 

which have been discussed previously, is available from Asadzadeh, Raj kumar, Buyya 

and others in [17]. Globus is a special case in some respects because it supplies a set of 

low level tools to developers of other middleware. In addition to discussing each of these, 

the authors describe a typical hardware and software stack in a grid middleware system. 

Condor [7], another grid system that is still in extensive use and which uses process 

migration as a fault tolerance method on Linux systems (but not in the Windows version), 
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was developed in 1991. Gridbus [24] is an open source grid software toolkit that was 

developed by the University of Melbourne GRIDS Lab and others. Major desktop 

operating system vendors also have offered Grid software including Xgrid from Apple 

and A1chemi [61], written for the Microsoft Windows operating system. 

2.5 Reliability of Desktop and Volunteer Systems 

In a desktop grid the various computational resources likely are heterogeneous, 

are spread across a wide geographic area and are connected by highly disparate networks 

with differing capabilities. Individual users might, or might not, have any interest or even 

awareness of the desktop's role as a computational resource in a grid. Machines might be 

turned off or rebooted at a whim. In addition the work of the grid usually suspends at any 

time when a user sits at the keyboard and begins to use the system. Some might have 

more memory than others or contain faster processors. 

Network speed might be a factor and the amount of disk space might be different 

between machines. Some computers on the grid might not be able to contain the input 

dataset or might be so incredibly slow that it is virtually useless for the particular problem 

at hand. All of these considerations and many others combine to make this sort of grid 

computing unreliable. The most important and difficult problems may be categorized 

generally as the problem of volatility. [62] 

In addition to failure of individual computational resources in the grid (often 

termed computational hosts or nodes) because of hardware issues, network failure or for 

other unforeseen reasons, such computers often are either owned or managed by 
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individual users. Users start working with their machine, causing the grid task to suspend 

automatically, might remove the node from the grid or simply shut it off. Any of these 

activities would result in the failure or suspension of the particular grid application 

process. 

Reliability is the central concern in this work. Generally in an enterprise desktop 

grid, the project is broken into tasks which are then sent from a server process to the 

computational resources that will do the actual work. How those resources are 

discovered and managed is handled differently in different systems and is an active area 

of research. In a computationally intensive job of any length there is a high probability 

that a task will fail due to the failure of a particular network or computational resources. 

A job running on a heavily used desktop grid almost certainly will not complete or will 

return only partial results depending on the size of the grid and the length of the job. It 

would be nice to have a more specific model of just how unreliable we can expect 

desktop grids to be, and some substantial work that has been done in this area will be 

considered here. 

Overall, the area of reliability analysis is more complex than might appear upon 

first blush. So what is reliability? To have some basis for discussion consider that we 

discuss reliability in terms of probability of failure. In a series system where the 

reliability of each serially connected component is independent and the same, for 

example, reliability is: 

32 



P[failure] = l-(1-P)" where P is the probability of system survival and n is the 

number of components in a system where the probability of failure of each of the 

components is presumed to be the same. 

A parallel system a system is considered to fail only if all of its components fail 

and so the general probability of success is: pn where P is the probability of success. 

Most real-world systems fit neither category completely and discussions of 

reliability generally revolve around "m out of n" systems where a system fails if m or 

more components of n components fail. 
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Figure 2.3: Examples of basic strategies for implementing fault tolerance (adapted 
from [63]). 

Assuming the probability of failure of each component IS the same and IS 

independent, such a system fails with a probability: 
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P[failure] = P [M ~ m] 
=1 - F M;n (m-I) 

Where F M;n(m) = P[M S m] is the cumulative distribution function 
ofM. 

Rueda and Pawlak, University of Mantioba, have produced a brief survey of the 

pioneering work in general reliability theory during the past 50 years in [64]. "In Basic 

Concepts and Taxonomy of Dependable and Secure Computing" [63] the authors attempt 

to give precise definitions and a taxonomy of fault tolerant computing. They discuss 

system function and structure, threats to systems and a taxonomy of faults including 

natural and human, a discussion of faults, errors and failures, dependability and trust 

before moving into the area of fault prevention. 

But what is reliability in terms of grid computing? Dai and others provide a 

definition in "Reliability Analysis of Grid Computing Systems" [65] and discuss two 

types of reliability -- system reliability and application reliability. "From the viewpoint of 

grid computing program, the program reliability can be defined as the probability of 

successful execution of the given program running on multiple nodes and exchanging 

information with the remote resources of other nodes. From the system point of view, the 

reliability of the grid system can be defined as the probability of all of the grid computing 

programs to be executed successfully in the grid computing environment." 

Dai points out that the "grid program/system reliability is a special case of 

distributed program/system reliability" and provides a set of algorithms for evaluating the 

reliability of grid systems with emphasis not only on the computational resources but on 

the communication channels. A Minimal Resource Spanning Tree (MRST) connects all 

of the resources in the grid with the MRST reliability defined by: 
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• Reliability of all the links contained in the MRST during the 
communication. 

• Reliability of all the nodes contained in the MRST during the 
Communication. 

• Reliability of root node that executes the program during the 
processing time of the program. 

• Total program reliability is defined by the probability of having 
at least one reliable MRST. 

He defines grid system reliability as "the probability that all the computing 

programs are executed successfully. Thus, the grid system reliability equation can be 

written as the probability of the intersection of the set of MRST's of each program." The 

paper provides a formalism and algorithm for determining reliability based on a body of 

previous theoretical work involving the reliability of distributed systems. Although the 

paper provides a nice theoretical basis for discussing the reliability of grid systems it 

doesn't provide one a feel for exactly how unreliable actual grids really are. 

Early work on Entropia [53] describes some experimental results relating to 

performance. In the case of a molecular docking program, for example, 50,000 molecules 

were partitioned into 10,000 slices of five molecules each. Ideally this job would have 

required only 10,000 subjobs, to complete, but in this case, 10,434 were required. The 

authors point out that most of the additional subjobs were caused by reboots. Some, 

however, were the result of variation in execution time. In order to ensure that jobs were 

completed the system initiated redundant subjobs when a subjob has failed to return 

within the anticipated period (determined by the user). The writers point out that 

relatively inexpensive grid resources are traded to improve job completion time. For the 

molecular docking program, the average subjob ran for 20 minutes but the range varied 

from 8 seconds to 118 minutes: Of the 10,000 subjobs, 204 of them ran more than the 
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expected limit of 60 minutes. The average subjob execution time for the mixed grid was 

20 minutes with a standard deviation of 13:4 minutes and a variance 181 minutes. 

Their experience points out a central problem with desktop grid systems and fits 

with our own in an experiment involving pharmacophore search on an Apple XGrid of 

machines distributed at high schools in Kentucky. 

Other work has involved case studies of operating grids. In [62] Kondo and others 

discussed the desktop grid in terms of how often cycles could be exploited and the 

distribution of time intervals where host is available for a grid application. They used 

Entropia DCGrid software at the San Diego Supercomptuer Center with 275 hosts. Of the 

275 some 220 were running the Entropia client. From their analysis they determined the 

expected task failure based on the probability that a host would become unavailable 

before task completion, which is also understandably contingent on task length. They 

defined the concept of the cluster equivalence ratio: "Given an N-host desktop grid, how 

many nodes of dedicated cluster, M, with comparable CPU clock rates, are required such 

that the two platforms have equal utility?" Assuming a computational cluster based on 

the same processors as those in the desktop grid, researchers determined that for the 

desktop grid in question the 220 nodes completed equivalent work of a 209 host cluster 

on weekends and a 160-host cluster on weekdays when the desktops were more heavily 

used. In addition the tasks considered generally were a few minutes long. In terms of 

serious computational problems, a few minutes is not usually the time range in question. 

Some jobs might continue for hours in which case the failure rate (the rate of incomplete 

tasks) might increase to the point that the job is effectively stopped. In fact, in light of 
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research done by Kondo and others, it might be that grids are ineffective for lengthy jobs 

and tasks must be curtailed in length to help ensure reliability. 

Kondo and others at the University of California, San Diego, have produced a 

large amount of work related to desktop grid systems during the past few years. Their 

work with respect to availability of enterprise desktop grids is summarized in a 2006 

paper [66] and later in 2007. [67] They have used application-level traces of four 

enterprise desktop grids and determined overall and per-host statistics. They point out 

that despite the popularity of desktop grids the volatility of hosts inside various grids 

hasn't been well understood. 

In terms of methodology, the researchers used a "trace method" where they 

submitted tasks to a desktop grid that wasn't running other grid jobs. Each task wrote its 

computation rate at intervals to a file. The computers were kept loaded with tasks of 

about 10-minute length in a loop that performed a mix of integer and floating point 

operations. System availability was stored at 10-second intervals. Desktop users were 

unaware of the testing and tasks were suspended and terminated as necessary by 

keyboard usage, hardware failure etc. Data was collected from three desktop grids 

including an Entropia grid at the San Diego Super Computer Center at different times but 

for a cumulative period of about 28 days over 275 hosts. The second and third data sets 

were collected using the XtremWeb desktop grid software continuously over about one 

month on 100 hosts at the University of Paris-Sud including computers users in a 

classroom and others used by a research group. Other hosts were used by graduate 

students in the electrical engineering/computer science department at UC Berkeley. In 
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[68] Kondo and others use their previous results to generate mathematical models of grid 

availability and task success rate, among other things. They find that tasks can fail to 

meet their deadlines for two reasons; failure can occur if the aggregate compute power in 

the system dips below the incoming work rate and failure can occur if a task encounters 

repeated host failures. Kondo points out that even if the aggregate compute power in the 

system is always greater than the incoming work rate "host unavailability may still cause 

some tasks to fail in meeting their deadlines. This is particularly relevant ... where the 

intervals of availability tend to be quite small." 

For ajob to execute on a worker host, various conditions must be met. Kondo and 

colleagues define three types of availability that determine whether a job can run on a 

particular host and which help push forward our idea of reliability: 

• Host availability includes the idea that the host is reachable for 
general communication. They list reasons for host unavailability 
as those sorts of things that would make the computer generally 
unavailable for use -- such as power failure, shutoff, reboot, 
crash. 

• Task execution availability is determined by the grid software. 
The host might be too busy or the keyboard might be in use and 
therefore the system might be unavailable for use in the grid. 

• CPU availability is the third consideration. If the host CPU is 
busy then most grid software will refuse to place a job on that 
host. 

In addition to providing some sort of basis for a discussion of types of failure of 

hosts on the grid, the more immediate concern for their research is in determining what to 

trace in their attempt to measure reliability. According to Kondo, the completion of a 

task is related to the lengths of the intervals of time that a host is available to execute a 

job. Based on their description of the "temporal structure of resource availability" they 
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derive the "expected task failure rate," which is the probability a host will become 

unavailable before a job is finished. The calculation was done by choosing several 

hundred thousand random points and checking task status at that time. 

Kondo and the other researchers draw several important conclusions related to the 

expected task failure rate [69]: 

• Even on the most volatile platform intervals of machine 
availability were 10 minutes in length or greater, while the mean 
length for all platforms with interactive users was about 2.6 
hours. They report that an application developer could ensure 
that tasks are about 10 minutes long to best utilize most of the 
time intervals the machines were available. 

• Task failure rates on each system were correlated with the task 
size in an approximately linear fashion. 

• On platforms with interactive users, execution availability tends 
to be independent across hosts. However, independence is 
affected by the configuration issues including wake-on-LAN 
enabled Ethernet adapters etc. 

• The availability interval lengths are not related to clock rate; nor 
is the percentage of time a host is unavailable. However, 
interval lengths in terms of number of operations and task 
failure rates are correlated with clock rates. So selecting 
computational resources with higher clock rates may be 
beneficial. 

• There is wide variation of availability from host to host, 
especially in the platforms with interactive users, even in 
platforms with hosts of identical clock rates. So computational 
nodes with the same hardware showed heterogeneous efficiency 
in terms of the grid application. 

So the most efficiency came with tasks that were 10 minutes long. The average 

task failed in 2.6 hours. The task failure rate is a linear function of task size (length). In 

[69] they noted: 

"We also find that the expected task failure rate is strongly 
dependent on the task lengths. (The weekends show similar linear 
trends, albeit the failure rates are lower.) It appears that in all 
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platforms the task failure rate increases with task size and that the 
increase is roughly linear; the lowest correlation coefficient is 0.98, 
indicating that there exists a strong linear relationship between task 
size and failure rate. (Clearly, as the task size approaches infinity, 
the task failure rate will eventually plateau as it approaches one. 
Nevertheless, the relationship is approximately linear for a 
reasonable range of task sizes.)". 

On systems with interactive users, where a user might type on the keyboard and 

stop a grid task, the availability of hosts in the system tend to be independent of one 

another and availability can be increased by using hardware that allows the network card 

to wake the system. Faster CPUs do not correlate with the system availability but if more 

work is done in a shorter interval oftime then a faster CPU might be helpful. 

More recent research agrees with the results from Kondo. In 2007, Iosup and 

others examined resource availability on a large scale, multi-cluster experimental grid 

platform in France, Grid 5000. [21] They found that the mean time before failure was 

short - about 12 minutes for the grid as a hole, about 5 hours at the individual cluster 

level and at about two days per compute node. 

Khalili and others looked at TeraGrid and the earth sciences grid, Geon [70], 

showing 55 and 80 percent success rates. 

Others have attempted to quantify the availability of similar grid systems. In [71] 

Brevik and others describe a methodology for predicting machine availability based on 

monitoring data in distributed computing environments. They estimated a specified 

quantile for the distribution of availability, and associated a confidence level with each 

estimate. They state the problem the following way: 
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"From a set of availability measurements taken from a resource ... 
and given a desired percentile p and confidence level c, what is the 
largest availability duration t for which we can say with confidence 
c that p percent of the availability time measurements are greater 
than or equal to? The answer to this question for a given data set, 
percentile of interest (and take q = 1 - p), and desired confidence 
level, is a lower bound estimate of the qth quantile from the data 
set. While not a prediction of the exact availability duration, using 
an estimate of a quantile provides a lower bound on how long a 
machine (or collections of machines) is likely to be available, and 
the confidence measure provides a quantitative (but probabilistic) 
"guarantee" of the estimate's accuracy." 

Volunteer grids are even more volatile than conventional cycle stealing systems in 

institutional and enterprise settings. Anderson notes in [42] that volunteer computing, 

what he terms "public resource computing," " involves an asymmetric relationship 

between projects and participants." 

Projects are typically small academic research groups with limited computer 

expertise and manpower. Most participants are individuals who own Windows, 

Macintosh and Linux PCs, connected to the Internet by telephone or cable modems or 

DSL, and often behind network-address translators (NATs) or firewalls. The computers 

are frequently turned off or disconnected from the Internet. Participants are not computer 

experts, and participate in a project only if they are interested in it and receive incentives 

such as credit and screensaver graphics. Projects have no control over participants, and 

cannot prevent malicious behavior." [42] 

In "Volunteer Availability Based Fault Tolerant Scheduling Mechanism III 

Desktop Grid Computing Environment" [72], Choi and others discuss volatility III 

volunteer desktop grids along with proposing a scheduling mechanism. 
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They define types of execution and formalize failure modes. A public execution is 

the execution of a task as a volunteer and might be started or stopped arbitrarily. Private 

execution is the execution of a private job by a personal user, often the owner of the 

computer. They refer to failures caused by the execution of a private job as a volunteer 

autonomy failure. 

Volunteer autonomy failures can result in livelock if traditional job scheduling 

methods are used because the consistent interruption of the job can cause it never to 

complete. Their paper formally defines several failure modes. Their definitions are 

summarized here and the mathematical formalism has been excluded for the sake of 

brevity and is available in [72]: 

Definition 1: Volunteer volatility failure is abortion of public 
execution which is caused by freely leaving of the public execution 
ofa task. 

Definition 2: Volunteer interference failure is temporary suspension 
of public execution which is caused by private execution of a 
individual job. 

They point out a livelock problem occurs when all systems executing a task have 

a volunteer volatility failure. 

So desktop grids are somewhat unreliable at the very least -- and sometimes 

unreliable in the extreme. However, system reliability appears to be quantifiable and 

possibly predictable. It may also be possible to mitigate system unreliability with a 

variety of methods with varying efficacy. In [73] two methods are used to predict 

reliability, a parametric model fitting method using past data to find the underlying 

probability distribution and two a non-parametric techniques ("resampling" and "the 
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bionomial method"). There is a fairly large body of older work in reliability analysis on 

distributed systems as well as in the area of software reliability. 

2.6 Strategies for Reliability 

The primary method to be considered in this research for improving reliability is 

redundancy, replication or over-provisioning as it is sometimes termed. Very often the 

same tasks and data are replicated across different computational hosts in a grid in an 

effort to overcome high failure rates. The interest in this research is in improved methods 

for adding redundancy to grid jobs. In general where and how to add redundancy to a 

series-parallel system is in fact NP-Hard [74]. (In brief explanation, a nondeterministic 

polynomial-time hard problem is at least as difficult as the hardest problems in NP, such 

as an NP-complete problem. A common example for an NP-complete problem is the 

subset sum problem. Does the sum of some non-empty subset of a set of integers, other 

than the empty set, sum to 07 But an NP-Hard problem need not be a decision problem 

and therefore a member of NP. It's possible that these problems cannot be solved in 

polynomial time but this has yet to be proved.) 

It should come as no surprise, considering the inherent unreliability of desktop 

grids, that the search for various methods to ensure fault tolerance and reliability is an 

active area of research. Most of the research is centered around grid middleware 

development including various proposals and methods for building reliability through the 

very well known and time tested mechanisms of redundancy/overprovisioning and 

checkpointing, byzantine results checking, as well as resource scheduling for reliability 

and other methodologies. 
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In relatively recent 2008 work, Kandaswamy, MandaI and Reed discuss migration 

and overprovisioning as strategies for fault tolerance. [75] Most of the work in the area of 

scheduling has as its underlying paradigm the "task parallel" model of parallel 

computing. [55;76-81] In the Bag of Tasks (BoT) model the tasks are presumed to be 

independent and embarrassingly parallel. 

In this paradigm, the task to be solved is broken into subtasks. The subtasks are 

placed in a shared data structure called a bag, "and each process in a pool of identical 

workers then repeatedly retrieves a subtask description from the bag, solves it, and 

outputs the solution." Advantages of this programming approach include "transparent 

scalability, automatic load balancing, and ... easy extension to fault-tolerant operation." 

[82] 

In addition, some work has been done in the area of data parallelism specifically 

with regard to heterogeneous machines in the area of load balancing which is closely 

related to the area of reliability. Assigning jobs to particular resources in a grid is the job 

of the scheduler. The job of the scheduler is to arrange tasks in such a way as to assure 

completion in the minimal time. Traditional scheduling of independent tasks, the kind of 

job most often associated with grid computing, generally reduces into bin-packing 

problems, an area which has been the focus of much study for some time. In the 

particular case of grid computing, however, the task length cannot be known a priori (a 

requirement of bin-packing schedulers) because relevant information about the 

computational power of the machine often is not available. Many schedulers are based on 

attempting to determine how long a particular task might take on a certain machine in the 
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grid, either from historical data or through other means. Other schedulers, however, 

attempt to solve the problem without a priori knowledge by using replication. An 

excellent overview of the current literature with regard to replication schedulers is 

available in the 2007 paper, "On the Efficacy, Efficiency and Emergent Behavior of Task 

Replication in Large Distributed Systems" [83]. A lot of work has been done in the area 

of scheduling in general as in [84] for example. 

Replication schedulers send copies of tasks to various machines and make use of 

the first to complete. The desire is to reduce the makespan of the job where the makespan 

is the time from the beginning of the first task to the completion of the last. The minimum 

makespan is the result of optimal scheduling so that the time from the beginning of the 

first subtask to the completion of the last is the minimum possible. 

Work flows often are represented on grid systems as directed acyclic graphs or 

DAGs. Most schedulers fall into general categories including list-based, clustering and 

duplication based. List-based strategies orders the nodes in the DAG and then assigns 

each to a resource that minimizes a cost function. A newer strategy is that of the level 

based scheduler where the DAG is broken into levels. Nodes in each level are scheduled 

as soon as scheduling is complete for nodes in the previous level. A comparison of the 

schedulers is available in the 2007 paper, "Relative Performance of Scheduling 

Algorithms in Grid Environments" [85]. 

In their 2009 paper, Zhang and others propose combining fault tolerance with 

over-provisioning and checkpointing with the HEFT (Heterogeneous Earliest Finish 

Time) and DSH (Duplication Scheduling Heuristic). [86] 

45 



Some past replication schedulers include "eager scheduler" from the Charlotte 

grid [87] and MapReduce [88]. WQR (work queue with replication) [78] schedules all 

tasks first and then starts replicating them with a limit on the number of rep Ii cants so a 

task with a programming error won't hang execution by continuously failing. WQR 

(work queue with replication) [78] schedules all tasks first and then starts replicating 

them with a limit on the number of replicants so a task with a programming error won't 

hang execution by continuously failing In [89] researchers modify WQR to take 

advantage of knowledge about resources. 

Adler and others develop a model of Heterogeneous Networks of Workstations 

(HNOW) [76] and claim to prove that FIFO (First In First Out) " worksharing protocols 

provide asymptotically optimal solutions to a problem related to sharing a bag of 

identically complex tasks in a heterogeneous network of workstations (HNOW) N." They 

continue: 

"The main results of the paper establish that, for every HNOW N, 
over life spans of sufficient duration, any protocol that orchestrates 
N's workstations in a FIFO fashion-i.e. that has workstations 
finish working, and return their results, in the same order as they 
receive work-provides an optimal solution for the HNOW­
Exploitation Problem. As part of this demonstration, we prove that, 
no matter how N's workstations differ in work rate, all protocols 
that observe a FIFO regimen provide equally productive solutions 
for the HNOW-Exploitation Problem for N. These results are 
somewhat surprising, since they demonstrate that over sufficiently 
long lifespans, there is no advantage to specifying an ordering that 
favors the faster workstations, for example by sending work to the 
fastest workstation first and having it return its results last. In fact, 
in our model, we can completely ignore the relative powers of N' s 
workstations. [76]" 
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In [79;90] the authors examine the efficacy of several schedulers and introduce 

RR (list scheduling with Round-robin order Replication), a task replication scheduler 

meant for parameter sweep applications on a computational grid. They also point out that 

makespan is an untenable algorithm for heterogeneous grids because the total 

computational power varies over time. They suggest that a scheduler should be concerned 

with consuming all of the computational cycles that were available over time rather than 

makespan. "RR is akin to WQR with infinite replication, except that it considers tasks 

with the same length and it does not schedule them at random, but rather from a circular 

list." [83] Ghare and colleagues look at whether processors should be used for additional 

tasks or for redundancy in specific scenarios. [91] 

In [92] Kondo and others examine and propose four general approaches: 

• Resource Prioritization - Hosts are sorted according to criteria 
such as clock rate, historical performance. 

• Resource Exclusion Using a Fixed Threshold - Hosts with poor 
performance are excluded according to some measure such as 
clock rate. 

• Resource Exclusion via Makespan Prediction - Exclude hosts 
not expected to complete a certain application within a certain 
expected time. 

• Task Replication - Overcome the problem of task failure by 
replicating the task on multiple hosts or on faster hosts. 

Some point out that Kondo and his colleagues are considering grids where the 

number of tasks is closely matched with the number of execution hosts and that 

replication schedulers have performance comparable to bin packing schedulers. [83] 

Mapping tasks to processors has been the subject of research for some time. In a 

1977 paper [93] for example, the authors consider the finishing time properties of several 
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algorithms for scheduling n independent tasks on m non-identical processors III an 

attempt to find the optimal algorithm from several presented. 

Most research focuses on finding the optimal makespan. The authors consider two 

bin-packing schedulers in [83] including FPLTF, Fastest Processor to Largest Task First, 

which uses task size, resource load and resource speed. And they consider sufferage. The 

sufferage value of a task is the difference between the best completion time and the 

second best, according the capabilities of each available resource. Tasks that would suffer 

most are assigned first. 

The authors also analyze efficiency of replication. "Task replication enables 

knowledge-free schedulers to attain performance comparable to knowledge-based 

schedulers. This comes at an increased use of computation, because multiple replicas 

consume more computational resources than a single one," according to Cime and others. 

"However, scheduling BoT applications on grids is still an open problem," Silva says in 

[78]. "Good scheduling requires good information about the grid resources, which is 

often difficult to obtain. Known knowledge-free scheduling algorithms usually have 

worse performance than algorithms that have full knowledge about the environment." 

Others have looked at data decomposition rather than strict task scheduling as a 

method for load balancing on heterogeneous machines. [94] Others propose Natural 

Block Data Decomposition which maps data to processes according to the relative 

performance of the process, among other methods. [95] [96] 
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Scheduling algorithms that work toward the most efficient use of resources have 

implications with regard to reliability but aren't necessarily designed as mechanisms of 

fault tolerance. Lee and others examine the current state of grid reliability and fault 

tolerance in their in their paper "Grid Programming Models: Current Tools, Issues and 

Directions." [97] 

They say that: 

"Reliability and fault tolerance in grid programming models/tools 
are largely unexplored, beyond simple checkpointing and restart. 
Certain application domains are more amendable to fault tolerance 
than other, e.g., parameter sweep or Monte Carlo simulations that 
are composed of many independent cases where a case can simply 
be redone if it fails for any reason. The issue here, however, is how 
to make grid programming models and tools inherently more 
reliable and fault tolerant. Clearly a distinction exists between 
reliability and fault tolerance in the application versus in the 
programming model/tool versus in the grid infrastructure itself. An 
argument can be made that reliability and fault tolerance have to be 
available at all lower levels to be possible at the higher levels." 

Their remarks accurately summarize the context and thinking that motivates our 

own research. "A further distinction can be made between fault detection, fault 

notification and fault recovery," Lee says. "In a distributed grid environment, simply 

being able to detect when a fault has occurred is crucial. Propagating notification of that 

fault to relevant sites is also critical. Finally these relevant sites must be able to take 

action to recover from or limit the effects of the fault." They go on to point to event 

models as being a necessary element for reliable and fault tolerant programming models 

and tools. 
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Sarmenta has produced a solid overall exploration of the topic III terms of 

volunteer computing systems III his paper "Sabotage-Tolerance Mechanisms for 

Volunteer Computing Systems." [98] He discusses redundancy, the ratio of the average 

total number of work objects assigned to workers using redundancy versus the original 

number of workers. Slowdown is taken from the runtime of the computation with and 

without redundancy. Sarmenta says that: 

"In general, fault-tolerance mechanisms should aim to (in order of 
priority) (1) minimize the final error rate as much as possible, or at 
least reduce it to an acceptable level, (2) minimize redundancy, and 
(3) minimize slowdown." 

Sarmenta also discusses strategies such as spot checking results by duplication to 

detect problems, blacklisting offending resources, majority voting and other methods. 

Software that "simulates the behavior of an eager scheduling work pool in the presence of 

saboteurs and various fault-tolerance mechanisms" was used to check results. He 

develops the "credibility threshold principle." The key idea in credibility-based fault-

tolerance is that: "if we only accept a result for a work entry when the conditional 

probability of that result being correct is at least some threshold e, then the probability of 

accepting a correct result, averaged over all work entries, would be at least e." 

In their 2006 and 2007 papers regarding replication and checkpointing in grid 

systems, [99; 1 00] Chtepen and others point out that many systems still do not implement 

any form of fault tolerance. They point out that Condor implements checkpointing and 

Charlotte uses eager scheduling for replication. More recently BOINC implements 

replication and results checking on an application specific level. Results checking is a 
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continuing field of study. [101] Chtepen's statements notwithstanding, some newer grid 

systems do implement some checkpointing and redundancy. BOINC will be discussed in 

more detail later, but it might be noted at this time that some researchers are aware of the 

need for improved fault tolerance. In "The Challenge of Volunteer Computing With 

Lengthy Climate Model Simulations," [102] the authors describe the need for 

checkpointing and their strategy for implementing it: 

"Scientific applications being ported to the volunteer computing 
paradigm must checkpoint time-consuming tasks (e.g. greater than 
an hour of run-time). This enables a restart of the task with little 
loss of previously computed work. Many scientific applications 
were meant to be run continuously from "start to finish," with job 
submission by researchers who patiently await the results on a time­
shared system, and who do not interrupt the task. Therefore, 
scientific programs often have no checkpointing capability. For a 
volunteer computing app this is not desirable, as user intervention, 
system crashes, and other factors may require a task to be paused, 
stopped, or removed from memory, and later restarted. Fortunately, 
checkpointing is available for the climate model used in 
climateprediction.net. " 

The climate model checkpoint is about 20 MB and the checkpoint is written every 

144 timesteps or about every 15 minutes on a 2 GHZ Pentium. 

In their paper, Chtepen examine two well-known techniques for providing fault-

tolerance in grids -- periodic task checkpointing and replication. Checkpointing 

periodically saves task status. "Task replication is based on the assumption that the 

probability of a single resource failure is much higher than of a simultaneous failure of 

multiple resources." 

They suggest a task replication algorithm based on replication of arriving tasks. In 

each scheduler iteration, the longest waiting task, of which less than a certain number of 
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replicas are started, is distributed to the site with free resources and the smallest number 

of replicas. Load is calculated as a combination of the number of tasks and the speed of 

the resources in millions of instructions per second. When one task replica finishes, other 

replicas are deleted. Their Adaptive Task Replication algorithm would stop task 

replication during peak loads on the grid. Failure Detection suggests that the scheduler 

reschedule all resources sent to a particular resource as soon as a failure is detected. The 

Failure Detection and Adaptive Task Replication method combines the two previous 

algorithms. The algorithms were tested using a software simulator written for the 

purpose, the Dynamic Scheduling in Distributed Environments simulator developed in 

C++. They eschewed use of other grid simulators including GridSim, SimGrid and 

NSGrid "because the possibilities of modeling grid system dynamics are quite limited." 

They found that "... heuristics with failure detection guarantee almost lossless 

task execution at the cost of slower system performance while replication-based 

algorithms provide good throughput on unreliable grids without giving a guarantee on the 

number of jobs lost. A compromise between performance and reliability can be achieved 

by combining failure prevention with rescheduling. To achieve the best result, an 

appropriate number of replicas should be chosen in function of the properties of the grid 

system at hand." 

The authors also discuss checkpointing, noting that the efficiency of 

checkpointing is dependent on the length of the checkpointing interval. Their paper 

presents heuristics that tune the checkpointing interval. 
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In a 2007 paper about fault tolerance in peer to peer systems [103] the authors 

discuss two different types of rollback recovery as a method for fault tolerance, including 

checkpoint-based and log based where interprocess messages are replayed to rebuild the 

job status. They compare the approaches by looking at the failure free overhead, i.e. the 

additional time required for the fault-tolerance mechanism without failure and the 

recovery time required by a failure during execution. 

They say that a checkpoint-based technique provides a low failure-free overhead 

but a long recovery time while a log-based mechanism requires more constant overhead 

but recovery is faster. Choosing one of those two approaches highly depends on the 

characteristics of the application and of the underlying hardware. Their paper provides a 

method to deploy technical information about grid resources allowing the system to make 

configuration decisions thereby helping ensure reliability. 

In their 2006 paper, "Using Checkpointing to Enhance Turnaround Time in 

Institutional Desktop Grids" [104], Domingues and colleagues discuss the need for 

placing checkpoints in central storage rather than on the host machine where the job is 

taking place. "There are two main types of checkpoints: system-level and application­

level. Apart from Condor, which relies on system-level checkpoint, all major middleware 

tools that implement checkpointing, such as BOINC and XtremWeb, make use of 

application-level checkpointing. An important issue regarding checkpointing lies in the 

physical location where checkpoints are stored. A limitation of the existing middleware 

like BOINC is that checkpoints are private, being stored in the same machine where the 
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task is running. If that machine becomes unavailable, the checkpoint file cannot be used 

and the task has to be restarted from scratch in another machine." 

The authors go on to talk about the benefits of storing checkpoints in a central 

location so tasks can be restarted on another machine should a machine or host fail. As 

mentioned previously, Condor implements checkpointing and even implements job 

migration on Linux systems. 

In "Fault Tolerance within a Grid Environment," [105] the authors summarize 

their progress in developing a fault model for grid computing. They also are developing a 

system that "uses one or more coordination services, constructed under a distributed 

recovery block scheme, to locate compute resources on the Grid, and to schedule, 

broadcast, receive and vote upon jobs submitted by a client program. This is in order to 

not only reduce the likelihood of faulty results being received by the client, but also to 

protect against malicious Grid resources deliberately altering the results they produce." 

Their work is somewhat similar to the system implemented in BOINe. 

BOINC deserves more discussion because of its growing popularity as a 

framework for volunteer computing, and because of its specific use of a 

redundancy/quorum mechanism for fault tolerance. As outlined III [42] BOINC IS 

designed in the following way: 

A BOINC project corresponds to an organization or research group that does 

public-resource computing. The project is identified by a home page URL. Participants 

register with projects on the web page. The BOINC project server is centered around a 

54 



relational database that sto~es descriptions of applications, platforms, versions, workunits, 

results, accounts, teams, and so on. Server functions are performed by a set of web 

services and daemon processes. BOINC provides tools for creating, starting, stopping and 

querying projects; adding new applications, platforms, and application versions, creating 

workunits and for other functionality. The system also has rich facilities for maintaining 

redundant sources of file data and upload/download information, whether data should 

remain resident on execution clients and so on. 

Of pnmary interest here, of course, is BOINC's facilities for redundant 

computing. "Public-resource computing projects must deal with erroneous computational 

results. These results arise from malfunctioning computers (typically induced by 

overclocking) and occasionally from malicious participants," David Anderson, leader of 

the BOINC project, says. BOINC provides support for redundant computing and "a 

mechanism for identifying and rejecting erroneous results." The framework uses an M of 

N quorum type system. A project can specify that N results should be created for each 

work unit meaning that N work units have been replicated on different machines. After M 

~ N have been completed an "application specific" function compares the results and 

selects a "canonical result." If no result can be found, the process is repeated until a 

maximum count or timeout is reached. 

For cases where result comparison is difficult because of machine architecture 

differences, specifically because of differences in numerical expression, BOINC provides 

a homogeneous redundancy feature. When it is enabled the BOINe scheduler selects 

only hosts with the same operating system and CPU vendor. 
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2.7 General Fault Tolerance and Replication 

There are many, many sources for software reliability research. NASA, however, 

has produced a nice discussion of software fault tolerance [106] for single version 

software as well as some multi version techniques. Fault tolerance techniques discussed 

include system structuring and closure, atomic actions, inline fault detection, exception 

handling and others. Multiversion techniques include the idea that software may be built 

differently so that if one version fails another should continue to work. Recovery blocks, 

N version programming [107], N self-checking programming, consensus recovery blocks, 

and t/(n-l) techniques are reviewed. 

Of specific interest in our research however is the way in which processors are 

assigned tasks and data. Some of the research has focused on efficiency in terms of 

dynamically assigning tasks to processors best able to carry them out in a timely fashion 

and with concern for balancing the load so that tasks complete within some specific 

timeframe even though they are running on heterogeneous processors with different 

capabilities. 

Although not particularly related to the area of grid computing, a couple of other 

sources are of interest because of their relationship to the particular set of replication 

techniques that will be presented in this paper. 

In "A Repetitive Fault Tolerance Model for Parallel Programs" [108] Yen and 

others propose a replicative model for data parallel programs somewhat similar to the 

system proposed in our work on grid computing -- although their discussion is related to 

56 



VLSI technology on the microprocessor level. In their repetitive fault tolerance model, 

processors are permuted so that the working processors can execute the tasks that were 

originally assigned to faulty processors. A permutation function F is responsible for 

computing the processor permutation. After each iteration, the working processors are 

permuted differently to execute the unfinished tasks due to failures. 

The replicative model to be discussed in this dissertation proposal also involves 

permutation of workload -- not so much as relates to obvious replication of tasks, but to 

the permutation of data, and not on a single chip, but across a desktop grid. Their work 

also involves the use of the important concept of the permutation function. 

Another interested concept in distribution of replicated entities comes from work 

involved with maximizing disk throughput by striping, "Maximizing Throughput in 

Replicated Disk Striping of Variable Bit-Rate Streams." [109] Of particular interest is the 

discussion of data redundancy policies. They discuss Deterministic Replica Placement 

where data is placed on disks in a "round-robin" fashion, and a Random Replica 

Placement, where data is placed on random disks, which is of interest when attempting to 

replicate tasks and data across execution hosts in a grid. 
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CHAPTER 3 

MODELLING REDUNDANCY FOR FAULT TOLERANCE 

One way to improve the reliability of desktop and volunteer grid systems is 

through the use of redundancy - spawning the same task to different nodes in the grid to 

improve the probability that the overall job completes. The focus of this research has 

been to develop and test a paradigm for building reliability into grid applications -- and 

possibly for future use in grid middleware - by changing the way that tasks and data are 

arranged and distributed to the hosts that make up the grid. Various methods for static 

redundancy, for spawning tasks and data to the nodes in the grid, have been modeled. 

They are then tested and analyzed in a specially developed grid simulator (discussed in 

Chapter 5) before a job is run on an actual grid (described in Chapter 6). The outcome has 

been a better understanding of the effects of redundancy in the face of node failure. The 

overall concept of permuting tasks and data before distributing them in redundant fashion 

across computational hosts is described generally as RPP, the Replication and 

Permutation Paradigm. RPP improves on the simple replication of tasks often used to 

improve the reliability of desktop and volunteer grids. Two methods are of particular 

interest as seen in initial development of the RPP model in Section 3.1. 
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The larger the number of hosts used for a grid computation, the less likely the 

computation will complete, assuming no redundancy. The reason is simply that each node 

in a desktop or volunteer grid has an associated mean time to failure as do network links 

and the main server. In reality this means that machines might be turned off unexpectedly 

in a volunteer grid, or that disk drives might be full or that an inferior network at some 

location might be overloaded or fail. The greater the number of machines in the grid, the 

more likely one will fail within a certain time period. As seen from the literature review 

of the previous chapter, replication has been proposed, and in some cases implemented in 

grid middleware, as a method of increasing job efficiency and overcoming node failures. 

If a parallel job is considered to have failed when one node, with a probability of 

failure Fj, of the grid of n nodes fails then the failure model is that of a simple serial 

system. In such a system, the probability of failure F = I-S where S is the probability of 

system survival. Such a serial system is made up of individual units, all of which must 

function for the system to succeed. In the special case where the probability of failure of 

each component in the series, Fi , is the same for n components, the probability of system 

failure is given by F=l-(l-Fit. It's easy to see that the probability of failure increases 

very quickly with the size of the grid. Attempts have been made to quantify metrics 

associated with various grids, and, overall, it has been found that grid tasks must be of 

relatively short duration in order to avoid being disrupted by node failures - particularly 

those caused when a desktop user takes control of the system by typing on the keyboard. 

Note the work by Kondo and colleagues cited earlier.[62;66;68;69;80;92;110-112] 
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Because the probability that at least one node will fail increases with the number 

of nodes used in a job, the mean time to failure M decreases as the number of nodes 

increases. Large jobs use many nodes and sometimes have long execution times E. As 

the number of nodes and execution times grow to fit large cutting edge problems, M 

becomes M<= E and the job will often fail. 

This unfortunate set of facts has been born out in preliminary research at the 

University of Louisville. A small to medium sized series of jobs was run on Kentucky'S 

Apple Xgrid of desktops at Kentucky high schools. [6] Although the overall results were 

successful in that the grid produced shorter run times than ever, the fact remained that 

there were severe outliers. Worse, because of the ownership and structure of the grid, 

jobs were submitted by 4 p.m. for an evening run that was forced to terminate early the 

next morning. Any incomplete subtasks were then resubmitted the following afternoon. 

So the actual wall-time makespan of a job could cover several days. 

Generally the response to these problems in the research community has been to 

restructure the grid infrastructure, and in particular the scheduler, to resubmit or replicate 

failed tasks on the grid in order to reduce the makespan of the job or some similar 

measure of overall job performance. Makespan, sometimes referred to as Cmax, is a term 

used in scheduling research to refer to define the total execution time for the schedule. In 

terms of grids, "makespan" is used to refer to the span of time from the beginning of the 

first subtask of a job to the completion of the last. Often the goal is efficient use of grid 

resources in an attempt to match the most costly jobs with the most efficient resources. 

Replication often has been within the paradigm of course-grained task replication where 
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individual tasks are dynamically resubmitted to other grid resources until the overall job 

completes. 

Rather than following a course-grained, approach to scheduling and replication, 

RPP supports permutation of data and tasks across the grid in a way that assures job 

completion by using replication to minimize the impact of failures while also minimizing 

makespan. 

Usually, when ajob is submitted on a grid, the data and executable are sent from a 

master or submission node to a number of computational nodes on the system. The 

computational workers begin to execute the code, consuming the data as they go, and at 

the end of the job the temporarily stored output is returned to the master, or some other 

central location, by some means. 

It is possible to arrange and disseminate the initial data to execution hosts in such 

a way that given a known number of failures the worst-case completion time for a grid 

job can stated exactly. 

3.1 A Replication and Permutation Model 

A set theoretic analysis and model is developed in this section to discuss various 

types of redundancy or over-provisioning for reliability on highly unreliable grids. The 

finished model includes two suggested methods for replication - a Latin Square 

distribution of tasks and data across computational hosts and "reverse mirroring" where 

data and tasks are duplicated in reverse order across hosts. The Latin Square method 

proves most interesting and dominates the research. Also of interest is that the Latin 

61 



Square method does not reduce performance unless a host failure occurs, and the job will 

continue so long as one processor is present. A proof is developed in Chapter 4 showing 

how Latin Square distribution allows prediction of maximum makespan given a known 

host failure rate. 

The formal grid model, including data d, tasks t, a job J, permutations of data p, 

hosts h, sets of hosts H and lists of data L among other items, is now presented: 

Some n-tuple d must be defined as the minimal or atomic input data object that is 

required for a single task t to complete and produce a meaningful n-tuple of output. 

(3.1) Let d={a), ... ,an } 

A job J is composed of a bag of identical tasks t which consume non-identical 

lists L of n-tuples d. 

hosts h. 

(3.2) Let J={tiIO<i<N+ I} Where N is the cardinality of some subset of 
available processors in the grid. 

Each J will be assigned to some set of host processors H composed of individual 

(3.3) Let H={hiIO<i<N+ I} Where N is cardinality of some subset of 
the available processors in the grid. 

(3.4) Let L={d), ... ,dd Where d is a minimal data item and L is an 
ordered list or permutation of such items. 

(3.5) Let Po={p), ... ,PN} Where Po is a broken kIN-element 
permutation of L. 

62 



We define a broken permutation Po of L, a kIN-element permutation, into N 

permutations (pI, ... ,PN) where the number possible is given LCk, N) = (Z)Ck-

l)k-N. Because each element of L is independent with regard to any task ti any of the 

numerous possible permutations is acceptable. 

Table 3.1: Broken Permutations of Data 

{h},t} {h2,t2} {h3,t3} 

{pJ} {P2} {P3} 

Table 3.2: Data items di contained in permutations Pi 

{h},tt} {h2,t2} {h3,h} 

d1 ds d9 

d2 d6 dlO 

d3 d7 d ll 

d4 ds d12 

Table 3.3: Three processors and associated tasks execute three permutations of data 

Execution {h},t}'pt} {h2,t2,P2} {h3,t3,P3} 
Step 

1 d1 ds d9 

2 d2 d6 dlO 

3 d3 d7 d 11 

4 d4 ds d12 

Table 3.2 shows the individual data items di that are contained in previously 

discussed permutations Pi. Table 3.3 shows a possible configuration of a grid where three 
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processors execute the data supplied them as outline in the above formal model. Note that 

the data permutations are consumed in order, and that the above model thus supplies no 

redundancy. Also note that there is no implication of concurrency so that each execution 

step might take more or less time on a particular processor. Execution order, however, is 

preserved. Obviously, should execution be interrupted some in some processor then some 

data would not be consumed and would be lost. Some grid systems attempt to correct this 

deficiency by course-grained task replication or by dynamic scheduling of tasks. 

In Table 3.4 execution is interrupted on processor h3 at the beginning of time step 

3. The task is resubmitted and execution begins at time step 4. The entire makespan of the 

job is increased to 7 timesteps. If the partial results were maintained, the timesteps would 

have been increased to 5. 

Table 3.4: Host h3 fails at timestep 3 and a new task is dynamically instantiated 

Execution 
{h},t}'pt} {h2,t2,P2} {h3,t3,P3} {h4,t3' ,P3'} 

Step 

1 d1 ds d9 

2 d2 d6 dlO 

3 d3 d7 d 11 

4 d4 dg d12 d9 

5 dlO 

6 d ll 

7 d12 

Another obvious way to overcome the problem is by "mirroring" or multiple 

replication of tasks: 
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(3.6) Let L=(d), ... ,dk) Where d is a minimal data item and L is an 
ordered list or permutation of such items. 

We define a broken permutation po of L, a kIN-element permutation, into N 

permutations po=(p), .. ·,PN) 

Additionally the model creates redundancy by creating an additional set of 

identical permutations. 

(3.7) Po'=(p)', ... ,PN'). Let po=po U po' 
(3.8) Let J={tiIO<i<2N+ I} 
(3.9) Let H={hiIO<i<2N+ I} 

Apply a bijection of L to J and a bijection of J to H resulting in a mapping of Pi 

and Pi' from po and to ti and ti to hi from i=l ;i<2N+ 1 and so by composition a mapping of 

Pi to hi. This results in simple course-grained mirroring of tasks and data to some subset 

of processors on the grid where the number of processors used is 2N. 

Table 3.5: Execution fails on h3 during timestep 3 while the job continues 
satisfactorily because of redundancy on processor h6 

Execution {h},t},pt} {h2,t2,P2} {h3,t3,P3} {h4,t4,PI '} {hs,ts, P2'} {h6,t6,P3 '} 
Step 
1 d) ds d9 d) ds d9 

2 d2 d6 dIO d2 d6 dIO 

3 d3 d7 d" d3 d7 d ll 

4 d4 dg d12 d4 dg d12 

This example as illustrated by Table 3.5 results in simple mirroring where tasks 

and data are duplicated once across 2N processors. It is important to note here, however, 

that execution time of the job, the makespan, requires 4 timesteps in the case that there is 

a processor failure as well as in the case where there is no processor failure. It also is 
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easy to see that in the case that two processors fail, if those two processors happen to be 

processing Pi and Pi' then the entire job will fail. Given a large set of several hundred 

processors, it isn't unlikely that two such mirrored replicants might fail. 

A way to improve reliability is to increase the number of duplicated tasks and 

data, which reduces the failure rate but still does not guarantee completion of the job. In 

the circumstance where all of the processors happen to be processing replicants of one 

another when they fail, the job will fail even though most of the processors in the system 

continue to process tasks. Also, the makespan of a job in which there is no task failure 

does not decrease. The makespan is the same in the case of failure and in the case of no 

failure. 

A new replication and distribution method, reverse mirroring, reduces makespan 

in the case of no failures and acts like simple mirroring in the case of failure: 

(3.10) L=(dl, ... ,dk) Where d is a minimal data item and L is an ordered 
list or permutation of such items: 

(3.11) Let L'=(dk, ... ,dl) So that L' is the inverse of the permutation L. 

We define a broken permutation po of L, a kIN-element permutation, into N 

permutations PO=(PI, .. ·,PN). 

We define a broken permutation po' of L', a kIN-element permutation, into N 

permutations PO'=(PI', .. ·,PN') 

(3.12) Let pO=pO U pO' 
(3.13) Let J={tiI0<i<2N+l} 
(3.14) LetH={hdO<i<2N+l} 
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Apply a bijection of L to J and a bijection of J to H resulting in a mapping of Pi 

and Pi' from po to ti and ti to hi from i=l ;i<2N+ 1 and so by composition a mapping of Pi 

to hi. The result is a bit different than simple mirroring and has interesting connotations 

for job execution. See Table 3.6. 

Table 3.6: Data permutations Pi composed of di are mirrored and inverted in Pi' 
composed of di' 

Execution {h1,thPl} {hz,tz,Pz} {h3,t3,P3} {h4,t4,Pl '} {hs,ts,Pz '} {h6' t6, P3 '} 
Step 

1 d] d5 d9 d12 ' dg' d/ 

2 d2 d6 dlO d]] , d/ d3 ' 

3 d3 d7 dl: dlO ' d6 ' d/ 

4 d4 dg dl.: d9 ' d5' d]' 

As shown in Table 3.6, even with the failure of h3 in time step 3, the makespan of 

the job requires only two timesteps where four was required with simple mirroring. Data 

items d ll and d12 are executed by 14 in timesteps 1 and 2. 

Note that in this scenario data is duplicated across two processors as in mirroring 

except that the order of each of the broken permutations has been reversed prior to 

mapping to a task and processor. The result of reordering is that no two minimal data 

items {di, ... ,dd are duplicated in the same timestep. In this case: 

• All of the processor cycles are fully utilized in processing 
new data during the first two timesteps so that if there are no 
failures the makespan of this job is two timesteps rather than 
four, as in the case of simple mirroring of data. 

• A failure is less likely because it must occur during the first 
two timesteps. The probability of failure decreases with 
decreasing runtimes so that the overall probability of failure 
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is less with this scheme that with simple mirroring because 
runtime is less. 

• In the case of failure in time step two, makespan is increased 
by one timestep. Of course this behavior remains to be 
generalized to other cases. 

• In the case of failure in timestep 1, i.e. complete node 
failure, makespan is increased to that of simple mirroring, 
four timesteps. 

Reverse mirroring should result in half the computational time as a job with two 

replicants if the grid has no node failures. In the case of failure of one mirror in 

traditional mirroring the makespan T(M) is just T or the sum of the total time steps T=:L ti 

in the job no matter when the failure occurs. However if t(F)i represents failure after the 

ith time step and m represents the number of mirrors then in the case of reverse mirroring 

one might argue that total time steps is represented by Equation 3.15: 

(3.15) T(M)= (;-t(F)i) +T/m 

Where T(M) is total timesteps, m=number of mirrors and t(F)1 is the 
time step where failure occurs. 

The problem remains, however, that if two nodes fail and they happen to be 

processing replicated data, Pi and Pi' then the job will fail. In this case the addition of 

replicants reduces the probability of failure but does not ensure job completion. It is 

possible, however, to find a permutation function used with replication that ensures job 

completion. 

68 



Table 3.7: The arrangement guarantees job completion so long as one processor 
remains functional 

Execution {hI,tI} {h2h} {h3,t3} 
Step 

1 PI P2 P3 

2 P2 P3 PI 

3 P3 PI P2 

The arrangement of data, depicted in Table 3.7, does indeed solve the problem 

inherent in both our previous replicaton scheme and in simple mirroring-that if two 

processors while processing the same or a permuted replicant of the data then the entire 

job will fail. Even if all but one processor fail the entire job will be executed, albeit in a 

longer time. Because each broken permutation Pi holds four data items di , the 

arrangements shown in Table 3.7 involve a large amount of replication of data; some of 

the replication may be reduced by delayed transfer of data. Because each processor has 

all of the data it needs to proceed after the first iteration of data is transferred, there is no 

need to wait for the remaining data. In fact, transfer of the remaining data should be 

delayed by some amount of time, which is an issue that should be explored more fully in 

later research. The data distribution outline in Table 3.7 is a Latin Square of Order 3. 

Early work with Latin Squares was done by Leonhard Paul Euler, 1707-1783, a Swiss 

mathematician and physicist. 

The Latin Square is an arrangement of items or objects into rows and columns in 

such a way that no row or column contains the same object more than once. 
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- PIP2P3 
p3 pl 

\P2/ 
P2 P3 PI 

P3PlP2 

Figure 3.1: Moving clockwise around the circle on the left while advancing the 
starting point by one generates the linear arrangement on the right. 

More specifically a Latin Square is a quasi group Q defined in terms of a set of 

distinct symbols and the binary multiplication operation between the elements of the set 

Q. The quasigroup's multiplication table is a Latin Square. 

Because, the model deals with permuations of data, another more natural way of 

considering the formation of a Latin Square is in terms of a linear arrangment of a 

circular permutation of data. This concept can be illustrated by examining Figure 3.1, 

beginning with PI and generating a permutation by listing the items in linear fashion. 

Then offset one place to P2 and generate a permutation listing the items in linear fashion, 

and repeat the process with P3. A linear arrangement of the circular permutation has been 

generated. It's easy to see that this is the same Latin Square developed previously. 

For a circular permutation of n objects there are n linear arrangements of the 

objects. In Table 3.7 each of the objects refers to a circular permutation ofpO={PI, ... ,Pn}. 

Recall that each of the broken permutations {Pi I O<i<n} itself is a permutation of 

minimal data items d and so has an intrinsic order. 

Note from Table 3.7, that if one proceeds through the execution steps one step is 

required if no processor fails, two if one processor fails and three if two processors fail. It 

must be strongly noted that a single execution step does not refer to the execution of a 
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minimal data item but an entire broken permutation of data Pi. The Latin Square design 

places an upper limit on makespan depending on the number of host processes that fail. 

Notice in Figure 3.1 that if one host fails, two timesetps are required for the computation. 

If two hosts fail, three timesteps are required. The concept of an upper bound on 

computation time is examined more fully in Chapter 4. Another way of viewing the 

model is that as the probability of failure increases, the probability that the makespan will 

increase also increases. In fact the amount of data is increased to 8(n2
) where n is the 

number of data items. The full upper limit on makespan is the number of timesteps 

required to process all of the data on one node. 

After consideration of two distinct mappings of data across processors we find 

that the first, mirroring with permutation of data items, results in reduction of makespan 

and improves reliability. However, it leaves unresolved the problem that ajob may fail to 

repeat if all rep Ii cants fail. We also found that the second mapping, arrangement of 

permutations in a Latin Square, results in assurance that a job evenutally will complete 

even with h-1 processor failures but with greatly increased computational time and data 

replication. 

It is possible to combine the two schemes in an attempt to reduce makespan in 

most cases while ensuring completion in those extreme cases where large numbers of 

processors fail and all replicants of a particular set of data items are destroyed. This will 

be examined in more detail in Chapter 4. 
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As shown in Table 3.8, if 14 fails in time step 1 then the job will complete in 

time step 4 on h3. If both h3 and 14 fail then the job will complete in time step 6 depending 

on when the earlier failures occurred. 

Table 3.8: The table depicts mirroring with inverted broken permutations of data 
arranged in a Latin Square configuration 

Execution {h.,t.,Pl} {h2,h,P2} {h3,t3,P3} {h4,t4,Pl '} {hs,ts,P2' } {h6,t6,P3'} 
Step 

1 d j ds d9 d12 
, 

dg' d4' 

2 d2 d6 dlO d ll 
, 

d/ d3' 

3 d3 d7 d jj dlO' d6' d2 ' 

4 d4 dg d12 d9' ds' d j ' 

Execution {h.,t.,P2} {h2,h,P3} {h3,t3,Pl} {h4,t4,P2'} {hS,tS,P3'} {h6,t6,Pl '} 
Step 

5 ds d9 d j dg' d4' dl2' 

6 d6 dlO d2 d/ d3' d jj ' 

7 d7 dll d3 d6' d2 ' dlO 
, 

8 dg d12 d4 ds' d j ' d9' 

Execution {h.,t.,P3} {h2,h,Pl} {h2,h,P2} {h4,t4,P3'} {hS,tS,Pl' } {h6,t6,P2'} 
Step 

9 d9 d j ds d4' d12' dg' 

10 dlO d2 d6 d/ d jj ' d7' 

11 d ll d3 d7 d2' dlO' d6' 

12 dl2 d4 dg d j ' d9' ds' 

Note also from Table 3.8 that the job will complete in two timesteps if no 

processors fail. So long as both copies of mirrored data do not fail, any other failure will 

result in completion of the job in four timesteps. If both replicants fail, but no other nodes 
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fail, the job will complete in a maximum of 8 timesteps. If all nodes but one fail, the job 

will complete in 12 timesteps. Completion is assured so long as one processor continues 

to function. 

Both features of the basic RPP model, reverse mIrronng and Latin Square 

replication, have been created. Analysis of the performance of reverse mirroring and 

Latin Square replication in specially constructed grid simulation software indicates that 

both have similar performance in terms of host failure with the exception that jobs fail as 

node failures increase with reverse mirroring. A complete discussion of various 

simulation results is presented in Chapter 5. Suffice it to say that the Latin Square 

replication method appears to be the most interesting of the two. 
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CHAPTER 4 

PROOF OF MAXIMUM MAKESP AN 
WITH LATIN SQUARE REPLICATION 

This chapter includes further examination of Latin Squares which produces some 

interesting results which allow prediction of maximum makespan in the face of particular 

node failure rates. Recall that the columns of a Latin Square in the model represent 

host/task pairs and the rows contain permutations of data. Each row is processed in 

temporal order so that each row also can be thought of as representing a timestep in the 

computation. 

Table 4.1: The table depicts broken permutations of data in a Latin Square 

Execution {hhthPd {h2,t2,P2} {h3,t3,P3} 
Step 
1 d1 ds d9 

2 d2 d6 dlO 
3 d3 d7 d11 

4 d4 dg d12 
Execution {h),t),P2} {h2,t2,P3} {h3,t3,pd 
Step 
5 ds d9 d1 

6 d6 dlO d2 

7 d7 d11 d3 

8 dg d12 d4 

Execution {h),t),P3} {h2,t2,P)} {h3,t3,P2} 
Step 
9 d9 d1 ds 
10 dlO d2 d6 

11 d11 d3 d7 

12 d12 d4 dg 
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As shown in Table 4.1, if h3 fails in time step 1 then P3 is not processed by h3. It 

will next be processed by h2 in execution step five, and if that fails then P3 will be 

processed by hI in execution step nine. This seems intuitive based on our diagram, but it 

is necessary to show that it is true in all cases of the model. 

Previously a Latin Square was constructed rather informally as a linear 

arrangement of circular permutations. More formally, a Latin Square of order n is defined 

as an n x n table or square matrix in which n symbols occur once in each row and once in 

each column. [113] If the first row and first column of the Latin Square are in some 

natural order such as {1,2, ... ,n} then the square is said to be reduced [114], standard[113] 

or normalized [115]. 

An n x n Latin Square in which each row is derived from any other is a cyclic 

Latin Square. [113] By creating the previously discussed Latin Square in circular fashion 

in a natural order, the result has been a standard, cyclic Latin Square. In other words it is 

a Latin Square in which the rows are composed of cyclic permutations of a set 

S={al,a2, ... ,an} which may be ordered. A permutation is a one to one transformation of a 

finite set into itself. [116] In terms of combinatorics, a permutation is considered to be a 

sequence of distinct elements. In terms of group theory, a permutation is a bijection, a 

bijective function, from a finite set onto itself. If no particular element is mapped to itself 

( a fixed point) the permutation is a derangement. 

Consider the cyclic permutation of order 3 created previously in Figure 3.1, a 

cyclic permutation that contains one cycle. Other permutations, including those creating 

disjoint cycles and so forth, will not be considered here. Additionally the permutations 
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are created with offset 1 because each item shifts or rotates by one item each time a new 

derangement is created. Given these constraints it is possible to define a relatively simple 

bijection that also is a cyclic permutation or cycle. Consider the following: 

Let S be a finite set of n symbols { ao, aI, ... , an-d. Consider a bijection or 

transition function <j> (theta) such that al<j> = a2, a2<j>=a3, ... , an<j>=al' More generally ai<j>=ai+1 

where an+l=al. If (ao, aI, ... an-I) defines a cycle including 1 cycle of n length one might 

say that O'(ai)=ai+I' where an+l=al ( or where all subscripts are taken modulo n.) 

The 0' (sigma) function defines a mapping of S such that (ao ~ al ~ a2 ... ~ an-I), 

which is a cycle. 

Additionally squaring the function 0'2 carnes ai to ai+2 and O'k=ai+k, where all 

subscripts are reduced modulo n. Applying 0', the following set of linear arrangements 

are created with each application of the function: 

Table 4.2: The table depicts a Latin Square of order n 

ao, a], ... an-I 

aI, ... an-I ao 

an-I, ao, ... an-2 

In Table 4.2, a cyclic Latin Square has been defined, in which the rows are cyclic 

permutations of offset one and cycle length n. Although the symbols differ, this Latin 

Square is equivalent to that used in the RPP model. 

The rows are derangements and have no fixed points. Notice however that 0' is a 

mapping from one symbol to another. The resulting mappings are equivalent in terms of 
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permutation. However it is obvious that their linear arrangements differ. The linear 

arrangements are concerned with position, and it is possible to obtain a positional 

mapping from the permutation. 

Let's begin by looking at the bijective permutation functions. If al<P = a2 then by 

definition a2 occupies the position formerly occupied by al. In fact a left rotation has 

occurred. Consider the function cr. If cr(aj)=aj+l mod k then aj+1 is shifted to the position 

formerly occupied by aj. This can be seen by considering that cr(aj_I)=aj mod k. 

It is possible to derive a similar function that returns the position of aj in a linear 

arrangement following application of cr. Consider that we have both a set of symbols 

S={ao,al, ... ,an-d and a set P of positions P (rho) including PjE{po,PI, ... Pn-d in a linear 

arrangement of S. 

Table 4.3: The table depicts a Latin Square of order n labeled with positional 
information 

Po PI ... Pn-I 

ao, ai, ... an-I 

ai, ... an-I ao 

an-I, ao, ... an-2 

Notice in Table 4.3, for example, that position po in row 1 contains ao and that Po 

in row two contains al etc. Position information may be included in our function in the 

following way: 
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Let cr(aiPj)=ai+1 mod k, Pj Note that the symbol changes from row to row where the 

position P remains the same. 

Remember that the symbols relate to data in the programming paradigm. Columns 

represent computational hosts and rows represent time steps when data is processed. At 

this point we see intuitively that if a column is removed the symbol will next be found in 

the following row in the column immediately to the left, unless it is the first column. In 

that case the symbol will be shifted into the n-l column position. We are not so interested 

in the mapping of a symbol to another symbol in the same position, but in the position of 

the same symbol in the linear arrangement as it moves from row to row. 

Position can be described in the following way. The rows are linear arrangements 

of cyclic permutations following each application of the bijective function cr. Consider a 

function f(aj,pj)=aj,p(G-I)+n) mod n where symbol aj remains constant and position Pj changes 

between the rows subject to j=(G-I )+n) mod n. This describes a situation where a symbol 

is shifted one position to the left and where position P_I is taken to be position Pn-I. 

Two formal results are now presented and proven. Used together, these two 

theorems will allow prediction of makespan. 

Theorem 1: 'r;f ai f defines a mapping of the position Pj of ai 
following application of 0": f(pj)=p(u-l)+n) mod n where 
pjEP={PO,Ph ... Pn-tl holds between two rows for any Pi in an n x 
n standard Latin Square composed of cyclic derangements of 
offset 1. 

Proof of Theorem 1 will be in two parts. 

In part 1 we argue by mathematical induction on j that the theorem 
applies between two linear arrangements as outlined above. 
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(1) Base Case: 
When j =0, f(po)=PCCO-I)+pn) mod n 

= PCn -I mod n) 
=PCn-l) 
So that if symbol aj is in po, after application of function cr, aj 
will be in PCn-I). 

(2) By Induction: 
When j=k, f(pk)=p((k-1)+n) mod n which is our original 

definition. 
When j=k+1, which implies k+1>0 because P={pO,p1, ... pn}, 
f(pk+1)=p((k+1-1)+n) mod n. 
=p(k+n) mod n 
=p(k mod n) 
=p(k) which is correct because position has shifted left from 
k+1 to k,just as position shifts from k to k-l. 

In part 2 we show that the position function f is valid for a 
permutation of any length >2 as defined previously. Because we 
have shown j to be valid for the position of each aj, we can fix j and 
show that it is valid for any value of n > 1. 

(1) Base Case: 
When n = 2, f(pj)=PCO-I)+2) mod 2 
Whenj=l, f(PI)=PC(I-1+2) mod 2 
=PC2 mod 2) 
=PCO) SO that an item in position one moves to position 0. 

(2) By Induction: 
Whenj=l and n=k, f(PI)=PCCI-I)+k)modk 
=Pc k mod k) 
=PCO) SO that an item in position 1 moves to position 0. 
When j=l and n=k+ 1, f(PI)=p((I-I)+k-l) mod k-I 
=PCk-1 mod k-I) 
=PCO) 

Thus Theorem 1 shows that the position of any aj shifts left by one 
place with application of the cyclic permutation function cr and by 
induction that the function is applicable for one cycle permutations 
of length > 2 as defined above. 

We have shown that the position of any aj shifts by 1 in a linear 
arrangement based on the previously defined permutation. It 
remains to show that the function is applicable to any number of 
rows and through any number of applications of the permutation. 
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Theorem 2: V ai: f (Pj)=p«j-t)+n) mod n where 
Pj E {Po,P"o .. Pn-tl holds between rows for any Pi in an n x n 
standard Latin Square composed of cyclic derangements of 
offset 1. 

Proof of Theorem 2: 
In this proof we show by mathematical induction on t that the 
position function f is valid for the composition of bijective function 
f and show that the position of aj shifts to the left by offset one with 
each application of the function. 

If f is a function on P then fl is the identity function, f is the 
composition of f with itself (f 0 f) such that f (Pj)=P«(j-2)+n) mod n and 
f is defined by: f (Pj)=p(U-t)+n) mod n 

(1) Base Case: 
When t= 1: f\pj)= P«(j_1 )+n) mod n which is Theorem 1. 

(2) By Induction: 
When t=k: t(Pj)= PC(j-k)+n) mod n which is simply by definition. 
When t=k+ 1 :t+ l= t(pj) 0 fl(pj) 

= P(~-k+I)+n) mod n 
=t+ (Pj) 

In addition to formalizing the RPP model, which previously has been show to 

enhance reliability in a grid simulator, the two theorems together provide a method of 

predicting makespan based either on past performance of a grid or current failure rate of 

hosts in a grid. 

Consider the Latin Square of order 4 in Table 4.4. A particular data item is 

available for processing in the column (host) immediately to the left and in the following 

time step when a host is lost. 
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Table 4.4: The table depicts a Latin Square of order 4 labeled with positional 
information 

po PI P2 P3 

{hl,tl,PI} {h2,h,P2} {h3,t3,P3} {14,14,P4} 

do d l d2 d3 

d l d2 d3 do 

d2 d3 do d l 

d3 do d l d2 

If host h3 fails on startup then data item d2 will next be considered in time step 2 

by host h2. If h2 has failed then d2 will next be considered by host h I in timestep 3. If host 

hI fails then d2 will be processed by host 14 in timestep 4. 

In the RPP usmg a Latin Square data distribution, Make(max)=F+ 1 where 

Make(max) reflects the makespan in terms of timesteps, and F is the total number of 

failed hosts. Failures are assumed to occur before the first data item is processed for the 

worst case. 

Assuming each data item consumes one timestep, the formula for makespan 

requires adjustment to include the number of data items in a permutation p and, hence, 

the number of timesteps required to process each permutation. The new formula, 

Make(max)=(F+.1)*(length(pj)), allows prediction of computational time on unreliable 

grids when using RPP. 
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In addition to providing a method for obtaining reliability on highly unreliable 

grid systems, Latin Square replication also allows prediction of makespan in the face of 

failures among the hosts on a grid system. Further formalization of the RPP model has 

allowed formal proof of upper bound for makespan using Latin Squares in the 

distribution of data and tasks on computational grids. 
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CHAPTER 5 

GRID SIMULATION 

This chapter presents a simple grid simulator designed specifically to compare the 

behavior of various data and task arrangements, including RPP, in the face of node 

failure. The grid simulator consists of a C# implementation of an object oriented program 

containing a node class that simulates grid execution hosts, along with a master node 

class and job class. The probability of failure for execution hosts may be arbitrarily set, 

along with the number of job repetitions. Additional features include: 

• Permutations of data may be defined and passed through a 
job class to various computational node classes running in 
separate threads. 

• Nodes may be failed with a specific probability using a 
pseudorandom distribution. 

• Small functions may be written in C# and dynamically 
compiled without requiring recompilation of the simulator. 

• Makespan may be captured. 

The simulator allows test jobs to be submitted and run with different data 

replication, permutation and failure conditions. It allows testing traditional mirroring and 

multiple replicas, both with a variety of failure rates, against the RPP approach with a 

variety of failure rates. Data may be passed to node class instances in any of several 

configurations. The code that will be run on the grid, in other words the set of identical 

tasks, is compiled at runtime and passed to execution hosts and executed in independent 

threads. Each thread considers a data item, generates a pseudorandom number to 
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determine whether to fail according to the probability of failure set by the researcher and 

then executes one timestep by consuming one data item. 

5.1 Hardware and Software 

The simulator, DGSim or DGSimulator (Data Grid Simulator) was developed in 

C# on Microsoft Visual Studio to run on machines running the Windows operating 

system. During the simulation runs the software was executed on an HP Compaq tc4200 

notebook computer running Windows Vista on a single-core, 32-bit Intel Pentium M 1.86 

GHz processor with 1,500 MB RAM. Runtime for the grid simulation was in the range of 

a few minutes to hours depending on the number of hosts, data items and job repetitions. 

A typical run included ten jobs each with 10,000 data items on 100 threads. Essentially 

the processing required by the software was a simple random number generation to 

determine whether the processor was to fail and then an output of the data item, so the 

jobs were computationally not particularly lengthy. The hardware was chosen for 

portability, availability and ease of use. 

C# and Microsoft Visual Studio were chosen because the visual development 

environment allows faster development times. C# is a relatively new language that tends 

to be internally consistent and easy to use with garbage collection and a wide range of 

functionality for creating threads, generating pseudorandom numbers and for creating 

objects in general. Its C++-like syntax makes it familiar to many developers. 
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.~ Instantiate A Grid 

Create a new grid sinulation here by filling out the controls and pressing Run. 

Number of Woli<er Nodes: Run Simulation J 
Failure Rate: Run 

labei lS 

Number of Repetitions plfailrate: ,10 

Fabe rate steps by 0.050 ~ from minimum 0.000 : to maximum 1.000 

Job Code 

in! timeStamp =O;bFailed"alse:ArrayUst outputUst=new ArrayUst 
O:double succeed Rate = Hail Rille :double real Rille = 1-Math. Pow 
(succeedRate.1.OAimeSteps):double spreadRate= 
VealRate-1000000)foreach (ArrayUst drin dataArray){jf ~.Next( 
1000000 ) < Math .Round(spread Rate)Xb Failed =true ;break :)lor {nt 
i .0j <dr.Count j++){char ts.1 ':char spc:' ':string 
nodenfo=t .. timeStamp.T oStJingO;- spc 
+ Thread .Current Thread .Name+spc;nodenfo+-drji):output Ust.ftdd 
/{lode lnfo):nodelnfo=nu"~imeStarnp++:}lre4um(outputUst): 

Current Failure Rate : 0 

Output Directory : c :\dgsim\ 

Output 

Log Rle Name: pennutation Jog 

Repetition : 

Figure 5.1: The DGSimulator GUI 

In a typical run of the DGSim software, the program is initialized and the form 

class run. The GUI is instantiated as shown in Figure 5.1. The form requires the 

following parameters to be set: 

• The number of worker nodes 
• The permutation number 
• The number of replicants 
• The number of data items 
• The number of repetitions per failure rate 
• The minimum failure rate, the maximum failure rate and the 

step size. 
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:# bFailed 

d~ bRunning 
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:# t 
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.R jq 
monitorForm 
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J ' nodeList 
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." executeNextJob 
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l __ ·~ splitJobOata 
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I Grid 

Clas.s 
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i jobQueue 

# masterNode 

-# nodeList 
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:1,1 addJob 
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y executeNextJob j 

v getMas.ter J I v Grid 
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( Job 
Cla;s 

18 Fields 

datalist 

dataRecord 

ji dataRecSize 

,},i returnList 

I ji strFunc 
I ' 

8 Me hods 

·v getOata 

9 etOataRecord ... I 
9 etStri ng Funct i .. . , 

Job I 

Figure 5.2: The DGSim class diagram 

,---------- -;:.. .... \ 
I Globals l~ 
I . I 

Static Class I 
I I ,----------- -' 
rM yC IassBase (~ ) 

Cla55 
l ___________ ) 

r MathExpression ... ~" I Class \. _________ J 

I' - -

, Form! 
Class 

~ Form j 
\..~---===~. 

( MonitorForm 
Class 

~Form J' 
\~-----~. 

If the failure rate is set at a minimum of 0 to a maximum of 1 with a step size of 

.01 with 10 repetitions per failure rate, the software will run a grid with a failure rate of 0 

for 10 times and then a failure rate of .01 ten times, and a failure rate of .02, 10 times and 

so on. The current failure rate is shown as the software steps through the process. 
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The simulator code has been written to do no replication, simple mIrrormg, 

reverse mirroring and multiple replicants of data/task pairs across the nodes depending on 

the permutation selected in the GUI. The complete code is included in Appendix A. 

The general user case for the DGSim software is outlined as follows: 

• The grid class is called to initialize the grid to the 
appropriate size-nodes are listed to a C# Array List and a 
master node is added. See 

• The node class is called and instantiated for each node 
added to the grid. Each node contains a thread. Each node 
contains a set of random numbers. 

• A submit node is instantiated with a new job queue, 
monitorForm and output array and set equal to the master 
node in the grid class. (The monitor class, primarily a 
graphical function, wasn't needed during the simulation 
runs.) 

• The addjob function is called and instantiates a new job 
using the job class. The job class includes a data size, record 
size, a program itself and data. 

• The submit node's splitJobData function reads the type of 
permutation of data needed and distributes it appropriately 
among the instantiated computational nodes. 

• The submit nodes calls helper classes that compile the code 
and the executable object is given to each node. The 
executable is a c# program in the form of a string. It is 
compiled on the fly using reflection emit. 

• The threads (nodes) are executed and the submit node waits 
until the threads finish with a status of failed or completed. 
(The monitor class can be invoked here which shows the 
thread function in real time graphically.) 

• Results are returned and parsed. The salient information 
about the job including the number of hosts, number of data 
items, failure rate, whether it failed or completed and on 
what time step it failed among other data is all returned to a 
log file. 

• The process is repeated for the next repetition of the same 
time step or perhaps for the next timestep. 
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Some of the actual work in determining whether the job fails is included in the 

test job code. At each time step generation of a random number determines whether the 

run continues or aborts. 

5.2 Failure in DGSimulator 

The failure rate for each node in the simulated grid is assumed to be the same as 

any other. In other words there is no a priori knowledge of how a particular host will fail. 

The failure of individual hosts is assumed to be uniform and random over the makespan 

of a particular job. The hosts in a grid are either available or not available at any 

particular time. Once a node is unavailable it is assumed to be unavailable for the 

remainder of the job. Because of the "yes" or "no" nature of availability of a particular 

host in a particular time step it seems to be appropriate to model the failure rate, the rate at 

which hosts become unavailable, as a Bernoulli process, a series of Bernoulli trials, 

where success (P) is equal to a node failure in a particular timestep. 

The implication of modeling node failures as individual Bernoulli trials is that the 

probability of failure doesn't change but remains constant, and the process is exponential; 

eventually all nodes will fail. This would seem to fly in the face of real-world evidence 

that the probability of failure changes with respect to the time of day or that a Wei bull 

distribution might be a more accurate representation of failure depending on the 

perameters used. (A complete discussion is included in Appendix C.) The intention, 

however, is to test all methods for reliability, including the RPP paradigm and any 

variants of it, under controlled conditions of node failure. The purpose of this particular 

research was not to develop a precise model of desktop grid usage. 
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Previous research has shown that task length is another issue of importance in 

simulating the effects of host failure, and that host failures are essentially independent. 

Failure results when a task fails to complete on time. The longer the task, the greater the 

probability that a node will become unavailable during task execution. Variation of task 

length is of interest in determining the effectiveness of RPP but does not influence design 

of the basic model. As discussed in Chapter 3, in the special case where the probability of 

failure of each component in the series, Fj, is the same for n components, the probability 

of system failure is given by 

Equation 5.1 is derived from the fact that the overall probability of failure in a 

series system is one minus the probability of the product of success of each step. Because 

failure at each time step is considered independently as a Bernoulli trial we derive the 

node failure rate for a particular job into a probability of failure at a particular timestep 

using Equation 5.1 as a basis for Equation 5.2. 

(5.2) Fj = 1 - VI - F 

Where F is the assigned failure rate of the node, n is the total number of timesteps 

and Fj is the failure rate in each timestep. 

After a failure rate has been assigned to the individual node, the failure rate for 

each time step is determined as shown in Equation 5.2. Because different data and task 

distribution paradigms require a different number of time steps some set value of n must 

be used when comparing different permutations of data. The value chosen is arbitrary and 
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--- -----------~-~~~~--~~~~~~~~~~~~-----------------~--

affects the failure rate at each timestep. For the simulator, n is set by taking the number 

of timesteps required for a simple mirror of the data across all of the nodes. Essentially it 

is twice the number of data items divided by the number of nodes. 

In terms of implementation the node failure rate is set on the program GUI 

indicating for example that any particular node has a .2 or 20 percent chance of failure 

over the length of the job. The failure rate for a particular time step is calculated using 

Equation 5.2. At each time step tj, the next integer r in a series of random integers is 

generated over some interval n corresponding to the probability of failure in the 

individual time step using the C# Random.Next function. If r is equal to nl2 the code 

returns The importance of using a reliable and appropriate algorithm for generating 

pseudorandom numbers can't be overstated as Park and Miller point out in their 1988 

paper "Random Number Generators: good ones are hard to find." [117] Microsoft's C# 

random class is based on Donald Knuth's subtractive random number generator 

algorithm. [130] Knuth points out that t~e important factor in this algorithm is generating 

an appropriate seed. [131] By default, Microsoft's Random class uses a seed value from 

the system clock. Values will not be repeated so long as sufficient time is allowed 

between initializations, which the grid application does. 

5..3 Experimental Procedure and Results 

After verification of the simulator output and failure rates, the simulator was set 

up to instantiate a grid of 100 nodes processing 10,000 data items. Each of six different 

data arrangements was processed at each probability of failure from 0 to 1 stepping by 

.01. Each simulation was conducted ten times and the mean job completion rate gathered 
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along with the mean number of time steps to completion for the ten runs. The following 

input data permutations were simulated: 

• Perml - The data, dO, dl, ... , d9999, was distributed across the 
100 nodes with no redundancy with 1000 data items per node. 

• Perm2 - The data was mirrored or duplicated on the nodes with 
half of the nodes getting half of the data. 

• Perm3 - The data was mirrored with the mirrored permutations 
reversed in order as explained previously in the RPP heuristic. 

• Perm4 - The RPP arrangement of data was implemented with 
Perm3 followed by a Latin Square data arrangement. 

• Perm5 _5 - Five replicas of the data were duplicated across the 
nodes. 

• Perm5 _10 - Ten replicas of the data were duplicated across the 
nodes. 

• Perm6 - Data was arranged across the nodes in a Latin Square 
arrangement. 

There are some caveats that should be taken into consideration; data is assumed to 

be perfectly checkpointed to the master node so that all data processed up until the time 

of a node failure is assumed to be available. Also the type of failure is assumed to be of 

no importance with emphasis given to grids with a large amount of volatility caused by 

human interaction. All nodes in a grid are allowed to fail where a design more closely 

aligned with the real world would allow for job restarts and nodes which rarely fail. The 

Latin Square design would eventually complete with one node operable, albeit at a very 

large makespan. 

Figures 5.3 and 5.4 show job completion and makespan respectively. Figure 5.3 

shows the mean job completion rate for each of the six data permutations as it relates to 

node failure rate. 
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As can be seen from Figure 5.3, jobs continue to complete when using RPP, even 

with node failures in the range of .18 to .20 probability. Job completion when using 

simple replication, Perm 5_5 and Perm 5_10 is much less, dropping off when the 

probability of node failure reaches 0.08 to 0.12. In Figure 5.8, makespan is shown in 

terms of timesteps to job completion or until the last remaining node processes its final 

piece of data in the case of incomplete jobs. 

Mean Job 
Completion 

_ Perm 4 

....... Perm3 
1.2 .----------------------------------------------------------------

..... Perm2 

1 j[};~xx:::c-C_I::.::.}oC::<:}=_:::.!::.:::e_+_oI.__III_-------------~_permJ:-

0.8 

0.6 +-I-----+-B--I-+--~-\------~#-\l.-l'-ll--'l-----------'P'erm 

0.4 +-~---~~.--4~~~~~-----~~-_4----------

0.2 +-~X-------~r-~~~-~4r~~--~----~~~~~-----------------

o 0.020.040.060.08 0.1 0.120.140.160.18 0.2 0.220.240.260.28 0.3 0.320.340.360.38 0.4 

Node Failure Rate 

Figure 5.3: The chart shows decreasing job completion as node failures increase. 
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----~---------------------------------------------------------------------------------------

As expected because of the exponential nature of the node failure model, as 

discussed previously, all nodes failed and computation ended when the individual node 

failure rate reached .37 (at least for the large makespan of the Latin Square design). From 

that point and above, no job could complete before all ofthe nodes in the grid failed. 

Perhaps the two most important results were those predicted by the RPP model. 

As expected, reverse mirroring had the smallest makespan in the face of lower node 

failure rates, and the Latin Square design had the highest mean rate of job completion 

with increasing node failure rates. Of course, as node failures become large the makespan 

required by the Latin Square design to complete the job increases, which is what occurs 

at an individual node failure rate of about 37 percent. An interesting result is that the 

makespan using Perm 6, the pure Latin Square design, is nearly as efficient as the reverse 

mirroring in Perm3. 

It is important to full understanding to note that the reasons for job failure differ 

between the permutations that include Latin Square designs and those that don't. The 

RPP, which includes the Latin Square design, fails at large runtimes when all of the 

nodes finally fail. The other designs fail when all of the replicas of a particular task fail. 

Figure 5.4 shows the average makespan of the various permutations as they relate to 

failure rate. 

The makespan is shown in timesteps where the time step tj is the time step at which 

the job completed, meaning all data had been processed or that the final data item was 

processed whether the job was completed or not. Note that the makespans of the RPP 

model vary considerably with node failure rates while the others do not. 
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Figure 5.4: Total timesteps, left, required by each permutation are shown at various 
node failure rates. 

5.4 Simulation Conclusions 

The results from the previous section indicate that the RPP paradigm can result in 

enhanced grid reliability. More specifically, the RPP approach: 

• Results in smaller makespan than traditional course-grained 
replication in the absence of failed hosts . 

• Result in increased job completion rates under most failure 
conditions. 

• Matches the performance of mirroring in the worst failure case. 
• Completes so long as one functioning processor remains. 

One other interesting observation was obtained. RPP includes two basic features 

reverse mirroring and the Latin Square design. Both showed essentially the same 

performance at lower failure rates. Reverse mirroring results in job failure at high node 

failure rates, however, while the Latin Square distribution paradigm does not. 

Although the work is aimed toward providing a grid application programming 

paradigm for reliability, the work also could have implications for the design of grid 
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middlcware and other system software for grid computing. A potential issue with regard 

to RPP is the amount of data that may be transferred, n2 where n is the number of data 

items. When the node failure rate is low, most of the data need never be traversed and 

hence transferred in the first place. Jobs complete in a small number of time steps under 

reliable conditions. So a "lazy" or delayed mode of data transfer is preferable. 
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CHAPTER 6 

LATIN SQUARE DISTRIBUTION 
AND PHARMACOPHORE DISCOVERY 

In this case study we show that Inductive Logic Programming (ILP) algorithms 

for pharmacophore discovery run efficiently and reliably on a grid of desktop computers 

using a Latin Square distribution of heterogeneous data and homogeneous tasks. 

Pharmacophore discovery was chosen as the subject of a case study involving data 

distribution for reliability primarily because it was a motivating factor in the initial 

research. The case study is not meant to duplicate results of the simulator in a live grid 

situation, although doing so is a consideration for future research. It is possible to 

compare results of the case study and simulator results, however, which is discussed in 

Chapter 7. 

6.1 Previous Results with Inductive Logic Programming 

In 2006 work at the University of Louisville showed that inductive logic 

programming (ILP) algorithms for pharmacophore discovery can run efficiently on a grid 

of inexpensive computers.[6] Designing a new drug is a long, tedious, and very expensive 

process that can take many years to complete. Machine learning techniques and ILP 

algorithms have been shown to be valuable aids in speeding discovery of candidate 
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molecular structures. The 2006 paper described a case study utilizing structure activity 

relationships and ILP for pharmacophore discovery on an "Xgrid" of Apple G4 

computers available at high schools in Kentucky. With this architecture, an algorithm 

that requires about nine hours on a single processor, and a little less time on an older 

tightly-coupled cluster computer, executed in 32 minutes using the donated idle cycles of 

a large number of loosely-coupled processors in a computational grid. Unfortunately 

processing of the job required manual resubmission of subtasks because of host failures 

in the grid. In the current research, use of a Latin Square data distribution paradigm 

allowed the job to complete in a couple of minutes, even in the face of large numbers of 

host failures. 

The concept of the pharmacophore model is key to the search for new and 

interesting medicinal drugs. A pharmacophore is a set of structural features in a molecule 

that acts on some target molecule to produce biological activity [118]. Many molecules 

may share these structural features and hence might show some of the same biological 

activity. The search for a pharmacophore involves finding a group of several mixtures of 

molecules that have some activity and determining the common features that make them 

active - in other words, finding the pharmacophore. Inductive logic programming (ILP) 

provides one method for finding new pharmacophores. In particular ILP provides a 

method for looking at a group of active compounds and a group of inactive ones and 

discovering pharmacophores, those structural attributes that might make a compound 

active and another inactive. [119] 
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Understanding current methods for pharmacophore discovery, and parallel ILP in 

particular, depends on the understanding of a couple of basic underlying concepts that 

often are misused -- even in the medical literature. The first such concept is that of a 

structure activity relationship or SAR. [119] A SAR is a set of mathematical relationships 

linking chemical structure and pharmacological activity for a set of compounds. A 

pharmacophore is a set of features that provide optimal activity on some biological target. 

Generally some set of SAR is searched for the pharmacophore. So, by examining the 

SAR of a set of compounds that are biologically active in a desired area, it is possible in 

some fashion or other to discover one or more pharrnacophores, or sets of features that 

provide optimal activity. Using a pharmacophore, one might determine other compounds 

that would be likely candidates for consideration as a drug. ILP is a particularly 

interesting candidate for examining SAR and discovering the interesting pharrnacophores 

to which their activity adheres. 

Much previous work has been done using ILP and structure activity relationships 

for pharmacophore discovery by Michael Sternberg and Stephen Muggleton, among 

others. Their 2003 paper In QSAR and Combinatorial Science, "Structure Activity 

Relationships (SAR) and Pharrnacophore Discovery Using Inductive Logic 

Programming," provides an excellent overview of ILP as well as other major 

methodologies for pharmacophore discovery.[119] In general, ILP involves listing 

positive examples, negative examples and background knowledge. The background 

knowledge is typically some set of features or attributes of the set of positive and 

negative examples. The combinations of features that provide the best logical cover of the 

positive examples and the least cover of the negative example is a hypothesis. In the case 
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of pharmacophore search, a set of biologically active compounds provides the positive 

examples, some set of negative compounds, the negative examples and some set of 

interesting features, the background knowledge. The best cover for the active compounds 

over the feature space and the least cover of the negative compounds over the same space 

provide a hypothesis regarding the set of features that make up a pharmacophore. 

It also is possible to run such ILP in parallel, supplying an almost linear speedup 

to the computationally intensive search. Researchers at the University of Louisville, in 

concert with others, have succeeded in implementing ILP for pharmacophore discovery 

in a tightly-coupled, distributed memory parallel environment. In 1999, these researchers 

used an initial data set consisting of 48 mixtures of pseudopeptides synthesized by 

modified solid phase methods and cleaved from the polystyrene matrix. Each mixture had 

a recorded level of activity against Pseudomonas Aeruginosa bacterium and consisted of 

eight compounds. [120] The goal was to find the largest three dimensional substructure 

present in at least one member of every active mixture and not present in any member of 

any inactive mixture. 

Curtis, Page, Graham and Spatola conducted the first set of experiments on a 

SUN Ultra computer with a run-time of about two weeks. [121] A second set of 

experiments was conducted by Wild on a Beowulf cluster with 8 processors [120] with a 

runtime of about two days. The same job was implemented on a 112 processor IBM 

RS6000 SP2 supercomputer in 2002, executing in about 2.3 hours. [122] In 2006, the 

work was moved from such clusters to a unique and very loosely coupled grid of widely 

disbursed Apple computers located at various high schools across the Commonwealth of 
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Kentucky. [6] A runtime of about nine hours on a single Apple computer was reduced to 

about 30 minutes of actual execution time on the grid. However, because some tasks 

weren't completed they had to be resubmitted, as mentioned previously. 

The next section presents an overview of the hardware and software configuration 

of the grid. Section 6.3 presents experimental in terms of reliability and execution time. 

Section 6.4 presents conclusions and directions for future research. 

6.2 Grid ILP Using Latin Square Distribution 

The intent of the current study is somewhat different from that of the previous 

2006 effort. The intent of the earlier study was to duplicate previous ILP searches with 

Pseudomonas Aeruginosa running on tightly coupled clusters in order to obtain timing 

data and to test the feasibility of running an ILP pharmacophore search on a loosely­

coupled grid. Various Perl scripts were used to submit the jobs through the Xgrid 

software. The job consisted of a simple Bash shell script that accepted various 

conformations as command line arguments. The script then called the Prolog ILP 

program, which reads the environmental variable into a list of conformations to be 

searched. 

In the current study, emphasis has been placed on the reliability of the grid job in 

the face of failures of the individual subtasks while using RPP (a Latin Square task and 

data distribution paradigm) on a Condor grid at the Dahlem Supercomputer Laboratory at 

the Speed Engineering School, University of Louisville. In the 2010 case study, jobs were 
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intentionally stopped to test the efficacy of the Latin Square data distribution scheme in 

providing reliability while reducing makespan. 

Various Windows batch scripts were used to submit the jobs through Condor 

software. The job consisted of a simple Windows command file script that accepted 

various conformations as command line arguments. The script then called the Prolog ILP 

program, which reads the environmental variable into a list of conformations to be 

searched. As previously the serial code was divided so that each instance of the program, 

rather than considering all conformations of a particular seed molecule, only considered 

the seed molecule and some subset of total conformations for that molecule. Each 

instance was given all of the data in the beginning so there was no communication until 

the output of the code was returned at the end of the run in the form of a distinct file. 

Because SWI-Prolog was not available on machines in the grid, the program was 

compiled on a development machine, and the Prolog executable was then bundled with 

everything needed to run as a completely standalone executable including some dynamic 

linking libraries not available on the grid machines. The program along with the script 

had to be sent to each machine on the grid where the software was to run. 

6.2.1 Hardware and Software 

The grid hardware consisted mainly of host desktop computers located in the 

Dahlem Supercomputer Lab at the Speed Engineering School, University of Louisville. 

Approximately 50 computers were used, although the available number varied. Most of 
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the jobs were run in the evening and nighttime hours to control the number of desktop 

users and attempt (successfully) to add obtain some consistency in the computer pool. 

Many of the grid computational hosts are Dell systems with three gigahertz, dual 

core, 64-bit Intel processors and 4 GB of internal RAM. The systems were running 32-bit 

Windows Vista. Although the grid comprises other systems as well, the grid software was 

used to restrict computations to the aforementioned systems. 

The grid itself is constructed using Condor software. [7; 123] Full descriptions of 

Condor are available many places including the software website [124]. Briefly however, 

a Condor master machine schedules jobs on a computational hosts and provides 

scheduling and queuing functionality. Jobs are submitted to the queue through submit 

machines with the use of job control files called description files. A variety of commands 

are provided to submit, delete and view jobs among other functions. Individual tasks are 

submitted to available processors and the results returned to the submit machine at the 

completion of the job. 

Here, for example, is a sample condor description file for the Latin Square data 

distribution job: 

Executable = D:\workingCondorCode\50 _ systems\hl.bat 
Universe = vanilla 
output = D:\workingCondorCode\50 _ systems\hl.out 
error = D:\workingCondorCode\50_systems\hl.err 
Log = D:\workingCondorCode\50_systems\hI.log 
should transfer files = YES 
when_to_transfer_output = ON_EXIT 
transfer _ input_files D: \ workingCondorCode \seria13 .exe, 
D:\workingCondorCode\50 _ systems\hl.bat, 
D:\workingCondorCode\libpl.dll, 
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D: \ workingCondorCode \pthreadV C.dll, 
D:\workingCondorCode\callSerial.bat 
Requirements = (OpSys == "WINNT60" && Arch == "INTEL" 
&& CAE _ LAB=?= True) 
Queue 

The Condor description files indicate the type of Condor job, where outputs 

should go as well as the required input files. Several files are required to run the RPP or 

Latin Square distribution job, including the Prolog program itself - seria13.exe, two 

dynamic linking libraries required because Prolog is actually transferred with the 

program, and two windows batch files. Prolog is not installed on the computational hosts 

so the Prolog engine and necessary dynamic linking libraries have to be sent along to 

each machine. 

Because of the large number of jobs to be sent and the requirements of a Latin 

Square configuration - 50 jobs must be sent to each of 50 machines - the task would be 

difficult to manage manually. Job submission for the case study is actually accomplished 

using a small C# console program, Latin Grid, which writes the batch and description 

files necessary to submit the jobs, as shown in Appendix B. 

The code produces two batch files and a job description file for each of the 50 

hosts and then submits the jobs in either a Latin Square or mirrored configuration. One 

set of batch files is named by host, such as h2.bat and the second set is simply 

callS erial. bat. 

Here are examples of each: 
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H2.BAT 

FOR %%a IN ( c2 c3 c4 c5 c6 c7 c8 c9 cIO cI1 c12 cI3 cI4 c15 
cI6 c17 cI8 cI9 c20 c21 c22 c23 c24 c25 c26 c27 c28 c29 c30 c31 
c32 c33 c34 c35 c36 c37 c38 c39 c40 c41 c42 c43 c44 c45 c46 c47 
c48 c49 c50 cI ) DO call call Serial. bat %%a 

callSerial. bat: 

set serialEnv=% 1 
echo %serialEnv% 
call serial3 

Notice that the h2.bat file calls callSerial.bat with the name of each conformation. 

CallSerial then sets the conformation in an environment variable on the execution host 

and then calls the actual Prolog executable, serial3 .exe, where the environment variable is 

read and processed. 

Serial3, which contains the prolog code itself, remains the same and was simply 

recompiled to Windows instead of Apple's operating system. 

Data returned from each host included a list of conformations processed and the 

amount of time required to process each conformation. Output data was concatenated into 

one file and then sorted by timestep. After all of the runs, another small C# program 

processed the output, determining the time step in which all of the data had been 

processed, and produced a log file showing the time step in which the job was completed. 

6.2.2 Experimental Model and Results 

The purpose of this case study was to determine the feasibility of running an 

actual job on a grid of computers using the Latin Square data and task distribution portion 
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of RPP. In addition live data was used to compare the performance of simple duplication 

of tasks and data (simple mirroring) to Latin Square redundancy. 

For the Latin Square case study, 50 conformations were sent for processing on 

each of 50 processors along with all necessary data. Wall time processing for each 

conformation varied between approximately 57 and 60 seconds, roughly three times 

faster than the previous grid experiments. Wall time is not, however, the important factor 

in this study. Rather, the behavior of the job under conditions of failure is most important. 

In the previous research, node failures produced severe outliers and missing results that 

caused jobs to be manually resubmitted the following day. 
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Figure 6.1 shows the average timestep in which a job finished in the face of 5,10 and 
20 failures on a 50 processor grid. 

Because work comparing various data distribution schemes usmg the Grid 

Simulation software indicated that the Latin Square data distribution was effective in the 

face of node failure (as discussed in Chapter 5), and because of the features of the Latin 
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Square distribution in proof of maximum makespan in the face of hardware failure (as 

discussed in Chapter 4), the 50 conformations were submitted to the processors in a Latin 

Square configuration. 

Experimental algorithm: 

• For example, a job "hI" consisting of conformations {C1, C2, 
... , C50} was sent as a task to one processor. Another job, "h2," 
consisting of conformations { C2, C3, ... ,C50, C1} was sent to 
another, and so on until a set of jobs {hI, h2, ... , h50} had been 
submitted. 

• A set of pseudo-random numbers was generated - either 0, 5, 
10, or 20 such numbers in the range of 1 to 50. 

• In the first three runs no hosts were killed. In the next three 
runs, five jobs were killed using the condor remove command 
and using the five previously generated random numbers. Each 
number was matched with a task name so that a random 25, for 
example, cause job h25 to be killed. In the next set of three runs 
10 tasks were killed, and in the final set of runs, 20 tasks were 
killed. 

• Processing one conformation was considered one timestep. 
Information about the makespan of each of the nine jobs was 
collected. 

There are a couple of caveats. All failures were immediate and no data was 

returned from a failed task, as though the host had failed on startup. In addition, partial 

data was not collected. All hosts computed all conformations and then the data was 

analyzed to determine by what time step job completion actually occurred. 

Figure 6.1 shows the mean time step in which all 50 conformations were 

completed in the face of 0, 5, 10 and 20 failed tasks (host failures). When no hosts failed 

the job was completed in Timestep 0 or about 58 seconds. When five hosts failed the jobs 

complete at an average time step 1.6 as well as at average time step 2.33 for 10 failures 

and 4.33 for 20 failures. 
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The results are encouraging when one considers that the job completed at an 

average of time step 4.33 when about 40 percent of the grid failed. 

Although the purpose of the case study was to determine the feasibility of running 

tasks and data in Latin Square fashion across a grid, data about what might happen under 

similar failure conditions using simple mirroring provides a nice comparison of the two 

methods. 

In the case of simple mirroring, one copy of the 50 conformations was placed on 

25 processors and another 50 on another 25 processors. The jobs, each two conformations 

long, required about two minutes of processor time to complete. Because the jobs 

completed so quickly it was difficult to halt them prior to completion. Instead, random 

numbers corresponding to hosts were generated, indicating that that particular host failed. 

The data resulting from that host was then removed from the output as though the host 

had suffered failure on startup or infant mortality. 

Three such "runs" were conducted for each of 5, 10 and 20 host failures. The 

resulting data was analyzed, and if two hosts running the same mirrored data failed then 

the job was determined to have failed. 

Of the nine runs, two succeeded, one job with 10 host failures and a job with five 

host failures. The remaining attempts to complete the job failed. 

The intention of the case study was to show that the proposed RPP paradigm, at 

least in the form of Latin Square data distribution, may easily be applied to an actual job 

running on a grid. In addition it is important to observe the behavior of the job on host 
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processors in the face of real failures on the grid. Of course the failures were purposely 

generated in random fashion, but the results are interesting none the less. The main 

conclusion is that the Latin Square data and task distribution is feasible and affords robust 

protection in the face of failures. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE DIRECTIONS 

The purpose of this research was to examme the use of permutation with 

redundancy as a method of improving reliability in computational grid applications. 

Three primary avenues of exploration were delineated early on and have been 

accomplished - development of a model of grid data and task redundancy, development 

of grid simulation software and testing Replication and Permutation Paradigm (RPP) 

against other methods of fault tolerance through redundancy and finally running a 

program on a live grid using RPP. This chapter presents the conclusions from this 

research and an overview of further research directions. 

7.1 Conclusions 

Each of the research areas has produced important results. The redundancy model 

provided tools to analyze redundancy in a logical and somewhat rigorous fashion. Using 

the model allowed development of two theorems and subsequent proof by mathematical 

induction regarding Latin Squares. Interesting in their own right, the theorems have 

implications for redundancy. Basically the theorems describe the changing position of 

symbols between the rows of a standard Latin Square. When a symbol is missing because 

a column is removed the theorems provide a basis for determining the next row and 
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column of the missing symbol. In terms of the redundancy model this allows one to state 

the maximum makespan in the face of missing computational hosts when using Latin 

Square redundancy. Maximum makespan is important because it can provide an 

indication of when a computation should stop, saving valuable computational resources. 

In addition, grid failure rates are directly related to job length, and predicting job length is 

important in and of itself. 

The DGSimulator software was developed and used to compare six different data 

and task distribution schemes on a simulated grid. The software clearly showed the 

advantage of running RPP, including reverse mirroring and/or the Latin Square 

distribution methods. Both resulted in faster completion times in the face of 

computational host failures. The Latin Square method also fails gracefully in that jobs 

complete with massive node failure while increasing makespan. The major caveat 

involved with the Latin Square method is that a large amount of data must be transferred. 

So a delayed or "lazy" data transfer method needs to be examined along with various 

methods of determining when a job has completed so that data transfer may be stopped. 

Finally inductive logic programmmg was used to implement pharmacophore 

search on a Condor grid.in the Dahlem Lab at the University of Louisville Speed School 

of Engineering. The primary purpose was to examine the behavior of Latin Square 

distribution on a "live" grid running a computationally intensive job. Latin Square 

distribution was chosen because it offers the most promise in terms of reliability as 

indicated by the results of the simulator runs. The results were encouraging. All jobs 

completed, even in the face of large numbers of randomly generated computational host 
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failures. In addition the live results comtirm the general result of the simulation in the 

sense that makespan increases slowly in the face of increasingly large numbers of node 

failures. Even with 40 percent of the live grid failing, the number of time steps required 

increased from one to five of 50 possible timesteps. The simulator results show a similar 

increase in makespan in the face of node failure. 

The mam conclusion is that RPP, including Latin Square data and task 

distribution and Reverse Mirroring, is feasible and affords robust protection in the face of 

failures. 

7.2 Future Directions 

Many interesting opportunities remain for research into Latin Square and other 

types of redundancy for fault tolerance. There are, of course, unanswered questions 

remaining, which are discussed briefly in the following paragraphs. 

First, how would Latin Square replication perform against other types of 

redundancy on a live grid with large numbers of actual users? Although RPP in the form 

of Latin Square redundancy worked well in the face of node failure on a live grid, other 

forms of redundancy, including reverse mirroring, were not implemented. A study 

comparing results on an actual grid might produce interesting results. Additional work 

comparing the results of the simulator to a comparable job on the live grid would provide 

additional validation for the simulator enhancing its usefulness in more thorough future 

analysis of grid systems. 
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Secondly, one could consider how well does Latin Square replication scale? The 

number of replicants in Latin Square replication is n2 where n is the number of 

computational hosts. Obviously some method of reducing bandwidth and memory 

concerns is necessary. In very large pools of hosts the job length would be greater 

because of the way makespan can grow when using Latin Squares. Is there an upper limit 

to the redundancy before job length becomes so great that all processors fail before the 

job is completed? Such a scenario might not be a likely outcome but should be 

investigated. 

A final issue is how does one estimate job completion? It can be difficult to 

determine when all of the data has been processed and all results reported on a loosely 

coupled system. One nice result of this research is the ability to estimate maximum 

makespan in the face of computational host failures. Exactly how to use that information 

to determine when to stop processing is an interesting question. 

Although work remams to be done in the area of redundancy and over­

provisioning for reliability, RPP provides valuable insight and a methodology for making 

computational grids, the largest computers in existence today, even better tools for 

complex calculations. 
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------~--------------------------------------------------------------------------------------------------

APPENDIX A 

DGSIMULATOR CODE 

using System; 
using System. Threading; 
using System.Collections; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System. Text; 
using System.Windows.Forms; 
using System. Reflection; 
using System.Reflection.Emit; 
using System.IO; 

namespace DGSimulator 
{ 

public partial class Form1 Form 
{ 

Grid thisGrid; 
public struct jobResults 

{ 
public string fileName; 

public int permutation; 
public double defaultRate; 
public int numNodes; 
public int defaultDataSize; 
public int timestamp; 
public int failedCount; 
public int completedCount; 
public int status; 

} 

public class JccJobResults 
{ 

public string fileName; 
public int permutation; 
public double defaultRate; 
public int numNodes; 
public int defaultDataSize; 
public int timestamp; 
public int failedCount; 
public int completedCount; 
public double status; 
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} 

public int reps; 

public accJobResults() 
{ 

} 

fileName = ""; 
permutation = 1; 
defaultRate = 0; 
numNodes = 0; 
defaultDataSize 0; 
timestamp=0; 
failedCount=0; 
completedCount=0; 
status=0; 
reps=0; 

public void accumulate(jobResults jr) 
{ 

} 

fileName = jr.fileName; 
permutation = jr.permutation; 
defaultRate = jr.defaultRate; 
numNodes = jr.numNodes; 
defaultDataSize = jr.defaultDataSize; 
timestamp+=jr.timestamp; 
failedCount+=jr.failedCount; 
completedCount+=jr.completedCount; 
status=status+(double) jr.status; 
reps++; 

public void getMeanResults() 
{ 

} 

timestamp=timestamp/reps; 
failedCount=failedCount/reps; 
completedCount=completedCount/reps; 
status=status/reps; 

public Form1() 
{ 

InitializeComponent(); 
} 

private void label1_Click(object sender, EventArgs e) 
{ 

} 

private void cmdRun_Click(object sender, EventArgs e) 
{ 

thisGrid = new Grid(Globals.numNodes); 
thisGrid.addJob(); 
ArrayList outputListsByHost 

thisGrid.executeNextJob(Globals.numNodes); 
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- 1]; 
int numTimeSteps = (int)outputListsByHost[outputListsByHost.Count 

outputListsByHost.RemoveAt(outputListsByHost.Count - 1); 
outputListsByHost.TrimToSize(); 
string standardHeader = "Permutation Failrate NumNodes NumData"; 
string header Globals.permutation.ToString() + " " + 

Globals.defaultRate + " " + Globals.numNodes.ToString() + " " + 
Globals.defaultDataSize; 

double Rate Globals.defaultRate * 100; 
string strRate = Rate.ToString(); 
string fileName = UP" + Globals.permutation.ToString() + "FR" + 

strRate + "NN" + Globals.numNodes.ToString() + "ND" + 
Globals.defaultDataSize.ToString() + "_" + Globals.repetition; 

if (!Directory.Exists(Globals.outFileSpec» 
Directory.CreateDirectory(Globals.outFileSpec); 

string path = Globals.outFileSpec + fileName; 
TextWriter tw = new StreamWriter(path); 
tw.WriteLine(standardHeader); 
tw.WriteLine(header); 
ArrayList outputByTimestep = new ArrayList(); 
outputByTimestep.Capacity = numTimeSteps; 
for (int i = 0; i < outputByTimestep.Capacity; i++) 
{ 

outputByTimestep.lnsert(i, null); 
} 
foreach (ArrayList outputByNode in outputListsByHost) 
{ 

foreach (ArrayList outputValue in outputByNode) 
{ 

int counter = 0; 
string strTmp = null; 
foreach (string 0 in outputValue) 
{ 

tw.WriteLine(o); 
outputByTimestep[counter] 

(string)outputByTimestep[counter] + 0 + " "; 
counter++; 

} 

if (counter < outputByTimestep.Capacity - 1) 
{ 

for (; counter < outputByTimestep.Capacity; counter++) 
{ 

strTmp = "t- h- d-"; 
outputByTimestep[counter] 

(string)outputByTimestep[counter] + strTmp + " "; 
} 

} 

} 
} 

tw.Close(); 
outputByTimestep.TrimToSize(); 
TextWriter tw1 = new StreamWriter(path + ".TSP"); 
tw1.WriteLine(standardHeader); 
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tw1.WriteLine(header); 
foreach (string 0 in outputByTimestep) 
{ 

tw1.WriteLine(o)j 
} 
tw1.CloseO; 
TextWriter tw2 = new Streamwriter(path + ".STP"); 
tw2.WriteLine(standardHeader); 
tw2.WriteLine(header); 
foreach (string 0 in outputByTimestep) 
{ 

} 

string strpd 
int idx; 
string tmp; 
while «idx 
{ 

o· , 

= strpd.lndexOf("t"» != -1) 

} 

int hdex = strpd.lndexOf("h")j 

tmp = strpd.Remove(idx, hdex - idx)j 
strpd = tmpj 
strpd.Trim()j 
hdex = strpd.lndexOf("h"); 

tmp = strpd.Remove(hdex, strpd.lndexOf("d") - hdex)j 
strpd = tmp; 
strpd.Trim(); 
int ddex = strpd.lndexOf("d"); 
tmp = strpd.Remove(ddex, 1); 
strpd = tmp; 
strpd. Trim() j 

strpd.Trim()j 
tw2.WriteLine(strpd); 

tw2. CloseO; 
TextReader tr = new StreamReader(path + ".stp")j 
char[] dataDelimiters = new char[] { , , }; 
tr.ReadLine(); string thisLine = tr.ReadLine(); 
//Permutation Failrate NumNodes NumData 
string[] macrodata = thisLine.Split(dataDelimiters, 

StringSplitOptions.RemoveEmptyEntries)j 
string wholefile = tr.ReadToEnd(); 
char[] lineDelimiters = new char[] { '\r', '\n' }; 
string[] lines = wholefile.Split(lineDelimiters, 

StringSplitOptions.RemoveEmptyEntries); 
int timestamp = 0j 

bool[] testArray; 
string linej 
string[] data; 
int numData = Convert.Tolnt32(macrodata[3]); 
testArray = new bool[numData]; 
bool finishedFlag = falsej 
int dataCount 0; 
int hostcount = 0; 
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labelS.Text = " FileName " + standardHeader + " TimeStamp " + " 
Host" + " Failed" + " Completed" + " Status" + "\r\n"; 

for (int i = 0; i < lines. Length; i++) 
{ 

line lines[i]; 
data line.Split(dataDelimiters J 

StringSplitOptions.RemoveEmptyEntries); 
hostcount = 1; 
int d; 
foreach (string datum in data) 
{ 

} 

string dtmp = datum; 
if (dtmp == "_H) 
{ 

d = -1; 
} 
else d = Convcrt.Tolnt32(datum); 
II d = Convert.Tolnt32(datum); 
if (d != -1 && testArray[d] == false) 
{ 

} 

testArray[d] = true; 
dataCount++; 
if (dataCount == numData) 
{ 

} 

finished Flag = true; 
break; 

hostcount++; 

if (finishedFlag 
{ 

true) 

break; 
} 
timestamp++; 

} 
tr.Close(); 
SubmitNode thisMasterNode = thisGrid.getMaster(); 
ArrayList nodelist = thisMasterNode.getNodeList(); 
int failedCount = 0; 
int completedCount = 0; 
int nodecount nodelist.Count;II/-1? 
foreach (Node n in nodelist) 
{ 

} 

if (n ! = null) 
{ 

if (n.isFailed(» failedCount++; 
else if (n.isCompleted(» completedCount++; 

} 

string logPath = Globals.outFileSpec + txtLogName.Text; 
tw2 = new Str'camWl'itcl'(logPath J true); 
string status; 
if (finishedFlag == true) status = "1"; 
else status = "0"; 
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tw2.WriteLine(fileName + " " + header + " " + timestamp.ToString() 
+ " " + hostcount.ToString() + " " + failedCount + " " + completedCount + " " + 
status + "\r\n"); 

tw2.Close(); 
txtOutput.Text = txtOutput.Text + fileName + " " + header + " " + 

timestamp.ToString() + " " + hostcount.ToString() + " " + failedCount + " " + 
completedCount + " " + status + "\r\n"; 

} 

private jobResults runGrid() 
{ 

thisGrid = new Grid(Globals.numNodes); 
thisGrid.addJob(); 
Arraylist outputListsByHost = 

thisGrid.executeNextJob(Globals.numNodes); 

1]; 
int numTimeSteps = (int)outputListsByHost[outputListsByHost.Count -

outputListsByHost.RemoveAt(outputListsByHost.Count - 1); 
outputListsByHost.TrimToSize(); 
jobResults jr = new jobResults(); 
string standardHeader = "Permutation Failrate NumNodes NumData"; 
string header Globals.permutation.ToString() + " + 

Globals.defaultRate + " " + Globals.numNodes.ToString() + " " + 
Globals.defaultDataSize; 

double Rate = Globals.defaultRate * 100; 
string strRate = Rate.ToString(); 
string fileName = UP" + Globals.permutation.ToString() + "FR" + 

strRate + "NN" + Globals.numNodes.ToString() + "ND" + 
Globals.defaultDataSize.ToString() + "_" + Globals.repetition; 

II jr.fileName = fileName; 
if (!Directory.Exists(Globals.outFileSpec» 

Directory.CreateDirectory(Globals.outFileSpec); 
string path = Globals.outFileSpec + fileName; 
TextWriter tw = new StreamWriter(path); 
tw.WriteLine(standardHeader); 
tw.WriteLine(header); 
Arraylist outputByTimestep = new ArrayList(); 
outputByTimestep.Capacity = numTimeSteps; 
for (int i = 0; i < outputByTimestep.Capacity; i++) 
{ 

outputByTimestep.lnsert(i, null); 
} 

foreach (ArrayList outputByNode in outputListsByHost) 
{ 

foreach (ArrayList outputValue in outputByNode) 
{ 

int counter = 0; 
string strTmp = null; 
foreach (string 0 in outputValue) 
{ 

tw.WriteLine(o); 
outputByTimestep[counter] 

(string)outputByTimestep[counter] + 0 + " "; 
counter++; 
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} 

if (counter < outputByTimestep.Capacity - 1) 
{ 

for (; counter < outputByTimestep.Capacity; counter++) 
{ 

strTmp = "t- h- d-"; 
outputByTimestep[counter] 

(string)outputByTimestep[counter] + strTmp + " "; 
} 

} 

} 
} 

tw.Close(); 
outputByTimestep.TrimToSize(); 
TextWriter tw1 = new StreamWriter(path + ".TSP"); 
tw1.WriteLine(standardHeader); 
tw1.WriteLine(header); 
foreach (string 0 in outputByTimestep) 
{ 

tw1.WriteLine(0); 
} 

tw1.Close(); 
TextWriter tw2 = new StreamWriter(path + ".STP"); 
tw2.WriteLine(standardHeader); 
tw2.WriteLine(header); 
foreach (string 0 in outputByTimestep) 
{ 

} 

string strpd 0; 
int idx; 
string tmp; 
while «idx = strpd.lndexOf("t"» != -1) 
{ 

} 

int hdex = strpd.lndexOf("h"); 

tmp = strpd.Remove(idx, hdex - idx); 
strpd = tmp; 
strpd.Trim(); 
hdex = strpd.lndexOf("h"); 

tmp = strpd.Remove(hdex, strpd.lndexOf("d") - hdex); 
strpd = tmp; 
strpd.Trim(); 
int ddex = strpd.lndexOf("d"); 
tmp = strpd.Remove(ddex, 1); 
strpd = tmp; 
strpd.Trim(); 

strpd. Trim(); 
tw2.WriteLine(strpd); 

tw2.Close(); 
TextReader tr = new StreamReader(path + ".stp"); 
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char[] dataDelimiters = new char[] { , , }; 
tr.ReadLine(); string thisLine = tr.ReadLine(); 
//Permutation Failrate NumNodes NumData 
string[] macrodata = thisLine.Split(dataDelimiters, 

StringSplitOptions.RemoveEmptyEntries); 
string wholefile = tr.ReadToEnd(); 
char[] lineDelimiters = new char[] { '\r', '\n' }; 
string[] lines = wholefile.Split(lineDelimiters, 

StringSplitOptions.RemoveEmptyEntries); 
int timestamp = 0; 
bool[] testArray; 
string line; 
string[] data; 
int numData = Convert.Tolnt32(macrodata[3]); 

testArray = new bool[numData]; 
bool finishedFlag = false; 
int dataCount 0; 
int hostcount = 0; 
labelS.Text = " FileName " + standardHeader + " TimeStamp " + " Host " 

+ " Failed" + " Completed" + " Status" + "\r\n"; 
for (int i = 0; i < lines.Length; i++) 
{ 

line lines[i]; 
data line.Split(dataDelimiters, 

StringSplitOptions.RemoveEmptyEntries); 
hostcount = 1; 
int d; 
foreach (string datum in data) 
{ 

} 

string dtmp = datum; 
if (dtmp == "_H) 
{ 

d = -1; 
} 
else d = Convert.Tolnt32(datum); 
if (d != -1 && testArray[d] == false) 
{ 

} 

testArray[d] = true; 
dataCount++; 
if (dataCount == numData) 
{ 

} 

finishedFlag = true; 
break; 

hostcount++; 

if (finishedFlag 
{ 

true) 

break; 
} 
timestamp++; 

} 
tr.Close(); 
SubmitNode thisMasterNode = thisGrid.getMaster(); 
ArrayList nodelist = thisMasterNode.getNodeList(); 
int failedCount = 0; 
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int completedCount = e; 
int nodecount nodelist.Count;/li-l? 
foreach (Node n in nodelist) 
{ 

} 

if (n != nUll) 
{ 

if (n.isFailed(» failedCount++; 
else if (n.isCompleted(» completedCount++; 

} 

string logPath = Globals.outFileSpec + txtLogName.Text; 
tw2 = new StreamWriter(logPath. true); 
string status; 
if (finishedFlag == true) status = "1"; 
else status = "en; 
tw2.WriteLine(fileName + " " + header + " " + timestamp.ToString() + " 

" + failedCount + " " + completedCount + " " + status + "\r\n"); 
tw2.Close(); 
txtOutput.Text txtOutput.Text + fileName + " " + header + + 

timestamp.ToString() + " " + failedCount + " " + completedCount + " " + status + 

} 

jr.fileName = fileName; 
jr.permutation = Globals.permutation; 
jr.defaultRate = Globals.defaultRate; 
jr.numNodes = Globals.numNodes; 
jr.defaultDataSize = Globals.defaultDataSize; 
jr.timestamp = timestamp; 
jr.failedCount = failedCount; 
jr.completedCount = completedCount; 
jr.status = int.Parse(status); 
return jr; 

private void buttonl_Click(object sender. EventArgs e) 
{ 

Globals.numNodes = (int)numericNumNodes.Value; 
Globals.repetition = e; 
Globals.defaultDataSize = (int)numericNumData.Value; 
Globals.defaultRecordSize = 1; 
Globals.defaultRate = (double)numericFailRate.Value;!!probability of 

failure of each host or entire JOB? 
Globals.defaultrnterval = 500; 
Globals.outFileSpec = txtOutputDirectory.Text; 
Globals.permutation = (int)numericPermutation.Value; 
Globals.numReplicants = (int)numericReplicants.Value; 
Random rnd = new Random(); 
Globals.rnd = rnd; 
int numReps; 
if (numericFailStepRate.Value == 0) numReps = 1; 
else numReps = l+(int) ( (numericMaxFailRate.Value -

numericMinFailRate.Value) ! numericFailStepRate.Value); 
double stepRate = (double) numericFailStepRate.Value; 
double minRate = (double)numericMinFailRate.Value; double maxRate 

(double) numericMaxFailRate.Value; 
for (int j = 0; j < numReps; j++) 
{ 

Globals.defaultRate = minRate + j * stepRate; 
numericFailRate.Value = (decimal) Globals.defaultRate; 
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lblCurrentFailureRate.Text c Globals.defaultRate.ToString(); 
accJobResults ajr new accJobResults(); 
for (int i = 0; i < numericRepetitions.Value; i++) 
{ 

Application.DoEvents(); 
Globals.repetition = i; 
txtRepetition.Text = i.ToString(); 
ajr.accumulate(runGrid(»;llaccumulates returned results in 

ajr class 
} 
ajr.getMeanResults(); 
string logPath = Globals.outFileSpec + "meanLog.log"; 
StrcamWriter tw2 = new StreamWriter(logPath, true); 

II Filename Permutation Failure Rate Host Count Data Count 
TimeStamp Host Count Failed Completed Status 

tw2.WriteLine(ajr.fileName+" "+ajr.permutation+" 
"+ajr.defaultRate+" "+ajr.numNodes+" "+ajr.defaultDataSize+" "+ajr.timestamp+" 
"+ajr.failedCount+" "+ajr.completedCount+" "+ajr.status); 

} 

tw2.Close(); 
} 

} 
private void Form1_Load(object sender, EventArgs e) 
{ 

} 

numericFailRate.Value = (long) Globals.defaultRate; 
codeBox.Text = Globals.defaultProgram; 
txtOutputDirectory.Text = Globals.outFileSpec; 

public static class Globals 
{ 

public static int numNodes = 100; 
public static int defaultDataSize = 1000; 
public static int defaultRecordSize = 1; 
public static double defaultRate = .g;llprobability of failure of each 

host or entire JOB? 
public static int defaultlnterval = 500; 
public static string outFileSpec = @"c:\dgsim\"; 
public static int permutation = 4; 
public static Random rnd = new Random(); 
public static int repetition = 0; 
public static int numReplicants; 
public static string defaultProgram 
Hint timeStamp=O;" + 
"bFailed=false;" + 
"ArrayList outputList=new ArrayList();" + 
"double succeedRate=l-failRate;"+ 
"double realRate=1-Math.pow(succeedRate,l.0/timeSteps);"+ 
"double spreadRate= (realRate*1000000);" + 
"foreach ( ArrayList dr in dataArray)" + 
"{" + 

"if (rnd.Next( 1000000 ) < Math.Round(spreadRate»" + 

"bFailed=true;"+ 
"break;" + 

"for (int i=O;i<dr.Count;i++)"+ 
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"{II+ 
"char ts='t';" + 
"char spc=' ';" + 
"string nodeInfo=ts+timeStamp.ToString()+ spc 

+Thread.CurrentThread.Name+spc;"+ 
"nodeInfo+=dr[i];"+ 
"outputList.Add(nodeInfo);"+ 
"nodeInfo=null;"+ 
"timeStamp++;" + 

} 

U}"+ 

"}II+ 
"return(outputList);"; 

class Grid 
{ 

private SubmitNode masterNode;//Master node of the grid 
private ArrayList nodeList;//Item 0 is mainNode and rest are batch nodes 
private ArrayList jobQueue;//List of job items 
public Grid(int gridSize) 
{ 

int masterId = 0; 
nodeList = new ArrayList(); 
nodeList.Capacity = gridSize + 1; 
nodeList.Add(masterNode); 
double rate = Globals.defaultRate; 
int ti = Globals.defaultInterval; 
decimal nodeArraySize = Globals.defaultDataSize / gridSize; 
int size = (int) System.Math.Ceiling(nodeArraySize); 
for (int 10 = 1; 10 <= gridSize; 10++) 
{ 

} 

Node thisNode = new Node(ID,size,rate,ti); 
nodeList.Add(thisNode); 

masterNode = new 
SubmitNode(masterId,Globals.defaultDataSize,rate,ti,nodeList); 

} 

public int addJob() 
{ 

//public Job(int dataListSize, int dataRecordSize, string s, params 
double [] dataRecord) 

ArrayList data = new ArrayList(); 
for (int i = 0; i < Globals.defaultDataSize; i++) 
{ 

int j = i; 
data.Add( "d" + j.ToString(»; 

} 
Job thisJob=new Job(Globals.defaultDataSize, 

Globals.defaultRecordSize,Globals.defaultProgram,data);//DATA LIST SIZE MATCHES 
DEFAULT SIZE 

} 

masterNode.addNewJob(thisJob); 
return masterNode.getJobCount(); 

public ArrayList executeNextJob(int numNodes) 
{ 
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} 

} 

II/dequeue the job and execute it 
ArrayList output masterNode.executeNextJob(numNodes); 
return output; 

public SubmitNode getMaster() 
{ 

return masterNode; 
} 

public class Job 
{ 

IIA job has a function and some data 
private ArrayList data List; 
private ArrayList data Record; 
private ArrayList returnList; 
private int dataRecSize; 
private String strFunc; 

public Job(int dataListSize, int dataRecordSize, string s, ArrayList 
jobDataList) 

} 

{ 

} 

dataList= new ArrayList(); 
dataRecord=new ArrayList(); 
dataList.Capacity = dataListSize; 

for (int i=0;i<dataListSize;) 
{ 

} 

for (int j=0;j<dataRecordSize;j++) 
{ 

dataRecord.lnsert(j,jobDataList[i+j]); 
} 
dataList.Add(dataRecord); 
dataRecord = new Arrayl.ist(); 
i+=dataRecordSize; 

strFunc=s; 

public int getDataRecordSize() 
{ 

return dataRecSize; 
} 
public ArrayList getData() 
{ 

return dataList;11 
} 

public String getStringFunction() 
{ 

return strFunc; 
} 

class MonitorForm Form 
{ 

ArrayList nodeList; 
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ArrayList failedNodeList; 
ArrayList completedNodeList; 
int numNodes; 
System.Windows.Forms.Timer timerl; 

public MonitorForm(ArrayList n) 
{ 

nodeList=new ArrayList(); 
nodeList=n; 

} 
public void runMonitorForm() 
{ 

} 

failedNodeList = new ArrayList(); 
completedNodeList = new ArrayList(); 
Text = "Grid Monitor"; 
BackColor = Color.Blue; 
numNodes = nodeList.Count-l;//Minus one for master 
int top=l; 
int left = 1; 
timerl = new System.Windows.Forms.Timer(); 
timerl.Interval = 100; 
timerl.Tick+=new EventHandler'(timerl_Tick); 
timerl.Start(); 
for (int i = 1; i < nodeList.Count ; i++) 
{ 

} 

Node thisNode (Node) nodeList[i]; 
thisNode.Top = top; 
thisNode.Left = left; 
thisNode.Tag = i; 

thisNode.MouseClick += new MouseEventHandler(node_MouseClick); 
left+=20; 
if (left>200){ 

top += 40; 
left = 1; 

} 
this.Show(); 
this.Controls.Add(thisNode); 

private void timerl_Tick(object sender, EventArgs e) 
{ 

} 

foreach(Node n in nodeList) 
{ 

} 

if «n != nUll) && n.isFailed(» 
{ 

n.Visible = !n.Visible; 
} 
else if (n !=null) 
{ 

n.Visible = true; 
} 
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class SubmitNode Node 
{ 

Job newJob; 
Job currentJob; 
Queue jq; 
ArrayList nodeList; 
MyClassBase executableObj; 
ArrayList outputArray; 
ArrayList jobData; 
MonitorForm monitorForm; 
public SubmitNode(int ID,int size, double rate,int interval,Arr'ayList 

nodes): base(ID, size, rate,interval) 
{ 

} 

jq=new Queue(); 
nodeList = nodes; 
outputArray=new ArrayList(); 
monitorForm = new MonitorForm(nodeList); 

public int addNewJob(Job j)IIString is an expression of the form f(x,y) 
such as x*y*Math.Sin(x+y) 

{ 

} 

jq.Enqueue(j); 
return jq.Count; 

public int getJobCount() 
{ 

return jq.Count; 
} 

private bool isFinished(ArrayList nodeList) 
{ 

} 

bool bLiveThread = false; 
foreach (Node n in nodeList) 
{ 

} 

if (n != null && n.isAlive()) 
{ 

bLiveThread = true; 
break; 

} 

return bLiveThread; 

public ArrayList executeNextJob(int numNodes) 
{ 

IIDequeue the job 
currentJob = (Job)jq.Dequeue(); 
splitJobData(currentJob, nodeList); 
IICompile the job 
MyClassBase executableObj = new MyClassBase(); 
MathExpressionParser p = new MathExpressionParser(); 
p.init(currentJob.getStringFunction()); 
foreach (Node n in nodeList) 
{ 

if (n != nUll) 
{ 
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} 

n.addExecutableObj(p); 
n.startJob(); 

} 
Application.DoEvents(); 
Thread.Sleep(l); 
int loopcounter = 0; 
boo 1 bLiveThread=true; 
while (bLiveThread) 
{ 

} 

Application.DoEvents(); 
Thread.Sleep(l); 
bLiveThread = false; 
foreach (Node n in nodeList) 
{ 

} 

if (n != null && n.isAlive(» 
{ 

bLiveThread = true; 
break; 

} 

ArrayList resultArrayList=new ArrayList(); 
int maxTimeStep=0; 
ArrayList tmpAL = new ArrayList(); 
foreach (Node n in nodeList) 
{ 

if (n != nUll) 
{ 

tmpAL =(ArrayList) n.getResultArray().Clone(); 
resultArrayList=(ArrayList) tmpAL[0]; 
if (maxTimeStep < resultArrayList.Count) maxTimeStep 

resultArrayList.Count; 

} 

outputArray.Add(n.getResultArray(»; 

} 
} 

outputArray.Add(maxTimeStep); 
return outputArray; 

public ArrayList getNodeList() 
{ 

return node List; 
} 

public int splitJobData(Job jJ ArrayList nodeList) 
{ 

int nodeCount = nodeList.Count-l; 
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jobData = new ArrayList(); 

jobData=j.getData(); 
if «(jobData.Count % nodeCount) != 0) I I «nodeCount % 2) != 0) ) 
{ 

MessageBox.Show("Data records do not divide evenly into nodes or 
nodes not divisible by 2", "Division Error", 

} 

MessageBoxButtons.OK J MessageBoxlcon.Exclamation); 
return nodeCount; 

int counter=0; 
int permutation = Globals.permutation; 
int nodeCounter = 0; 
switch (permutation) 
{ 

case 1: 
IllStandard permutation no mirroring 

foreach (Node n in nodeList) 
{ 

if (n != nUll) 
{ 

for (int i counter; i < counter + 
jobData.Count I nodeCount; i++) 

} 
} 

{ 

} 
n.addDataltem«ArrayList)jobData[i); 

counter = counter + jobData.Count I nodeCount; 

I//Standard permutation with mirroring 
break; 

case 2: 
foreach (Node n in nodeList) 
{ 

(nodeCount I 2); i++) 

(nodeCount I 2); i++) 

if (n != nUll) 
{ 

} 

nodeCounter++; 
if (nodeCounter <= nodeCount I 2) 
{ 

} 

for (int i = counter; i < counter + jobData.Count I 

{ 

} 
n.addDataltem«ArrayList)jobData[i); 

counter = counter + jobData.Count I (nodeCount I 2); 

else if (nodeCounter > nodeCount I 2) 
{ 

if (counter >= jobData.Count) counter =0; 
for (int i = counter; i < counter + jobData.Count I 

{ 
n.addDataltem«ArrayList)jobData[i); 

} 
counter = counter + jobData.Count I (nodeCount I 2); 
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} 

} 

IlllllReverse Permutation with mirroring 
break; 

case 3: 
foreach (Node n in nodeList) 
{ 

if (n != nUll) 
{ 

nodeCounter++; 
if (nodeCounter <= nodeCount I 2) 
{ 

for (int i = counter; i < counter + jobData.Count 
I (nodeCount I 2); i++) 

2); 
} 

{ 

} 
n.addDataItem«ArrayList)jobData[i]); 

counter = counter + jobData.Count I (nodeCount I 

else if (nodeCounter > nodeCount I 2) 
{ 

if (counter >= jobData.Count) counter--; 
for (int i = counter; i > counter - jobData.Count 

I (nodeCount I 2); i--) 

2); 

permutations 

permutation 

nodeCount; i++) 

} 

} 
break; 

case 4: 

} 

{ 

} 
n.addDataItem«ArrayList)jobData[i]); 

counter = counter - jobData.Count I (nodeCount I 

ArrayList pList = new ArrayList();llthis is a list of 

foreach (Node n in nodeList) 
{ 

} 

if (n != nUll) 
{ 

} 

ArrayList tempP = new ArrayList(); 11th is is a 

for (int i = counter; i < counter + jobData.Count I 

{ 

} 
tempP.Add«ArrayList)jobData[i]); 

counter = counter + jobData.Count I nodeCount; 
pList.Add(tempP); 

counter 0; 
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foreach (Node n in nodeList) 
{ 

if (n != nUll) 
{ 

nodeCounter++; 
if (nodeCounter <= nodeCount / 2) 
{ 

for (int i = counter; i < counter + jobData.Count 
/ (nodeCount / 2); i++) 

2); 
} 

{ 
n.addDataltem«ArrayList)jobData[i]); 

} 
counter = counter + jobData.Count / (nodeCount / 

else if (nodeCounter > nodeCount / 2) 
{ 

if (counter >= jobData.Count) counter--; 
for (int i = counter; i > counter - jobData.Count 

/ (nodeCount / 2); i--) 

2); 
} 

} 
} 

{ 

} 
n.addDataltem«ArrayList)jobData[i]); 

counter counter - jobData.Count / (nodeCount / 

ArrayList tempDataRecord = new ArrayList(); 
for (int i = 0;i<pList.Count;i++) 
{ 

} 

tempDataRecord=(ArrayList)pList[pList.Count-l]; 
int lastlndex=pList.Count-l; 
pList.RemoveAt(lastlndex); 
pList.lnsert(0, tempDataRecord); 
int nodePointer = 1; 
nodeCount = nodeList.Count; 

foreach (ArrayList p in pList) 
{ 

} 

if (nodePointer<nodeCount) 
{ 

} 
else 
{ 

} 

Node n = (Node) nodeList[nodePointer]; 
if (n != nUll) 
{ 

n.appendDataList(p); 
} 
nodePointer++; 

MessageBox.Show("Error in Latin Square 1"); 

int zz=1; 
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break; 
case 5: 

permutation 

nodeCount; i++) 

int dataCounter=0; 
int numReplicants = Globals.numReplicants; 
int dataPerNode = (numReplicants * jobData.Count) / nodeCount; 
foreach (Node n in nodeList) 
{ 

} 

if (n != nUll) 
{ 

} 

for (int i 0; i < dataPerNode; i++) 
{ 

} 

n.addDataltem«ArrayList)jobData[dataCounter]); 
if (dataCounter < jobData.Count-1) dataCounter++; 
else dataCounter = 0; 

break; 
case 6: 

pList 
foreach 

new ArrayList();//this is a list of permutations 
(Node n in nodeList) 

{ 

} 

if (n != nUll) 
{ 

} 

ArrayList tempP = new ArrayList(); //this is a 

for (int i = counter; i < counter + jobData.Count / 

{ 

} 
tempP.Add«ArrayList)jobData[i]); 

counter = counter + jobData.Count / nodeCount; 
pList.Add(tempP); 

counter = 0; 
tempDataRecord = new ArrayList(); 
for (int i = 0; i < pList.Count; i++) 
{ 

tempDataRecord = (ArrayList)pList[pList.Count - 1]; 
int lastlndex = pList.Count - 1; 
pList.RemoveAt(lastlndex); 
pList.lnsert(0, tempDataRecord); 
int nodePointer = 1; 
nodeCount = nodeList.Count; 
foreach (ArrayList p in pList) 
{ 

if (nodePointer < nodeCount) 
{ 

Node n = (Node)nodeList[nodePointer]; 
if (n != nUll) 
{ 

n.appendDataList(p); 
} 
nodePointer++; 
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} 
} 

} 
else 
{ 

} 
} 

} 
break; 

default : 
break; 

}llend case 
return nodeCount; 

MessageBox.Show("Error in Latin Square 1"); 

class Node:PictureBox 
{ 

,1/ <summar'y> 
/IIBasic Node Class 
III </sumrnary> 
private int intID; 
private int intArraySize; 
private double failRate;llfailrate is in form of .1 for 10 percent 
private A~r dataArray; 
private MathExpressionparser executableObj; 
private Thread t; 
private bool bFailed; 
private boo 1 bCompleted; 
private bool bRunning; 
Random random; 
struct dataItelll 

{ 

} 

public double x; 
public double y; 

private ~rldyLi5t resultArray; 
public NodeO 
{ 
} 
public Node(int ID,int size,double rate,int til 
{ 

} 

dataArray = new 
resultArray = new 
intArraySize = size; 
dataArray.Capacity = intArraySize; 
intID = ID; 
t = new Thread(executeJob); 
t.Name = "h" + getNodeIDO.ToString(); 
this.Width = 15, 
this.Height = 20; 
this.Name = "Node_" + intID.ToString(); 
bFailed = false; 
bCompleted = false; 
failRate = rate; 
random = new Random(); 

143 



public boo 1 isCompleted() 
{ 

if (bCompleted) 
{ 

return true; 
} 
else { return false; } 

} 
public bool isFailed() 
{ 

if (bFailed){ 
return true; 

} else {return false;} 
} 
public bool isRunning() 
{ 

} 

if (bRunning) 
{ 

return true; 
} 
else { return false; } 

public bool isAlive() 
{ 

if (!isFailed() && !isCompleted(» 
{ 

return true; 
} 
else return false; 

} 
public T~read getThread() 
{ 

return t; 
} 
public void startJob() 
{ 

t. Start().: 
} 
public void failNode() 
{ 

} 

t.Abort(); 
bFailed = true; 

public int getNodeID() 
{ 

return intID; 
} 
pubJir: A"r:lyLisL getData() 
{ 

return dataArray; 
} 

public void appendDataList(ArrayList dataList) 
{ 

dataArray.AddRange(dataList); 
} 
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public void addDataItem( A~rJvl i:t dataRecord) 

{ 
dataArray.Add(dataRecord); 

} 
public void addExecutableObj(MathExpressionParser obj) 
{ 

executableObj = obj; 
} 
public void executeJob() 
{ 

Application.DoEvents(); 
bool bF=false; 
if (executableObj != nUll) 
{ 

resultArray.Add( 
executableObj.eval(dataArray)failRate)Globals.defaultDataSize/Globals.numNodes)Glo 
bals.rnd,out bF»;//this returns a double but resultARRAY 

} 

} 

} 
bFailed = bF; 
bCompleted = !bFailed; 
t.Abort(); 

public AI'r~\ getResultArray() 
{ 

return resultArray; 
} 

//Beginning of compiler stuff 
public class 
{ 

public MyClassBase() 
{ 

} 
public virtual ect eval(Ar"~yList list) double failRate,int 

timeSteps)Random rnd) out bool bFailed)//pass data to code here 
{ 

} 
} 

bFailed = false; 
return null; 

public class Math 
{ 

sionParspr 

MyClassBase myobj = null; 
MyClassBase returnObj; 
public MathExpressionParser() 
{ 
} 
public MyClassBase init(string expr) 
{ 

Microsoft.CSharp.CSharpCodeProvider cp = new 
Microsoft.CSharp.CSharpCodeProvider(); 

System.CodeDom.Compiler.ICodeCompiler ic = cp.CreateCompiler(); 
System.CodeDom.Compiler.CompilerParameters cpar 

= new System.CodeDom.Compiler.CompilerParameters(); 
cpar.GeneratelnMemory = true; 
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cpar.GenerateExecutable = f~lse; 
cpar.ReferencedAssemblies.Add("system.dll"); 
cpar.ReferencedAssemblies.Add("DGSimulator.exe"); 
string src = "using System;" + 

"using System.Collections;" + 
"using System.Threading;" + 
"class myclass:DGSimulator.MyClassBase" + 
I'{II + 

"public myclass() {}" + 
"public override object eval( ArrayList dataArray, double 

failRate, int timeSteps, Random rnrl"out bool bFailed )" + 

} 

O'{tl + 

expr + 
"} }"; 

I!Compile it 
System.CodeDom.Compiler.CompilerResults cr 

= ic.CompileAssemblyFromSource(cpar, src); 
IICapture any compile errors 
foreach (System.CodeDom.Compiler.CompilerError ce in cr.Errors) 

MessageBox.Show("Error compiling Job: "+ce.ErrorText); 
if (cr.Errors.Count == 0 && cr.CompiledAssembly != nUll) 
{ 

lypp ObjType = cr.CompiledAssembly.GetType("myclass"); 
try 
{ 

} 

if (ObjType != nUll) 
{ 

myobj = (MyClassBase)Activator.Createlnstance(ObjType); 
} 

catch (Exception ex) 
{ 

MessageBox.Show(ex.Message); 
} 
return myobj; 

else return myobj; 

public Arraylist eval(ArrayLi list,double failRate,int timeSteps, Random 
rnd, out bool bFailed)lltimesteps is set to base amount of data per node 

{ 
ArrayLl~T output List = null; 
bool bF=false; 
if (myobj != nUll) 
{ 

double gridFailRate = fail Rate; 
output List = v_ l) 

myobj.eval(list,faiIRate,timeSteps,rnd,out bF); 

} 
bFailed = bF; 

return output List; 
} 

} 
IIEnd of compiler stuff 
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APPENDIXB 

LATINGRID PROGRAM 
FOR CONDOR JOB SUBMISSION 

namespace latinGrid 
{ 

class Program 
{ 

static void Main(string[] args) /lnumData numHosts outputSubDir 
{ 

int numData; 
int numHosts; 
string subdir; 
bool mirror = true; 

if (args.Length == 3) 
{ 

numData = int.Parse(args[O]); 
numHosts = int.Parse( args [1]); 
subdir = args[2]; 

) 

f 

else 
{ 

} 

numData = 50; 
numHosts = 50; 
subdir = "mirror_test"; 

if (numHosts > numData) numHosts = numData; 

int pI =, (int)( numDaia I numHosts); 

String s=null; 
String fn=null; 
intmirror _counter 1 =0; 
int mirror _ counter2=0; 
for (int h = 0; h < numHosts; h++) 
{ 
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1 ).ToStringO; 

fn = "h"+(h+ l).ToStringO; 
if (mirror == false) 
{ 

for (int x = 0; x < uumllosts; x++) 
{ 

for (int y = 0; y < pI; y++) 
{ 

s += " c" + (((h + x + Y * numHosts) % numData) + 

} 

} 
} 
if (mirror == true) 
{ 

} 

pI = (int)(2 * numData) I numHosts); 
if (h < nurnHosts I 2) 
f 
I 

} 

for (int y = 0; y < pI; y++) 
{ 

mirror_counter 1 ++; 
s += " c" + mirror __ counterl.ToStringO; 

} 

if (h >=numHosb / 2) 

for (int y = 0; y < pI; y++) 
{ 

mirror _ counter2++; 
s += " c" + mirror_counter2.ToStringO; 

string t="FOR %%a IN ( "+s+" ) "+ "DO call callSerial.bat %%a"; 
Stream Writer sw; 
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Directory. CreateDirectoryC'D: \ \ workingCondorCode \ \ II +subdir); 
sw 

File.CreateText("D:\\workingCondorCode\\"+subdir+"\\"+fn.TrimStartO+"·bat"); 
sw.WriteLine(t); 
sw.CloseO; 
IIWRITE CONDOR SUBMIT FILE THAT CALLS BATCH FILE 
sw File.CreateText("D:\\workingCondorCode\\" + 

subdir+"\\"+fn.TrimStartO + ".txt"); 
sw.WriteLine("#Example description file foo.cmd for job fOO"); 
sw.WriteLine("Executable = D:\\workingCondorCode\\" + subdir + 

"\\" + fn.TrimStartO + ".bat"); 
sw.WriteLineC'Universe = vanilla"); 
sw.WriteLine("#input = test.data"); 
sw.WriteLine("output = D:\\workingCondorCode\\" + subdir + "\\" + 

fn.TrimStartO + ".out"); 
sw.WriteLine("error = D·\lworkingCondorCode\\" + subdir + "\\" -I­

fn.TrimStartO + ".err"); 
sw.WriteLine("Log = D~\\workingCondorCode\\" + subdir + "\\" + 

fn.TrimStartO + ".log"); 

sw. WriteLine("should_)ransfer _ tiles = YES "); 
sw.WriteLine("when_lo_transfer_output = ON_EXIT"); 
sw. WriteLine("transfer _input_files 

D:\\workingCondorCode\\seria13.exe, II + "D:\\workingCondorCode\\" + subdir + "\\" + 
fn. TrimStartO + II .bat, D:\ \workingCondorCode\\libpl.dll, 
D:\\workingCondorCode\\pthreadVC.dll, D:\\workingCondorCode\\callSerial.bat"); 

sw.WriteLine("Requirements = (OpSys == \"WINNT60'11 && Arch 
== \"INTEL\" && HAS_ARENA_SOFTWARE =7= True)"); 

sw. WriteLine("Queue"); 
sw.CloseO; 
Thread.Sleep(2000); 

String commandString = "d: & cd workingCondorCode & cd II + 
'mbdir + II & condor __ submit II + fn.TrimStartO + ".txt";!I+ II & 
c:\\condor\\bin\\condor_submit.exe II + fn.TrimStartO + ".txt"; 

System.Diagnostics.Process.Start("cmd,exe", "IC 
"+commandString);//"cmd", "/c " + command 

s =, null; 
Console.Write("This is the console output: 

D:\\workingCondorCode\\" + subdir + '\\" + tn.TrimStartO + ".txt Submitted\n\n"); 
} 

Console.ReadKeyO; 

} 
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} 
} 
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APPENDIXC 
GRID FAILURE MODELS 

Before discussing a model for the failure of nodes (or hosts) in a grid it is 

important to discuss briefly the concept of failure, whether such failures are truly 

independent and whether they can be treated as 3uch. The failure rate is defined as 

failure per unit time. Many possible definitions of node failure are possible. One might 

consider only hardware and network failures, power failures and software bugs as the 

sorts of faults that cause failure. In fact, on a traditional computer system it is entirely 

appropriate to limit the scope of discussion. For a computer vendor, hardware and 

operating system software faults might constitute a failure mode. 

C.1 Classic Notions of Failure 

Hardware failures often follow the bathtub curve which describes infant mortality 

of the hardware, followed by a period of stability and then another rise in failure rates as 

hardware ages. Computer chips in particular tend to follow this failure mode. 

The Weibull distribution also is often used to describe hardware failure rates 

because it can be shifted to show infant mortality followed by a 1flng slope of reasonably 

low failure rates. Software failures may be considered as a product of average error size, 

error density and workload. Such "classical" reasons for failure might appear at first 

blush to be relevant to grid computing. 
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Figure C.l: The bathtub curve is composed of three hazard functions. Adapted from 
[125]. 

Although such occurrences might be lechnically applicable to grid computing, 

their effect is insignificant in the relatively short software runtimes when compared to the 

magnitude of user intervention elTors. [126] In fact, the Wei bull likely is the most 

accurate way to describe the failure rate on an actual grid. However the shape of the 

Wei bull ditters depending on how the shape and scale parameters are set. In [127] the 

authors note: 

"Our 2-parameter Weibull, as mentioned above, has parameters for 
shape and scale. Given a set of sample data {X1. .. Xn}, there are many 
common techniques for estimating the two parameters based on 
some set of sample data, induding visual inspection (e.g. using a 
two-dimensional graph) and analytic methods." 

Zhang and others looked at reli:tbility modeling in 2009 [86J where they point out 

that various authors show that the mean time between failures on high performance 

clusters is modeled by a Weibull, "However the shape and scale parameters are different 

for each study." Two studies showed that hazard rates decrease with time [127;128] 
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while another study indicated an increasing haLard rate. [129] Some systems were not 

actually grids but were clusters. Without further information it is difficult to know how to 

accurately proceed with a Weibull model of failure on a simulated grid. When the 

Wei bull slope ~ = 1, the Wei bull reduces to an exponential distribution. 

C.2 Failure and Independence in a Grid Environment 

Consider node failure in the desktop grid environment. A task is sent to a node for 

execution. Either the task returns a result within some arbitrary unit of time or it does not. 

If it does not return by the deadline then the node can be considered to have failed. Most 

likely the exact cause of the failure will remain unknown. What is known is that the 

execution host became unavailable for some reason and the task was not completed by 

the deadline So the concept of failure is linked with that of availability. In [110] [67J 

Kondo and others discuss three types of availability, any of which can cause failure. For a 

complete discussion see Section 2.5 

In general however, failure of hardware components and transient software 

failures can compromise host availability as well as network failure. But the largest by far 

are users who leave the grid system either by using their computers for some other task or 

by turning it off Bhagwan and others point out in [130] that, "A new intermittent 

component of avaiiability is introduced by users periodically leaving and joining the 

system again at a later time. Moreover. the set of hosts that comprise the system is 

continuously changing as new hosts arrive the system and existing hosts depart it 

permanently on a daily basis," In their study of peer to peer systems they find that host 

availability is "roughly independent of the availability of other hosts" but is dependent on 
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the time of day as shown in Figure C.2. The authors also consider the availability of one 

host given that another is available. 
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Figure C.2: The X axis is marked at midnight of the labeled day showing diurnal 
patterns in availability. Adapted from [130]. 

Given hosts X and Y they determine the conditional probability of Y being available 

given that X is avai able at a time of day t: P(Y=llX=l). If P(Y= 1/X=l ) is equal to 

P(Y= l) meaning Y is available whether or not X is available So X and Yare 

independent.The authors calculated P(Y= I/X= l) and P(y=l) for every 1 os1 in th peer to 

peer network they studied for every hour in the 7 day period. The probability density 

function of the difference between the two functions is shown in Figure C.3. Some 30 

percent show no difference and 80 percent are between +0.2 and -0.2, showing significant 

independence. Correlation is to time of day. Any small sample of hosts should prove to 

be ir:clcpendent of one another. 
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Figure C.3: Probability density function of the difference between P(Y=lIX=l) and 
P(Y=l). Adapted from [130] 
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Figure C.4: Task failure rate at various task sizes (length of runtime). From [110]. 

Kondo and others look at a variety of grids in [110] , expanding the model to 

examine the temporal structure of host availability and pointing out that "The successful 

completion of a task is directly related to the size of availability intervals, i.e. , intervals 

between two consecutive periods of unavailability." By examining the intervals of 

availability during business and non-business hours they eventually come to the 

important result, which is the task failure rate at various task sizes (length of runtime) as 

described by Figure C.4. 
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C.3 Failure Models 

Based on the above research of functioning peer-to-peer and desl::top systems it 

appears that the important factors in determining failure rates on grid systems are 

availability intervals, length of task and time vf day. There is little (If no ~orrelation 

between the availability of any two hosts in tpe system. Add to that the caveat that hosts 

will not be allowed to return to the grid after failure, at least not within the makespan of 

the job hoI be simulated in DGSimulator. The purpose is to test the overall job outcome, 

the makespan, when individual hosts become available and subtasks fail. Recall that 

make-span is the time from the beginning of the first subtask of the job to the end of the 

last. The purpose of the model and ensuing simulation is to test software using theRP}> 

model against software running on a grid simulator with no redundancy and against 

running with course-grained task mitTOring, both of which are commonly used in actual 

grid systems. 

C.4 Homogeneous Failure Model 

The failure rate for each node in the grid is assumed'to be the same as any other. 

In other words we have no a priori knowledge of how a particular host will fail, although 

we do have some information about how the grid as a whole will perform based on 

.0, 

studies cf actual grids, The failure of individual hosts is 0 assumed l.O be unif0rm and 

random over the makespan of a particular job. The hosts in a grid are either [I,v8il?.ble or 

not available at any particular time. Once a node is unavailable it is c!Ssumed to be 

unavailable for the remainder of the job. ThIS is justified in the following way: The 
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definition of failure is failure of a job to return by a deadline. Whether a node is 

available, becomes unavailable and then becomes available again to complete the job, or 

whether it remains available the entire time does not matter in terms of job failure or 

success. If the deadline is met then the job succeeds. If it is not met then the job fails. If 

the job fails then the node can be assumed to be unavailable for the purposes of joe 

completion. In fact, in actual systems, node availability is measured using applicaticn 

traces, whether applications meet deadlines. 

Time could be modeled using the internal clock of the computer or as a time step 

in a program. Because of the yes or no nature of availability of a particular host in a 

particular timestep it seems to be appropriate to model the failure rate, the rate at which 

hosts become unavailable, as a Bernoulli Process, a series of Bernoulli trials where 

success (p) is equal to a node failure in a particular timestep. Failure (q) is equal to a node 

being availability in a particular timestep. Basically the availability may be modeled as a 

binomial distribution. 

(C.l) 
(
nk,·)=_n! 

k!(n - k)! 

Binomial Probability Mass Function Where n is number of trials, k the number of 

successes and p the probability of success. 

The probability of having k nod;: failures in n nodes failing with probability p is 

indicated by Equation C.I. In terms of accomplishing this in practice, a pseudo random 

number would be generated at each timestep driving a failure function. The following, for 

example, would fail the host with a probability of lin: 

158 



FailO 

{ 

} 

if ( rand(n) == int(n12)) then return true 

else return false 

The implication of modeling node failures as individuai Bernoulli trials is that the 

probability of failure doesn't change but remains constant. The intention is to test all 

methods for reliability, including the RPP paradigm and any variants of it, under 

controlled conditions of node failure. Each time the probability is changed, .1 completely 

new and separate seri.es of Bernoulli trials will be conducted over a controlled numb·~r of 

time steps T> makespa..'1 M. Nodes will be assumed to fail at the same probability iii each 

trial but with differing probabilities in different trials. Therefore changes in probability of 

individual node failure will take place "manually" rather than automatically according to 

time of day a~ part of the computer simulation. 

Task length is another issue of importance in simulating the effects of host failure. 

Failure results when a task fails to complete or. time The longer the task, the greater the 

probability that a node will become unavailable during task execution. Variatjon of task 

length is of interest in determining the effectiveness of the RPP paradigm bU1 does .not 

influence design ()fthe basic model. 
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c.s Other Failure Models 

Time o[Day: Of course there an: othel ways to model the failure of individual 

nodes. As mentioned previously, a failure rate could be assigned according to time of day 

in the simulation in an attempt to model the changing failure rate on an actual running 

grid. In this model, each node would have the same rate of failure which would change 

according to time of day and might be modeled '.vith a Wei bull distribution. 

The benefit of this sort of model would be to preclude questions about how 

realistic the simulation in fact is. In this model, th~ failure rate in a particular time step 

would be set to increase or decrease depending on the simulated time of day. All actual 

grids haveditfering schedules of use IS !Clnd differing rates of change thmughout the day in 

the failure rate. Approximation of aggregate failure rate is ~nailable from a handful of 

published sources. Approximation of the change in failure depending ou t.ime 01 day 

would be more diffi.cult to obtain, and is not the essential point of this research. So the 

change in failure rate of any individual grid would have to be arbitrary because data 

likely would not be available. Also, it is difficult to see how a steadily decreasing or 

increasing change in the failure rate could affect the outcome of a RPP trial. An 

increasing failure rate makes it more likely that replicants of data will be destroyed and 

the job will last longer. A decreasing rate of failure makes it less likely. Also, in terms of 

~btaining a statistic, this model is similar to the Bernoulli. In essence the mean or 

aggregate probabilIty of failure for the life of the job is the same [or each machine even 

though individual machine probability changes at every timest~p. In any case job failure 

can be adequately simulated and more easily controlled by doing more than one run in a 

160 



model with static probability of failure rather than allowing the probability to change 

with each timestep. 

A Priori Availability and Failure: Various systems have been described in 

research involving grid scheduling that attempt to use knowledge about past availability 

or even job success to determine which job to send to a particular node. Such a model 

allows scheduling heuristics such as longest job to best node or many others. Using a 

priori information lends itself to modeling on a simulated grid system but would require a 

priori knowledge about each machine in the grid. Such information is at best difficult to 

obtain and often impossible. Again, setting appropriate parameters for the Weibull based 

on actual grid opt'ration might provide the best model of reliability. In fact. replicatIOn 

strategies such as the RPP paradigm me an attempt to obtain reliability without such 

knowledge. 

In any case, it would be possible to somewhat arbitrarily assign an individual 

failure relte to each machine on the grid based on some a priori knowledge about the 

failur~ rates of particular machines. Rate of failure at each timestep \\ould be geared 

toward past performance of the machine. 

The probability distribution of availability, the times between failures, created by 

such a uniform set of random failures on each machine could be modeled by the 

exponential distribution. 

, {,\c- At 

(C.2) ftx;'\) = 0 
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Equation C.2 defines the density function of an exponential distribution where A 

represents the failure rate. 

In summary, considering the independence of failure among executior. hosts in a 

grid and the nature of the outcome being tested - task failure in the face of replication 

and data permutation - a reliability model that includes an exponential distribution secms 

reasonable. 
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• Installed and administered SUSE linux Adelie cluster wIth dual 
head 4 terabyte NAS with 19 dual processor nodes, the rnain 
server for Speed Engineering School. 

• Administered Kybriu Cluster used by various schools running 
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• Administered 112 processor IBM RS6000 SP2 running AIX 
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• Installed numerous other servers and systems including 

database and license servers 
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• Headed computer graphics department including training at 

Gannett Graphics Network in Washmgton, D.C 
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Awards 
and Honors 

• Saturday and Sunday front page layout 
• Copy editing/headline \\<Titing 

Reporter 

• Government rcporter covering state legislature, city-county 
government 

• Wrote political news analysis 
• Wrote variety of feature pieces 

1982-1984 Kentucky Standard, Bardstown, KY 
Reporter 

• Covered courts, county and city government, \\Tote features, 
shot and photos, did some page layout and editing 

1981 Kentucky Standard, Bardstown, KY 
Reporting intern 

1980-1982 College Heights Herald, Bowling Green, KY 
Reporter/Copy Editor/Chief ( administration and 
budget) reporter 

• Newspaper won the national Pacemaker award 

• Reviewer 2009, PDCCS Conference, Louisville, KY 
• Graduate Deans Citation, 2002, UniversIty of 

Louisville 
• 2nd place Best Column, 1992 Kentucky Press Association" 1 st 

place, Best General News Story, 1991 Kentucky Press 
Association; 1 st place, Best Front Page Layout, 1990 
Mississippi Press Association; 2nd place, Best Feature Story, 
1986 Mississippi Press Association; 2nd place, Best 
Investigative: st(lry. 1983 Kentucky Press Association: 3rd 
place. news slory, honorable mention, column. 1982 Kentucky 
Press Associ:l~ioll, 1 st place feature writing, 1981 Kentucky 
Intercollegiate Press Association, 1 st place feature story, 1979 
University of Kentucky Community College system and other 
intra-company and staff awards 

• National merit semifinalist 
• 1987 President South Mississippi Chapter of the Society of 

Professional loumalists 
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Languages 

Systems 

Speed projects 

C#, C/C++, Visaal C-H, Visual Basic, SQL COBOL some 
Fortran, some Java, Bash and A WK script, Message Passing 
Interface for parallel systems, Maple programming language, 3D 
graphics programming with OpenGL, ODBC, JDBC, some 
Smalltalk ModSim, LIsp on Linux or Windows platforms 

2002: Master's Thesis -- "A System For Grading Symbolic 
Mathematical Expressions 'Using Maple With Fuzzy Sets" -­
Compared t,,\{) symhoEc mathematical expression and returned the 
degree of similarity using Maple Programming Language, C++, 
Java with ODBC aTld JOBe as well as artificial intelligence 
techniques 

• 1997: Maple Assisted Math Grading Program 
• Primarily responsible for the central control module and client 

interface for a Maple assisted math grading system. 

• Network Search Using Multiple Networked ProceSS(lrs ill 
UNIX -- My partner and I used Parallel Virtual Machine to 
search a theoretical network. PVM is a C library that allows 
remote procedure calls. The project spawned Jobs among the 
computers on an lIP system at the University of Louisville in 
an attempt to find the fastest route from one point to another 
through a simulated eetwork. The purpose was to work toward 
establishing n::al-tirne lOutes for multimedia. 

• Topological Surface Rendering -- I designed and implemented 
a system for converting V.S. Geological Survey elevatIOn tIles 
into an accurate three dimensional rendering of the earth's 
surface. Specifi.cally I used Visual C++ and OpenGL to render 
the topology of Louisville. KY in three dimensions. 

• Student Advising Sy'>tem -- My primary responsibility was 
writing a Visual C++ client interface to allow academic 
advisors to view a student's academic requirements, 
prerequisites completed and other cours(' ini'ormatitT. stored in 
a Microsoft 5QL Server database. i also p:lrtk~pated in the 
database design. The client module used ODBC to connect to 
the database, 
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