
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2010

Enhancing reliability with Latin Square redundancy on desktop Enhancing reliability with Latin Square redundancy on desktop

grids. grids.

Nathan Patrick Johnson
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Johnson, Nathan Patrick, "Enhancing reliability with Latin Square redundancy on desktop grids." (2010).
Electronic Theses and Dissertations. Paper 699.
https://doi.org/10.18297/etd/699

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the
author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/699
mailto:thinkir@louisville.edu

ENHANCING RELIABILITY
WITH LA TIN SQUARE REDUNDANCY

ON DESKTOP GRIDS

By
Nathan Patrick Johnson

B.A., Western Kentucky University
M.S., University of Louisville

A Dissertation
Submitted to the Faculty of the Graduate School

of the University of Louisville
In Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy

Computer Engineering and Computer Science Department
Speed School of Engineering

University of Louisville
LO\lisvillc, Kentucky

Mav 2010

ENHANCING RELIABILITY
WITH LA TIN SQUARE REDUNDANCY

ON DESKTOP GRIDS

By

Nathan Patrick Johnson
M.S., University of Louisville

B.A., Western Kentucky University

A Dissertation Approved on

April 15, 2010

By the following Dissertation Committee:

~-~ .-~------~~

r)issertation Director
Dr. James H. Graham

""

-- ----- - ---- -.------ ,
Dr. Gail W. Depuy

11

DEDICATION

This dissertation is dedicated
To my wife Shelley Catharine Johnson and our son Patrick

Both of whom gave me wonderful support

And

To my parents Mr. Donald R. Johnson and Mrs. Geneva Johnson
who gave me confidence

And

To my grandparents

11l

ACKNOWLEDGMENT

I would like to thank Dr. James H. Graham for his guidance and patience and

Dr. Rammohan Ragade for his continued encouragement during my university career.

Committee members Dr. Dar-Jen Chang, Dr. Gail W. Depuy and Dr. Dr. Adel S.

Elmaghraby have given me help and support for many years. Dr. Jeff Hieb has been a

good friend and provided much helpful advice. I would like to acknowledge the

flexibility Mr. Ed Birchler has provided me while I worked on this dissertation.

I especially would like to thank my wife Shelley for her unfaltering support, kind

encouragement and for having more faith in me at times than I had in myself.

IV

ABSTRACT

ENHANCING RELIABILITY
WITH LA TIN SQUARE REDUNDANCY

ON DESKTOP GRIDS

Nathan Patrick Johnson
April 15, 2010

Computational grids are some of the largest computer systems in existence today.

Unfortunately they are also, in many cases, the least reliable. This research examines the

use of redundancy with permutation as a method of improving reliability in

computational grid applications. Three primary avenues are explored - development of a

new redundancy model, the Replication and Permutation Paradigm (RPP) for

computational grids, development of grid simulation software for testing RPP against

other redundancy methods and, finally, running a program on a live grid using RPP. An

important part of RPP involves distributing data and tasks across the grid in Latin Square

fashion. Two theorems and subsequent proofs regarding Latin Squares are developed.

The theorems describe the changing position of symbols between the rows of a standard

Latin Square. When a symbol is missing because a column is removed the theorems

provide a basis for determining the next row and column where the missing symbol can

be found. Interesting in their own right, the theorems have implications for redundancy.

v

In terms of the redundancy model, the theorems allow one to state the maximum

makespan in the face of missing computational hosts when using Latin Square

redundancy. The simulator software was developed and used to compare different data

and task distribution schemes on a simulated grid. The software clearly showed the

advantage of running RPP, which resulted in faster completion times in the face of

computational host failures. The Latin Square method also fails gracefully in that jobs

complete with massive node failure while increasing makespan. Finally an Inductive

Logic Program (ILP) for pharmacophore search was executed, using a Latin Square

redundancy methodology, on a Condor grid in the Dahlem Lab at the University of

Louisville Speed School of Engineering. All jobs completed, even in the face of large

numbers of randomly generated computational host failures.

VI

TABLE OF CONTENTS

ENHANCING RELIABILITY WITH LATIN SQUARE REDUNDANCY ON DESKTOP GRIDS I

DEDiCATION ••••••••••••••.•••••••••••••••••••••••..•••••••••••••••••••••••...•...••••••••••••••••••.•.••••••••••••.•.••...••••••••••..•.• III

ACKNOWLEDGMENT ... IV

ABSTRACT •••••••••...•....•.••••••••••••••••••••••••..•.•••••••••••••.....••.•••••••••••••••••••••••••••........•.•••••.......•.••••••••... V

LIST OF TABLES ••..........•••••••••••••••••••••.......••.•••••••••••••.•...•.••••••••••............•.•••.•••...........••••.•........•..• X

LIST OF FIGURES ••••..••.••••••••••••.•.....•••••..•.•••••••••••.....••••••••••••••••••...•..•••••••••........•••••••••••.........•.•..• XI

CHAPTER 1 INTRODUCTION ... 1

1.1 OVERVIEW OF GRID COMPUTING ... 2

1.2 ORGANIZATION OF DISSERTATION .. 5

CHAPTER 2 SURVEY OF RELATED LITERATURE .. 6

2.1 WHATISAGRID? ... 6

2.2 A PARTIAL TAXONOMY OF GRID SYSTEMS .. 15

2.3 THE ORIGIN OF THE GRID .. 20

2.4 DESKTOP GRIDS AND VOLUNTEER COMPUTING ... 24

Vll

2.5 RELIABILITY OF DESKTOP AND VOLUNTEER SySTEMS ... 31

2.6 STRATEGIES FOR RELIABILITY .. 43

2.7 GENERAL FAULT TOLERANCE AND REPLICATION ... 56

CHAPTER 3 MODELLING REDUNDANCY FOR FAULT TOLERANCE .. 58

3.1 A REPLICATION AND PERMUTATION MODEL ... 61

CHAPTER 4 PROOF OF MAXIMUM MAKES PAN WITH LATIN SQUARE REPLICATION 74

CHAPTER 5 GRID SIMULATION ... 83

5.1 HARDWARE AND SOFTWARE .. 84

5.2 FAILURE IN DGSIMULATOR ... 88

5.3 EXPERIMENTAL PROCEDURE AND RESULTS ... 90

5.4 SIMULATION CONCLUSiONS ... 94

CHAPTER 6 LATIN SQUARE DISTRIBUTION AND PHARMACOPHORE DISCOVERY 96

6.1 PREVIOUS RESULTS WITH INDUCTIVE LOGIC PROGRAMMING ... 96

6.2 GRID ILP USING LATIN SQUARE DISTRIBUTION ... 100

6.2.1 Hardware and Software ... 101

6.2.2 Experimental Model and Results .. 104

CHAPTER 7 CONCLUSIONS AND FUTURE DIRECTIONS .. 109

V1l1

------~~~--

7.1 CONCLUSiONS .. 109

7.2 FUTURE DIRECTIONS .. 111

REFERENCES .. 113

APPENDIX A DGSIMULATOR CODE ... 124

APPENDIX B LATINGRID PROGRAM FOR CONDOR JOB SUBMISSION 148

APPENDIX C GRID FAILURE MODELS .. 152

C1 Classic Notions of Failure ... 152

C2 Failure and Independence in a Grid Environment ... 154

C3 Failure Models ... 157

C4 Homogeneous Failure Model .. 157

C5 Other Failure Models ... 160

CURRICULUM ViTAE .. 163

IX

LIST OF TABLES

Table 3.1: Broken Permutations of Data ... 63

Table 3.2: Data items di contained in permutations Pi .. 63

Table 3.3: Three processors and associated tasks execute three permutations of data 63

Table 3.4: Host h3 fails at time step 3 and a new task is dynamically instantiated 64

Table 3.5: Execution fails on h3 during time step 3 while the job continues satisfactorily

because of redundancy on processor h6 ... 65

Table 3.6: Data permutations Pi composed of di are mirrored and inverted in Pi' composed

of d i ' ... 67

Table 3.7: The arrangement guarantees job completion so long as one processor remains

functional ... 69

Table 3.8: The table depicts mirroring with inverted broken permutations of data

arranged in a Latin Square configuration .. 72

Table 4.1: The table depicts broken permutations of data in a Latin Square 74

Table 4.2: The table depicts a Latin Square of order n .. 76

Table 4.3: The table depicts a Latin Square of order n labeled with positional information

... 77

Table 4.4: The table depicts a Latin Square of order 4 labeled with positional information

... 81

x

LIST OF FIGURES

Figure 1.1: A high-level view of the Grid showing users interacting with the Grid

resource broker which then discovers resources, handles scheduling and processes

jobs (adapted from [1]) .. 3

Figure 2.1: The grid architecture and the relationship to the Internet protocol architecture

(adapted from [2]) .. 11

Figure 2.2: A layered grid architecture and components (adapted from [17]) 13

Figure 2.3: Examples of basic strategies for implementing fault tolerance (adapted from

[63]) ... 33

Figure 5.1: The DGSimulator GUI.. .. 85

Figure 5.2: The DGSim class diagram .. 86

Figure 5.3: The chart shows decreasing job completion as node failures increase 92

Figure 5.4: Total timesteps, left, required by each permutation are shown at various node

failure rates .. 94

Figure 6.1 shows the average timestep in which a job finished in the face of 5, 10 and 20

failures on a 50 processor grid ... , 105

Figure C.1: The bathtub curve is composed of three hazard functions. Adapted from

[125] ... 153

Figure C.2: The X axis is marked at midnight of the labeled day showing diurnal patterns

in availability. Adapted from [l30] ... 155

Figure C.3: Probability density function of the difference between P(Y=lIX=I) and

P(Y=I). Adapted from [130] ... 156

Figure C.4: Task failure rate at various task sizes (length of runtime). From [110] 156

Xl

--- -- --- --------------------------------------

CHAPTER 1

INTRODUCTION

Malaria, climate forecasts, particle simulation, astronomical star search, DNA

and protein analysis, cryptography, the search for alien life; these are just a few of the

problems under attack by the largest and most powerful computer in the world. The

computer is not an incredibly expensive machine sequestered at some large institution.

Part of it in fact might be on the desk in front of you because the largest computer system

in the world is a volunteer desktop grid.

In one twenty-four hour period on February 18,2010, the average throughput for

BOINC, the Berkeley Open Infrastructure for Network Computing grid middleware

system, was 4,326.99 Teraflops. The fastest traditional supercomputer in the world,

according to the Nov. 17,2009 release of the TopSOO list, was the Cray XTS-HE Jaguar

at Oak Ridge National Laboratory with a theoretical peak of 2.3 petaflops or 2,300

Teraflops.

As computational power in the form of desktop computers has become ubiquitous

and less expensive, the unused cycles of such systems have become an available resource

for serious computing efforts. Why then aren't most computationally intensive jobs sent

to such computational grids? In particular, the problem of reliability limits the usefulness

1

of desktop and volunteer systems. While recent research has focused on improving grid

middleware schedulers and algorithms, and more recently on cloud computing, much

remains to be done

This research explores a method of building reliability into grid applications --

generally described as RPP, the Replication and Permutation Paradigm -- by changing the

way that data and tasks are arranged and distributed to the various hosts that make up the

grid. Specific objectives from this research include:

1. The concepts of reverse mirroring and a Latin Square
arrangement of data/tasks is explored in a set-theoretic
model.

2. Grid simulation software is constructed and used to evaluate
reliability of the model versus other types of replication or
over-provisioning in the face of randomly generated host
failures.

3. The upper bound for job length in the face of a known
number of host failures using the Latin Square data and task
distribution is shown by mathematical induction.

4. Finally the practicality of running actual grid jobs with a
Latin Square configuration is shown in a case study by
reproducing a previous job on an actual Condor grid where
host errors are introduced.

The research shows that reliability and even efficiency can be greatly improved

using the methods outlined here. Job length may be predicted and a grid job will

complete even when all ofajob's computational hosts but one have failed

1.1 Overview of Grid Computing

Desktop and volunteer grids are a subset of grid systems and are generally

considered to be "computational grids" where the main purpose is to distribute

computationally intensive tasks. This research is most concerned with such

2

computational grids. In general, however, grids are a wide-ranging subset of distributed

computing and provide "sharing, selection, and aggregation" of a variety of resources in a

"seamless, integrated computational and collaborative environment ... that performs

resource discovery, scheduling, and the processing of application jobs." [1] This is shown

in Figure 1.1.

Figure 1.1: A high-level view of the Grid showing users interacting with the Grid
resource broker which then discovers resources, handles scheduling and processes

jobs (adapted from [1]).

Ian Foster and others write in [2] that:

"The real and specific problem that underlies the Grid concept is
coordinated resource sharing and problem solving in dynamic,
multi-institutional virtual organizations. The sharing that we are
concerned with is not primarily file exchange but rather direct
access to computers, software, data, and other resources, as is
required by a range of collaborative problem-solving and resource
brokering strategies emergmg m industry, SCIence, and
engineering. "

3

His definition bears similarities to a new computing paradigm, which is also

based on the idea that computation should be provided as a utility - cloud computing.

Grids differ from computational clusters, such as Beowulf clusters [3], in that they

are not tightly coupled with dedicated internal networks, generally have heterogeneous

hardware and are not centrally managed. Grids differ also from clouds as in "cloud

computing," although the relationship is less clear. In general a cloud computing model

involves a set of services offered on a network for a fee, which frees local enterprises

from the cost of maintaining hardware and other infrastructure. The idea of "transparent

access to resources on a pay-per-use basis" [4] is one that has been proposed for grid

systems as well. [5] Generally, however, one thinks of a cloud as providing services on a

virtualized machine where hardware can by dynamically configured to variable loads.

Another central idea of cloud computing is integration into the user's computer and

routine so that cloud services are innocuous and easily accessed.

Although these may be goals for grid computing as well, these ideas are not

central to the paradigm of a "computational grid" where aggregation of computational

resources for large jobs is of central interest. There are many types of grids, and

taxonomy is discussed in the next chapter.

As mentioned previously the largest and least expensive of grid systems are also

the least reliable in terms of hardware and resources. Such desktop and volunteer grids

offer great potential for helping to solve some of the most intractable computational

problems. The difficulty presented by lack of reliability was borne out in previous

research at the University of Louisville where machine failures extended the time and

4

effort needed to retrieve results from an Apple Xgrid of machines spread across the

Commonwealth of Kentucky.[6]

1.2 Organization of Dissertation

Discussion of the research continues in Chapter 2 with an investigation of related

work in grid computing. Chapter 3 presents a basic model for data and task replication

across desktop grids. Chapter 4 extends the model with a proof by mathematical

induction of the maximum makespan (time required to finish all tasks in an overall job)

given the number of host failures. Chapter 5 discusses comparison of various methods of

using redundancy or over-provisioning for reliability in a software simulation of a grid

system as well as discussion of development of the grid software. Chapter 6 describes a

case study using a Latin Square data and task distribution methodology to conduct

pharmacophore search on a Condor [7] grid at the University of Louisville Speed School

of Engineering. Finally, Chapter 7 presents conclusions and directions for future research.

5

CHAPTER 2

SURVEY OF RELATED LITERATURE

Because the motivation of this research involves producing reliable application

software for desktop grids, previous and current work involving desktop and volunteer

systems will be examined, followed by a survey of the literature with regard to

redundancy and checkpointing as a method of aiding reliability. More specifically what

follows here is: a discussion of the definition of grid computing in Section 2.1, a

discussion of a very broad taxonomy of grid systems in Section 2.2, a brief history of the

development of grid systems in Section 2.3, a discussion of desktop and volunteer grid

systems in Section 2.4, a discussion of unreliability in desktop and volunteer grids in

Section 2.5 and some ways researchers have moved toward greater desktop grid

reliability in Section 2.6. The final Section, 2.7, describes research involving the central

ideas of replication and permutation.

2.1 What is a Grid?

The term "Grid Computing" was first used in a seminal paper "The Grid:

Blueprint for a new computing infrastructure." [8] The idea was that a computational grid

would make computing power as available on the computational grid as electric power is

on the power grid. Ian Foster, who's becoming recognized as the "father" [9] of grid

computing, Carl Kesselman and Steven Tuecke , all of Argonne National Labs at the

6

University of Chicago, have done much of the seminal work in grid computing as well as

producing the popular Globus Toolkit middleware. [10] Foster and others also have

attempted to define grid computing, to characterize the need for it and to provide a

framework to think about the concept of grid computing.

In 2002 Foster pointed out the need for a clear definition [11]:

"Grids have moved from the obscurely academic to the highly
popular. We read about Compute Grids, Data Grids, Science Grids,
Access Grids, Knowledge Grids, Bio Grids, Sensor Grids, Cluster
Grids, Campus Grids, Tera Grids, and Commodity Grids. The
skeptic can be forgiven for wondering if there is more to the Grid
than, as one wag put it, a "funding concept"-and, as industry
becomes involved, a marketing slogan. If by deploying a scheduler
on my local area network I create a "Cluster Grid," then doesn't my
Network File System deployment over that same network provide
me with a "Storage Grid?" Indeed, isn't my workstation, coupling
as it does processor, memory, disk, and network card, a "PC Grid?"
Is there any computer system that isn't a Grid?

Foster defines a Grid in [11] as a system that:

• Coordinates resources that are not subject to centralized
control... For example a grid user might use two computers that
have different system administrators and that are owned by
different entities.

• Uses standard, open, general-purpose protocols and interfaces ...
Such a standard would provide solutions to developers for
authentication, authorization, resource discovery and access.

• Delivers nontrivial qualities of service including throughput,
availability, security and resource allocation so that the system
is of greater value than simply the use of its parts.

He points out some systems that do not qualify as grids include Sun's "Sun Grid

Engine" and Veridian's "Portable Batch System." Indeed it has become fashionable to

refer to perfectly good computational cluster computers, particularly if they are not

stowed in a single rack, as "Grids." Of course there are other definitions of grid

7

computing; it should be pointed out that they tend to share the concept that the systems

are operated by different administrative organizations.

In "Grid Characteristics and Uses: A Grid Definition," Bote-Lorenzo and

colleagues gather numerous academic sources in their investigation and support for their

definition of a grid. In [12] they define a grid as "a large-scale graphically distributed

hardware and software infra-structure composed of heterogeneous networked resources

owned and shared by multiple administrative organizations which are coordinated to

provide transparent, dependable, pervasive and consistent computing support to a wide

range of applications. These applications can perform either distributed computing, high

throughput computing, on-demand computing, data-intensive computing, collaborative

computing or multimedia computing."

In "What is a Grid?" [13] Grimshaw says:

"From a hardware perspective a Grid is a collection of distributed
resources connected by a network, possibly at different sites and in
different organizations. Those resources may include terascale
supercomputers, instruments such as telescopes and microscopes,
computer-controlled factory floor tools, mid-level servers, desktop
machines, laptops, PDAs, and even someday devices such as video
cameras, cell phones, and kitchen appliances.

"What distinguishes these resources is that they have a network
interface and some software that grid-enables the device. Thus, one
could say that from a hardware perspective potential Grid resources
range from toasters to teraflops. One could argue that the above
definition of Grid is what we used to call a distributed system. I do
not dispute that it is what we used to call a distributed system. To
me Grids are the evolution of distributed systems to a wide area,
multi-organizational context."

8

He goes on to say that the objective of Grid middleware is to virtualize resources,

provide access and, in general, deal with the physical characteristics of the Grid. Grid

middleware should allow users and applications to access Grid resources in a transparent

manner. "The first and most important aspect of the problem is how do you name and

access these resources? This has been a problem in distributed systems for over two

decades. The solution is to develop an integrated, global naming scheme where all

resources, applications, hosts (CPU's), storage, files, people, security policies, etc., are all

named in a consistent manner." Naming is one of the cornerstones of OGSI [3] the Grid

standard being developed in the Global Grid Forum.

In the 2007 paper, "Defining the grid: a snapshot on the current view,"

Stockinger, discusses the results of a survey of more than 40 grid researchers around the

world [14]:

"We can consider the grid as the combination of distributed, high­
throughput and collaborative systems for the effective sharing and
distributed coordination of resources which belong to different
control domains" [Maria S. Perez, Technical University of Madrid].
"Generally, a Grid provides a "distributed computing power
infrastructure. It is supposed to provide researchers (users) with a
single entry point to launch jobs" [Laurent Falquet, Swiss Institute
of Bioinformatics]. "Simply put, Grid means "distributed
computing across multiple administrative domains" [Dave Snelling,
Fujitsu UK]. "Sometimes the Grid is also called to be the software
environment [Geoffrey Fox, Indiana University] that integrates,
virtualizes, and manages distributed resources (software and
hardware)." Another view is that a Grid is "a velY large scale
resource management system" [Andrea Domenici, University of
Pisa].

According to the Global Grid Forum's Open Grid Services Architecture glossary,

a grid is "A system that is concerned with the integration, virtualization, and management

9

of services and resources in a distributed, heterogeneous environment that supports

collections of users and resources (virtual organizations) across traditional administrative

and organizational domains (real organizations)."

CoreGRID [15] is The European Research Network on Foundations, Software

Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer

Technologies. It is operated as a European Research Laboratory (known as the

CoreGRID Research Laboratory) and defines a grid as: "A fully distributed, dynamically

reconfigurable, scalable and autonomous infrastructure to provide location independent,

pervasive, reliable, secure and efficient access to a coordinated set of services

encapsulating and virtualizing resources (computing power, storage, instruments, data,

etc.) in order to generate knowledge."

In his seminal 2002 paper "The Grid: A new infrastructure for 21 st century

science" [16], Foster points to some of the services this new sort of computational

infrastructure makes available including:

• Science portals where web based clients or other methods
provide simple ways of running remote software packages

• Distributed computing where numerous computers are
"harnessed" together to provide computational power for
large problems

• Large-scale data analysis
• Analysis of the output of various instruments where large

numbers of computers are needed to sift though the output
of telescopes and other scientific apparatus

• Collaborative work as in the Access Grid project, an open
source conferencing system developed at Argonne National
Labs as well as other places, that allows scientists to discuss
and visualize their work

10

Another way to look at the grid is in terms of protocols. In [2] the grid is

described as a layered set of protocols similar to the manner in which the more familiar

Internet Protocol Architecture is often described.

~iU:till1

~ ~ :J

ti
I UJllati~ \l}

......
"-r::.
~

,.
<f.

I la,-~
D
'J

I

I

I

J)
L

:J

'"' (J)
r::.
v
L

«
o
..)

0
.I.J

P
CbfUHtivity I 0..

D

T rdf"sprt I ~
"0
"C

11 tffi'ff I ~
L

" ft10ic Ur~ I ~
Figure 2.1: The grid architecture and the relationship to the Internet protocol

architecture (adapted from [2]).

The grid architecture is described as follows:

• The Fabric layer defines a range of local resource types such
as "computational resources, storage systems, catalogs,
network resources, and sensors." A "resource" may be a
logical entity, such as a distributed file system, computer
cluster, or distributed computer pool ... "Local resources
should provide mechanisms that allow discovery of their
state and capabilities and resource management
mechanisms. "

• The Connectivity layer defines communication protocols
generally drawn from the TCP/IP stack. In terms of
authentication this layer should provide single sign on,
delegation of user rights to programs, integration with local
resource security and user-based trust relationships so that
users can move from one resource provider to another
without security interaction between the individual systems.

• The Resource layer provides a small number of protocols
can be used to attain access to the underlying local
resources. Information protocols can be implemented to get
information about resource configuration, load and cost etc.

11

Management protocols negotiate access to a resource
including requirements such as advanced reservation,
operations like process creation, operation status and
termination.

• The Collective protocol layer contains protocols and
services, application programming interfaces and
development kits that call protocols in the resource and
connectivity layers. Examples cited by Foster include
directory services of resources by name or, for example, by
load; scheduling and brokering services for placing tasks on
resources; monitoring and diagnostic services; data
replication services to place data for best performance and
reliability; grid enabled programming systems that allow
access to various grid services; workload management and
collaboration systems; software discovery services;
accounting and payment services; and collaboration services
such as the access grid, a collaborative audio and video
enabled meeting environment.

• Finally the application layer may use many other languages
and frameworks in addition to calls to the various grid
services and resources.

In [17] Asadzadeh, Buyya and others examme four global grid systems and

software toolkits. They organize the grid middleware into a four layered stack.

The authors define the layers in [17; 18] as follows:

• The Grid Fabric layer includes distributed resources such as
supercomputers or PCs running various operating systems,
networks, storage devices and scientific instruments such as
telescopes or sensor networks.

• Core Grid middleware provides a consistent method of
accessing distributed resources in the fabric layer by
providing services including remote process management,
co-allocation of resources, storage access, information
registration and discovery, security, and aspects of Quality
of Service like resource reservation and trading.

• User-level Grid middleware utilizes the services provided by
the lower-level middleware to provide higher level services
including application development environments,
programming tools and resource brokers for managing
resources and scheduling application tasks for execution on
global resources.

12

I
I

• Grid applications and portals are typically developed using
various languages and utilities. A bioinforrnatics problem
for example would require computational power and access
to remote data sets. Other types of programs may need to
interact with scientific instruments. Grid portals on the web
offer interfaces to job submission services and methods to
collect the results.

I I
APPLICATIONS

.\pplknriou5 Dud POI·tob

I Scientific I I Engineering I Collaboration I I ?rob. Solving Emr. I ... I Web enabledApps I

I Df'nlopmeIJ.t Elllironmtnts and Took I
USFRL1:VEL

MIDDLEWARE

I Languages/Compilers

"
Iibrari.es I I Debu...~er; I I Monitors I ... I Web tools I

I Resomce Management, Selection, and Aggregation (BROKERS) I

I Distributed Resources Coupling en1ces I .cORE
MIDDLEWARE

Security II Information I I Data I I Brocess I I Trading I ... I QoS I
SECURI1YLAYER. I

I Loc.al Resource ~lanagel'S I ilDSTC;

I Operating Systems II Queuing Systems II Iibrari~ &App Kernels I --- I Internet Protocols I ~ .. _ _ _._._ ... __ ._._._._._._._ .. _. __ . __ u._ • _ _ ~ __ _._ • . __ ._._. _ _ . _._ . __ ._._._~ &:O ___ ._ . _"'._. •

I V .. m -nrk"tI R,,~n11l'1""~ al"r)~~ OI"g:lni7arinn~ I
I CJmputers I I Netwod::s II Storage Systems II DataSomces I ... I S&'lllmc Instruments I

Figure 2.2: A layered grid architecture and components (adapted from [17]) .

In addition the authors provide a hierarchical list of grid projects according to the

layer of services provided by the project. A few selected examples from their listed

projects - along with some current updates -- include:

13

Integrated Grid systems:

• BOINC, Berkley - Provides tools for creating and managing
volunteer grid projects.

• Javelin, UCSB -- A Java-based system.
• XtremWeb, Paris-Sud University - A global computing

(cycle-stealing) environment.
• Unicore, Germany - A java environment for accessing HPC

resources.
• World Community Grid - Currently migrating projects to

BOINC platform.

Core Middleware:

• Cosm, Mithral -- A P2P toolkit.
• Globus, Globus Alliance of Argonne National Labs and

others - A secure set of tools for accessing distributed
resources.

• Gridbus, University of Melbourne - A project of the active
GRIDS lab intended to merge grid technology with business
needs; the lab also offers a grid simulator, Gridsim.

• Legion, University of Virginia - An object oriented system.

User-level Middleware:

• Condor-G, University of Wisconsin
• Nimrod-G, Monash University

Major grid application efforts include TeraGrid, European DataGrid, CERN and

many national grid projects such as D-Grid in Germany, GARUDA in India, National

Grid Service in the UK, the China Grid Project and many others. Communities of grid

researchers and developers also have evolved an effort to produce standards. The Open

Grid Forum (OGF) [19] was formed from the merger of the Global Grid Forum (GGF)

and the Enterprise Grid Alliance (EGA). OGF is responsible for the OGSA, OGSI, and

JSDL standards among others. The GGF had a rich history and established international

presence within the academic and research communities along with a growing

14

participation from industry. EGA was a consortium focused on developing and promoting

enterprise grid solutions. The GGF grew out of SC98, the annual supercomputing

conference. The first such group, the Grid Forum, merged in 2000 the European Grid

Forum (eGrid) and the Asia-Pacific Grid Forum to form the Global Grid Forum.

Enabling Grids for E-scienceE (EGEE) [20] connects some 70 institutions in 27

countries across Europe to create a reliable, robust grid infrastructure, middleware and

"to attract, engage and support a wide range of users from science and industry, and

provide them with extensive technical and training support." Grid 5000 is a French grid

project which provides a base system for experiments into grid scheduling and reliability

among other issues. [21]

2.2 A Partial Taxonomy of Grid Systems

Any taxonomy presented here is not an attempt to place a firm template across the

rapidly changing field of grid computing where even the definition of the term "grid"

differs according to purpose and viewpoint of the writer, but rather an attempt to find

some frame of reference for interpreting the literature and narrowing the field of interest

to something manageable. Grids might be broadly categorized according to two modes of

analysis, either some metrics that define how the grid is constructed such as size,

geographic separation and "connectedness of nodes," or by some qualitative analysis of

functionality such as computation or data service.

Taxonomies of grid systems exist in terms of particular properties -- including

taxonomies of workflow management systems [22] and taxonomies of resource

15

management systems for grids, and some of these propose general taxonomies for grid

systems in more general terms as well. Krauter, Buyya and Maheswaran classify grid

systems [23] according to functionality because design of resource management systems

is to some degree a function of the use to which the system will be placed. Their

taxonomy includes:

• Computational Grids - Provide more computational power
in aggregate than is available on single systems.

• Distributed Supercomputing - Computational tasks are
executed in parallel on multiple machines.

• High Throughput - Streams of jobs are sent to nodes on the
grid to complete the pool of jobs as quickly as possible.

• Data Grid - Provides services relating to storage
management and data access over a wide area.

• Service Grid - Groups and provides services from a number
of machines.

• On Demand - Pulls together a variety of resources to
provide new services.

• Collaborative - Users and applications are connected III

workgroups.
• Multimedia - Real-time media services are provided across

machines in the grid.

While this is a solid taxonomy and summary of the current situation in grid

development so far as functionality is concerned, it doesn' t address the issue of the

capabilities of various types of grids and the challenges facing grid researchers in these

areas.

Another way to approach taxonomy is to seize upon Foster' s definition of a grid

and consider the number and qualities of the administrative domains that comprise the

particular grid in question. The administrative aspect is that which differentiates a grid

from a cluster and to some degree determines other factors including the grid

middleware. The term grid middleware is defined in [17] as the software layer that

16

resides on top of the heterogeneous set of operating system resources in the grid

providing uniform functionality and services to grid applications and distributed systems.

It is arguable that the set of services provided is to some extent dependent on the number

of administrative domains in the grid, which in turn affects the reliability of the

computational resources upon which the grid middleware and other software is based.

Indeed this is a logical way to examine the issue and tends to crop up in the literature. In

their 2002 paper, Baker, Buyya and Laforenza [1] categorize existing grid projects in a

hierarchical manner composed of ". . . integrated Grid systems, core middleware, user­

level middleware, and applications/application driven efforts. Selected ones are further

grouped into country/continents wise . .. " They make no claim oftaxonomy although their

classification system provides a nice framework for discussion of the various capabilities

and types of grids and is indicative of the way researchers and others classify grid

systems in their dialogue.

In [24] the writers suggest that "Grids can be classified in two ways, according to

their architecture and coverage. Considering their coverage we can define two main

categories: global grids and enterprise grids." In terms of architecture they point out that

global grids require more security, have more heterogeneous resources, among other

things, and because enterprise grids, although they might comprise different

administrators in a worldwide setting consisting of different departments, they generally

are owned by a single overall organization. Once more their use of this sort of thinking in

their paper is indicative of the way many think about grid computing. It might be possible

to classify grid systems by administrative domains. In fact, doing so provides some

insight into the type of grid and its capabilities.

17

Essentially an administrator, for the purpose of this list, is defined as someone

with the power to start or stop computational resources and remove them from the grid. A

taxonomy then might be organized from the standpoint of computer administration.

Consider the following classification system proposed here:

• Category 1 - Includes government operated grids composed
of the professionally administered high performance
computing systems in their countries. Typically this would
be a grid of supercomputers and other clusters connected by
specialized high speed networks for academic or
government research.

• Category 2 Includes inter-organizational systems
composed of high performance computing systems and
networks in various countries or organizations that cross
national and other organizational boundaries. These are
arguably stable based on formal agreements.

• Category 3 Includes intra-organizational systems
including enterprise, academic and other organizations or
virtual organizations where high performance computational
resources, though diverse and heterogeneous, are
professionally managed by a set of administrators who work
for the organization.

• Category 4 - Includes intra-organizational desktop grid
(cycle-stealing) systems where the individual user has the
power to start and stop a computational resource. The
individual user who works on the desktop has power to
remove it from the grid system if by no other means than by
turning it off. Additionally most of these systems suspend
grid functionality when the system is in use locally. Please
note however that in these systems users generally are
employed by the organization or organizations that created
the grid. They aren' t likely to be intentionally malicious.

• Category 5 - Includes global or volunteer grid systems and
peer to peer systems where individual desktop computer
users volunteer their systems' unused computational cycles
to a global grid system. In these systems the implication is
that computational resources will come and go from the grid
very frequently and some might even be considered
malicious.

18

Some might argue, on a very sound basis, that this list is in fact inverted because,

somewhat counter-intuitively, the most powerful systems computationally are those in

Category 5. In any case, various pieces of this informal taxonomy of grid systems are

often found in discussion of the various types of grid systems, desktop grids, global grids,

enterprise grids, national grid projects etc. in the literature.

In point of fact, the interest here is in the computational grids. Or in the case of

the above taxonomy based on administrative domains, the interest in our research is in

Category 4 and Category 5, desktop grids and volunteer systems. Because the major

interest in this research is in these two basic types of grid systems there is further

discussion of desktop and global grids in a section specifically related to them.

Today there has been an evolution of the grid concept to include a global

computing infrastructure often composed of large research centers connected by very fast

networks such as the TeraGrid [25] and others. Several countries and research units have

projects such as these. Some of these are computational grids and generally speaking are

the most mature of the grid technologies. The very largest grids, however, in both

computing power and numbers of nodes connected to the grids, are desktop and volunteer

grids. Sometimes referred to as cycle scavenging grids, desktop grids offer a largely

untapped resource for computational power. They also offer numerous challenges.

19

2.3 The Origin of the Grid

The term "grid" came into use in the mid-90's amid a computational world

composed of High Performance Computing (HPC) and various types of computational

clusters from IBM's RS6000 series of machines to off-the-shelf Beowulf clusters. [8;26]

In the 1980's Parallel Virtual Machine ran on distributed systems and was able to

dynamically spawn processes to be executed. Later the Message Passing Interface (MPI),

standard became the more widely used method of executing parallel computations on

tightly coupled distributed systems. The term "grid" is often erroneously applied to these

sorts of systems - loosely coupled clusters of computers, and sometimes misused to refer

to tightly-coupled systems running "grid" software. Classic "Beowulf' type clusters

typically spawn the same program from a master node to several worker nodes where

each worker computes a different dataset and where the nodes communicate with one

another when necessary to complete their own computations.

Because of the need for continuous reliable communication these systems often

have internal proprietary networks and are made as reliable as possible in terms of node

availability. In general the loss of one node causes the entire parallel program to block.

Because program speedup is generally bounded on such systems by

communication [27] and network constraints as well as by Amdahl's Law [28], only so

many nodes can be applied to a problem before no more speedup occurs. It should be

noted that Amdahl ' s work was reexamined in 1988 by Gustafson who pointed out that

increasing the amount of work with faster and faster processors actually reduces the

20

impact of the serial portion of the code and increases efficiency. "As a first

approximation, we have found that it is the parallel or vector part of a program that scales

with the problem size. Times for vector start-up, program loading, serial bottlenecks, and

I/O that make up the serial component of the run do not grow with problem size." [29]

Still the point remains the same.

There is a subclass of problems that avoids the communication problem, however,

because there is no communication between subprocesses. This class of problems has

been referred to as "embarrassingly parallel." During the 90's and into the early part of

the 21 sl century it became necessary for scientists and engineers to have access to a

variety of systems, some of them tightly coupled clusters, some shared memory

machines, some providing large amounts of storage from widely distributed geographical

locations. Many of the problems under consideration were multidisciplinary in nature and

involved people in different locations. And many were simply so computationally

complex and large that the cost of the computation in a traditional computing center was

simply too great for most researchers. Desktop and volunteer systems began to make an

appearance.

In Evolution of the Grid [30], De Roure and others discuss three generations of

grid computing which will be summarized here. The first generation of the grid began as

an attempt join together supercomputer sites including the CAS A project [31], F AFNER

and 1-WA Y[32]. FAFNER, Factoring via Network-Enabled Recursion, was an attempt to

factor large numbers by splitting and distributing tasks. 1-WAY, Information Wide Area

Year, was an attempt to link supercomputers using a resource broker. Work began on

21

both around 1995. The tenn generally in use at the time was "metacomputing, " [33]

popularized by Larry Smarr, fonner director of the National Center for Supercomputing

Applications, around 1990. Following a 1997 workshop, "Building a Computational

Grid," at Argonne National Laboratory in September 1997 in 1998, Ian Foster of

Argonne National Laboratory and Carl Kesselman of the University of Southern

California published "The Grid: Blueprint for a New Computing Infrastructure," [8] the

seminal work on grid computing.

De Roure points to the second generation of grid development as outline in the 1 st

Edition of Foster's 1998 book -- and which to a large degree has been realized. He points

to three issues that had to be confronted: heterogeneity, scalability and adaptability. Grid

middleware solved many of these problems by hiding the underlying operating systems

and machine types and providing a standard environment for users. A couple of projects

have been most important in tenns of providing middleware solutions to many of the

problems inherent in the 2nd generation grid. Some of the middleware and systems

developed during this period include Globus [10;34], Legion [35] and Condor [7].

Globus is a "low-level toolkit (that) provides basic mechanisms such as communication,

authentication, network infonnation, and data access. These mechanisms are used to

construct various higher level metacomputing services."

Legion is an object oriented approach from the University of Virginia. Work

began on the project in 1993. It was first released in 1997 and exists today as A vaki

Corporation. At its inception, Grimshaw and others described Legion in this way [35]:

22

"When complete, Legion will provide a single, coherent virtual
machine that addresses such issues as scalability, programming
ease, fault tolerance, security, and site autonomy. Legion is a
conceptual base for the sort of metasystem we seek. Our vision of
Legion is a system consisting of millions of hosts and billions of
objects co-existing in a loose confederation united through high­
speed links. Users will have the illusion of a very powerful desktop
computer through which they can manipulate objects."

UNICORE (Uniform Interface to Computer Resources) [36] in Germany was

another second generation system. "The idea behind UNICORE is to support the users by

hiding the system and site specific idiosyncrasies and by helping to develop distributed

applications. Distributed applications within UNICORE are defined as multi-part

applications where the different parts may run on different computer systems

asynchronously or sequentially synchronized," according to Romberg.

De Roure points out that the second generation of the grid saw the development of

a variety of tools and utilities providing services to users, as well as resource schedulers

and other middleware. But De Roure also discusses a "more holistic" view of the grid

with automation that, among other things, reconfigures itself dynamically, recovers from

malfunction, protects against attack, implements open standards and optimizes resource

use.

The 3rd generation grid incorporates Web Services along with some of the

emerging standards from the World Wide Web Consortium, including things like SOAP,

Simple Object Access Protocol, and Universal Description Discovery and Integration

(UDDI) and others. His third generation grid also includes the Open Grid Services

Architecture [37] which is gaining popularity as a standard. OGSA "defines a uniform

exposed service semantics (the Grid service); defines standard mechanisms for creating,

23

--------------~~-~~-~----~------------

naming, and discovering transient Grid service instances; provides location transparency

and multiple protocol bindings for service instances; and supports integration with

underlying native platform facilities" among other things.

De Roure's 3rd Generation Grid also includes collaboration within virtual

organizations [2] with various interactive services such as those provided by the Access

Grid collaborative environment. The Access Grid [38] is an open source conferencing

system that includes multiparty meetings with multi-source video and audio and

presentation materials.

2.4 Desktop Grids and Volunteer Computing

While the concept of the grid might involve bringing high performance research

computers together for the use of scientists and institutions from around the nation or the

world, for the time being at least, these are not the most powerful computer systems in

the world. Desktop grids, cycle scavenging systems, volunteer computing systems, peer­

to-peer grids and global computing initiatives all are terms that refer to some of the

largest systems in existence. In general these systems involve the use of software to

harness the resources inherent in the unused cycles of various desktop computers in an

organization, virtual organization or individual, whether on the internet or a local LAN.

As such they meet our definition of a grid because each computer is under the control of

the primary desktop user and hence are not centrally administered. A user might simply

tum the system off while a computation is in progress for example.

24

These systems differ from clusters of desktop computers specifically "racked" for

use as a "grid" under the control of a single system administrator. This indeed would not

meet our definition of a grid because a central administrator would control the

availability of individual machines in the cluster. It also would not provide the most

important benefit - stealing otherwise unused or "free" cycles in a machine that

otherwise would not be available to the grid users. In any case, attempts have been made

to bring heterogeneous computing resources together for some time. Such "cycle

stealing" systems have been used as early as the P ARC (Xerox Palo Alto Research

Center) Worm. [39]

Most traditional desktop grid systems, particularly enterprise systems which are

owned by a single entity such as a corporation or university, operate by assigning tasks to

daemons on worker hosts in the grid from a central server. Spawning of tasks generally

depends on workload of the host to determine whether the host is available. Most systems

allow tasks to be suspended when the keyboard on the computational host is used in order

to avoid an unfavorable impact on the desktop user. Although task distribution operates

somewhat differently on certain volunteer systems and P2P systems, job suspension and

other concerns remain the same.

As discussed previously, the term "grid" has a marketing as well as a technical

connotation. More recently the term grid has been used when businesses purchase

inexpensive desktop computers explicitly and solely for use in a so-called "grid" and then

link them with commercial middleware, forming a system where cycles aren't harvested

so much as cultivated for use by the organization. Such a system might more aptly be

25

termed a loosely-coupled cluster, perhaps more reminiscent of a Beowulf system [3]

running grid middleware than the usual definition of a desktop grid. Why? Because in

this case the computational resources are generally homogeneous, not distantly

distributed and often in the same room, and reliable in the sense that the complete

administration privilege of all computational resources resides with the administrator of

the grid system. For our purposes, at least, these systems lack the more interesting

problems associated with desktop grids of the classic definition.

Extremely large and widely distributed desktop grids are very useful for a subset

of computational problems where communication between processes is not a significant

issue. Although some work has been done in the area of a reliable message passing

interface library for grid computing [40], many grid successes to date have involved large

embarrassingly parallel computational problems. An embarrassingly parallel problem is

one in which there is no communication between parallel tasks. In grid computing this

sort of process is sometimes referred to as a Bag of Tasks (BoT) application. In such

cases the speedup curve is relatively linear in relation to the number of processors used to

solve the computation. Communication, other than some constant amount for setup and

retention of results, does not exist. Often these are data parallel applications where the

same program is sent to nodes on the grid, and, intentional redundancy notwithstanding,

each computer considers a different dataset.

Volunteer computing IS a term used for what have become the largest

computational systems in the world where individual users on the internet volunteer the

unused cycles of their desktop computers to some research effort. Because such efforts

26

--

harness the unused cycles of desktop computers worldwide they sometimes are referred

to as "global computing" [41] systems.

In his paper about BOINC, Berkeley Open Infrastructure for Network Computing

[42], which is now the underlying framework powering several volunteer computing

projects, David Anderson points out that:

"No longer is the mass of computing power sIttmg in
supercomputer systems at large institutions. Instead it is distributed
in hundreds of millions of personal computers and game consoles
belonging to the general public. Public-resource computing (also
known as "Global Computing" or "Peer-to-peer computing") uses
these resources to do scientific supercomputing."

In the mid-1990's two distributed systems used volunteered cycles to solve

computational problems, GIMPS, the Great Internet Mersenne Prime Search, looked for

Mersenne Primes [43] and distributed.net's software cracked encryption standards [44],

announcing on 14 July 2002 that the RC5-64 key had been found after some 1,757 days.

The system used the equivalent of 45,998 2GHz AMD Athlon XP machines at peak

processing power and involved 331,252 people and their computers.

The first volunteer computing system that garnered a large amount of public

attention was the SETI@Home project, in which volunteer computing is used to analyze

radio signals in the search for extraterrestrial life. Plans for SETI@home were announced

in 1998 with 3.91 million users of the client software in 226 countries by Aug. 2002. [45]

SETI@home had performed l.87 * 1021 t10ating point operations, the largest computation

on record by 2002. SETI@home is being rewritten using BOINC, which provides

middleware for volunteer computing projects. [42;46] Volunteers participate by running a

27

------------ ~----------~--------------------------------------

BOINC client program on their computer. The BOINC framework is being used by a

number of other projects including Climateprediction.net [47], the Large Hadron Collider

project CERN (LHC@home) [48] , Predictor@home [49], an attempt to predict protein

structure from protein sequence, and many, many others. A well-kept list of global

computing projects is maintained by Kirk Pearson [SO].

BOINC, the relatively new volunteer computing software, has proved helpful to

researchers and numerous BOINC projects have come into existence. Rather than

researchers writing software for each of their projects, they can use BaINe. "In a single

stroke," David Anderson ofUC Berkley told Science Magazine, "this has slashed the cost

of creating a public-resource computing project from several hundreds of thousands of

dollars to a few tens of thousands." [Sl] An interesting feature of BOINC is that clients

register for multiple projects and can determine the percentage of time they want their

machine to devote to a particular BOINC project.

XtremWeb is an older but somewhat similar middleware system [S2] that was

motivated by the needs of physicists at the Pierre Auger Observatory to run the same

simulation program on 6.105 different inputs. The equivalent computing power was 6.106

hours on a 300Mhz PC each year. The XtremWeb was a platform for experimenting with

global computing capabilities.

Commercial compames also have offered enterprise desktop grids including

Entropia [S3] and United Devices, which began in Austin, Texas in 1999 and now

operates as Univa UD merging with Univa on September 17, 2007. Univa Corporation

was founded in 2004 by Carl Kesselman, Ian Foster, and Steve Tuecke, who have been

28

heavily involved with the Globus project and who have researched and written about grid

computing since its inception. In 2004, IBM and United Devices started the World

Community Grid [54] project which operates a number of volunteer computing projects

including FightAIDS@Home.

Anderson points out that commercial systems for volunteer and "desktop grid"

computing, such as United Devices and Entropia, "have roughly the same server

functions as BOINC, and use relational databases to store task and participant data "

However, "these schedulers have functions that differ from BOINC's; they deal with

complex workflows rather than single tasks, and they do not deal with redundancy and

credit." [55]

More traditional desktop grid systems (if one can refer to anything so new to

human society and culture as "traditional") differ in some respects from the major global

and volunteer systems. The middleware used for more general desktop grids likely isn't

suitable for global volunteer computing efforts. [42] Although BOINC might be useful

for desktop grids. The main difference between the two is one of trust and to some extent

homogeneity and volatility. Most traditional desktop grids or cycle stealing systems occur

within the boundaries of some organization, even if it is a large one such as a university

or large corporate enterprise. Groups of administrators likely install the grid software and

control its removal. Although the grid software automatically starts and stops grid tasks

on individual machines as users touch their keyboards, the use of the machine by the grid

software is hidden and transparent to the user of the desktop machine. The machines can

be assumed not to be malicious because they are owned by the organization. This in no

29

way means they can be considered reliable however, and reliability is an issue that will be

examined later. Networks tend to be faster and more reliable than in the case of volunteer

computing.

In [56] the authors attempt a taxonomy of desktop grid systems in which they

refer to both volunteer computing and desktop grids under the heading of "centralized"

desktop grids. Newer systems utilizing peer to peer job dissemination are broadly

categorized as "distributed." They list several such P2P systems including CCOF (Cluster

Computing On The Fly) [57], Organic Grid [58] , Messor [59] and Paradropper [60].

Pointing out there has been no taxonomy of desktop grids as of 2007, the authors

make a distinction between what this paper has termed volunteer computing and desktop

computing "according to organization, platform, scale, and resource provider properties."

Global volunteer systems would be distinguished from classic desktop grids by scale,

Internet vs. internal LAN, and by resource provider -- workers in the enterprise in one

case and volunteer computer owners in the other.

There are a plethora of grid technologies and middleware. A detailed description

and comparison of four of them -- Gridbus, Globus, Legion, and Unicore - some of

which have been discussed previously, is available from Asadzadeh, Raj kumar, Buyya

and others in [17]. Globus is a special case in some respects because it supplies a set of

low level tools to developers of other middleware. In addition to discussing each of these,

the authors describe a typical hardware and software stack in a grid middleware system.

Condor [7], another grid system that is still in extensive use and which uses process

migration as a fault tolerance method on Linux systems (but not in the Windows version),

30

was developed in 1991. Gridbus [24] is an open source grid software toolkit that was

developed by the University of Melbourne GRIDS Lab and others. Major desktop

operating system vendors also have offered Grid software including Xgrid from Apple

and A1chemi [61], written for the Microsoft Windows operating system.

2.5 Reliability of Desktop and Volunteer Systems

In a desktop grid the various computational resources likely are heterogeneous,

are spread across a wide geographic area and are connected by highly disparate networks

with differing capabilities. Individual users might, or might not, have any interest or even

awareness of the desktop's role as a computational resource in a grid. Machines might be

turned off or rebooted at a whim. In addition the work of the grid usually suspends at any

time when a user sits at the keyboard and begins to use the system. Some might have

more memory than others or contain faster processors.

Network speed might be a factor and the amount of disk space might be different

between machines. Some computers on the grid might not be able to contain the input

dataset or might be so incredibly slow that it is virtually useless for the particular problem

at hand. All of these considerations and many others combine to make this sort of grid

computing unreliable. The most important and difficult problems may be categorized

generally as the problem of volatility. [62]

In addition to failure of individual computational resources in the grid (often

termed computational hosts or nodes) because of hardware issues, network failure or for

other unforeseen reasons, such computers often are either owned or managed by

31

----- - --

individual users. Users start working with their machine, causing the grid task to suspend

automatically, might remove the node from the grid or simply shut it off. Any of these

activities would result in the failure or suspension of the particular grid application

process.

Reliability is the central concern in this work. Generally in an enterprise desktop

grid, the project is broken into tasks which are then sent from a server process to the

computational resources that will do the actual work. How those resources are

discovered and managed is handled differently in different systems and is an active area

of research. In a computationally intensive job of any length there is a high probability

that a task will fail due to the failure of a particular network or computational resources.

A job running on a heavily used desktop grid almost certainly will not complete or will

return only partial results depending on the size of the grid and the length of the job. It

would be nice to have a more specific model of just how unreliable we can expect

desktop grids to be, and some substantial work that has been done in this area will be

considered here.

Overall, the area of reliability analysis is more complex than might appear upon

first blush. So what is reliability? To have some basis for discussion consider that we

discuss reliability in terms of probability of failure. In a series system where the

reliability of each serially connected component is independent and the same, for

example, reliability is:

32

P[failure] = l-(1-P)" where P is the probability of system survival and n is the

number of components in a system where the probability of failure of each of the

components is presumed to be the same.

A parallel system a system is considered to fail only if all of its components fail

and so the general probability of success is: pn where P is the probability of success.

Most real-world systems fit neither category completely and discussions of

reliability generally revolve around "m out of n" systems where a system fails if m or

more components of n components fail.

Inter:::,~ent 1
Solid
laull

,--_L----,

I
Service Continualion

Maintenance
Call

Backward Recovery

~
Solid
lault

*

Service
Continuation

Intermittent
lault

Maintenance
Call

Full Forward Recovery

Solid
laun

*

Intermittent
faun

Maintenance
Call

Partial Forward Recovery

Forward Recovery

Detection and Recovery

[Compensation I
I

Service
Continuation

Intermittent
fault

Solid
lauit

*
Maintenance

call

Masking and recovery

Figure 2.3: Examples of basic strategies for implementing fault tolerance (adapted
from [63]).

Assuming the probability of failure of each component IS the same and IS

independent, such a system fails with a probability:

33

P[failure] = P [M ~ m]
=1 - F M;n (m-I)

Where F M;n(m) = P[M S m] is the cumulative distribution function
ofM.

Rueda and Pawlak, University of Mantioba, have produced a brief survey of the

pioneering work in general reliability theory during the past 50 years in [64]. "In Basic

Concepts and Taxonomy of Dependable and Secure Computing" [63] the authors attempt

to give precise definitions and a taxonomy of fault tolerant computing. They discuss

system function and structure, threats to systems and a taxonomy of faults including

natural and human, a discussion of faults, errors and failures, dependability and trust

before moving into the area of fault prevention.

But what is reliability in terms of grid computing? Dai and others provide a

definition in "Reliability Analysis of Grid Computing Systems" [65] and discuss two

types of reliability -- system reliability and application reliability. "From the viewpoint of

grid computing program, the program reliability can be defined as the probability of

successful execution of the given program running on multiple nodes and exchanging

information with the remote resources of other nodes. From the system point of view, the

reliability of the grid system can be defined as the probability of all of the grid computing

programs to be executed successfully in the grid computing environment."

Dai points out that the "grid program/system reliability is a special case of

distributed program/system reliability" and provides a set of algorithms for evaluating the

reliability of grid systems with emphasis not only on the computational resources but on

the communication channels. A Minimal Resource Spanning Tree (MRST) connects all

of the resources in the grid with the MRST reliability defined by:

34

• Reliability of all the links contained in the MRST during the
communication.

• Reliability of all the nodes contained in the MRST during the
Communication.

• Reliability of root node that executes the program during the
processing time of the program.

• Total program reliability is defined by the probability of having
at least one reliable MRST.

He defines grid system reliability as "the probability that all the computing

programs are executed successfully. Thus, the grid system reliability equation can be

written as the probability of the intersection of the set of MRST's of each program." The

paper provides a formalism and algorithm for determining reliability based on a body of

previous theoretical work involving the reliability of distributed systems. Although the

paper provides a nice theoretical basis for discussing the reliability of grid systems it

doesn't provide one a feel for exactly how unreliable actual grids really are.

Early work on Entropia [53] describes some experimental results relating to

performance. In the case of a molecular docking program, for example, 50,000 molecules

were partitioned into 10,000 slices of five molecules each. Ideally this job would have

required only 10,000 subjobs, to complete, but in this case, 10,434 were required. The

authors point out that most of the additional subjobs were caused by reboots. Some,

however, were the result of variation in execution time. In order to ensure that jobs were

completed the system initiated redundant subjobs when a subjob has failed to return

within the anticipated period (determined by the user). The writers point out that

relatively inexpensive grid resources are traded to improve job completion time. For the

molecular docking program, the average subjob ran for 20 minutes but the range varied

from 8 seconds to 118 minutes: Of the 10,000 subjobs, 204 of them ran more than the

35

expected limit of 60 minutes. The average subjob execution time for the mixed grid was

20 minutes with a standard deviation of 13:4 minutes and a variance 181 minutes.

Their experience points out a central problem with desktop grid systems and fits

with our own in an experiment involving pharmacophore search on an Apple XGrid of

machines distributed at high schools in Kentucky.

Other work has involved case studies of operating grids. In [62] Kondo and others

discussed the desktop grid in terms of how often cycles could be exploited and the

distribution of time intervals where host is available for a grid application. They used

Entropia DCGrid software at the San Diego Supercomptuer Center with 275 hosts. Of the

275 some 220 were running the Entropia client. From their analysis they determined the

expected task failure based on the probability that a host would become unavailable

before task completion, which is also understandably contingent on task length. They

defined the concept of the cluster equivalence ratio: "Given an N-host desktop grid, how

many nodes of dedicated cluster, M, with comparable CPU clock rates, are required such

that the two platforms have equal utility?" Assuming a computational cluster based on

the same processors as those in the desktop grid, researchers determined that for the

desktop grid in question the 220 nodes completed equivalent work of a 209 host cluster

on weekends and a 160-host cluster on weekdays when the desktops were more heavily

used. In addition the tasks considered generally were a few minutes long. In terms of

serious computational problems, a few minutes is not usually the time range in question.

Some jobs might continue for hours in which case the failure rate (the rate of incomplete

tasks) might increase to the point that the job is effectively stopped. In fact, in light of

36

research done by Kondo and others, it might be that grids are ineffective for lengthy jobs

and tasks must be curtailed in length to help ensure reliability.

Kondo and others at the University of California, San Diego, have produced a

large amount of work related to desktop grid systems during the past few years. Their

work with respect to availability of enterprise desktop grids is summarized in a 2006

paper [66] and later in 2007. [67] They have used application-level traces of four

enterprise desktop grids and determined overall and per-host statistics. They point out

that despite the popularity of desktop grids the volatility of hosts inside various grids

hasn't been well understood.

In terms of methodology, the researchers used a "trace method" where they

submitted tasks to a desktop grid that wasn't running other grid jobs. Each task wrote its

computation rate at intervals to a file. The computers were kept loaded with tasks of

about 10-minute length in a loop that performed a mix of integer and floating point

operations. System availability was stored at 10-second intervals. Desktop users were

unaware of the testing and tasks were suspended and terminated as necessary by

keyboard usage, hardware failure etc. Data was collected from three desktop grids

including an Entropia grid at the San Diego Super Computer Center at different times but

for a cumulative period of about 28 days over 275 hosts. The second and third data sets

were collected using the XtremWeb desktop grid software continuously over about one

month on 100 hosts at the University of Paris-Sud including computers users in a

classroom and others used by a research group. Other hosts were used by graduate

students in the electrical engineering/computer science department at UC Berkeley. In

37

[68] Kondo and others use their previous results to generate mathematical models of grid

availability and task success rate, among other things. They find that tasks can fail to

meet their deadlines for two reasons; failure can occur if the aggregate compute power in

the system dips below the incoming work rate and failure can occur if a task encounters

repeated host failures. Kondo points out that even if the aggregate compute power in the

system is always greater than the incoming work rate "host unavailability may still cause

some tasks to fail in meeting their deadlines. This is particularly relevant ... where the

intervals of availability tend to be quite small."

For ajob to execute on a worker host, various conditions must be met. Kondo and

colleagues define three types of availability that determine whether a job can run on a

particular host and which help push forward our idea of reliability:

• Host availability includes the idea that the host is reachable for
general communication. They list reasons for host unavailability
as those sorts of things that would make the computer generally
unavailable for use -- such as power failure, shutoff, reboot,
crash.

• Task execution availability is determined by the grid software.
The host might be too busy or the keyboard might be in use and
therefore the system might be unavailable for use in the grid.

• CPU availability is the third consideration. If the host CPU is
busy then most grid software will refuse to place a job on that
host.

In addition to providing some sort of basis for a discussion of types of failure of

hosts on the grid, the more immediate concern for their research is in determining what to

trace in their attempt to measure reliability. According to Kondo, the completion of a

task is related to the lengths of the intervals of time that a host is available to execute a

job. Based on their description of the "temporal structure of resource availability" they

38

---------- ------~~~--------------------------------------

derive the "expected task failure rate," which is the probability a host will become

unavailable before a job is finished. The calculation was done by choosing several

hundred thousand random points and checking task status at that time.

Kondo and the other researchers draw several important conclusions related to the

expected task failure rate [69]:

• Even on the most volatile platform intervals of machine
availability were 10 minutes in length or greater, while the mean
length for all platforms with interactive users was about 2.6
hours. They report that an application developer could ensure
that tasks are about 10 minutes long to best utilize most of the
time intervals the machines were available.

• Task failure rates on each system were correlated with the task
size in an approximately linear fashion.

• On platforms with interactive users, execution availability tends
to be independent across hosts. However, independence is
affected by the configuration issues including wake-on-LAN
enabled Ethernet adapters etc.

• The availability interval lengths are not related to clock rate; nor
is the percentage of time a host is unavailable. However,
interval lengths in terms of number of operations and task
failure rates are correlated with clock rates. So selecting
computational resources with higher clock rates may be
beneficial.

• There is wide variation of availability from host to host,
especially in the platforms with interactive users, even in
platforms with hosts of identical clock rates. So computational
nodes with the same hardware showed heterogeneous efficiency
in terms of the grid application.

So the most efficiency came with tasks that were 10 minutes long. The average

task failed in 2.6 hours. The task failure rate is a linear function of task size (length). In

[69] they noted:

"We also find that the expected task failure rate is strongly
dependent on the task lengths. (The weekends show similar linear
trends, albeit the failure rates are lower.) It appears that in all

39

platforms the task failure rate increases with task size and that the
increase is roughly linear; the lowest correlation coefficient is 0.98,
indicating that there exists a strong linear relationship between task
size and failure rate. (Clearly, as the task size approaches infinity,
the task failure rate will eventually plateau as it approaches one.
Nevertheless, the relationship is approximately linear for a
reasonable range of task sizes.)".

On systems with interactive users, where a user might type on the keyboard and

stop a grid task, the availability of hosts in the system tend to be independent of one

another and availability can be increased by using hardware that allows the network card

to wake the system. Faster CPUs do not correlate with the system availability but if more

work is done in a shorter interval oftime then a faster CPU might be helpful.

More recent research agrees with the results from Kondo. In 2007, Iosup and

others examined resource availability on a large scale, multi-cluster experimental grid

platform in France, Grid 5000. [21] They found that the mean time before failure was

short - about 12 minutes for the grid as a hole, about 5 hours at the individual cluster

level and at about two days per compute node.

Khalili and others looked at TeraGrid and the earth sciences grid, Geon [70],

showing 55 and 80 percent success rates.

Others have attempted to quantify the availability of similar grid systems. In [71]

Brevik and others describe a methodology for predicting machine availability based on

monitoring data in distributed computing environments. They estimated a specified

quantile for the distribution of availability, and associated a confidence level with each

estimate. They state the problem the following way:

40

"From a set of availability measurements taken from a resource ...
and given a desired percentile p and confidence level c, what is the
largest availability duration t for which we can say with confidence
c that p percent of the availability time measurements are greater
than or equal to? The answer to this question for a given data set,
percentile of interest (and take q = 1 - p), and desired confidence
level, is a lower bound estimate of the qth quantile from the data
set. While not a prediction of the exact availability duration, using
an estimate of a quantile provides a lower bound on how long a
machine (or collections of machines) is likely to be available, and
the confidence measure provides a quantitative (but probabilistic)
"guarantee" of the estimate's accuracy."

Volunteer grids are even more volatile than conventional cycle stealing systems in

institutional and enterprise settings. Anderson notes in [42] that volunteer computing,

what he terms "public resource computing," " involves an asymmetric relationship

between projects and participants."

Projects are typically small academic research groups with limited computer

expertise and manpower. Most participants are individuals who own Windows,

Macintosh and Linux PCs, connected to the Internet by telephone or cable modems or

DSL, and often behind network-address translators (NATs) or firewalls. The computers

are frequently turned off or disconnected from the Internet. Participants are not computer

experts, and participate in a project only if they are interested in it and receive incentives

such as credit and screensaver graphics. Projects have no control over participants, and

cannot prevent malicious behavior." [42]

In "Volunteer Availability Based Fault Tolerant Scheduling Mechanism III

Desktop Grid Computing Environment" [72], Choi and others discuss volatility III

volunteer desktop grids along with proposing a scheduling mechanism.

41

They define types of execution and formalize failure modes. A public execution is

the execution of a task as a volunteer and might be started or stopped arbitrarily. Private

execution is the execution of a private job by a personal user, often the owner of the

computer. They refer to failures caused by the execution of a private job as a volunteer

autonomy failure.

Volunteer autonomy failures can result in livelock if traditional job scheduling

methods are used because the consistent interruption of the job can cause it never to

complete. Their paper formally defines several failure modes. Their definitions are

summarized here and the mathematical formalism has been excluded for the sake of

brevity and is available in [72]:

Definition 1: Volunteer volatility failure is abortion of public
execution which is caused by freely leaving of the public execution
ofa task.

Definition 2: Volunteer interference failure is temporary suspension
of public execution which is caused by private execution of a
individual job.

They point out a livelock problem occurs when all systems executing a task have

a volunteer volatility failure.

So desktop grids are somewhat unreliable at the very least -- and sometimes

unreliable in the extreme. However, system reliability appears to be quantifiable and

possibly predictable. It may also be possible to mitigate system unreliability with a

variety of methods with varying efficacy. In [73] two methods are used to predict

reliability, a parametric model fitting method using past data to find the underlying

probability distribution and two a non-parametric techniques ("resampling" and "the

42

bionomial method"). There is a fairly large body of older work in reliability analysis on

distributed systems as well as in the area of software reliability.

2.6 Strategies for Reliability

The primary method to be considered in this research for improving reliability is

redundancy, replication or over-provisioning as it is sometimes termed. Very often the

same tasks and data are replicated across different computational hosts in a grid in an

effort to overcome high failure rates. The interest in this research is in improved methods

for adding redundancy to grid jobs. In general where and how to add redundancy to a

series-parallel system is in fact NP-Hard [74]. (In brief explanation, a nondeterministic

polynomial-time hard problem is at least as difficult as the hardest problems in NP, such

as an NP-complete problem. A common example for an NP-complete problem is the

subset sum problem. Does the sum of some non-empty subset of a set of integers, other

than the empty set, sum to 07 But an NP-Hard problem need not be a decision problem

and therefore a member of NP. It's possible that these problems cannot be solved in

polynomial time but this has yet to be proved.)

It should come as no surprise, considering the inherent unreliability of desktop

grids, that the search for various methods to ensure fault tolerance and reliability is an

active area of research. Most of the research is centered around grid middleware

development including various proposals and methods for building reliability through the

very well known and time tested mechanisms of redundancy/overprovisioning and

checkpointing, byzantine results checking, as well as resource scheduling for reliability

and other methodologies.

43

In relatively recent 2008 work, Kandaswamy, MandaI and Reed discuss migration

and overprovisioning as strategies for fault tolerance. [75] Most of the work in the area of

scheduling has as its underlying paradigm the "task parallel" model of parallel

computing. [55;76-81] In the Bag of Tasks (BoT) model the tasks are presumed to be

independent and embarrassingly parallel.

In this paradigm, the task to be solved is broken into subtasks. The subtasks are

placed in a shared data structure called a bag, "and each process in a pool of identical

workers then repeatedly retrieves a subtask description from the bag, solves it, and

outputs the solution." Advantages of this programming approach include "transparent

scalability, automatic load balancing, and ... easy extension to fault-tolerant operation."

[82]

In addition, some work has been done in the area of data parallelism specifically

with regard to heterogeneous machines in the area of load balancing which is closely

related to the area of reliability. Assigning jobs to particular resources in a grid is the job

of the scheduler. The job of the scheduler is to arrange tasks in such a way as to assure

completion in the minimal time. Traditional scheduling of independent tasks, the kind of

job most often associated with grid computing, generally reduces into bin-packing

problems, an area which has been the focus of much study for some time. In the

particular case of grid computing, however, the task length cannot be known a priori (a

requirement of bin-packing schedulers) because relevant information about the

computational power of the machine often is not available. Many schedulers are based on

attempting to determine how long a particular task might take on a certain machine in the

44

grid, either from historical data or through other means. Other schedulers, however,

attempt to solve the problem without a priori knowledge by using replication. An

excellent overview of the current literature with regard to replication schedulers is

available in the 2007 paper, "On the Efficacy, Efficiency and Emergent Behavior of Task

Replication in Large Distributed Systems" [83]. A lot of work has been done in the area

of scheduling in general as in [84] for example.

Replication schedulers send copies of tasks to various machines and make use of

the first to complete. The desire is to reduce the makespan of the job where the makespan

is the time from the beginning of the first task to the completion of the last. The minimum

makespan is the result of optimal scheduling so that the time from the beginning of the

first subtask to the completion of the last is the minimum possible.

Work flows often are represented on grid systems as directed acyclic graphs or

DAGs. Most schedulers fall into general categories including list-based, clustering and

duplication based. List-based strategies orders the nodes in the DAG and then assigns

each to a resource that minimizes a cost function. A newer strategy is that of the level

based scheduler where the DAG is broken into levels. Nodes in each level are scheduled

as soon as scheduling is complete for nodes in the previous level. A comparison of the

schedulers is available in the 2007 paper, "Relative Performance of Scheduling

Algorithms in Grid Environments" [85].

In their 2009 paper, Zhang and others propose combining fault tolerance with

over-provisioning and checkpointing with the HEFT (Heterogeneous Earliest Finish

Time) and DSH (Duplication Scheduling Heuristic). [86]

45

Some past replication schedulers include "eager scheduler" from the Charlotte

grid [87] and MapReduce [88]. WQR (work queue with replication) [78] schedules all

tasks first and then starts replicating them with a limit on the number of rep Ii cants so a

task with a programming error won't hang execution by continuously failing. WQR

(work queue with replication) [78] schedules all tasks first and then starts replicating

them with a limit on the number of replicants so a task with a programming error won't

hang execution by continuously failing In [89] researchers modify WQR to take

advantage of knowledge about resources.

Adler and others develop a model of Heterogeneous Networks of Workstations

(HNOW) [76] and claim to prove that FIFO (First In First Out) " worksharing protocols

provide asymptotically optimal solutions to a problem related to sharing a bag of

identically complex tasks in a heterogeneous network of workstations (HNOW) N." They

continue:

"The main results of the paper establish that, for every HNOW N,
over life spans of sufficient duration, any protocol that orchestrates
N's workstations in a FIFO fashion-i.e. that has workstations
finish working, and return their results, in the same order as they
receive work-provides an optimal solution for the HNOW­
Exploitation Problem. As part of this demonstration, we prove that,
no matter how N's workstations differ in work rate, all protocols
that observe a FIFO regimen provide equally productive solutions
for the HNOW-Exploitation Problem for N. These results are
somewhat surprising, since they demonstrate that over sufficiently
long lifespans, there is no advantage to specifying an ordering that
favors the faster workstations, for example by sending work to the
fastest workstation first and having it return its results last. In fact,
in our model, we can completely ignore the relative powers of N' s
workstations. [76]"

46

In [79;90] the authors examine the efficacy of several schedulers and introduce

RR (list scheduling with Round-robin order Replication), a task replication scheduler

meant for parameter sweep applications on a computational grid. They also point out that

makespan is an untenable algorithm for heterogeneous grids because the total

computational power varies over time. They suggest that a scheduler should be concerned

with consuming all of the computational cycles that were available over time rather than

makespan. "RR is akin to WQR with infinite replication, except that it considers tasks

with the same length and it does not schedule them at random, but rather from a circular

list." [83] Ghare and colleagues look at whether processors should be used for additional

tasks or for redundancy in specific scenarios. [91]

In [92] Kondo and others examine and propose four general approaches:

• Resource Prioritization - Hosts are sorted according to criteria
such as clock rate, historical performance.

• Resource Exclusion Using a Fixed Threshold - Hosts with poor
performance are excluded according to some measure such as
clock rate.

• Resource Exclusion via Makespan Prediction - Exclude hosts
not expected to complete a certain application within a certain
expected time.

• Task Replication - Overcome the problem of task failure by
replicating the task on multiple hosts or on faster hosts.

Some point out that Kondo and his colleagues are considering grids where the

number of tasks is closely matched with the number of execution hosts and that

replication schedulers have performance comparable to bin packing schedulers. [83]

Mapping tasks to processors has been the subject of research for some time. In a

1977 paper [93] for example, the authors consider the finishing time properties of several

47

algorithms for scheduling n independent tasks on m non-identical processors III an

attempt to find the optimal algorithm from several presented.

Most research focuses on finding the optimal makespan. The authors consider two

bin-packing schedulers in [83] including FPLTF, Fastest Processor to Largest Task First,

which uses task size, resource load and resource speed. And they consider sufferage. The

sufferage value of a task is the difference between the best completion time and the

second best, according the capabilities of each available resource. Tasks that would suffer

most are assigned first.

The authors also analyze efficiency of replication. "Task replication enables

knowledge-free schedulers to attain performance comparable to knowledge-based

schedulers. This comes at an increased use of computation, because multiple replicas

consume more computational resources than a single one," according to Cime and others.

"However, scheduling BoT applications on grids is still an open problem," Silva says in

[78]. "Good scheduling requires good information about the grid resources, which is

often difficult to obtain. Known knowledge-free scheduling algorithms usually have

worse performance than algorithms that have full knowledge about the environment."

Others have looked at data decomposition rather than strict task scheduling as a

method for load balancing on heterogeneous machines. [94] Others propose Natural

Block Data Decomposition which maps data to processes according to the relative

performance of the process, among other methods. [95] [96]

48

Scheduling algorithms that work toward the most efficient use of resources have

implications with regard to reliability but aren't necessarily designed as mechanisms of

fault tolerance. Lee and others examine the current state of grid reliability and fault

tolerance in their in their paper "Grid Programming Models: Current Tools, Issues and

Directions." [97]

They say that:

"Reliability and fault tolerance in grid programming models/tools
are largely unexplored, beyond simple checkpointing and restart.
Certain application domains are more amendable to fault tolerance
than other, e.g., parameter sweep or Monte Carlo simulations that
are composed of many independent cases where a case can simply
be redone if it fails for any reason. The issue here, however, is how
to make grid programming models and tools inherently more
reliable and fault tolerant. Clearly a distinction exists between
reliability and fault tolerance in the application versus in the
programming model/tool versus in the grid infrastructure itself. An
argument can be made that reliability and fault tolerance have to be
available at all lower levels to be possible at the higher levels."

Their remarks accurately summarize the context and thinking that motivates our

own research. "A further distinction can be made between fault detection, fault

notification and fault recovery," Lee says. "In a distributed grid environment, simply

being able to detect when a fault has occurred is crucial. Propagating notification of that

fault to relevant sites is also critical. Finally these relevant sites must be able to take

action to recover from or limit the effects of the fault." They go on to point to event

models as being a necessary element for reliable and fault tolerant programming models

and tools.

49

Sarmenta has produced a solid overall exploration of the topic III terms of

volunteer computing systems III his paper "Sabotage-Tolerance Mechanisms for

Volunteer Computing Systems." [98] He discusses redundancy, the ratio of the average

total number of work objects assigned to workers using redundancy versus the original

number of workers. Slowdown is taken from the runtime of the computation with and

without redundancy. Sarmenta says that:

"In general, fault-tolerance mechanisms should aim to (in order of
priority) (1) minimize the final error rate as much as possible, or at
least reduce it to an acceptable level, (2) minimize redundancy, and
(3) minimize slowdown."

Sarmenta also discusses strategies such as spot checking results by duplication to

detect problems, blacklisting offending resources, majority voting and other methods.

Software that "simulates the behavior of an eager scheduling work pool in the presence of

saboteurs and various fault-tolerance mechanisms" was used to check results. He

develops the "credibility threshold principle." The key idea in credibility-based fault-

tolerance is that: "if we only accept a result for a work entry when the conditional

probability of that result being correct is at least some threshold e, then the probability of

accepting a correct result, averaged over all work entries, would be at least e."

In their 2006 and 2007 papers regarding replication and checkpointing in grid

systems, [99; 1 00] Chtepen and others point out that many systems still do not implement

any form of fault tolerance. They point out that Condor implements checkpointing and

Charlotte uses eager scheduling for replication. More recently BOINC implements

replication and results checking on an application specific level. Results checking is a

50

continuing field of study. [101] Chtepen's statements notwithstanding, some newer grid

systems do implement some checkpointing and redundancy. BOINC will be discussed in

more detail later, but it might be noted at this time that some researchers are aware of the

need for improved fault tolerance. In "The Challenge of Volunteer Computing With

Lengthy Climate Model Simulations," [102] the authors describe the need for

checkpointing and their strategy for implementing it:

"Scientific applications being ported to the volunteer computing
paradigm must checkpoint time-consuming tasks (e.g. greater than
an hour of run-time). This enables a restart of the task with little
loss of previously computed work. Many scientific applications
were meant to be run continuously from "start to finish," with job
submission by researchers who patiently await the results on a time­
shared system, and who do not interrupt the task. Therefore,
scientific programs often have no checkpointing capability. For a
volunteer computing app this is not desirable, as user intervention,
system crashes, and other factors may require a task to be paused,
stopped, or removed from memory, and later restarted. Fortunately,
checkpointing is available for the climate model used in
climateprediction.net. "

The climate model checkpoint is about 20 MB and the checkpoint is written every

144 timesteps or about every 15 minutes on a 2 GHZ Pentium.

In their paper, Chtepen examine two well-known techniques for providing fault-

tolerance in grids -- periodic task checkpointing and replication. Checkpointing

periodically saves task status. "Task replication is based on the assumption that the

probability of a single resource failure is much higher than of a simultaneous failure of

multiple resources."

They suggest a task replication algorithm based on replication of arriving tasks. In

each scheduler iteration, the longest waiting task, of which less than a certain number of

51

replicas are started, is distributed to the site with free resources and the smallest number

of replicas. Load is calculated as a combination of the number of tasks and the speed of

the resources in millions of instructions per second. When one task replica finishes, other

replicas are deleted. Their Adaptive Task Replication algorithm would stop task

replication during peak loads on the grid. Failure Detection suggests that the scheduler

reschedule all resources sent to a particular resource as soon as a failure is detected. The

Failure Detection and Adaptive Task Replication method combines the two previous

algorithms. The algorithms were tested using a software simulator written for the

purpose, the Dynamic Scheduling in Distributed Environments simulator developed in

C++. They eschewed use of other grid simulators including GridSim, SimGrid and

NSGrid "because the possibilities of modeling grid system dynamics are quite limited."

They found that "... heuristics with failure detection guarantee almost lossless

task execution at the cost of slower system performance while replication-based

algorithms provide good throughput on unreliable grids without giving a guarantee on the

number of jobs lost. A compromise between performance and reliability can be achieved

by combining failure prevention with rescheduling. To achieve the best result, an

appropriate number of replicas should be chosen in function of the properties of the grid

system at hand."

The authors also discuss checkpointing, noting that the efficiency of

checkpointing is dependent on the length of the checkpointing interval. Their paper

presents heuristics that tune the checkpointing interval.

52

In a 2007 paper about fault tolerance in peer to peer systems [103] the authors

discuss two different types of rollback recovery as a method for fault tolerance, including

checkpoint-based and log based where interprocess messages are replayed to rebuild the

job status. They compare the approaches by looking at the failure free overhead, i.e. the

additional time required for the fault-tolerance mechanism without failure and the

recovery time required by a failure during execution.

They say that a checkpoint-based technique provides a low failure-free overhead

but a long recovery time while a log-based mechanism requires more constant overhead

but recovery is faster. Choosing one of those two approaches highly depends on the

characteristics of the application and of the underlying hardware. Their paper provides a

method to deploy technical information about grid resources allowing the system to make

configuration decisions thereby helping ensure reliability.

In their 2006 paper, "Using Checkpointing to Enhance Turnaround Time in

Institutional Desktop Grids" [104], Domingues and colleagues discuss the need for

placing checkpoints in central storage rather than on the host machine where the job is

taking place. "There are two main types of checkpoints: system-level and application­

level. Apart from Condor, which relies on system-level checkpoint, all major middleware

tools that implement checkpointing, such as BOINC and XtremWeb, make use of

application-level checkpointing. An important issue regarding checkpointing lies in the

physical location where checkpoints are stored. A limitation of the existing middleware

like BOINC is that checkpoints are private, being stored in the same machine where the

53

task is running. If that machine becomes unavailable, the checkpoint file cannot be used

and the task has to be restarted from scratch in another machine."

The authors go on to talk about the benefits of storing checkpoints in a central

location so tasks can be restarted on another machine should a machine or host fail. As

mentioned previously, Condor implements checkpointing and even implements job

migration on Linux systems.

In "Fault Tolerance within a Grid Environment," [105] the authors summarize

their progress in developing a fault model for grid computing. They also are developing a

system that "uses one or more coordination services, constructed under a distributed

recovery block scheme, to locate compute resources on the Grid, and to schedule,

broadcast, receive and vote upon jobs submitted by a client program. This is in order to

not only reduce the likelihood of faulty results being received by the client, but also to

protect against malicious Grid resources deliberately altering the results they produce."

Their work is somewhat similar to the system implemented in BOINe.

BOINC deserves more discussion because of its growing popularity as a

framework for volunteer computing, and because of its specific use of a

redundancy/quorum mechanism for fault tolerance. As outlined III [42] BOINC IS

designed in the following way:

A BOINC project corresponds to an organization or research group that does

public-resource computing. The project is identified by a home page URL. Participants

register with projects on the web page. The BOINC project server is centered around a

54

relational database that sto~es descriptions of applications, platforms, versions, workunits,

results, accounts, teams, and so on. Server functions are performed by a set of web

services and daemon processes. BOINC provides tools for creating, starting, stopping and

querying projects; adding new applications, platforms, and application versions, creating

workunits and for other functionality. The system also has rich facilities for maintaining

redundant sources of file data and upload/download information, whether data should

remain resident on execution clients and so on.

Of pnmary interest here, of course, is BOINC's facilities for redundant

computing. "Public-resource computing projects must deal with erroneous computational

results. These results arise from malfunctioning computers (typically induced by

overclocking) and occasionally from malicious participants," David Anderson, leader of

the BOINC project, says. BOINC provides support for redundant computing and "a

mechanism for identifying and rejecting erroneous results." The framework uses an M of

N quorum type system. A project can specify that N results should be created for each

work unit meaning that N work units have been replicated on different machines. After M

~ N have been completed an "application specific" function compares the results and

selects a "canonical result." If no result can be found, the process is repeated until a

maximum count or timeout is reached.

For cases where result comparison is difficult because of machine architecture

differences, specifically because of differences in numerical expression, BOINC provides

a homogeneous redundancy feature. When it is enabled the BOINe scheduler selects

only hosts with the same operating system and CPU vendor.

55

2.7 General Fault Tolerance and Replication

There are many, many sources for software reliability research. NASA, however,

has produced a nice discussion of software fault tolerance [106] for single version

software as well as some multi version techniques. Fault tolerance techniques discussed

include system structuring and closure, atomic actions, inline fault detection, exception

handling and others. Multiversion techniques include the idea that software may be built

differently so that if one version fails another should continue to work. Recovery blocks,

N version programming [107], N self-checking programming, consensus recovery blocks,

and t/(n-l) techniques are reviewed.

Of specific interest in our research however is the way in which processors are

assigned tasks and data. Some of the research has focused on efficiency in terms of

dynamically assigning tasks to processors best able to carry them out in a timely fashion

and with concern for balancing the load so that tasks complete within some specific

timeframe even though they are running on heterogeneous processors with different

capabilities.

Although not particularly related to the area of grid computing, a couple of other

sources are of interest because of their relationship to the particular set of replication

techniques that will be presented in this paper.

In "A Repetitive Fault Tolerance Model for Parallel Programs" [108] Yen and

others propose a replicative model for data parallel programs somewhat similar to the

system proposed in our work on grid computing -- although their discussion is related to

56

VLSI technology on the microprocessor level. In their repetitive fault tolerance model,

processors are permuted so that the working processors can execute the tasks that were

originally assigned to faulty processors. A permutation function F is responsible for

computing the processor permutation. After each iteration, the working processors are

permuted differently to execute the unfinished tasks due to failures.

The replicative model to be discussed in this dissertation proposal also involves

permutation of workload -- not so much as relates to obvious replication of tasks, but to

the permutation of data, and not on a single chip, but across a desktop grid. Their work

also involves the use of the important concept of the permutation function.

Another interested concept in distribution of replicated entities comes from work

involved with maximizing disk throughput by striping, "Maximizing Throughput in

Replicated Disk Striping of Variable Bit-Rate Streams." [109] Of particular interest is the

discussion of data redundancy policies. They discuss Deterministic Replica Placement

where data is placed on disks in a "round-robin" fashion, and a Random Replica

Placement, where data is placed on random disks, which is of interest when attempting to

replicate tasks and data across execution hosts in a grid.

57

CHAPTER 3

MODELLING REDUNDANCY FOR FAULT TOLERANCE

One way to improve the reliability of desktop and volunteer grid systems is

through the use of redundancy - spawning the same task to different nodes in the grid to

improve the probability that the overall job completes. The focus of this research has

been to develop and test a paradigm for building reliability into grid applications -- and

possibly for future use in grid middleware - by changing the way that tasks and data are

arranged and distributed to the hosts that make up the grid. Various methods for static

redundancy, for spawning tasks and data to the nodes in the grid, have been modeled.

They are then tested and analyzed in a specially developed grid simulator (discussed in

Chapter 5) before a job is run on an actual grid (described in Chapter 6). The outcome has

been a better understanding of the effects of redundancy in the face of node failure. The

overall concept of permuting tasks and data before distributing them in redundant fashion

across computational hosts is described generally as RPP, the Replication and

Permutation Paradigm. RPP improves on the simple replication of tasks often used to

improve the reliability of desktop and volunteer grids. Two methods are of particular

interest as seen in initial development of the RPP model in Section 3.1.

58

The larger the number of hosts used for a grid computation, the less likely the

computation will complete, assuming no redundancy. The reason is simply that each node

in a desktop or volunteer grid has an associated mean time to failure as do network links

and the main server. In reality this means that machines might be turned off unexpectedly

in a volunteer grid, or that disk drives might be full or that an inferior network at some

location might be overloaded or fail. The greater the number of machines in the grid, the

more likely one will fail within a certain time period. As seen from the literature review

of the previous chapter, replication has been proposed, and in some cases implemented in

grid middleware, as a method of increasing job efficiency and overcoming node failures.

If a parallel job is considered to have failed when one node, with a probability of

failure Fj, of the grid of n nodes fails then the failure model is that of a simple serial

system. In such a system, the probability of failure F = I-S where S is the probability of

system survival. Such a serial system is made up of individual units, all of which must

function for the system to succeed. In the special case where the probability of failure of

each component in the series, Fi , is the same for n components, the probability of system

failure is given by F=l-(l-Fit. It's easy to see that the probability of failure increases

very quickly with the size of the grid. Attempts have been made to quantify metrics

associated with various grids, and, overall, it has been found that grid tasks must be of

relatively short duration in order to avoid being disrupted by node failures - particularly

those caused when a desktop user takes control of the system by typing on the keyboard.

Note the work by Kondo and colleagues cited earlier.[62;66;68;69;80;92;110-112]

59

Because the probability that at least one node will fail increases with the number

of nodes used in a job, the mean time to failure M decreases as the number of nodes

increases. Large jobs use many nodes and sometimes have long execution times E. As

the number of nodes and execution times grow to fit large cutting edge problems, M

becomes M<= E and the job will often fail.

This unfortunate set of facts has been born out in preliminary research at the

University of Louisville. A small to medium sized series of jobs was run on Kentucky'S

Apple Xgrid of desktops at Kentucky high schools. [6] Although the overall results were

successful in that the grid produced shorter run times than ever, the fact remained that

there were severe outliers. Worse, because of the ownership and structure of the grid,

jobs were submitted by 4 p.m. for an evening run that was forced to terminate early the

next morning. Any incomplete subtasks were then resubmitted the following afternoon.

So the actual wall-time makespan of a job could cover several days.

Generally the response to these problems in the research community has been to

restructure the grid infrastructure, and in particular the scheduler, to resubmit or replicate

failed tasks on the grid in order to reduce the makespan of the job or some similar

measure of overall job performance. Makespan, sometimes referred to as Cmax, is a term

used in scheduling research to refer to define the total execution time for the schedule. In

terms of grids, "makespan" is used to refer to the span of time from the beginning of the

first subtask of a job to the completion of the last. Often the goal is efficient use of grid

resources in an attempt to match the most costly jobs with the most efficient resources.

Replication often has been within the paradigm of course-grained task replication where

60

individual tasks are dynamically resubmitted to other grid resources until the overall job

completes.

Rather than following a course-grained, approach to scheduling and replication,

RPP supports permutation of data and tasks across the grid in a way that assures job

completion by using replication to minimize the impact of failures while also minimizing

makespan.

Usually, when ajob is submitted on a grid, the data and executable are sent from a

master or submission node to a number of computational nodes on the system. The

computational workers begin to execute the code, consuming the data as they go, and at

the end of the job the temporarily stored output is returned to the master, or some other

central location, by some means.

It is possible to arrange and disseminate the initial data to execution hosts in such

a way that given a known number of failures the worst-case completion time for a grid

job can stated exactly.

3.1 A Replication and Permutation Model

A set theoretic analysis and model is developed in this section to discuss various

types of redundancy or over-provisioning for reliability on highly unreliable grids. The

finished model includes two suggested methods for replication - a Latin Square

distribution of tasks and data across computational hosts and "reverse mirroring" where

data and tasks are duplicated in reverse order across hosts. The Latin Square method

proves most interesting and dominates the research. Also of interest is that the Latin

61

Square method does not reduce performance unless a host failure occurs, and the job will

continue so long as one processor is present. A proof is developed in Chapter 4 showing

how Latin Square distribution allows prediction of maximum makespan given a known

host failure rate.

The formal grid model, including data d, tasks t, a job J, permutations of data p,

hosts h, sets of hosts H and lists of data L among other items, is now presented:

Some n-tuple d must be defined as the minimal or atomic input data object that is

required for a single task t to complete and produce a meaningful n-tuple of output.

(3.1) Let d={a), ... ,an }

A job J is composed of a bag of identical tasks t which consume non-identical

lists L of n-tuples d.

hosts h.

(3.2) Let J={tiIO<i<N+ I} Where N is the cardinality of some subset of
available processors in the grid.

Each J will be assigned to some set of host processors H composed of individual

(3.3) Let H={hiIO<i<N+ I} Where N is cardinality of some subset of
the available processors in the grid.

(3.4) Let L={d), ... ,dd Where d is a minimal data item and L is an
ordered list or permutation of such items.

(3.5) Let Po={p), ... ,PN} Where Po is a broken kIN-element
permutation of L.

62

We define a broken permutation Po of L, a kIN-element permutation, into N

permutations (pI, ... ,PN) where the number possible is given LCk, N) = (Z)Ck-

l)k-N. Because each element of L is independent with regard to any task ti any of the

numerous possible permutations is acceptable.

Table 3.1: Broken Permutations of Data

{h},t} {h2,t2} {h3,t3}

{pJ} {P2} {P3}

Table 3.2: Data items di contained in permutations Pi

{h},tt} {h2,t2} {h3,h}

d1 ds d9

d2 d6 dlO

d3 d7 d ll

d4 ds d12

Table 3.3: Three processors and associated tasks execute three permutations of data

Execution {h},t}'pt} {h2,t2,P2} {h3,t3,P3}
Step

1 d1 ds d9

2 d2 d6 dlO

3 d3 d7 d 11

4 d4 ds d12

Table 3.2 shows the individual data items di that are contained in previously

discussed permutations Pi. Table 3.3 shows a possible configuration of a grid where three

63

processors execute the data supplied them as outline in the above formal model. Note that

the data permutations are consumed in order, and that the above model thus supplies no

redundancy. Also note that there is no implication of concurrency so that each execution

step might take more or less time on a particular processor. Execution order, however, is

preserved. Obviously, should execution be interrupted some in some processor then some

data would not be consumed and would be lost. Some grid systems attempt to correct this

deficiency by course-grained task replication or by dynamic scheduling of tasks.

In Table 3.4 execution is interrupted on processor h3 at the beginning of time step

3. The task is resubmitted and execution begins at time step 4. The entire makespan of the

job is increased to 7 timesteps. If the partial results were maintained, the timesteps would

have been increased to 5.

Table 3.4: Host h3 fails at timestep 3 and a new task is dynamically instantiated

Execution
{h},t}'pt} {h2,t2,P2} {h3,t3,P3} {h4,t3' ,P3'}

Step

1 d1 ds d9

2 d2 d6 dlO

3 d3 d7 d 11

4 d4 dg d12 d9

5 dlO

6 d ll

7 d12

Another obvious way to overcome the problem is by "mirroring" or multiple

replication of tasks:

64

(3.6) Let L=(d), ... ,dk) Where d is a minimal data item and L is an
ordered list or permutation of such items.

We define a broken permutation po of L, a kIN-element permutation, into N

permutations po=(p), .. ·,PN)

Additionally the model creates redundancy by creating an additional set of

identical permutations.

(3.7) Po'=(p)', ... ,PN'). Let po=po U po'
(3.8) Let J={tiIO<i<2N+ I}
(3.9) Let H={hiIO<i<2N+ I}

Apply a bijection of L to J and a bijection of J to H resulting in a mapping of Pi

and Pi' from po and to ti and ti to hi from i=l ;i<2N+ 1 and so by composition a mapping of

Pi to hi. This results in simple course-grained mirroring of tasks and data to some subset

of processors on the grid where the number of processors used is 2N.

Table 3.5: Execution fails on h3 during timestep 3 while the job continues
satisfactorily because of redundancy on processor h6

Execution {h},t},pt} {h2,t2,P2} {h3,t3,P3} {h4,t4,PI '} {hs,ts, P2'} {h6,t6,P3 '}
Step
1 d) ds d9 d) ds d9

2 d2 d6 dIO d2 d6 dIO

3 d3 d7 d" d3 d7 d ll

4 d4 dg d12 d4 dg d12

This example as illustrated by Table 3.5 results in simple mirroring where tasks

and data are duplicated once across 2N processors. It is important to note here, however,

that execution time of the job, the makespan, requires 4 timesteps in the case that there is

a processor failure as well as in the case where there is no processor failure. It also is

65

easy to see that in the case that two processors fail, if those two processors happen to be

processing Pi and Pi' then the entire job will fail. Given a large set of several hundred

processors, it isn't unlikely that two such mirrored replicants might fail.

A way to improve reliability is to increase the number of duplicated tasks and

data, which reduces the failure rate but still does not guarantee completion of the job. In

the circumstance where all of the processors happen to be processing replicants of one

another when they fail, the job will fail even though most of the processors in the system

continue to process tasks. Also, the makespan of a job in which there is no task failure

does not decrease. The makespan is the same in the case of failure and in the case of no

failure.

A new replication and distribution method, reverse mirroring, reduces makespan

in the case of no failures and acts like simple mirroring in the case of failure:

(3.10) L=(dl, ... ,dk) Where d is a minimal data item and L is an ordered
list or permutation of such items:

(3.11) Let L'=(dk, ... ,dl) So that L' is the inverse of the permutation L.

We define a broken permutation po of L, a kIN-element permutation, into N

permutations PO=(PI, .. ·,PN).

We define a broken permutation po' of L', a kIN-element permutation, into N

permutations PO'=(PI', .. ·,PN')

(3.12) Let pO=pO U pO'
(3.13) Let J={tiI0<i<2N+l}
(3.14) LetH={hdO<i<2N+l}

66

Apply a bijection of L to J and a bijection of J to H resulting in a mapping of Pi

and Pi' from po to ti and ti to hi from i=l ;i<2N+ 1 and so by composition a mapping of Pi

to hi. The result is a bit different than simple mirroring and has interesting connotations

for job execution. See Table 3.6.

Table 3.6: Data permutations Pi composed of di are mirrored and inverted in Pi'
composed of di'

Execution {h1,thPl} {hz,tz,Pz} {h3,t3,P3} {h4,t4,Pl '} {hs,ts,Pz '} {h6' t6, P3 '}
Step

1 d] d5 d9 d12 ' dg' d/

2 d2 d6 dlO d]] , d/ d3 '

3 d3 d7 dl: dlO ' d6 ' d/

4 d4 dg dl.: d9 ' d5' d]'

As shown in Table 3.6, even with the failure of h3 in time step 3, the makespan of

the job requires only two timesteps where four was required with simple mirroring. Data

items d ll and d12 are executed by 14 in timesteps 1 and 2.

Note that in this scenario data is duplicated across two processors as in mirroring

except that the order of each of the broken permutations has been reversed prior to

mapping to a task and processor. The result of reordering is that no two minimal data

items {di, ... ,dd are duplicated in the same timestep. In this case:

• All of the processor cycles are fully utilized in processing
new data during the first two timesteps so that if there are no
failures the makespan of this job is two timesteps rather than
four, as in the case of simple mirroring of data.

• A failure is less likely because it must occur during the first
two timesteps. The probability of failure decreases with
decreasing runtimes so that the overall probability of failure

67

.~~---------~~~~--~~~~~~~~~~~~~~~~~~----------------

is less with this scheme that with simple mirroring because
runtime is less.

• In the case of failure in time step two, makespan is increased
by one timestep. Of course this behavior remains to be
generalized to other cases.

• In the case of failure in timestep 1, i.e. complete node
failure, makespan is increased to that of simple mirroring,
four timesteps.

Reverse mirroring should result in half the computational time as a job with two

replicants if the grid has no node failures. In the case of failure of one mirror in

traditional mirroring the makespan T(M) is just T or the sum of the total time steps T=:L ti

in the job no matter when the failure occurs. However if t(F)i represents failure after the

ith time step and m represents the number of mirrors then in the case of reverse mirroring

one might argue that total time steps is represented by Equation 3.15:

(3.15) T(M)= (;-t(F)i) +T/m

Where T(M) is total timesteps, m=number of mirrors and t(F)1 is the
time step where failure occurs.

The problem remains, however, that if two nodes fail and they happen to be

processing replicated data, Pi and Pi' then the job will fail. In this case the addition of

replicants reduces the probability of failure but does not ensure job completion. It is

possible, however, to find a permutation function used with replication that ensures job

completion.

68

Table 3.7: The arrangement guarantees job completion so long as one processor
remains functional

Execution {hI,tI} {h2h} {h3,t3}
Step

1 PI P2 P3

2 P2 P3 PI

3 P3 PI P2

The arrangement of data, depicted in Table 3.7, does indeed solve the problem

inherent in both our previous replicaton scheme and in simple mirroring-that if two

processors while processing the same or a permuted replicant of the data then the entire

job will fail. Even if all but one processor fail the entire job will be executed, albeit in a

longer time. Because each broken permutation Pi holds four data items di , the

arrangements shown in Table 3.7 involve a large amount of replication of data; some of

the replication may be reduced by delayed transfer of data. Because each processor has

all of the data it needs to proceed after the first iteration of data is transferred, there is no

need to wait for the remaining data. In fact, transfer of the remaining data should be

delayed by some amount of time, which is an issue that should be explored more fully in

later research. The data distribution outline in Table 3.7 is a Latin Square of Order 3.

Early work with Latin Squares was done by Leonhard Paul Euler, 1707-1783, a Swiss

mathematician and physicist.

The Latin Square is an arrangement of items or objects into rows and columns in

such a way that no row or column contains the same object more than once.

69

--------------~--

- PIP2P3
p3 pl

\P2/
P2 P3 PI

P3PlP2

Figure 3.1: Moving clockwise around the circle on the left while advancing the
starting point by one generates the linear arrangement on the right.

More specifically a Latin Square is a quasi group Q defined in terms of a set of

distinct symbols and the binary multiplication operation between the elements of the set

Q. The quasigroup's multiplication table is a Latin Square.

Because, the model deals with permuations of data, another more natural way of

considering the formation of a Latin Square is in terms of a linear arrangment of a

circular permutation of data. This concept can be illustrated by examining Figure 3.1,

beginning with PI and generating a permutation by listing the items in linear fashion.

Then offset one place to P2 and generate a permutation listing the items in linear fashion,

and repeat the process with P3. A linear arrangement of the circular permutation has been

generated. It's easy to see that this is the same Latin Square developed previously.

For a circular permutation of n objects there are n linear arrangements of the

objects. In Table 3.7 each of the objects refers to a circular permutation ofpO={PI, ... ,Pn}.

Recall that each of the broken permutations {Pi I O<i<n} itself is a permutation of

minimal data items d and so has an intrinsic order.

Note from Table 3.7, that if one proceeds through the execution steps one step is

required if no processor fails, two if one processor fails and three if two processors fail. It

must be strongly noted that a single execution step does not refer to the execution of a

70

minimal data item but an entire broken permutation of data Pi. The Latin Square design

places an upper limit on makespan depending on the number of host processes that fail.

Notice in Figure 3.1 that if one host fails, two timesetps are required for the computation.

If two hosts fail, three timesteps are required. The concept of an upper bound on

computation time is examined more fully in Chapter 4. Another way of viewing the

model is that as the probability of failure increases, the probability that the makespan will

increase also increases. In fact the amount of data is increased to 8(n2
) where n is the

number of data items. The full upper limit on makespan is the number of timesteps

required to process all of the data on one node.

After consideration of two distinct mappings of data across processors we find

that the first, mirroring with permutation of data items, results in reduction of makespan

and improves reliability. However, it leaves unresolved the problem that ajob may fail to

repeat if all rep Ii cants fail. We also found that the second mapping, arrangement of

permutations in a Latin Square, results in assurance that a job evenutally will complete

even with h-1 processor failures but with greatly increased computational time and data

replication.

It is possible to combine the two schemes in an attempt to reduce makespan in

most cases while ensuring completion in those extreme cases where large numbers of

processors fail and all replicants of a particular set of data items are destroyed. This will

be examined in more detail in Chapter 4.

71

As shown in Table 3.8, if 14 fails in time step 1 then the job will complete in

time step 4 on h3. If both h3 and 14 fail then the job will complete in time step 6 depending

on when the earlier failures occurred.

Table 3.8: The table depicts mirroring with inverted broken permutations of data
arranged in a Latin Square configuration

Execution {h.,t.,Pl} {h2,h,P2} {h3,t3,P3} {h4,t4,Pl '} {hs,ts,P2' } {h6,t6,P3'}
Step

1 d j ds d9 d12
,

dg' d4'

2 d2 d6 dlO d ll
,

d/ d3'

3 d3 d7 d jj dlO' d6' d2 '

4 d4 dg d12 d9' ds' d j '

Execution {h.,t.,P2} {h2,h,P3} {h3,t3,Pl} {h4,t4,P2'} {hS,tS,P3'} {h6,t6,Pl '}
Step

5 ds d9 d j dg' d4' dl2'

6 d6 dlO d2 d/ d3' d jj '

7 d7 dll d3 d6' d2 ' dlO
,

8 dg d12 d4 ds' d j ' d9'

Execution {h.,t.,P3} {h2,h,Pl} {h2,h,P2} {h4,t4,P3'} {hS,tS,Pl' } {h6,t6,P2'}
Step

9 d9 d j ds d4' d12' dg'

10 dlO d2 d6 d/ d jj ' d7'

11 d ll d3 d7 d2' dlO' d6'

12 dl2 d4 dg d j ' d9' ds'

Note also from Table 3.8 that the job will complete in two timesteps if no

processors fail. So long as both copies of mirrored data do not fail, any other failure will

result in completion of the job in four timesteps. If both replicants fail, but no other nodes

72

fail, the job will complete in a maximum of 8 timesteps. If all nodes but one fail, the job

will complete in 12 timesteps. Completion is assured so long as one processor continues

to function.

Both features of the basic RPP model, reverse mIrronng and Latin Square

replication, have been created. Analysis of the performance of reverse mirroring and

Latin Square replication in specially constructed grid simulation software indicates that

both have similar performance in terms of host failure with the exception that jobs fail as

node failures increase with reverse mirroring. A complete discussion of various

simulation results is presented in Chapter 5. Suffice it to say that the Latin Square

replication method appears to be the most interesting of the two.

73

CHAPTER 4

PROOF OF MAXIMUM MAKESP AN
WITH LATIN SQUARE REPLICATION

This chapter includes further examination of Latin Squares which produces some

interesting results which allow prediction of maximum makespan in the face of particular

node failure rates. Recall that the columns of a Latin Square in the model represent

host/task pairs and the rows contain permutations of data. Each row is processed in

temporal order so that each row also can be thought of as representing a timestep in the

computation.

Table 4.1: The table depicts broken permutations of data in a Latin Square

Execution {hhthPd {h2,t2,P2} {h3,t3,P3}
Step
1 d1 ds d9

2 d2 d6 dlO
3 d3 d7 d11

4 d4 dg d12
Execution {h),t),P2} {h2,t2,P3} {h3,t3,pd
Step
5 ds d9 d1

6 d6 dlO d2

7 d7 d11 d3

8 dg d12 d4

Execution {h),t),P3} {h2,t2,P)} {h3,t3,P2}
Step
9 d9 d1 ds
10 dlO d2 d6

11 d11 d3 d7

12 d12 d4 dg

74

As shown in Table 4.1, if h3 fails in time step 1 then P3 is not processed by h3. It

will next be processed by h2 in execution step five, and if that fails then P3 will be

processed by hI in execution step nine. This seems intuitive based on our diagram, but it

is necessary to show that it is true in all cases of the model.

Previously a Latin Square was constructed rather informally as a linear

arrangement of circular permutations. More formally, a Latin Square of order n is defined

as an n x n table or square matrix in which n symbols occur once in each row and once in

each column. [113] If the first row and first column of the Latin Square are in some

natural order such as {1,2, ... ,n} then the square is said to be reduced [114], standard[113]

or normalized [115].

An n x n Latin Square in which each row is derived from any other is a cyclic

Latin Square. [113] By creating the previously discussed Latin Square in circular fashion

in a natural order, the result has been a standard, cyclic Latin Square. In other words it is

a Latin Square in which the rows are composed of cyclic permutations of a set

S={al,a2, ... ,an} which may be ordered. A permutation is a one to one transformation of a

finite set into itself. [116] In terms of combinatorics, a permutation is considered to be a

sequence of distinct elements. In terms of group theory, a permutation is a bijection, a

bijective function, from a finite set onto itself. If no particular element is mapped to itself

(a fixed point) the permutation is a derangement.

Consider the cyclic permutation of order 3 created previously in Figure 3.1, a

cyclic permutation that contains one cycle. Other permutations, including those creating

disjoint cycles and so forth, will not be considered here. Additionally the permutations

75

are created with offset 1 because each item shifts or rotates by one item each time a new

derangement is created. Given these constraints it is possible to define a relatively simple

bijection that also is a cyclic permutation or cycle. Consider the following:

Let S be a finite set of n symbols { ao, aI, ... , an-d. Consider a bijection or

transition function <j> (theta) such that al<j> = a2, a2<j>=a3, ... , an<j>=al' More generally ai<j>=ai+1

where an+l=al. If (ao, aI, ... an-I) defines a cycle including 1 cycle of n length one might

say that O'(ai)=ai+I' where an+l=al (or where all subscripts are taken modulo n.)

The 0' (sigma) function defines a mapping of S such that (ao ~ al ~ a2 ... ~ an-I),

which is a cycle.

Additionally squaring the function 0'2 carnes ai to ai+2 and O'k=ai+k, where all

subscripts are reduced modulo n. Applying 0', the following set of linear arrangements

are created with each application of the function:

Table 4.2: The table depicts a Latin Square of order n

ao, a], ... an-I

aI, ... an-I ao

an-I, ao, ... an-2

In Table 4.2, a cyclic Latin Square has been defined, in which the rows are cyclic

permutations of offset one and cycle length n. Although the symbols differ, this Latin

Square is equivalent to that used in the RPP model.

The rows are derangements and have no fixed points. Notice however that 0' is a

mapping from one symbol to another. The resulting mappings are equivalent in terms of

76

permutation. However it is obvious that their linear arrangements differ. The linear

arrangements are concerned with position, and it is possible to obtain a positional

mapping from the permutation.

Let's begin by looking at the bijective permutation functions. If al<P = a2 then by

definition a2 occupies the position formerly occupied by al. In fact a left rotation has

occurred. Consider the function cr. If cr(aj)=aj+l mod k then aj+1 is shifted to the position

formerly occupied by aj. This can be seen by considering that cr(aj_I)=aj mod k.

It is possible to derive a similar function that returns the position of aj in a linear

arrangement following application of cr. Consider that we have both a set of symbols

S={ao,al, ... ,an-d and a set P of positions P (rho) including PjE{po,PI, ... Pn-d in a linear

arrangement of S.

Table 4.3: The table depicts a Latin Square of order n labeled with positional
information

Po PI ... Pn-I

ao, ai, ... an-I

ai, ... an-I ao

an-I, ao, ... an-2

Notice in Table 4.3, for example, that position po in row 1 contains ao and that Po

in row two contains al etc. Position information may be included in our function in the

following way:

77

Let cr(aiPj)=ai+1 mod k, Pj Note that the symbol changes from row to row where the

position P remains the same.

Remember that the symbols relate to data in the programming paradigm. Columns

represent computational hosts and rows represent time steps when data is processed. At

this point we see intuitively that if a column is removed the symbol will next be found in

the following row in the column immediately to the left, unless it is the first column. In

that case the symbol will be shifted into the n-l column position. We are not so interested

in the mapping of a symbol to another symbol in the same position, but in the position of

the same symbol in the linear arrangement as it moves from row to row.

Position can be described in the following way. The rows are linear arrangements

of cyclic permutations following each application of the bijective function cr. Consider a

function f(aj,pj)=aj,p(G-I)+n) mod n where symbol aj remains constant and position Pj changes

between the rows subject to j=(G-I)+n) mod n. This describes a situation where a symbol

is shifted one position to the left and where position P_I is taken to be position Pn-I.

Two formal results are now presented and proven. Used together, these two

theorems will allow prediction of makespan.

Theorem 1: 'r;f ai f defines a mapping of the position Pj of ai
following application of 0": f(pj)=p(u-l)+n) mod n where
pjEP={PO,Ph ... Pn-tl holds between two rows for any Pi in an n x
n standard Latin Square composed of cyclic derangements of
offset 1.

Proof of Theorem 1 will be in two parts.

In part 1 we argue by mathematical induction on j that the theorem
applies between two linear arrangements as outlined above.

78

(1) Base Case:
When j =0, f(po)=PCCO-I)+pn) mod n

= PCn -I mod n)
=PCn-l)
So that if symbol aj is in po, after application of function cr, aj
will be in PCn-I).

(2) By Induction:
When j=k, f(pk)=p((k-1)+n) mod n which is our original

definition.
When j=k+1, which implies k+1>0 because P={pO,p1, ... pn},
f(pk+1)=p((k+1-1)+n) mod n.
=p(k+n) mod n
=p(k mod n)
=p(k) which is correct because position has shifted left from
k+1 to k,just as position shifts from k to k-l.

In part 2 we show that the position function f is valid for a
permutation of any length >2 as defined previously. Because we
have shown j to be valid for the position of each aj, we can fix j and
show that it is valid for any value of n > 1.

(1) Base Case:
When n = 2, f(pj)=PCO-I)+2) mod 2
Whenj=l, f(PI)=PC(I-1+2) mod 2
=PC2 mod 2)
=PCO) SO that an item in position one moves to position 0.

(2) By Induction:
Whenj=l and n=k, f(PI)=PCCI-I)+k)modk
=Pc k mod k)
=PCO) SO that an item in position 1 moves to position 0.
When j=l and n=k+ 1, f(PI)=p((I-I)+k-l) mod k-I
=PCk-1 mod k-I)
=PCO)

Thus Theorem 1 shows that the position of any aj shifts left by one
place with application of the cyclic permutation function cr and by
induction that the function is applicable for one cycle permutations
of length > 2 as defined above.

We have shown that the position of any aj shifts by 1 in a linear
arrangement based on the previously defined permutation. It
remains to show that the function is applicable to any number of
rows and through any number of applications of the permutation.

79

Theorem 2: V ai: f (Pj)=p«j-t)+n) mod n where
Pj E {Po,P"o .. Pn-tl holds between rows for any Pi in an n x n
standard Latin Square composed of cyclic derangements of
offset 1.

Proof of Theorem 2:
In this proof we show by mathematical induction on t that the
position function f is valid for the composition of bijective function
f and show that the position of aj shifts to the left by offset one with
each application of the function.

If f is a function on P then fl is the identity function, f is the
composition of f with itself (f 0 f) such that f (Pj)=P«(j-2)+n) mod n and
f is defined by: f (Pj)=p(U-t)+n) mod n

(1) Base Case:
When t= 1: f\pj)= P«(j_1)+n) mod n which is Theorem 1.

(2) By Induction:
When t=k: t(Pj)= PC(j-k)+n) mod n which is simply by definition.
When t=k+ 1 :t+ l= t(pj) 0 fl(pj)

= P(~-k+I)+n) mod n
=t+ (Pj)

In addition to formalizing the RPP model, which previously has been show to

enhance reliability in a grid simulator, the two theorems together provide a method of

predicting makespan based either on past performance of a grid or current failure rate of

hosts in a grid.

Consider the Latin Square of order 4 in Table 4.4. A particular data item is

available for processing in the column (host) immediately to the left and in the following

time step when a host is lost.

80

Table 4.4: The table depicts a Latin Square of order 4 labeled with positional
information

po PI P2 P3

{hl,tl,PI} {h2,h,P2} {h3,t3,P3} {14,14,P4}

do d l d2 d3

d l d2 d3 do

d2 d3 do d l

d3 do d l d2

If host h3 fails on startup then data item d2 will next be considered in time step 2

by host h2. If h2 has failed then d2 will next be considered by host h I in timestep 3. If host

hI fails then d2 will be processed by host 14 in timestep 4.

In the RPP usmg a Latin Square data distribution, Make(max)=F+ 1 where

Make(max) reflects the makespan in terms of timesteps, and F is the total number of

failed hosts. Failures are assumed to occur before the first data item is processed for the

worst case.

Assuming each data item consumes one timestep, the formula for makespan

requires adjustment to include the number of data items in a permutation p and, hence,

the number of timesteps required to process each permutation. The new formula,

Make(max)=(F+.1)*(length(pj)), allows prediction of computational time on unreliable

grids when using RPP.

81

In addition to providing a method for obtaining reliability on highly unreliable

grid systems, Latin Square replication also allows prediction of makespan in the face of

failures among the hosts on a grid system. Further formalization of the RPP model has

allowed formal proof of upper bound for makespan using Latin Squares in the

distribution of data and tasks on computational grids.

82

CHAPTER 5

GRID SIMULATION

This chapter presents a simple grid simulator designed specifically to compare the

behavior of various data and task arrangements, including RPP, in the face of node

failure. The grid simulator consists of a C# implementation of an object oriented program

containing a node class that simulates grid execution hosts, along with a master node

class and job class. The probability of failure for execution hosts may be arbitrarily set,

along with the number of job repetitions. Additional features include:

• Permutations of data may be defined and passed through a
job class to various computational node classes running in
separate threads.

• Nodes may be failed with a specific probability using a
pseudorandom distribution.

• Small functions may be written in C# and dynamically
compiled without requiring recompilation of the simulator.

• Makespan may be captured.

The simulator allows test jobs to be submitted and run with different data

replication, permutation and failure conditions. It allows testing traditional mirroring and

multiple replicas, both with a variety of failure rates, against the RPP approach with a

variety of failure rates. Data may be passed to node class instances in any of several

configurations. The code that will be run on the grid, in other words the set of identical

tasks, is compiled at runtime and passed to execution hosts and executed in independent

threads. Each thread considers a data item, generates a pseudorandom number to

83

determine whether to fail according to the probability of failure set by the researcher and

then executes one timestep by consuming one data item.

5.1 Hardware and Software

The simulator, DGSim or DGSimulator (Data Grid Simulator) was developed in

C# on Microsoft Visual Studio to run on machines running the Windows operating

system. During the simulation runs the software was executed on an HP Compaq tc4200

notebook computer running Windows Vista on a single-core, 32-bit Intel Pentium M 1.86

GHz processor with 1,500 MB RAM. Runtime for the grid simulation was in the range of

a few minutes to hours depending on the number of hosts, data items and job repetitions.

A typical run included ten jobs each with 10,000 data items on 100 threads. Essentially

the processing required by the software was a simple random number generation to

determine whether the processor was to fail and then an output of the data item, so the

jobs were computationally not particularly lengthy. The hardware was chosen for

portability, availability and ease of use.

C# and Microsoft Visual Studio were chosen because the visual development

environment allows faster development times. C# is a relatively new language that tends

to be internally consistent and easy to use with garbage collection and a wide range of

functionality for creating threads, generating pseudorandom numbers and for creating

objects in general. Its C++-like syntax makes it familiar to many developers.

84

.~ Instantiate A Grid

Create a new grid sinulation here by filling out the controls and pressing Run.

Number of Woli<er Nodes: Run Simulation J
Failure Rate: Run

labei lS

Number of Repetitions plfailrate: ,10

Fabe rate steps by 0.050 ~ from minimum 0.000 : to maximum 1.000

Job Code

in! timeStamp =O;bFailed"alse:ArrayUst outputUst=new ArrayUst
O:double succeed Rate = Hail Rille :double real Rille = 1-Math. Pow
(succeedRate.1.OAimeSteps):double spreadRate=
VealRate-1000000)foreach (ArrayUst drin dataArray){jf ~.Next(
1000000) < Math .Round(spread Rate)Xb Failed =true ;break :)lor {nt
i .0j <dr.Count j++){char ts.1 ':char spc:' ':string
nodenfo=t .. timeStamp.T oStJingO;- spc
+ Thread .Current Thread .Name+spc;nodenfo+-drji):output Ust.ftdd
/{lode lnfo):nodelnfo=nu"~imeStarnp++:}lre4um(outputUst):

Current Failure Rate : 0

Output Directory : c :\dgsim\

Output

Log Rle Name: pennutation Jog

Repetition :

Figure 5.1: The DGSimulator GUI

In a typical run of the DGSim software, the program is initialized and the form

class run. The GUI is instantiated as shown in Figure 5.1. The form requires the

following parameters to be set:

• The number of worker nodes
• The permutation number
• The number of replicants
• The number of data items
• The number of repetitions per failure rate
• The minimum failure rate, the maximum failure rate and the

step size.

85

I Node
Cla,5

~ Picture Box

Fields

bCompleted

:# bFailed

d~ bRunning

dataArray

executableObj

failRate

T-l' intArraySize

£iii intiO

random

.JI resultArray

:# t

8 Methods

--.I addOataltem

-'I a ddExecutable ...

appendOataList

'I executeJob

failNode

getData

"'I getNodeiO

getResu ltArray

''I getThread

.~ isAlive

OJ isCompleted

.... isFa iled

.... isRunning

¥ Node (+ lover .. .

y startJob

8 Nested Types

r-I dataItem I~
Struct

B Fields

x

(5ubmitNode
Class
~Node

8 Fields

.R currentJob

jI ex ec ut a bl eObj

:;ji jobOata

.R jq
monitorForm

;!' newJob

J ' nodeList

J i outputArray

8 Methods

:1,1 addNewlob

." executeNextJob

-y 9 etJobCou n

v getNodelist

I ,0'1 isFinished

l __ ·~ splitJobOata
_ ~ SubmitNode

I Grid

Clas.s

18 Fields

i jobQueue

masterNode

-# nodeList

8 Methods

:1,1 addJob

11'

y executeNextJob j

v getMas.ter J I v Grid

\"---"~:-

(Job
Cla;s

18 Fields

datalist

dataRecord

ji dataRecSize

,},i returnList

I ji strFunc
I '

8 Me hods

·v getOata

9 etOataRecord ... I
9 etStri ng Funct i .. . ,

Job I

Figure 5.2: The DGSim class diagram

,---------- -;:.. \
I Globals l~
I . I

Static Class I
I I ,----------- -'
rM yC IassBase (~)

Cla55
l ___________)

r MathExpression ... ~" I Class \. _________ J

I' - -

, Form!
Class

~ Form j
\..~---===~.

(MonitorForm
Class

~Form J'
\~-----~.

If the failure rate is set at a minimum of 0 to a maximum of 1 with a step size of

.01 with 10 repetitions per failure rate, the software will run a grid with a failure rate of 0

for 10 times and then a failure rate of .01 ten times, and a failure rate of .02, 10 times and

so on. The current failure rate is shown as the software steps through the process.

86

The simulator code has been written to do no replication, simple mIrrormg,

reverse mirroring and multiple replicants of data/task pairs across the nodes depending on

the permutation selected in the GUI. The complete code is included in Appendix A.

The general user case for the DGSim software is outlined as follows:

• The grid class is called to initialize the grid to the
appropriate size-nodes are listed to a C# Array List and a
master node is added. See

• The node class is called and instantiated for each node
added to the grid. Each node contains a thread. Each node
contains a set of random numbers.

• A submit node is instantiated with a new job queue,
monitorForm and output array and set equal to the master
node in the grid class. (The monitor class, primarily a
graphical function, wasn't needed during the simulation
runs.)

• The addjob function is called and instantiates a new job
using the job class. The job class includes a data size, record
size, a program itself and data.

• The submit node's splitJobData function reads the type of
permutation of data needed and distributes it appropriately
among the instantiated computational nodes.

• The submit nodes calls helper classes that compile the code
and the executable object is given to each node. The
executable is a c# program in the form of a string. It is
compiled on the fly using reflection emit.

• The threads (nodes) are executed and the submit node waits
until the threads finish with a status of failed or completed.
(The monitor class can be invoked here which shows the
thread function in real time graphically.)

• Results are returned and parsed. The salient information
about the job including the number of hosts, number of data
items, failure rate, whether it failed or completed and on
what time step it failed among other data is all returned to a
log file.

• The process is repeated for the next repetition of the same
time step or perhaps for the next timestep.

87

Some of the actual work in determining whether the job fails is included in the

test job code. At each time step generation of a random number determines whether the

run continues or aborts.

5.2 Failure in DGSimulator

The failure rate for each node in the simulated grid is assumed to be the same as

any other. In other words there is no a priori knowledge of how a particular host will fail.

The failure of individual hosts is assumed to be uniform and random over the makespan

of a particular job. The hosts in a grid are either available or not available at any

particular time. Once a node is unavailable it is assumed to be unavailable for the

remainder of the job. Because of the "yes" or "no" nature of availability of a particular

host in a particular time step it seems to be appropriate to model the failure rate, the rate at

which hosts become unavailable, as a Bernoulli process, a series of Bernoulli trials,

where success (P) is equal to a node failure in a particular timestep.

The implication of modeling node failures as individual Bernoulli trials is that the

probability of failure doesn't change but remains constant, and the process is exponential;

eventually all nodes will fail. This would seem to fly in the face of real-world evidence

that the probability of failure changes with respect to the time of day or that a Wei bull

distribution might be a more accurate representation of failure depending on the

perameters used. (A complete discussion is included in Appendix C.) The intention,

however, is to test all methods for reliability, including the RPP paradigm and any

variants of it, under controlled conditions of node failure. The purpose of this particular

research was not to develop a precise model of desktop grid usage.

88

Previous research has shown that task length is another issue of importance in

simulating the effects of host failure, and that host failures are essentially independent.

Failure results when a task fails to complete on time. The longer the task, the greater the

probability that a node will become unavailable during task execution. Variation of task

length is of interest in determining the effectiveness of RPP but does not influence design

of the basic model. As discussed in Chapter 3, in the special case where the probability of

failure of each component in the series, Fj, is the same for n components, the probability

of system failure is given by

Equation 5.1 is derived from the fact that the overall probability of failure in a

series system is one minus the probability of the product of success of each step. Because

failure at each time step is considered independently as a Bernoulli trial we derive the

node failure rate for a particular job into a probability of failure at a particular timestep

using Equation 5.1 as a basis for Equation 5.2.

(5.2) Fj = 1 - VI - F

Where F is the assigned failure rate of the node, n is the total number of timesteps

and Fj is the failure rate in each timestep.

After a failure rate has been assigned to the individual node, the failure rate for

each time step is determined as shown in Equation 5.2. Because different data and task

distribution paradigms require a different number of time steps some set value of n must

be used when comparing different permutations of data. The value chosen is arbitrary and

89

--- -----------~-~~~~--~~~~~~~~~~~~-----------------~--

affects the failure rate at each timestep. For the simulator, n is set by taking the number

of timesteps required for a simple mirror of the data across all of the nodes. Essentially it

is twice the number of data items divided by the number of nodes.

In terms of implementation the node failure rate is set on the program GUI

indicating for example that any particular node has a .2 or 20 percent chance of failure

over the length of the job. The failure rate for a particular time step is calculated using

Equation 5.2. At each time step tj, the next integer r in a series of random integers is

generated over some interval n corresponding to the probability of failure in the

individual time step using the C# Random.Next function. If r is equal to nl2 the code

returns The importance of using a reliable and appropriate algorithm for generating

pseudorandom numbers can't be overstated as Park and Miller point out in their 1988

paper "Random Number Generators: good ones are hard to find." [117] Microsoft's C#

random class is based on Donald Knuth's subtractive random number generator

algorithm. [130] Knuth points out that t~e important factor in this algorithm is generating

an appropriate seed. [131] By default, Microsoft's Random class uses a seed value from

the system clock. Values will not be repeated so long as sufficient time is allowed

between initializations, which the grid application does.

5..3 Experimental Procedure and Results

After verification of the simulator output and failure rates, the simulator was set

up to instantiate a grid of 100 nodes processing 10,000 data items. Each of six different

data arrangements was processed at each probability of failure from 0 to 1 stepping by

.01. Each simulation was conducted ten times and the mean job completion rate gathered

90

along with the mean number of time steps to completion for the ten runs. The following

input data permutations were simulated:

• Perml - The data, dO, dl, ... , d9999, was distributed across the
100 nodes with no redundancy with 1000 data items per node.

• Perm2 - The data was mirrored or duplicated on the nodes with
half of the nodes getting half of the data.

• Perm3 - The data was mirrored with the mirrored permutations
reversed in order as explained previously in the RPP heuristic.

• Perm4 - The RPP arrangement of data was implemented with
Perm3 followed by a Latin Square data arrangement.

• Perm5 _5 - Five replicas of the data were duplicated across the
nodes.

• Perm5 _10 - Ten replicas of the data were duplicated across the
nodes.

• Perm6 - Data was arranged across the nodes in a Latin Square
arrangement.

There are some caveats that should be taken into consideration; data is assumed to

be perfectly checkpointed to the master node so that all data processed up until the time

of a node failure is assumed to be available. Also the type of failure is assumed to be of

no importance with emphasis given to grids with a large amount of volatility caused by

human interaction. All nodes in a grid are allowed to fail where a design more closely

aligned with the real world would allow for job restarts and nodes which rarely fail. The

Latin Square design would eventually complete with one node operable, albeit at a very

large makespan.

Figures 5.3 and 5.4 show job completion and makespan respectively. Figure 5.3

shows the mean job completion rate for each of the six data permutations as it relates to

node failure rate.

91

As can be seen from Figure 5.3, jobs continue to complete when using RPP, even

with node failures in the range of .18 to .20 probability. Job completion when using

simple replication, Perm 5_5 and Perm 5_10 is much less, dropping off when the

probability of node failure reaches 0.08 to 0.12. In Figure 5.8, makespan is shown in

terms of timesteps to job completion or until the last remaining node processes its final

piece of data in the case of incomplete jobs.

Mean Job
Completion

_ Perm 4

....... Perm3
1.2 .--

..... Perm2

1 j[};~xx:::c-C_I::.::.}oC::<:}=_:::.!::.:::e_+_oI.__III_-------------~_permJ:-

0.8

0.6 +-I-----+-B--I-+--~-\------~#-\l.-l'-ll--'l-----------'P'erm

0.4 +-~---~~.--4~~~~~-----~~-_4----------

0.2 +-~X-------~r-~~~-~4r~~--~----~~~~~-----------------

o 0.020.040.060.08 0.1 0.120.140.160.18 0.2 0.220.240.260.28 0.3 0.320.340.360.38 0.4

Node Failure Rate

Figure 5.3: The chart shows decreasing job completion as node failures increase.

92

----~---

As expected because of the exponential nature of the node failure model, as

discussed previously, all nodes failed and computation ended when the individual node

failure rate reached .37 (at least for the large makespan of the Latin Square design). From

that point and above, no job could complete before all ofthe nodes in the grid failed.

Perhaps the two most important results were those predicted by the RPP model.

As expected, reverse mirroring had the smallest makespan in the face of lower node

failure rates, and the Latin Square design had the highest mean rate of job completion

with increasing node failure rates. Of course, as node failures become large the makespan

required by the Latin Square design to complete the job increases, which is what occurs

at an individual node failure rate of about 37 percent. An interesting result is that the

makespan using Perm 6, the pure Latin Square design, is nearly as efficient as the reverse

mirroring in Perm3.

It is important to full understanding to note that the reasons for job failure differ

between the permutations that include Latin Square designs and those that don't. The

RPP, which includes the Latin Square design, fails at large runtimes when all of the

nodes finally fail. The other designs fail when all of the replicas of a particular task fail.

Figure 5.4 shows the average makespan of the various permutations as they relate to

failure rate.

The makespan is shown in timesteps where the time step tj is the time step at which

the job completed, meaning all data had been processed or that the final data item was

processed whether the job was completed or not. Note that the makespans of the RPP

model vary considerably with node failure rates while the others do not.

93

T
i

m
e
5
t
e
p
5

2500

2000

1500 PermT6

__ PermT5 10 -
1000

PermT5_5

500 ~PermT4

PermT3

0
0 N o::t <D 00 ~ N o::t <D 00 N N o::t <D 00 I'Y'l N o::t <D 00 o::t

C! C! 0 0 0 ~ ~ ~ ~ 6 N N N N 0 I'Y'l I'Y'l I'Y'l I'Y'l 0
0 0 6 6 6 6 0 6 0 0 0 0 6 6 0 0

Host Failure Rate

Figure 5.4: Total timesteps, left, required by each permutation are shown at various
node failure rates.

5.4 Simulation Conclusions

The results from the previous section indicate that the RPP paradigm can result in

enhanced grid reliability. More specifically, the RPP approach:

• Results in smaller makespan than traditional course-grained
replication in the absence of failed hosts .

• Result in increased job completion rates under most failure
conditions.

• Matches the performance of mirroring in the worst failure case.
• Completes so long as one functioning processor remains.

One other interesting observation was obtained. RPP includes two basic features

reverse mirroring and the Latin Square design. Both showed essentially the same

performance at lower failure rates. Reverse mirroring results in job failure at high node

failure rates, however, while the Latin Square distribution paradigm does not.

Although the work is aimed toward providing a grid application programming

paradigm for reliability, the work also could have implications for the design of grid

94

middlcware and other system software for grid computing. A potential issue with regard

to RPP is the amount of data that may be transferred, n2 where n is the number of data

items. When the node failure rate is low, most of the data need never be traversed and

hence transferred in the first place. Jobs complete in a small number of time steps under

reliable conditions. So a "lazy" or delayed mode of data transfer is preferable.

95

CHAPTER 6

LATIN SQUARE DISTRIBUTION
AND PHARMACOPHORE DISCOVERY

In this case study we show that Inductive Logic Programming (ILP) algorithms

for pharmacophore discovery run efficiently and reliably on a grid of desktop computers

using a Latin Square distribution of heterogeneous data and homogeneous tasks.

Pharmacophore discovery was chosen as the subject of a case study involving data

distribution for reliability primarily because it was a motivating factor in the initial

research. The case study is not meant to duplicate results of the simulator in a live grid

situation, although doing so is a consideration for future research. It is possible to

compare results of the case study and simulator results, however, which is discussed in

Chapter 7.

6.1 Previous Results with Inductive Logic Programming

In 2006 work at the University of Louisville showed that inductive logic

programming (ILP) algorithms for pharmacophore discovery can run efficiently on a grid

of inexpensive computers.[6] Designing a new drug is a long, tedious, and very expensive

process that can take many years to complete. Machine learning techniques and ILP

algorithms have been shown to be valuable aids in speeding discovery of candidate

96

molecular structures. The 2006 paper described a case study utilizing structure activity

relationships and ILP for pharmacophore discovery on an "Xgrid" of Apple G4

computers available at high schools in Kentucky. With this architecture, an algorithm

that requires about nine hours on a single processor, and a little less time on an older

tightly-coupled cluster computer, executed in 32 minutes using the donated idle cycles of

a large number of loosely-coupled processors in a computational grid. Unfortunately

processing of the job required manual resubmission of subtasks because of host failures

in the grid. In the current research, use of a Latin Square data distribution paradigm

allowed the job to complete in a couple of minutes, even in the face of large numbers of

host failures.

The concept of the pharmacophore model is key to the search for new and

interesting medicinal drugs. A pharmacophore is a set of structural features in a molecule

that acts on some target molecule to produce biological activity [118]. Many molecules

may share these structural features and hence might show some of the same biological

activity. The search for a pharmacophore involves finding a group of several mixtures of

molecules that have some activity and determining the common features that make them

active - in other words, finding the pharmacophore. Inductive logic programming (ILP)

provides one method for finding new pharmacophores. In particular ILP provides a

method for looking at a group of active compounds and a group of inactive ones and

discovering pharmacophores, those structural attributes that might make a compound

active and another inactive. [119]

97

Understanding current methods for pharmacophore discovery, and parallel ILP in

particular, depends on the understanding of a couple of basic underlying concepts that

often are misused -- even in the medical literature. The first such concept is that of a

structure activity relationship or SAR. [119] A SAR is a set of mathematical relationships

linking chemical structure and pharmacological activity for a set of compounds. A

pharmacophore is a set of features that provide optimal activity on some biological target.

Generally some set of SAR is searched for the pharmacophore. So, by examining the

SAR of a set of compounds that are biologically active in a desired area, it is possible in

some fashion or other to discover one or more pharrnacophores, or sets of features that

provide optimal activity. Using a pharmacophore, one might determine other compounds

that would be likely candidates for consideration as a drug. ILP is a particularly

interesting candidate for examining SAR and discovering the interesting pharrnacophores

to which their activity adheres.

Much previous work has been done using ILP and structure activity relationships

for pharmacophore discovery by Michael Sternberg and Stephen Muggleton, among

others. Their 2003 paper In QSAR and Combinatorial Science, "Structure Activity

Relationships (SAR) and Pharrnacophore Discovery Using Inductive Logic

Programming," provides an excellent overview of ILP as well as other major

methodologies for pharmacophore discovery.[119] In general, ILP involves listing

positive examples, negative examples and background knowledge. The background

knowledge is typically some set of features or attributes of the set of positive and

negative examples. The combinations of features that provide the best logical cover of the

positive examples and the least cover of the negative example is a hypothesis. In the case

98

of pharmacophore search, a set of biologically active compounds provides the positive

examples, some set of negative compounds, the negative examples and some set of

interesting features, the background knowledge. The best cover for the active compounds

over the feature space and the least cover of the negative compounds over the same space

provide a hypothesis regarding the set of features that make up a pharmacophore.

It also is possible to run such ILP in parallel, supplying an almost linear speedup

to the computationally intensive search. Researchers at the University of Louisville, in

concert with others, have succeeded in implementing ILP for pharmacophore discovery

in a tightly-coupled, distributed memory parallel environment. In 1999, these researchers

used an initial data set consisting of 48 mixtures of pseudopeptides synthesized by

modified solid phase methods and cleaved from the polystyrene matrix. Each mixture had

a recorded level of activity against Pseudomonas Aeruginosa bacterium and consisted of

eight compounds. [120] The goal was to find the largest three dimensional substructure

present in at least one member of every active mixture and not present in any member of

any inactive mixture.

Curtis, Page, Graham and Spatola conducted the first set of experiments on a

SUN Ultra computer with a run-time of about two weeks. [121] A second set of

experiments was conducted by Wild on a Beowulf cluster with 8 processors [120] with a

runtime of about two days. The same job was implemented on a 112 processor IBM

RS6000 SP2 supercomputer in 2002, executing in about 2.3 hours. [122] In 2006, the

work was moved from such clusters to a unique and very loosely coupled grid of widely

disbursed Apple computers located at various high schools across the Commonwealth of

99

Kentucky. [6] A runtime of about nine hours on a single Apple computer was reduced to

about 30 minutes of actual execution time on the grid. However, because some tasks

weren't completed they had to be resubmitted, as mentioned previously.

The next section presents an overview of the hardware and software configuration

of the grid. Section 6.3 presents experimental in terms of reliability and execution time.

Section 6.4 presents conclusions and directions for future research.

6.2 Grid ILP Using Latin Square Distribution

The intent of the current study is somewhat different from that of the previous

2006 effort. The intent of the earlier study was to duplicate previous ILP searches with

Pseudomonas Aeruginosa running on tightly coupled clusters in order to obtain timing

data and to test the feasibility of running an ILP pharmacophore search on a loosely­

coupled grid. Various Perl scripts were used to submit the jobs through the Xgrid

software. The job consisted of a simple Bash shell script that accepted various

conformations as command line arguments. The script then called the Prolog ILP

program, which reads the environmental variable into a list of conformations to be

searched.

In the current study, emphasis has been placed on the reliability of the grid job in

the face of failures of the individual subtasks while using RPP (a Latin Square task and

data distribution paradigm) on a Condor grid at the Dahlem Supercomputer Laboratory at

the Speed Engineering School, University of Louisville. In the 2010 case study, jobs were

100

intentionally stopped to test the efficacy of the Latin Square data distribution scheme in

providing reliability while reducing makespan.

Various Windows batch scripts were used to submit the jobs through Condor

software. The job consisted of a simple Windows command file script that accepted

various conformations as command line arguments. The script then called the Prolog ILP

program, which reads the environmental variable into a list of conformations to be

searched. As previously the serial code was divided so that each instance of the program,

rather than considering all conformations of a particular seed molecule, only considered

the seed molecule and some subset of total conformations for that molecule. Each

instance was given all of the data in the beginning so there was no communication until

the output of the code was returned at the end of the run in the form of a distinct file.

Because SWI-Prolog was not available on machines in the grid, the program was

compiled on a development machine, and the Prolog executable was then bundled with

everything needed to run as a completely standalone executable including some dynamic

linking libraries not available on the grid machines. The program along with the script

had to be sent to each machine on the grid where the software was to run.

6.2.1 Hardware and Software

The grid hardware consisted mainly of host desktop computers located in the

Dahlem Supercomputer Lab at the Speed Engineering School, University of Louisville.

Approximately 50 computers were used, although the available number varied. Most of

101

the jobs were run in the evening and nighttime hours to control the number of desktop

users and attempt (successfully) to add obtain some consistency in the computer pool.

Many of the grid computational hosts are Dell systems with three gigahertz, dual

core, 64-bit Intel processors and 4 GB of internal RAM. The systems were running 32-bit

Windows Vista. Although the grid comprises other systems as well, the grid software was

used to restrict computations to the aforementioned systems.

The grid itself is constructed using Condor software. [7; 123] Full descriptions of

Condor are available many places including the software website [124]. Briefly however,

a Condor master machine schedules jobs on a computational hosts and provides

scheduling and queuing functionality. Jobs are submitted to the queue through submit

machines with the use of job control files called description files. A variety of commands

are provided to submit, delete and view jobs among other functions. Individual tasks are

submitted to available processors and the results returned to the submit machine at the

completion of the job.

Here, for example, is a sample condor description file for the Latin Square data

distribution job:

Executable = D:\workingCondorCode\50 _ systems\hl.bat
Universe = vanilla
output = D:\workingCondorCode\50 _ systems\hl.out
error = D:\workingCondorCode\50_systems\hl.err
Log = D:\workingCondorCode\50_systems\hI.log
should transfer files = YES
when_to_transfer_output = ON_EXIT
transfer _ input_files D: \ workingCondorCode \seria13 .exe,
D:\workingCondorCode\50 _ systems\hl.bat,
D:\workingCondorCode\libpl.dll,

102

D: \ workingCondorCode \pthreadV C.dll,
D:\workingCondorCode\callSerial.bat
Requirements = (OpSys == "WINNT60" && Arch == "INTEL"
&& CAE _ LAB=?= True)
Queue

The Condor description files indicate the type of Condor job, where outputs

should go as well as the required input files. Several files are required to run the RPP or

Latin Square distribution job, including the Prolog program itself - seria13.exe, two

dynamic linking libraries required because Prolog is actually transferred with the

program, and two windows batch files. Prolog is not installed on the computational hosts

so the Prolog engine and necessary dynamic linking libraries have to be sent along to

each machine.

Because of the large number of jobs to be sent and the requirements of a Latin

Square configuration - 50 jobs must be sent to each of 50 machines - the task would be

difficult to manage manually. Job submission for the case study is actually accomplished

using a small C# console program, Latin Grid, which writes the batch and description

files necessary to submit the jobs, as shown in Appendix B.

The code produces two batch files and a job description file for each of the 50

hosts and then submits the jobs in either a Latin Square or mirrored configuration. One

set of batch files is named by host, such as h2.bat and the second set is simply

callS erial. bat.

Here are examples of each:

103

H2.BAT

FOR %%a IN (c2 c3 c4 c5 c6 c7 c8 c9 cIO cI1 c12 cI3 cI4 c15
cI6 c17 cI8 cI9 c20 c21 c22 c23 c24 c25 c26 c27 c28 c29 c30 c31
c32 c33 c34 c35 c36 c37 c38 c39 c40 c41 c42 c43 c44 c45 c46 c47
c48 c49 c50 cI) DO call call Serial. bat %%a

callSerial. bat:

set serialEnv=% 1
echo %serialEnv%
call serial3

Notice that the h2.bat file calls callSerial.bat with the name of each conformation.

CallSerial then sets the conformation in an environment variable on the execution host

and then calls the actual Prolog executable, serial3 .exe, where the environment variable is

read and processed.

Serial3, which contains the prolog code itself, remains the same and was simply

recompiled to Windows instead of Apple's operating system.

Data returned from each host included a list of conformations processed and the

amount of time required to process each conformation. Output data was concatenated into

one file and then sorted by timestep. After all of the runs, another small C# program

processed the output, determining the time step in which all of the data had been

processed, and produced a log file showing the time step in which the job was completed.

6.2.2 Experimental Model and Results

The purpose of this case study was to determine the feasibility of running an

actual job on a grid of computers using the Latin Square data and task distribution portion

104

of RPP. In addition live data was used to compare the performance of simple duplication

of tasks and data (simple mirroring) to Latin Square redundancy.

For the Latin Square case study, 50 conformations were sent for processing on

each of 50 processors along with all necessary data. Wall time processing for each

conformation varied between approximately 57 and 60 seconds, roughly three times

faster than the previous grid experiments. Wall time is not, however, the important factor

in this study. Rather, the behavior of the job under conditions of failure is most important.

In the previous research, node failures produced severe outliers and missing results that

caused jobs to be manually resubmitted the following day.

Mean Timesteps Per Host Failure
5

4.5
4

T 3.5 i
m 3
e 2.5 s
t 2
e 1.5 p

1 s

- Mean Timesteps

0.5
0

0 5 10 20

Host Failures

Figure 6.1 shows the average timestep in which a job finished in the face of 5,10 and
20 failures on a 50 processor grid.

Because work comparing various data distribution schemes usmg the Grid

Simulation software indicated that the Latin Square data distribution was effective in the

face of node failure (as discussed in Chapter 5), and because of the features of the Latin

105

Square distribution in proof of maximum makespan in the face of hardware failure (as

discussed in Chapter 4), the 50 conformations were submitted to the processors in a Latin

Square configuration.

Experimental algorithm:

• For example, a job "hI" consisting of conformations {C1, C2,
... , C50} was sent as a task to one processor. Another job, "h2,"
consisting of conformations { C2, C3, ... ,C50, C1} was sent to
another, and so on until a set of jobs {hI, h2, ... , h50} had been
submitted.

• A set of pseudo-random numbers was generated - either 0, 5,
10, or 20 such numbers in the range of 1 to 50.

• In the first three runs no hosts were killed. In the next three
runs, five jobs were killed using the condor remove command
and using the five previously generated random numbers. Each
number was matched with a task name so that a random 25, for
example, cause job h25 to be killed. In the next set of three runs
10 tasks were killed, and in the final set of runs, 20 tasks were
killed.

• Processing one conformation was considered one timestep.
Information about the makespan of each of the nine jobs was
collected.

There are a couple of caveats. All failures were immediate and no data was

returned from a failed task, as though the host had failed on startup. In addition, partial

data was not collected. All hosts computed all conformations and then the data was

analyzed to determine by what time step job completion actually occurred.

Figure 6.1 shows the mean time step in which all 50 conformations were

completed in the face of 0, 5, 10 and 20 failed tasks (host failures). When no hosts failed

the job was completed in Timestep 0 or about 58 seconds. When five hosts failed the jobs

complete at an average time step 1.6 as well as at average time step 2.33 for 10 failures

and 4.33 for 20 failures.

106

The results are encouraging when one considers that the job completed at an

average of time step 4.33 when about 40 percent of the grid failed.

Although the purpose of the case study was to determine the feasibility of running

tasks and data in Latin Square fashion across a grid, data about what might happen under

similar failure conditions using simple mirroring provides a nice comparison of the two

methods.

In the case of simple mirroring, one copy of the 50 conformations was placed on

25 processors and another 50 on another 25 processors. The jobs, each two conformations

long, required about two minutes of processor time to complete. Because the jobs

completed so quickly it was difficult to halt them prior to completion. Instead, random

numbers corresponding to hosts were generated, indicating that that particular host failed.

The data resulting from that host was then removed from the output as though the host

had suffered failure on startup or infant mortality.

Three such "runs" were conducted for each of 5, 10 and 20 host failures. The

resulting data was analyzed, and if two hosts running the same mirrored data failed then

the job was determined to have failed.

Of the nine runs, two succeeded, one job with 10 host failures and a job with five

host failures. The remaining attempts to complete the job failed.

The intention of the case study was to show that the proposed RPP paradigm, at

least in the form of Latin Square data distribution, may easily be applied to an actual job

running on a grid. In addition it is important to observe the behavior of the job on host

107

processors in the face of real failures on the grid. Of course the failures were purposely

generated in random fashion, but the results are interesting none the less. The main

conclusion is that the Latin Square data and task distribution is feasible and affords robust

protection in the face of failures.

108

-~-~--- - ------- ---------~-------------------- --------------------------~----

CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

The purpose of this research was to examme the use of permutation with

redundancy as a method of improving reliability in computational grid applications.

Three primary avenues of exploration were delineated early on and have been

accomplished - development of a model of grid data and task redundancy, development

of grid simulation software and testing Replication and Permutation Paradigm (RPP)

against other methods of fault tolerance through redundancy and finally running a

program on a live grid using RPP. This chapter presents the conclusions from this

research and an overview of further research directions.

7.1 Conclusions

Each of the research areas has produced important results. The redundancy model

provided tools to analyze redundancy in a logical and somewhat rigorous fashion. Using

the model allowed development of two theorems and subsequent proof by mathematical

induction regarding Latin Squares. Interesting in their own right, the theorems have

implications for redundancy. Basically the theorems describe the changing position of

symbols between the rows of a standard Latin Square. When a symbol is missing because

a column is removed the theorems provide a basis for determining the next row and

109

column of the missing symbol. In terms of the redundancy model this allows one to state

the maximum makespan in the face of missing computational hosts when using Latin

Square redundancy. Maximum makespan is important because it can provide an

indication of when a computation should stop, saving valuable computational resources.

In addition, grid failure rates are directly related to job length, and predicting job length is

important in and of itself.

The DGSimulator software was developed and used to compare six different data

and task distribution schemes on a simulated grid. The software clearly showed the

advantage of running RPP, including reverse mirroring and/or the Latin Square

distribution methods. Both resulted in faster completion times in the face of

computational host failures. The Latin Square method also fails gracefully in that jobs

complete with massive node failure while increasing makespan. The major caveat

involved with the Latin Square method is that a large amount of data must be transferred.

So a delayed or "lazy" data transfer method needs to be examined along with various

methods of determining when a job has completed so that data transfer may be stopped.

Finally inductive logic programmmg was used to implement pharmacophore

search on a Condor grid.in the Dahlem Lab at the University of Louisville Speed School

of Engineering. The primary purpose was to examine the behavior of Latin Square

distribution on a "live" grid running a computationally intensive job. Latin Square

distribution was chosen because it offers the most promise in terms of reliability as

indicated by the results of the simulator runs. The results were encouraging. All jobs

completed, even in the face of large numbers of randomly generated computational host

110

failures. In addition the live results comtirm the general result of the simulation in the

sense that makespan increases slowly in the face of increasingly large numbers of node

failures. Even with 40 percent of the live grid failing, the number of time steps required

increased from one to five of 50 possible timesteps. The simulator results show a similar

increase in makespan in the face of node failure.

The mam conclusion is that RPP, including Latin Square data and task

distribution and Reverse Mirroring, is feasible and affords robust protection in the face of

failures.

7.2 Future Directions

Many interesting opportunities remain for research into Latin Square and other

types of redundancy for fault tolerance. There are, of course, unanswered questions

remaining, which are discussed briefly in the following paragraphs.

First, how would Latin Square replication perform against other types of

redundancy on a live grid with large numbers of actual users? Although RPP in the form

of Latin Square redundancy worked well in the face of node failure on a live grid, other

forms of redundancy, including reverse mirroring, were not implemented. A study

comparing results on an actual grid might produce interesting results. Additional work

comparing the results of the simulator to a comparable job on the live grid would provide

additional validation for the simulator enhancing its usefulness in more thorough future

analysis of grid systems.

111

Secondly, one could consider how well does Latin Square replication scale? The

number of replicants in Latin Square replication is n2 where n is the number of

computational hosts. Obviously some method of reducing bandwidth and memory

concerns is necessary. In very large pools of hosts the job length would be greater

because of the way makespan can grow when using Latin Squares. Is there an upper limit

to the redundancy before job length becomes so great that all processors fail before the

job is completed? Such a scenario might not be a likely outcome but should be

investigated.

A final issue is how does one estimate job completion? It can be difficult to

determine when all of the data has been processed and all results reported on a loosely

coupled system. One nice result of this research is the ability to estimate maximum

makespan in the face of computational host failures. Exactly how to use that information

to determine when to stop processing is an interesting question.

Although work remams to be done in the area of redundancy and over­

provisioning for reliability, RPP provides valuable insight and a methodology for making

computational grids, the largest computers in existence today, even better tools for

complex calculations.

112

REFERENCES

[1] M. Baker, R. Buyya, and D. Laforenza, "Grids and Grid technologies for wide­
area distributed computing," Software-Practice and Experience, vol. 32, no. 15,
pp.1437-1466,2002.

[2] I. Foster, "The Anatomy of the Grid: Enabling Scalable Virtual Organizations,"
Euro-Par 2001 Parallel Processing: 7th International Euro-Par Conference,
Manchester, UK, August 28-31, 2001: Proceedings, 2001.

[3] T. Sterling, D. Savarese, D. J. Becker, 1. E. Dorband, U. A. Ranawake, and C. V.
Packer, "BEOWULF: A parallel workstation for scientific computation,"
Proceedings of the 24th International Conference on Parallel Processing, vol. 1,
pp. 11-14, 1995.

[4] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, "A break in the
clouds: towards a cloud definition," ACM SIGCOMM Computer Communication
Review, vol. 39, no. 1, pp. 50-55,2008.

[5] S. Jha, A. Merzky, and G. Fox, "Using clouds to provide grids higher-levels of
abstraction and explicit support for usage modes," Concurrency and
Computation: Practice and Experience, vol. 21, no. 8, pp. 1087-1108,2009.

[6] N. P. Johnson and 1. H. Graham, "An Application of Grid Computing to
Pharmacophore Discovery Using Inductive Logic Programming," 2006, pp. 418-
423.

[7] M. J. Litzkow, M. Livny, and M. W. Mutka, "Condor-a hunter of idle
workstations," Distributed Computing Systems, 1988. , 8th International
Conference on, pp. 104-111, 1988.

[8] I. Foster and C. Kesselman, The grid: blueprint for a new computing
infrastructure Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, 1998.

[9] A. Braverman, "Father of the Grid," The University of Chicago Magazine, 2007.

[10] I. Foster and C. Kesselman, "Globus: a Metacomputing Infrastructure Toolkit,"
International Journal of High Performance Computing Applications, vol. 11, no.
2,p. 115, 1997.

113

[11] 1. Foster, "What is the Grid? A Three Point Checklist," Grid Today, vol. 1, no. 6,
pp. 22-25, 2002.

[12] M. L. Bote-Lorenzo, Y. A. Dimitriadis, and E. Gomez-Sanchez, "Grid
Characteristics and Uses: A Grid Definition," Grid Computing: First European
Across Grids Conference, Santiago de Compostela, Spain, February 13-14, 2003:
Revised Papers, 2004.

[13] A. Grimshaw, "What Is A Grid?," Grid Today, 2002.

[14] H. Stockinger, "Defining the grid: a snapshot on the current view," The Journal of
Supercomputing, vol. 42, no. 1, pp. 3-17,2007.

[15] "CoreGRID," 2008.

[16] 1. Foster, "The Grid: A new infrastructure for 21st century science," Grid
Computing: Making the Global Infrastructure a Reality, 2003.

[17] P. ASADZADEH, R. Buyya, C. L. KEI, D. NAYAR, and S. Venugopal, "Global
Grids and Software Toolkits: AStudy of Four Grid Middleware Technologies,"
High Performance Computing: Paradigm and Infrastructure, 2006.

[18] M. Baker, R. Buyya, and D. Laforenza, "The Grid: International Efforts in Global
Computing," Proceedings of the International Conference on Advances in
Infrastructure for Electronic Business, Science, and Education on the Internet,
2000.

[19] "Open Grid Forum," 2008.

[20] "EGEE," 2008.

[21] R. Bolze, F. Cappello, E. Caron, M. Dayd8, F. Desprez, E. Jeannot, Y. J8gou, S.
Lanteri, J. Leduc, and N. Melab, "Grid'5000: a large scale and highly
reconfigurable experimental Grid testbed," International Journal of High
Performance Computing Applications, vol. 20, no. 4, p. 481, 2006.

[22] J. Yu and R. Buyya, "A Taxonomy of Workflow Management Systems for Grid
Computing," Journal of Grid Computing, vol. 3, no. 3, pp. 171-200,2005.

[23] R. B. M. M. Klaus Krauter, "A taxonomy and survey of grid resource
management systems for distributed computing," Software: Practice and
Experience, vol. 32, no. 2, pp. 135-164,2002.

[24] M. de Assuncao, K. Nadiminti, S. Venugopal, T. Ma, and R. Buyya, "An
Integration of Global and Enterprise Grid Computing: Gridbus Broker and Xgrid
Perspective," Grid and Cooperative Computing-Gee 2005: 4th International
Conference, Beijing, China, November 30--December 3, 2005, Proceedings,
2005.

114

[25] "TeraGrid," 2008.

[26] F. Berman, G. Fox, and T. Hey, "The Grid: past, present, future," Grid
Computing: Making the Global Infrastructure a Reality, p. 12,2003.

[27] D. Nussbaum and A. Agarwal, "Scalability of parallel machines,"
Communications of the ACM, vol. 34, no. 3, pp. 57-61, 1991.

[28] G. M. Amdahl, "Validity of the single processor approach to achieving large scale
computing capabilities," AFIPS Conference Proceedings, vol. 30, no. 8, pp. 483-
485,1967.

[29] J. L. Gustafson, "Reevaluating Amdahl's law," Communications of the ACM, vol.
31, no. 5, pp. 532-533, 1988.

[30] D. De Roure, M. A. Baker, N. R. Jennings, and N. R. Shadbolt, "The evolution of
the Grid," Grid Computing: Making the Global Infrastructure a Reality, 2003.

[31] P. Lyster, L. Bergman, P. Li, D. Stanfill, B. Crippe, R. Blom, C. Pardo, and D.
Okaya, "CASA gigabit supercomputing network: CALCRUST three-dimensional
real-time multi-dataset rendering," Proc. Supercomputing, vol. 92 1992.

[32] T. DeFanti, I. Foster, M. Papka, R. Stevens, and T. Kuhfuss, "Overview of the 1-
WAY: Wide area visual supercomputing," International Journal of
Supercomputer Applications, vol. 10, no. 2, pp. 123-130, 1996.

[33] L. Smarr and C. E. Catlett, "Metacomputing," Communications of the ACM, vol.
35,pp.44-52,1992.

[34] J. Herrera, E. Huedo, R. S. Montero, and I. M. Llorente, "Execution of Typical
Scientific Applications on Globus-Based Grids," Proceedings of the Third
International Symposium on Parallel and Distributed Computing/Third
International Workshop on Algorithms, Models and Toolsfor Parallel Computing
on Heterogeneous Networks (ISPDC/HeteroPar'04)-Volume 00, pp. 177-183,
2004.

[35] A. S. Grimshaw and W. A. Wulf, "The Legion vision of a worldwide virtual
computer," Communications of the ACM, vol. 40, no. 1, pp. 39-45, 1997.

[36] M. Romberg, "The UNICORE architecture: seamless access to distributed
resources," High Performance Distributed Computing, 1999. Proceedings. The
Eighth International Symposium on, pp. 287-293, 1999.

[37] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, "The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration," Open Grid
Service Infrastructure WG, Global Grid Forum, June, vol. 22, p. 2002, 2002.

115

[38] L. Childers, T. Disz, R. Olson, M. E. Papka, R. Stevens, and T. Udeshi, "Access
Grid: Immersive Group-to-Group Collaborative Visualization," Proc. 4th
International Immersive Projection Technology Workshop, 2000.

[39] J. F. Shoch and J. A. Hupp, "The Worm Programs: Early experience with a
distributed computation," Communications of the ACM, vol. 25, no. 3, pp. 172-
180,1982.

[40] N. T. Karonis, B. Toonen, and I. Foster, "MPICH-G2: A Grid-Enabled
Implementation of the Message Passing Interface," Arxiv preprint cs.
DCI0206040, 2002.

[41] R. Wolski, D. Nurmi, J. Brevik, H. Casanova, and A. Chien, "Models and
Modeling Infrastructures for Global Computational Platforms," Workshop on Next
Generation Software, IPDPS, April, 2005.

[42] D. P. Anderson, "BOINC: A System for Public-Resource Computing and
Storage," 5th IEEEIACM International Workshop on Grid Computing, pp. 365-
372,2004.

[43] Woltman and Kurowski, "Great Internet Mersenne Prime Search," 2008.

[44] "distributed. net, " 2008.

[45] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer, "SETI@
home: an experiment in public-resource computing," Communications of the
ACM, vol. 45, no. 11, pp. 56-61,2002.

[46] D. Anderson, "Public Computing: Reconnecting People to Science," Conference
on Shared Knowledge and the Web, pp. 17-19, 2003.

[47] D. Stainforth, 1. Kettleborough, A. Martin, A. Simpson, R. Gillis, A. Akkas, R.
Gault, M. Collins, D. Gavaghan, and M. Allen, "Climateprediction.net: Design
Principles for Public-Resource Modeling Research," Proceedings of the 14th
lASTED International Conference on Parallel and Distributed Computing
Systems, 2002.

[48] "LHC@Home," 2008.

[49] "Predictor@home," 2008.

[50] K. Pearson, 2008.

[51] J. Bohannon, "DISTRIBUTED COMPUTING: Grassroots Supercomputing,"
Science, vol. 308, no. 5723, p. 810,2005.

116

[52] G. Fedak, C. Gennain, V. Neri, and F. Cappello, "XtremWeb: A Generic Global
Computing System," Proceedings of the IEEE International Symposium on
Cluster Computing and the Grid (CCGRID/E01), 2001.

[53] A. Chien, B. Calder, S. Elbert, and K. Bhatia, "Entropia: Architecture and
Perfonnance of an Enterprise Desktop Grid System," Journal of Parallel and
Distributed Computing, vol. 63, no. 5, pp. 597-610,2003.

[54] R. Bunduchi, M. Gerst, I. Graham, and R. Williams, "Driving Grid
Standardisation-the role of the business community," Proc. 10th E URAS
Workshop.

[55] D. P. Anderson, E. Korpela, and R. Walton, "High-Perfonnance Task Distribution
for Volunteer Computing," e-Science and Grid Computing, First International
Conference on, pp. 196-203, 2005.

[56] H. K. E. B. SungJin Choi, MaengSoon Baik, SungSuk Kim, ChanYeol Park, and
ChongSun Hwang, "Characterizing and Classifying Desktop Grid," Seventh IEEE
International Symposium on Cluster Computing and the Grid, 2007.

[57] V. Lo, D. Zappala, D. Zhou, Y. Liu, and S. Zhao, "Cluster Computing on the Fly:
P2P Scheduling of Idle Cycles in the Internet," Peer-To-Peer Systems III: Third
International Workshop, IPTPS 2004, La Jolla, CA, USA, February 26-27, 2004:
Revised Selected Papers, 2004.

[58] A. J. Chakravarti, G. Baumgartner, and M. Lauria, "The organic grid: self­
organizing computation on a peer-to-peer network," Systems, Man and
Cybernetics, Part A, IEEE Transactions on, vol. 35, no. 3, pp. 373-384,2005.

[59] A. Montresor, H. Meling, and O. Babaoglu, "Messor: Load-Balancing through a
Swann of Autonomous Agents," Agents and Peer-To-Peer Computing: First
International Workshop, Ap2PC 2002, Bologna, Italy, July 15, 2002: Revised and
Invited Papers, 2003.

[60] L. Zhong, D. Wen, Z. W. Ming, and Z. Peng, "Paradropper: a general-purpose
global computing environment built on peer-to-peer overlay network,"
Distributed Computing Systems Workshops, 2003. Proceedings. 23rd
International Conference on, pp. 954-957,2003.

[61] A. Luther, R. Buyya, R. Ranjan, and S. Venugopal, "Alchemi: A .NET-Based
Enterprise Grid Computing System," Proceedings of the 6th International
Conference on Internet Computing (ICOMP'05), pp. 27-30, 2005.

[62] D. Kondo, M. Taufer, C. L. Brooks, H. Casanova, and A. A. Chien,
"Characterizing and evaluating desktop grids: an empirical study," Parallel and
Distributed Processing Symposium, 2004. Proceedings. 18th International, 2004.

117

[63] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, "Basic concepts and
taxonomy of dependable and secure computing," Dependable and Secure
Computing, IEEE Transactions on, vol. 1, no. 1, pp. 11-33,2004.

[64] A. Rueda and M. Pawlak, "Pioneers of the reliability theories of the past 50
years," Reliability and Maintainability, 2004 Annual Symposium-RAMS, pp. 102-
109,2004.

[65] Y. S. Dai, M. Xie, and K. L. Poh, "Reliability analysis of grid computing
systems," Dependable Computing, 2002. Proceedings. 2002 Pacific Rim
International Symposium on, pp. 97-104,2002.

[66] D. Kondo, D. Kondo, G. Fedak, F. Cappello, A. A. Chien, and H. Casanova,
"Availability Traces of Enterprise Desktop Grids," Grid Computing, 7th
IEEEIACM International Conference on, pp. 301-302,2006.

[67] D. Kondo, G. Fedak, F. Cappello, A. A. Chien, and H. Casanova, "Characterizing
resource availability in enterprise desktop grids," Future Generation Computer
Systems, vol. 23, no. 7, pp. 888-903,2007.

[68] D. Kondo, B. Kindarji, G. Fedak, and F. Cappello, "Towards Soft Real-Time
Applications on Enterprise Desktop Grids," Proceedings of the Sixth IEEE
International Symposium on Cluster Computing and the Grid (CCGRID'06)­
Volume 00, pp. 65-72, 2006.

[69] D. Kondo, G. Fedak, F. Cappello, A. A. Chien, and H. Casanova, "On Resource
Volatility in Enterprise Desktop Grids," Proceedings of the Second IEEE
International Conference on e-Science and Grid Computing, 2006.

[70] A. K. Sinha, B. Ludaescher, B. Brodaric, C. Baru, D. Seber, A. Snoke, and C.
Barnes, "GEON: Developing the Cyberinfrastructure for the Earth Sciences-A
Workshop Report on Intrusive Igneous Rocks, Wilson Cycle and Concept
Spaces," Submitted to GSA Today.

[71] J. Brevik, D. Nurmi, and R. Wolski, "Quantifying machine availability III

networked and desktop grid systems," Proceedings ofCCGrid04, 2004.

[72] S. J. Choi, M. S. Baik, C. S. Hwang, J. M. Gil, and H. C. Yu, "Volunteer
availability based fault tolerant scheduling mechanism in desktop grid computing
environment," Network Computing and Applications, 2004. (NCA 2004).
Proceedings. Third IEEE International Symposium on, pp. 366-371.

[73] J. Brevik, D. Nurmi, and R. Wolski, "Automatic methods for predicting machine
availability in desktop Grid and peer-to-peer systems," Cluster Computing and the
Grid, 2004. CCGrid 2004. IEEE International Symposium on, pp. 190-199,2004.

118

[74] M. A. W. S. CHERN, "On the computational complexity of reliability redundancy
allocation in a series system," Operations research letters, vol. 11, no. 5, pp. 309-
315, 1992.

[75] G. Kandaswamy, A. MandaI, and D. A. Reed, "Fault tolerance and recovery of
scientific workflows on computational grids, ", 8 ed pp. 777-782.

[76] M. Adler, Y. Gong, and A. L. Rosenberg, "Optimal sharing of bags of tasks in
heterogeneous clusters," Proceedings of the fifteenth annual ACM symposium on
Parallel algorithms and architectures, pp. 1-10,2003.

[77] W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro, J. Sauve, F. A. B.
Silva, C. O. Barros, and C. Silveira, "Running Bag-of-Tasks applications on
computational grids: the My Grid approach," Parallel Processing, 2003.
Proceedings. 2003 International Conference on, pp. 407-416, 2003.

[78] D. P. da Silva, W. Cirne, and F. V. Brasileiro, "Trading Cycles for Information:
U sing Replication to Schedule Bag-of-Tasks Applications on Computational
Grids," Euro-Par 2003 Parallel Processing: 9th International Euro-Par
Conference, Klagenfurt, Austria, August 26-29, 2003: Proceedings, 2003.

[79] N. Fujimoto and K. Hagihara, "Near-optimal dynamic task scheduling of
independent coarse-grained tasks onto a computational grid," Parallel Processing,
2003. Proceedings. 2003 International Conference on, pp. 391-398,2003.

[80] D. Kondo, A. A. Chien, and H. Casanova, "Scheduling Task Parallel Applications
for Rapid Turnaround on Enterprise Desktop Grids," Journal of Grid Computing,
vol. 5, no. 4, pp. 379-405,2007.

[81] M. Maheswaran, S. Ali, H. J. Siegal, D. Hensgen, and R. F. Freund, "Dynamic
matching and scheduling of a class of independent tasks onto heterogeneous
computing systems," Heterogeneous Computing Workshop, 1999. (HCW'99)
Proceedings. Eighth, pp. 30-44, 1999.

[82] D. E. Bakken and R. D. Schlichting, "Tolerating failures in the bag-of-tasks
programming paradigm," Fault-Tolerant Computing, 1991. FTCS-21. Digest of
Papers. , Twenty-First International Symposium, pp. 248-255, 1991.

[83] W. Cirne, F. Brasileiro, D. Paranhos, L. F. W. Goes, and W. Voorsluys, "On the
efficacy, efficiency and emergent behavior of task replication in large distributed
systems," Parallel Computing, vol. 33, no. 3, pp. 213-234, 2007.

[84] E. LAWLER, J. LENSTRA, A. RINNOOYKAN, and D. SHMOYS, "Sequencing
and scheduling: Algorithms and complexity," Handbooks in OR & MS, volume 4,
1989.

[85] Y. Zhang, C. Koelbel, and K. Kennedy, "Relative performance of scheduling
algorithms in grid environments," Citeseer, 2007.

119

--- -- ---------------------------------- ------------------------

[86] Y. Zhang, A. MandaI, C. Koelbel, and K. Cooper, "Combined Fault Tolerance
and Scheduling Techniques for Workflow Applications on Computational Grids,"
IEEE Computer Society, 2009, pp. 244-251.

[87] M. O. Neary and P. Cappello, "Advanced eager scheduling for Java-based
adaptive parallel computing," Concurrency and Computation Practice and
Experience, vol. 17, no. 7-8, pp. 797-819,2005.

[88] J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on Large
Clusters," Google, Inc., 2004.

[89] M. Canonico, "Scheduling Algorithms for Bag-of-Tasks Applications on Fault­
Prone Desktop Grids," Ph. D. dissertation, University of Turin, 2006.

[90] N. Fujimoto and K. Hagihara, "A comparison among grid scheduling algorithms
for independent coarse-grained tasks," Applications and the Internet Workshops,
2004. SAINT 2004 Workshops. 2004 International Symposium on, pp. 674-680,
2004.

[91] G. D. Ghare and S. T. Leutenegger, "Improving Speedup and Response Times by
Replicating Parallel Programs on a SNOW," Job Scheduling Strategies for
Parallel Processing: 10th International Workshop, JSSPP 2004, New York, NY,
USA, June 13, 2004: Revised Selected Papers, 2005.

[92] D. Kondo, A. A. Chien, and H. Casanova, "Resource Management for Rapid
Application Turnaround on Enterprise Desktop Grids," Proceedings of the
Proceedings of the ACMIIEEE SC2004 Conference (SC'04)-Volume 00, 2004.

[93] O. H. Ibarra and C. E. Kim, "Heuristic Algorithms for Scheduling Independent
Tasks on Nonidentical Processors," Journal of the ACM (JACAJ), vol. 24, no. 2,
pp. 280-289, 1977.

[94] P. E. Crandall and M. J. Quinn, "Block data decomposition for data-parallel
programming on aheterogeneous workstation network," High Performance
Distributed Computing, 1993. , Proceedings the 2nd International Symposium on,
pp. 42-49, 1993.

[95] E. Dovolnov, A. Kalinov, and S. Klimov, "Natural block data decomposition for
heterogeneous clusters," Parallel and Distributed Processing Symposium, 2003.
Proceedings. International, p. 10, 2003.

[96] A. Kalinov and S. Klimov, "Multidimensional static block data decomposition for
heterogeneous clusters," IEEE Parallel and Distributed Processing Symposium,
2003.

[97] C. Lee and D. Talia, "Grid Programming Models: Current Tools, Issues and
Directions," in Grid Computing: Making the Global Infrastructure a Reality, 21
ed 2003, pp. 555-578.

120

[98] L. F. G. Sarmenta, "Sabotage-tolerance mechanisms for volunteer computing
systems," Future Generation Computer Systems, vol. 18, no. 4, pp. 561-572,
2002.

[99] M. Chtepen, F. Claeys, B. Dhoedt, F. De Turck, P. Vanrolleghem, and P.
Demeester, "Providing fault-tolerance in unreliable grid systems through adaptive
checkpointing and replication," LECTURE NOTES IN COMPUTER SCIENCE,
vol. 4487, p. 454, 2007.

[100] M. Chtepen, B. Dhoedt, F. De Turck, P. Demeester, F. H. A. Claeys, and P. A.
Vanrolleghem, "Evaluation of Replication and Rescheduling Heuristics for Grid
Systems with Varying Resource Availability," Evaluation, 2006.

[101] S. Choi and R. Buyya, "Group-based adaptive result certification mechanism in
Desktop Grids," Future Generation Computer Systems, vol. In Press, Corrected
Proof.

[102] C. Christensen, T. Aina, and D. Stainforth, "The Challenge of Volunteer
Computing with Lengthy Climate Model Simulations," First International
Conference on e-Science and Grid Computing, 2005.

[103] D. Caromel, A. di Costanzo, and C. Delb8, "Peer-to-Peer and fault-tolerance:
Towards deployment-based technical services," Future Generation Computer
Systems, vol. 23, no. 7, pp. 879-887,2007.

[104] P. Domingues, A. Andrzejak, and L. M. Silva, "Using Checkpointing to Enhance
Turnaround Time on Institutional Desktop Grids," Proceedings of the Second
IEEE International Conference on e-Science and Grid Computing, 2006.

[105] P. Townend and J. Xu, "Fault Tolerance within a Grid Environment,"
Proceedings of AHM2003, vol. 1, no. S2, p. S3, Jan.2003.

[106] T. Wilfredo, "Software Fault Tolerance: A Tutorial," NASA Langley Technical
Report, 2000.

[107] L. Chen and A. Avizienis, "N-VERSION PROGRAMMINC: A FAULT­
TOLERANCE APPROACH TO RELIABILITY OF SOFTWARE
OPERATION," Fault-Tolerant Computing, 1995, 'Highlights from Twenty-Five
Years'. , Twenty-Fifth International Symposium on, 1995.

[108] I. L. Yen, E. L. Leiss, and F. B. Bastani, "A repetitive fault tolerance model for
parallel programs," System Sciences, 1993, Proceeding of the Twenty-Sixth
Hawaii International Conference on, vol. 2 1993.

[109] S. V. Anastasiadis, K. C. Sevcik, and M. Stumm, "Maximizing Throughput in
Replicated Disk Striping of Variable Bit-Rate Streams," Proceedings of the
Annual USENIX Technical Conference, pp. 191-204.

121

[110] D. Kondo, G. Fedak, F. Cappello, A. A. Chien, and H. Casanova, "Resource
Availability in Enterprise Desktop Grids," Dept. of Computer Science, INRIA,
Technical Report, vol. 994 2006.

[111] D. Kondo, F. Araujo, P. Malecot, P. Domingues, L. M. Silva, G. Fedak, and F.
Cappello, "Characterizing Result Errors in Internet Desktop Grids," LECTURE
NOTES IN COMPUTER SCIENCE, vol. 4641, p. 361, 2007.

[112] D. Kondo, "Scheduling Task Parallel Applications For Rapid Turnaround on
Desktop Grids," Doctoral Dissertation, University of California, San Diego,
2005.

[113] H. Norton, "The 7x7 Squares," Annals o.lEugenics, vol. 9, pp. 268-307, 1939.

[114] P .A.MacMahon, Combinatory Analysis 1915.

[115] E. W. Weisstein, "Latin Square From MathWorld--A Wolfram Web Resource.,"
2009.

[116] G. Birkhoffand S. Mac Lane, A Survey of Modern Algebra Macmillan, 1965.

[117] S. K. Park and K. W. Miller, "Random number generators: good ones are hard to
find," Communications of the ACM, vol. 31, no. 10, pp. 1192-1201,1988.

[118] P. Gund, "Three-dimensional pharmacophoric pattern searching," Prog. Mol.
Subcell. Bioi, vol. 5,pp. 117-143,1977.

[119] M. J. E. Sternberg and S. H. Muggleton, "Structure Activity Relationships(SAR)
and Pharmacophore Discovery Using Inductive Logic Programming(ILP)," QSAR
& Combinatorial Science, vol. 22, no. 5, pp. 527-532,2003.

[120] A. Wild, "Parallel Inductive Loic Programming." Master's University of
Louisville, 1999.

[121] D. Page, S. Curtis, J. Graham, and A. Spatola, "A Case Study III Machine
Learning for Combinatorial Chemistry," 1998.

[122] A. Kamal, "Parallel Inductive Logic Programming For Pharmacophore
Discovery." Ph.d University of Louisville, 2002.

[123] D. Thain, T. Tannenbaum, and M. Livny, "Distributed computing in practice: The
Condor experience," Concurrency and Computation Practice and Experience,
vol. 17, no. 2-4, pp. 323-356,2005.

[124] "Condor Project Home Page," 2010.

[125] G. A. Klutke, P. C. Kiessler, and M. A. Wortman, "A critical look at the bathtub
curve," Reliability, IEEE Transactions on, vol. 52, no. 1, pp. 125-129,2003.

122

[126] M. Trachtenberg, G. E. Aerosp, and N. J. Moorestown, "A general theory of
software-reliability modeling," Reliability, IEEE Transactions on, vol. 39, no. 1,
pp. 92-96, 1990.

[127] D. Nurmi, J. Brevik, and R. Wolski, "Modeling machine availability in enterprise
and wide-area distributed computing environments," LECTURE NOTES IN
COMPUTER SCIENCE, vol. 3648, p. 432, 2005.

[128] B. Schroeder and G. A. Gibson, "A large-scale study of failures III high­
performance computing systems," Citeseer, 2006.

[129] A. Iosup, M. Jan, O. Sonmez, and D. H. J. Epema, "On the dynamic resource
availability in grids," IEEE Computer Society, 2007, pp. 26-33.

[130] R. Bhagwan, S. Savage, and G. Voelker, "Understanding availability,"
Proceedings of the 2nd International Workshop on Peer-to-Peer Systems
(IPTPS/E03), pp. 256-267, 2003.

123

------~--

APPENDIX A

DGSIMULATOR CODE

using System;
using System. Threading;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System. Text;
using System.Windows.Forms;
using System. Reflection;
using System.Reflection.Emit;
using System.IO;

namespace DGSimulator
{

public partial class Form1 Form
{

Grid thisGrid;
public struct jobResults

{
public string fileName;

public int permutation;
public double defaultRate;
public int numNodes;
public int defaultDataSize;
public int timestamp;
public int failedCount;
public int completedCount;
public int status;

}

public class JccJobResults
{

public string fileName;
public int permutation;
public double defaultRate;
public int numNodes;
public int defaultDataSize;
public int timestamp;
public int failedCount;
public int completedCount;
public double status;

124

}

public int reps;

public accJobResults()
{

}

fileName = "";
permutation = 1;
defaultRate = 0;
numNodes = 0;
defaultDataSize 0;
timestamp=0;
failedCount=0;
completedCount=0;
status=0;
reps=0;

public void accumulate(jobResults jr)
{

}

fileName = jr.fileName;
permutation = jr.permutation;
defaultRate = jr.defaultRate;
numNodes = jr.numNodes;
defaultDataSize = jr.defaultDataSize;
timestamp+=jr.timestamp;
failedCount+=jr.failedCount;
completedCount+=jr.completedCount;
status=status+(double) jr.status;
reps++;

public void getMeanResults()
{

}

timestamp=timestamp/reps;
failedCount=failedCount/reps;
completedCount=completedCount/reps;
status=status/reps;

public Form1()
{

InitializeComponent();
}

private void label1_Click(object sender, EventArgs e)
{

}

private void cmdRun_Click(object sender, EventArgs e)
{

thisGrid = new Grid(Globals.numNodes);
thisGrid.addJob();
ArrayList outputListsByHost

thisGrid.executeNextJob(Globals.numNodes);

125

- 1];
int numTimeSteps = (int)outputListsByHost[outputListsByHost.Count

outputListsByHost.RemoveAt(outputListsByHost.Count - 1);
outputListsByHost.TrimToSize();
string standardHeader = "Permutation Failrate NumNodes NumData";
string header Globals.permutation.ToString() + " " +

Globals.defaultRate + " " + Globals.numNodes.ToString() + " " +
Globals.defaultDataSize;

double Rate Globals.defaultRate * 100;
string strRate = Rate.ToString();
string fileName = UP" + Globals.permutation.ToString() + "FR" +

strRate + "NN" + Globals.numNodes.ToString() + "ND" +
Globals.defaultDataSize.ToString() + "_" + Globals.repetition;

if (!Directory.Exists(Globals.outFileSpec»
Directory.CreateDirectory(Globals.outFileSpec);

string path = Globals.outFileSpec + fileName;
TextWriter tw = new StreamWriter(path);
tw.WriteLine(standardHeader);
tw.WriteLine(header);
ArrayList outputByTimestep = new ArrayList();
outputByTimestep.Capacity = numTimeSteps;
for (int i = 0; i < outputByTimestep.Capacity; i++)
{

outputByTimestep.lnsert(i, null);
}
foreach (ArrayList outputByNode in outputListsByHost)
{

foreach (ArrayList outputValue in outputByNode)
{

int counter = 0;
string strTmp = null;
foreach (string 0 in outputValue)
{

tw.WriteLine(o);
outputByTimestep[counter]

(string)outputByTimestep[counter] + 0 + " ";
counter++;

}

if (counter < outputByTimestep.Capacity - 1)
{

for (; counter < outputByTimestep.Capacity; counter++)
{

strTmp = "t- h- d-";
outputByTimestep[counter]

(string)outputByTimestep[counter] + strTmp + " ";
}

}

}
}

tw.Close();
outputByTimestep.TrimToSize();
TextWriter tw1 = new StreamWriter(path + ".TSP");
tw1.WriteLine(standardHeader);

126

tw1.WriteLine(header);
foreach (string 0 in outputByTimestep)
{

tw1.WriteLine(o)j
}
tw1.CloseO;
TextWriter tw2 = new Streamwriter(path + ".STP");
tw2.WriteLine(standardHeader);
tw2.WriteLine(header);
foreach (string 0 in outputByTimestep)
{

}

string strpd
int idx;
string tmp;
while «idx
{

o· ,

= strpd.lndexOf("t"» != -1)

}

int hdex = strpd.lndexOf("h")j

tmp = strpd.Remove(idx, hdex - idx)j
strpd = tmpj
strpd.Trim()j
hdex = strpd.lndexOf("h");

tmp = strpd.Remove(hdex, strpd.lndexOf("d") - hdex)j
strpd = tmp;
strpd.Trim();
int ddex = strpd.lndexOf("d");
tmp = strpd.Remove(ddex, 1);
strpd = tmp;
strpd. Trim() j

strpd.Trim()j
tw2.WriteLine(strpd);

tw2. CloseO;
TextReader tr = new StreamReader(path + ".stp")j
char[] dataDelimiters = new char[] { , , };
tr.ReadLine(); string thisLine = tr.ReadLine();
//Permutation Failrate NumNodes NumData
string[] macrodata = thisLine.Split(dataDelimiters,

StringSplitOptions.RemoveEmptyEntries)j
string wholefile = tr.ReadToEnd();
char[] lineDelimiters = new char[] { '\r', '\n' };
string[] lines = wholefile.Split(lineDelimiters,

StringSplitOptions.RemoveEmptyEntries);
int timestamp = 0j

bool[] testArray;
string linej
string[] data;
int numData = Convert.Tolnt32(macrodata[3]);
testArray = new bool[numData];
bool finishedFlag = falsej
int dataCount 0;
int hostcount = 0;

127

labelS.Text = " FileName " + standardHeader + " TimeStamp " + "
Host" + " Failed" + " Completed" + " Status" + "\r\n";

for (int i = 0; i < lines. Length; i++)
{

line lines[i];
data line.Split(dataDelimiters J

StringSplitOptions.RemoveEmptyEntries);
hostcount = 1;
int d;
foreach (string datum in data)
{

}

string dtmp = datum;
if (dtmp == "_H)
{

d = -1;
}
else d = Convcrt.Tolnt32(datum);
II d = Convert.Tolnt32(datum);
if (d != -1 && testArray[d] == false)
{

}

testArray[d] = true;
dataCount++;
if (dataCount == numData)
{

}

finished Flag = true;
break;

hostcount++;

if (finishedFlag
{

true)

break;
}
timestamp++;

}
tr.Close();
SubmitNode thisMasterNode = thisGrid.getMaster();
ArrayList nodelist = thisMasterNode.getNodeList();
int failedCount = 0;
int completedCount = 0;
int nodecount nodelist.Count;II/-1?
foreach (Node n in nodelist)
{

}

if (n ! = null)
{

if (n.isFailed(» failedCount++;
else if (n.isCompleted(» completedCount++;

}

string logPath = Globals.outFileSpec + txtLogName.Text;
tw2 = new Str'camWl'itcl'(logPath J true);
string status;
if (finishedFlag == true) status = "1";
else status = "0";

128

tw2.WriteLine(fileName + " " + header + " " + timestamp.ToString()
+ " " + hostcount.ToString() + " " + failedCount + " " + completedCount + " " +
status + "\r\n");

tw2.Close();
txtOutput.Text = txtOutput.Text + fileName + " " + header + " " +

timestamp.ToString() + " " + hostcount.ToString() + " " + failedCount + " " +
completedCount + " " + status + "\r\n";

}

private jobResults runGrid()
{

thisGrid = new Grid(Globals.numNodes);
thisGrid.addJob();
Arraylist outputListsByHost =

thisGrid.executeNextJob(Globals.numNodes);

1];
int numTimeSteps = (int)outputListsByHost[outputListsByHost.Count -

outputListsByHost.RemoveAt(outputListsByHost.Count - 1);
outputListsByHost.TrimToSize();
jobResults jr = new jobResults();
string standardHeader = "Permutation Failrate NumNodes NumData";
string header Globals.permutation.ToString() + " +

Globals.defaultRate + " " + Globals.numNodes.ToString() + " " +
Globals.defaultDataSize;

double Rate = Globals.defaultRate * 100;
string strRate = Rate.ToString();
string fileName = UP" + Globals.permutation.ToString() + "FR" +

strRate + "NN" + Globals.numNodes.ToString() + "ND" +
Globals.defaultDataSize.ToString() + "_" + Globals.repetition;

II jr.fileName = fileName;
if (!Directory.Exists(Globals.outFileSpec»

Directory.CreateDirectory(Globals.outFileSpec);
string path = Globals.outFileSpec + fileName;
TextWriter tw = new StreamWriter(path);
tw.WriteLine(standardHeader);
tw.WriteLine(header);
Arraylist outputByTimestep = new ArrayList();
outputByTimestep.Capacity = numTimeSteps;
for (int i = 0; i < outputByTimestep.Capacity; i++)
{

outputByTimestep.lnsert(i, null);
}

foreach (ArrayList outputByNode in outputListsByHost)
{

foreach (ArrayList outputValue in outputByNode)
{

int counter = 0;
string strTmp = null;
foreach (string 0 in outputValue)
{

tw.WriteLine(o);
outputByTimestep[counter]

(string)outputByTimestep[counter] + 0 + " ";
counter++;

129

}

if (counter < outputByTimestep.Capacity - 1)
{

for (; counter < outputByTimestep.Capacity; counter++)
{

strTmp = "t- h- d-";
outputByTimestep[counter]

(string)outputByTimestep[counter] + strTmp + " ";
}

}

}
}

tw.Close();
outputByTimestep.TrimToSize();
TextWriter tw1 = new StreamWriter(path + ".TSP");
tw1.WriteLine(standardHeader);
tw1.WriteLine(header);
foreach (string 0 in outputByTimestep)
{

tw1.WriteLine(0);
}

tw1.Close();
TextWriter tw2 = new StreamWriter(path + ".STP");
tw2.WriteLine(standardHeader);
tw2.WriteLine(header);
foreach (string 0 in outputByTimestep)
{

}

string strpd 0;
int idx;
string tmp;
while «idx = strpd.lndexOf("t"» != -1)
{

}

int hdex = strpd.lndexOf("h");

tmp = strpd.Remove(idx, hdex - idx);
strpd = tmp;
strpd.Trim();
hdex = strpd.lndexOf("h");

tmp = strpd.Remove(hdex, strpd.lndexOf("d") - hdex);
strpd = tmp;
strpd.Trim();
int ddex = strpd.lndexOf("d");
tmp = strpd.Remove(ddex, 1);
strpd = tmp;
strpd.Trim();

strpd. Trim();
tw2.WriteLine(strpd);

tw2.Close();
TextReader tr = new StreamReader(path + ".stp");

130

char[] dataDelimiters = new char[] { , , };
tr.ReadLine(); string thisLine = tr.ReadLine();
//Permutation Failrate NumNodes NumData
string[] macrodata = thisLine.Split(dataDelimiters,

StringSplitOptions.RemoveEmptyEntries);
string wholefile = tr.ReadToEnd();
char[] lineDelimiters = new char[] { '\r', '\n' };
string[] lines = wholefile.Split(lineDelimiters,

StringSplitOptions.RemoveEmptyEntries);
int timestamp = 0;
bool[] testArray;
string line;
string[] data;
int numData = Convert.Tolnt32(macrodata[3]);

testArray = new bool[numData];
bool finishedFlag = false;
int dataCount 0;
int hostcount = 0;
labelS.Text = " FileName " + standardHeader + " TimeStamp " + " Host "

+ " Failed" + " Completed" + " Status" + "\r\n";
for (int i = 0; i < lines.Length; i++)
{

line lines[i];
data line.Split(dataDelimiters,

StringSplitOptions.RemoveEmptyEntries);
hostcount = 1;
int d;
foreach (string datum in data)
{

}

string dtmp = datum;
if (dtmp == "_H)
{

d = -1;
}
else d = Convert.Tolnt32(datum);
if (d != -1 && testArray[d] == false)
{

}

testArray[d] = true;
dataCount++;
if (dataCount == numData)
{

}

finishedFlag = true;
break;

hostcount++;

if (finishedFlag
{

true)

break;
}
timestamp++;

}
tr.Close();
SubmitNode thisMasterNode = thisGrid.getMaster();
ArrayList nodelist = thisMasterNode.getNodeList();
int failedCount = 0;

131

int completedCount = e;
int nodecount nodelist.Count;/li-l?
foreach (Node n in nodelist)
{

}

if (n != nUll)
{

if (n.isFailed(» failedCount++;
else if (n.isCompleted(» completedCount++;

}

string logPath = Globals.outFileSpec + txtLogName.Text;
tw2 = new StreamWriter(logPath. true);
string status;
if (finishedFlag == true) status = "1";
else status = "en;
tw2.WriteLine(fileName + " " + header + " " + timestamp.ToString() + "

" + failedCount + " " + completedCount + " " + status + "\r\n");
tw2.Close();
txtOutput.Text txtOutput.Text + fileName + " " + header + +

timestamp.ToString() + " " + failedCount + " " + completedCount + " " + status +

}

jr.fileName = fileName;
jr.permutation = Globals.permutation;
jr.defaultRate = Globals.defaultRate;
jr.numNodes = Globals.numNodes;
jr.defaultDataSize = Globals.defaultDataSize;
jr.timestamp = timestamp;
jr.failedCount = failedCount;
jr.completedCount = completedCount;
jr.status = int.Parse(status);
return jr;

private void buttonl_Click(object sender. EventArgs e)
{

Globals.numNodes = (int)numericNumNodes.Value;
Globals.repetition = e;
Globals.defaultDataSize = (int)numericNumData.Value;
Globals.defaultRecordSize = 1;
Globals.defaultRate = (double)numericFailRate.Value;!!probability of

failure of each host or entire JOB?
Globals.defaultrnterval = 500;
Globals.outFileSpec = txtOutputDirectory.Text;
Globals.permutation = (int)numericPermutation.Value;
Globals.numReplicants = (int)numericReplicants.Value;
Random rnd = new Random();
Globals.rnd = rnd;
int numReps;
if (numericFailStepRate.Value == 0) numReps = 1;
else numReps = l+(int) ((numericMaxFailRate.Value -

numericMinFailRate.Value) ! numericFailStepRate.Value);
double stepRate = (double) numericFailStepRate.Value;
double minRate = (double)numericMinFailRate.Value; double maxRate

(double) numericMaxFailRate.Value;
for (int j = 0; j < numReps; j++)
{

Globals.defaultRate = minRate + j * stepRate;
numericFailRate.Value = (decimal) Globals.defaultRate;

132

lblCurrentFailureRate.Text c Globals.defaultRate.ToString();
accJobResults ajr new accJobResults();
for (int i = 0; i < numericRepetitions.Value; i++)
{

Application.DoEvents();
Globals.repetition = i;
txtRepetition.Text = i.ToString();
ajr.accumulate(runGrid(»;llaccumulates returned results in

ajr class
}
ajr.getMeanResults();
string logPath = Globals.outFileSpec + "meanLog.log";
StrcamWriter tw2 = new StreamWriter(logPath, true);

II Filename Permutation Failure Rate Host Count Data Count
TimeStamp Host Count Failed Completed Status

tw2.WriteLine(ajr.fileName+" "+ajr.permutation+"
"+ajr.defaultRate+" "+ajr.numNodes+" "+ajr.defaultDataSize+" "+ajr.timestamp+"
"+ajr.failedCount+" "+ajr.completedCount+" "+ajr.status);

}

tw2.Close();
}

}
private void Form1_Load(object sender, EventArgs e)
{

}

numericFailRate.Value = (long) Globals.defaultRate;
codeBox.Text = Globals.defaultProgram;
txtOutputDirectory.Text = Globals.outFileSpec;

public static class Globals
{

public static int numNodes = 100;
public static int defaultDataSize = 1000;
public static int defaultRecordSize = 1;
public static double defaultRate = .g;llprobability of failure of each

host or entire JOB?
public static int defaultlnterval = 500;
public static string outFileSpec = @"c:\dgsim\";
public static int permutation = 4;
public static Random rnd = new Random();
public static int repetition = 0;
public static int numReplicants;
public static string defaultProgram
Hint timeStamp=O;" +
"bFailed=false;" +
"ArrayList outputList=new ArrayList();" +
"double succeedRate=l-failRate;"+
"double realRate=1-Math.pow(succeedRate,l.0/timeSteps);"+
"double spreadRate= (realRate*1000000);" +
"foreach (ArrayList dr in dataArray)" +
"{" +

"if (rnd.Next(1000000) < Math.Round(spreadRate»" +

"bFailed=true;"+
"break;" +

"for (int i=O;i<dr.Count;i++)"+

133

"{II+
"char ts='t';" +
"char spc=' ';" +
"string nodeInfo=ts+timeStamp.ToString()+ spc

+Thread.CurrentThread.Name+spc;"+
"nodeInfo+=dr[i];"+
"outputList.Add(nodeInfo);"+
"nodeInfo=null;"+
"timeStamp++;" +

}

U}"+

"}II+
"return(outputList);";

class Grid
{

private SubmitNode masterNode;//Master node of the grid
private ArrayList nodeList;//Item 0 is mainNode and rest are batch nodes
private ArrayList jobQueue;//List of job items
public Grid(int gridSize)
{

int masterId = 0;
nodeList = new ArrayList();
nodeList.Capacity = gridSize + 1;
nodeList.Add(masterNode);
double rate = Globals.defaultRate;
int ti = Globals.defaultInterval;
decimal nodeArraySize = Globals.defaultDataSize / gridSize;
int size = (int) System.Math.Ceiling(nodeArraySize);
for (int 10 = 1; 10 <= gridSize; 10++)
{

}

Node thisNode = new Node(ID,size,rate,ti);
nodeList.Add(thisNode);

masterNode = new
SubmitNode(masterId,Globals.defaultDataSize,rate,ti,nodeList);

}

public int addJob()
{

//public Job(int dataListSize, int dataRecordSize, string s, params
double [] dataRecord)

ArrayList data = new ArrayList();
for (int i = 0; i < Globals.defaultDataSize; i++)
{

int j = i;
data.Add("d" + j.ToString(»;

}
Job thisJob=new Job(Globals.defaultDataSize,

Globals.defaultRecordSize,Globals.defaultProgram,data);//DATA LIST SIZE MATCHES
DEFAULT SIZE

}

masterNode.addNewJob(thisJob);
return masterNode.getJobCount();

public ArrayList executeNextJob(int numNodes)
{

134

}

}

II/dequeue the job and execute it
ArrayList output masterNode.executeNextJob(numNodes);
return output;

public SubmitNode getMaster()
{

return masterNode;
}

public class Job
{

IIA job has a function and some data
private ArrayList data List;
private ArrayList data Record;
private ArrayList returnList;
private int dataRecSize;
private String strFunc;

public Job(int dataListSize, int dataRecordSize, string s, ArrayList
jobDataList)

}

{

}

dataList= new ArrayList();
dataRecord=new ArrayList();
dataList.Capacity = dataListSize;

for (int i=0;i<dataListSize;)
{

}

for (int j=0;j<dataRecordSize;j++)
{

dataRecord.lnsert(j,jobDataList[i+j]);
}
dataList.Add(dataRecord);
dataRecord = new Arrayl.ist();
i+=dataRecordSize;

strFunc=s;

public int getDataRecordSize()
{

return dataRecSize;
}
public ArrayList getData()
{

return dataList;11
}

public String getStringFunction()
{

return strFunc;
}

class MonitorForm Form
{

ArrayList nodeList;

135

ArrayList failedNodeList;
ArrayList completedNodeList;
int numNodes;
System.Windows.Forms.Timer timerl;

public MonitorForm(ArrayList n)
{

nodeList=new ArrayList();
nodeList=n;

}
public void runMonitorForm()
{

}

failedNodeList = new ArrayList();
completedNodeList = new ArrayList();
Text = "Grid Monitor";
BackColor = Color.Blue;
numNodes = nodeList.Count-l;//Minus one for master
int top=l;
int left = 1;
timerl = new System.Windows.Forms.Timer();
timerl.Interval = 100;
timerl.Tick+=new EventHandler'(timerl_Tick);
timerl.Start();
for (int i = 1; i < nodeList.Count ; i++)
{

}

Node thisNode (Node) nodeList[i];
thisNode.Top = top;
thisNode.Left = left;
thisNode.Tag = i;

thisNode.MouseClick += new MouseEventHandler(node_MouseClick);
left+=20;
if (left>200){

top += 40;
left = 1;

}
this.Show();
this.Controls.Add(thisNode);

private void timerl_Tick(object sender, EventArgs e)
{

}

foreach(Node n in nodeList)
{

}

if «n != nUll) && n.isFailed(»
{

n.Visible = !n.Visible;
}
else if (n !=null)
{

n.Visible = true;
}

136

class SubmitNode Node
{

Job newJob;
Job currentJob;
Queue jq;
ArrayList nodeList;
MyClassBase executableObj;
ArrayList outputArray;
ArrayList jobData;
MonitorForm monitorForm;
public SubmitNode(int ID,int size, double rate,int interval,Arr'ayList

nodes): base(ID, size, rate,interval)
{

}

jq=new Queue();
nodeList = nodes;
outputArray=new ArrayList();
monitorForm = new MonitorForm(nodeList);

public int addNewJob(Job j)IIString is an expression of the form f(x,y)
such as x*y*Math.Sin(x+y)

{

}

jq.Enqueue(j);
return jq.Count;

public int getJobCount()
{

return jq.Count;
}

private bool isFinished(ArrayList nodeList)
{

}

bool bLiveThread = false;
foreach (Node n in nodeList)
{

}

if (n != null && n.isAlive())
{

bLiveThread = true;
break;

}

return bLiveThread;

public ArrayList executeNextJob(int numNodes)
{

IIDequeue the job
currentJob = (Job)jq.Dequeue();
splitJobData(currentJob, nodeList);
IICompile the job
MyClassBase executableObj = new MyClassBase();
MathExpressionParser p = new MathExpressionParser();
p.init(currentJob.getStringFunction());
foreach (Node n in nodeList)
{

if (n != nUll)
{

137

}

n.addExecutableObj(p);
n.startJob();

}
Application.DoEvents();
Thread.Sleep(l);
int loopcounter = 0;
boo 1 bLiveThread=true;
while (bLiveThread)
{

}

Application.DoEvents();
Thread.Sleep(l);
bLiveThread = false;
foreach (Node n in nodeList)
{

}

if (n != null && n.isAlive(»
{

bLiveThread = true;
break;

}

ArrayList resultArrayList=new ArrayList();
int maxTimeStep=0;
ArrayList tmpAL = new ArrayList();
foreach (Node n in nodeList)
{

if (n != nUll)
{

tmpAL =(ArrayList) n.getResultArray().Clone();
resultArrayList=(ArrayList) tmpAL[0];
if (maxTimeStep < resultArrayList.Count) maxTimeStep

resultArrayList.Count;

}

outputArray.Add(n.getResultArray(»;

}
}

outputArray.Add(maxTimeStep);
return outputArray;

public ArrayList getNodeList()
{

return node List;
}

public int splitJobData(Job jJ ArrayList nodeList)
{

int nodeCount = nodeList.Count-l;

138

jobData = new ArrayList();

jobData=j.getData();
if «(jobData.Count % nodeCount) != 0) I I «nodeCount % 2) != 0))
{

MessageBox.Show("Data records do not divide evenly into nodes or
nodes not divisible by 2", "Division Error",

}

MessageBoxButtons.OK J MessageBoxlcon.Exclamation);
return nodeCount;

int counter=0;
int permutation = Globals.permutation;
int nodeCounter = 0;
switch (permutation)
{

case 1:
IllStandard permutation no mirroring

foreach (Node n in nodeList)
{

if (n != nUll)
{

for (int i counter; i < counter +
jobData.Count I nodeCount; i++)

}
}

{

}
n.addDataltem«ArrayList)jobData[i);

counter = counter + jobData.Count I nodeCount;

I//Standard permutation with mirroring
break;

case 2:
foreach (Node n in nodeList)
{

(nodeCount I 2); i++)

(nodeCount I 2); i++)

if (n != nUll)
{

}

nodeCounter++;
if (nodeCounter <= nodeCount I 2)
{

}

for (int i = counter; i < counter + jobData.Count I

{

}
n.addDataltem«ArrayList)jobData[i);

counter = counter + jobData.Count I (nodeCount I 2);

else if (nodeCounter > nodeCount I 2)
{

if (counter >= jobData.Count) counter =0;
for (int i = counter; i < counter + jobData.Count I

{
n.addDataltem«ArrayList)jobData[i);

}
counter = counter + jobData.Count I (nodeCount I 2);

139

}

}

IlllllReverse Permutation with mirroring
break;

case 3:
foreach (Node n in nodeList)
{

if (n != nUll)
{

nodeCounter++;
if (nodeCounter <= nodeCount I 2)
{

for (int i = counter; i < counter + jobData.Count
I (nodeCount I 2); i++)

2);
}

{

}
n.addDataItem«ArrayList)jobData[i]);

counter = counter + jobData.Count I (nodeCount I

else if (nodeCounter > nodeCount I 2)
{

if (counter >= jobData.Count) counter--;
for (int i = counter; i > counter - jobData.Count

I (nodeCount I 2); i--)

2);

permutations

permutation

nodeCount; i++)

}

}
break;

case 4:

}

{

}
n.addDataItem«ArrayList)jobData[i]);

counter = counter - jobData.Count I (nodeCount I

ArrayList pList = new ArrayList();llthis is a list of

foreach (Node n in nodeList)
{

}

if (n != nUll)
{

}

ArrayList tempP = new ArrayList(); 11th is is a

for (int i = counter; i < counter + jobData.Count I

{

}
tempP.Add«ArrayList)jobData[i]);

counter = counter + jobData.Count I nodeCount;
pList.Add(tempP);

counter 0;

140

foreach (Node n in nodeList)
{

if (n != nUll)
{

nodeCounter++;
if (nodeCounter <= nodeCount / 2)
{

for (int i = counter; i < counter + jobData.Count
/ (nodeCount / 2); i++)

2);
}

{
n.addDataltem«ArrayList)jobData[i]);

}
counter = counter + jobData.Count / (nodeCount /

else if (nodeCounter > nodeCount / 2)
{

if (counter >= jobData.Count) counter--;
for (int i = counter; i > counter - jobData.Count

/ (nodeCount / 2); i--)

2);
}

}
}

{

}
n.addDataltem«ArrayList)jobData[i]);

counter counter - jobData.Count / (nodeCount /

ArrayList tempDataRecord = new ArrayList();
for (int i = 0;i<pList.Count;i++)
{

}

tempDataRecord=(ArrayList)pList[pList.Count-l];
int lastlndex=pList.Count-l;
pList.RemoveAt(lastlndex);
pList.lnsert(0, tempDataRecord);
int nodePointer = 1;
nodeCount = nodeList.Count;

foreach (ArrayList p in pList)
{

}

if (nodePointer<nodeCount)
{

}
else
{

}

Node n = (Node) nodeList[nodePointer];
if (n != nUll)
{

n.appendDataList(p);
}
nodePointer++;

MessageBox.Show("Error in Latin Square 1");

int zz=1;

141

break;
case 5:

permutation

nodeCount; i++)

int dataCounter=0;
int numReplicants = Globals.numReplicants;
int dataPerNode = (numReplicants * jobData.Count) / nodeCount;
foreach (Node n in nodeList)
{

}

if (n != nUll)
{

}

for (int i 0; i < dataPerNode; i++)
{

}

n.addDataltem«ArrayList)jobData[dataCounter]);
if (dataCounter < jobData.Count-1) dataCounter++;
else dataCounter = 0;

break;
case 6:

pList
foreach

new ArrayList();//this is a list of permutations
(Node n in nodeList)

{

}

if (n != nUll)
{

}

ArrayList tempP = new ArrayList(); //this is a

for (int i = counter; i < counter + jobData.Count /

{

}
tempP.Add«ArrayList)jobData[i]);

counter = counter + jobData.Count / nodeCount;
pList.Add(tempP);

counter = 0;
tempDataRecord = new ArrayList();
for (int i = 0; i < pList.Count; i++)
{

tempDataRecord = (ArrayList)pList[pList.Count - 1];
int lastlndex = pList.Count - 1;
pList.RemoveAt(lastlndex);
pList.lnsert(0, tempDataRecord);
int nodePointer = 1;
nodeCount = nodeList.Count;
foreach (ArrayList p in pList)
{

if (nodePointer < nodeCount)
{

Node n = (Node)nodeList[nodePointer];
if (n != nUll)
{

n.appendDataList(p);
}
nodePointer++;

142

}
}

}
else
{

}
}

}
break;

default :
break;

}llend case
return nodeCount;

MessageBox.Show("Error in Latin Square 1");

class Node:PictureBox
{

,1/ <summar'y>
/IIBasic Node Class
III </sumrnary>
private int intID;
private int intArraySize;
private double failRate;llfailrate is in form of .1 for 10 percent
private A~r dataArray;
private MathExpressionparser executableObj;
private Thread t;
private bool bFailed;
private boo 1 bCompleted;
private bool bRunning;
Random random;
struct dataItelll

{

}

public double x;
public double y;

private ~rldyLi5t resultArray;
public NodeO
{
}
public Node(int ID,int size,double rate,int til
{

}

dataArray = new
resultArray = new
intArraySize = size;
dataArray.Capacity = intArraySize;
intID = ID;
t = new Thread(executeJob);
t.Name = "h" + getNodeIDO.ToString();
this.Width = 15,
this.Height = 20;
this.Name = "Node_" + intID.ToString();
bFailed = false;
bCompleted = false;
failRate = rate;
random = new Random();

143

public boo 1 isCompleted()
{

if (bCompleted)
{

return true;
}
else { return false; }

}
public bool isFailed()
{

if (bFailed){
return true;

} else {return false;}
}
public bool isRunning()
{

}

if (bRunning)
{

return true;
}
else { return false; }

public bool isAlive()
{

if (!isFailed() && !isCompleted(»
{

return true;
}
else return false;

}
public T~read getThread()
{

return t;
}
public void startJob()
{

t. Start().:
}
public void failNode()
{

}

t.Abort();
bFailed = true;

public int getNodeID()
{

return intID;
}
pubJir: A"r:lyLisL getData()
{

return dataArray;
}

public void appendDataList(ArrayList dataList)
{

dataArray.AddRange(dataList);
}

144

public void addDataItem(A~rJvl i:t dataRecord)

{
dataArray.Add(dataRecord);

}
public void addExecutableObj(MathExpressionParser obj)
{

executableObj = obj;
}
public void executeJob()
{

Application.DoEvents();
bool bF=false;
if (executableObj != nUll)
{

resultArray.Add(
executableObj.eval(dataArray)failRate)Globals.defaultDataSize/Globals.numNodes)Glo
bals.rnd,out bF»;//this returns a double but resultARRAY

}

}

}
bFailed = bF;
bCompleted = !bFailed;
t.Abort();

public AI'r~\ getResultArray()
{

return resultArray;
}

//Beginning of compiler stuff
public class
{

public MyClassBase()
{

}
public virtual ect eval(Ar"~yList list) double failRate,int

timeSteps)Random rnd) out bool bFailed)//pass data to code here
{

}
}

bFailed = false;
return null;

public class Math
{

sionParspr

MyClassBase myobj = null;
MyClassBase returnObj;
public MathExpressionParser()
{
}
public MyClassBase init(string expr)
{

Microsoft.CSharp.CSharpCodeProvider cp = new
Microsoft.CSharp.CSharpCodeProvider();

System.CodeDom.Compiler.ICodeCompiler ic = cp.CreateCompiler();
System.CodeDom.Compiler.CompilerParameters cpar

= new System.CodeDom.Compiler.CompilerParameters();
cpar.GeneratelnMemory = true;

145

cpar.GenerateExecutable = f~lse;
cpar.ReferencedAssemblies.Add("system.dll");
cpar.ReferencedAssemblies.Add("DGSimulator.exe");
string src = "using System;" +

"using System.Collections;" +
"using System.Threading;" +
"class myclass:DGSimulator.MyClassBase" +
I'{II +

"public myclass() {}" +
"public override object eval(ArrayList dataArray, double

failRate, int timeSteps, Random rnrl"out bool bFailed)" +

}

O'{tl +

expr +
"} }";

I!Compile it
System.CodeDom.Compiler.CompilerResults cr

= ic.CompileAssemblyFromSource(cpar, src);
IICapture any compile errors
foreach (System.CodeDom.Compiler.CompilerError ce in cr.Errors)

MessageBox.Show("Error compiling Job: "+ce.ErrorText);
if (cr.Errors.Count == 0 && cr.CompiledAssembly != nUll)
{

lypp ObjType = cr.CompiledAssembly.GetType("myclass");
try
{

}

if (ObjType != nUll)
{

myobj = (MyClassBase)Activator.Createlnstance(ObjType);
}

catch (Exception ex)
{

MessageBox.Show(ex.Message);
}
return myobj;

else return myobj;

public Arraylist eval(ArrayLi list,double failRate,int timeSteps, Random
rnd, out bool bFailed)lltimesteps is set to base amount of data per node

{
ArrayLl~T output List = null;
bool bF=false;
if (myobj != nUll)
{

double gridFailRate = fail Rate;
output List = v_ l)

myobj.eval(list,faiIRate,timeSteps,rnd,out bF);

}
bFailed = bF;

return output List;
}

}
IIEnd of compiler stuff

146

}

147

APPENDIXB

LATINGRID PROGRAM
FOR CONDOR JOB SUBMISSION

namespace latinGrid
{

class Program
{

static void Main(string[] args) /lnumData numHosts outputSubDir
{

int numData;
int numHosts;
string subdir;
bool mirror = true;

if (args.Length == 3)
{

numData = int.Parse(args[O]);
numHosts = int.Parse(args [1]);
subdir = args[2];

)

f

else
{

}

numData = 50;
numHosts = 50;
subdir = "mirror_test";

if (numHosts > numData) numHosts = numData;

int pI =, (int)(numDaia I numHosts);

String s=null;
String fn=null;
intmirror _counter 1 =0;
int mirror _ counter2=0;
for (int h = 0; h < numHosts; h++)
{

148

1).ToStringO;

fn = "h"+(h+ l).ToStringO;
if (mirror == false)
{

for (int x = 0; x < uumllosts; x++)
{

for (int y = 0; y < pI; y++)
{

s += " c" + (((h + x + Y * numHosts) % numData) +

}

}
}
if (mirror == true)
{

}

pI = (int)(2 * numData) I numHosts);
if (h < nurnHosts I 2)
f
I

}

for (int y = 0; y < pI; y++)
{

mirror_counter 1 ++;
s += " c" + mirror __ counterl.ToStringO;

}

if (h >=numHosb / 2)

for (int y = 0; y < pI; y++)
{

mirror _ counter2++;
s += " c" + mirror_counter2.ToStringO;

string t="FOR %%a IN ("+s+") "+ "DO call callSerial.bat %%a";
Stream Writer sw;

149

Directory. CreateDirectoryC'D: \ \ workingCondorCode \ \ II +subdir);
sw

File.CreateText("D:\\workingCondorCode\\"+subdir+"\\"+fn.TrimStartO+"·bat");
sw.WriteLine(t);
sw.CloseO;
IIWRITE CONDOR SUBMIT FILE THAT CALLS BATCH FILE
sw File.CreateText("D:\\workingCondorCode\\" +

subdir+"\\"+fn.TrimStartO + ".txt");
sw.WriteLine("#Example description file foo.cmd for job fOO");
sw.WriteLine("Executable = D:\\workingCondorCode\\" + subdir +

"\\" + fn.TrimStartO + ".bat");
sw.WriteLineC'Universe = vanilla");
sw.WriteLine("#input = test.data");
sw.WriteLine("output = D:\\workingCondorCode\\" + subdir + "\\" +

fn.TrimStartO + ".out");
sw.WriteLine("error = D·\lworkingCondorCode\\" + subdir + "\\" -I­

fn.TrimStartO + ".err");
sw.WriteLine("Log = D~\\workingCondorCode\\" + subdir + "\\" +

fn.TrimStartO + ".log");

sw. WriteLine("should_)ransfer _ tiles = YES ");
sw.WriteLine("when_lo_transfer_output = ON_EXIT");
sw. WriteLine("transfer _input_files

D:\\workingCondorCode\\seria13.exe, II + "D:\\workingCondorCode\\" + subdir + "\\" +
fn. TrimStartO + II .bat, D:\ \workingCondorCode\\libpl.dll,
D:\\workingCondorCode\\pthreadVC.dll, D:\\workingCondorCode\\callSerial.bat");

sw.WriteLine("Requirements = (OpSys == \"WINNT60'11 && Arch
== \"INTEL\" && HAS_ARENA_SOFTWARE =7= True)");

sw. WriteLine("Queue");
sw.CloseO;
Thread.Sleep(2000);

String commandString = "d: & cd workingCondorCode & cd II +
'mbdir + II & condor __ submit II + fn.TrimStartO + ".txt";!I+ II &
c:\\condor\\bin\\condor_submit.exe II + fn.TrimStartO + ".txt";

System.Diagnostics.Process.Start("cmd,exe", "IC
"+commandString);//"cmd", "/c " + command

s =, null;
Console.Write("This is the console output:

D:\\workingCondorCode\\" + subdir + '\\" + tn.TrimStartO + ".txt Submitted\n\n");
}

Console.ReadKeyO;

}

150

}
}

151

APPENDIXC
GRID FAILURE MODELS

Before discussing a model for the failure of nodes (or hosts) in a grid it is

important to discuss briefly the concept of failure, whether such failures are truly

independent and whether they can be treated as 3uch. The failure rate is defined as

failure per unit time. Many possible definitions of node failure are possible. One might

consider only hardware and network failures, power failures and software bugs as the

sorts of faults that cause failure. In fact, on a traditional computer system it is entirely

appropriate to limit the scope of discussion. For a computer vendor, hardware and

operating system software faults might constitute a failure mode.

C.1 Classic Notions of Failure

Hardware failures often follow the bathtub curve which describes infant mortality

of the hardware, followed by a period of stability and then another rise in failure rates as

hardware ages. Computer chips in particular tend to follow this failure mode.

The Weibull distribution also is often used to describe hardware failure rates

because it can be shifted to show infant mortality followed by a 1flng slope of reasonably

low failure rates. Software failures may be considered as a product of average error size,

error density and workload. Such "classical" reasons for failure might appear at first

blush to be relevant to grid computing.

, 152

h(t)

Infant
Mortality

Random
Failures

Wearout
Failures

)

t

Figure C.l: The bathtub curve is composed of three hazard functions. Adapted from
[125].

Although such occurrences might be lechnically applicable to grid computing,

their effect is insignificant in the relatively short software runtimes when compared to the

magnitude of user intervention elTors. [126] In fact, the Wei bull likely is the most

accurate way to describe the failure rate on an actual grid. However the shape of the

Wei bull ditters depending on how the shape and scale parameters are set. In [127] the

authors note:

"Our 2-parameter Weibull, as mentioned above, has parameters for
shape and scale. Given a set of sample data {X1. .. Xn}, there are many
common techniques for estimating the two parameters based on
some set of sample data, induding visual inspection (e.g. using a
two-dimensional graph) and analytic methods."

Zhang and others looked at reli:tbility modeling in 2009 [86J where they point out

that various authors show that the mean time between failures on high performance

clusters is modeled by a Weibull, "However the shape and scale parameters are different

for each study." Two studies showed that hazard rates decrease with time [127;128]

153

while another study indicated an increasing haLard rate. [129] Some systems were not

actually grids but were clusters. Without further information it is difficult to know how to

accurately proceed with a Weibull model of failure on a simulated grid. When the

Wei bull slope ~ = 1, the Wei bull reduces to an exponential distribution.

C.2 Failure and Independence in a Grid Environment

Consider node failure in the desktop grid environment. A task is sent to a node for

execution. Either the task returns a result within some arbitrary unit of time or it does not.

If it does not return by the deadline then the node can be considered to have failed. Most

likely the exact cause of the failure will remain unknown. What is known is that the

execution host became unavailable for some reason and the task was not completed by

the deadline So the concept of failure is linked with that of availability. In [110] [67J

Kondo and others discuss three types of availability, any of which can cause failure. For a

complete discussion see Section 2.5

In general however, failure of hardware components and transient software

failures can compromise host availability as well as network failure. But the largest by far

are users who leave the grid system either by using their computers for some other task or

by turning it off Bhagwan and others point out in [130] that, "A new intermittent

component of avaiiability is introduced by users periodically leaving and joining the

system again at a later time. Moreover. the set of hosts that comprise the system is

continuously changing as new hosts arrive the system and existing hosts depart it

permanently on a daily basis," In their study of peer to peer systems they find that host

availability is "roughly independent of the availability of other hosts" but is dependent on

154

the time of day as shown in Figure C.2. The authors also consider the availability of one

host given that another is available.

730

6:0

tl"II,.. .'. ~ .; "'! •

"-I'r"" I '.
~,.I:\""'~ ~;r1\ I "¥<.)

iJO I
o I

¥? ;! ~ ~ ~ ~ §
'" '" c- o Loca'i'jllre

c; c; ;; <:>

Figure C.2: The X axis is marked at midnight of the labeled day showing diurnal
patterns in availability. Adapted from [130].

Given hosts X and Y they determine the conditional probability of Y being available

given that X is avai able at a time of day t: P(Y=llX=l). If P(Y= 1/X=l) is equal to

P(Y= l) meaning Y is available whether or not X is available So X and Yare

independent.The authors calculated P(Y= I/X= l) and P(y=l) for every 1 os1 in th peer to

peer network they studied for every hour in the 7 day period. The probability density

function of the difference between the two functions is shown in Figure C.3. Some 30

percent show no difference and 80 percent are between +0.2 and -0.2, showing significant

independence. Correlation is to time of day. Any small sample of hosts should prove to

be ir:clcpendent of one another.

155

.3& '--~---~---~------,

·0.5 J u.s

Figure C.3: Probability density function of the difference between P(Y=lIX=l) and
P(Y=l). Adapted from [130]

1 ~.
0.9 r~t ' !.~~ > ~ :L/· . ~ :: :~ : :~ :]:: : :: : ~ ::: ... ,J

! ~ ,,' ~ ~r·'lI r- ~ :
0.& t·· ··· .. ··,.······ .. ·· ·+l~· ·· ······:.±·;·,;.;,;·· ·,;;.;· · · ... ···--+-..,.,...~:.-:

• 4 ~
D.} - /. ~ ... -.. -.. . -..I 1.:

§ I~ I '
~ 0.6

I
f ······ ... ,.

~ OJ !
;r; ! ..

. -... ... _ ... - .~. -.

. .. _' " :

~ 0.4 ;· ··· ···0 ~ - -..........................

..:. OJ;>! ~'
' 02 ····· .j. i··············

~
. ,r~' : 0.11'" = ,

-1 .• :

01 . i

. '

o.

O-l 0.6 0.8 I) OJ 50 iOa 150 200 ~50 }OO 350
TlSk siz~ (mlllutel on a .5GHz ullchilli!) fa l ure R.lre

~--.----~

Figure C.4: Task failure rate at various task sizes (length of runtime). From [110].

Kondo and others look at a variety of grids in [110] , expanding the model to

examine the temporal structure of host availability and pointing out that "The successful

completion of a task is directly related to the size of availability intervals, i.e. , intervals

between two consecutive periods of unavailability." By examining the intervals of

availability during business and non-business hours they eventually come to the

important result, which is the task failure rate at various task sizes (length of runtime) as

described by Figure C.4.

156

C.3 Failure Models

Based on the above research of functioning peer-to-peer and desl::top systems it

appears that the important factors in determining failure rates on grid systems are

availability intervals, length of task and time vf day. There is little (If no ~orrelation

between the availability of any two hosts in tpe system. Add to that the caveat that hosts

will not be allowed to return to the grid after failure, at least not within the makespan of

the job hoI be simulated in DGSimulator. The purpose is to test the overall job outcome,

the makespan, when individual hosts become available and subtasks fail. Recall that

make-span is the time from the beginning of the first subtask of the job to the end of the

last. The purpose of the model and ensuing simulation is to test software using theRP}>

model against software running on a grid simulator with no redundancy and against

running with course-grained task mitTOring, both of which are commonly used in actual

grid systems.

C.4 Homogeneous Failure Model

The failure rate for each node in the grid is assumed'to be the same as any other.

In other words we have no a priori knowledge of how a particular host will fail, although

we do have some information about how the grid as a whole will perform based on

.0,

studies cf actual grids, The failure of individual hosts is 0 assumed l.O be unif0rm and

random over the makespan of a particular job. The hosts in a grid are either [I,v8il?.ble or

not available at any particular time. Once a node is unavailable it is c!Ssumed to be

unavailable for the remainder of the job. ThIS is justified in the following way: The

157

definition of failure is failure of a job to return by a deadline. Whether a node is

available, becomes unavailable and then becomes available again to complete the job, or

whether it remains available the entire time does not matter in terms of job failure or

success. If the deadline is met then the job succeeds. If it is not met then the job fails. If

the job fails then the node can be assumed to be unavailable for the purposes of joe

completion. In fact, in actual systems, node availability is measured using applicaticn

traces, whether applications meet deadlines.

Time could be modeled using the internal clock of the computer or as a time step

in a program. Because of the yes or no nature of availability of a particular host in a

particular timestep it seems to be appropriate to model the failure rate, the rate at which

hosts become unavailable, as a Bernoulli Process, a series of Bernoulli trials where

success (p) is equal to a node failure in a particular timestep. Failure (q) is equal to a node

being availability in a particular timestep. Basically the availability may be modeled as a

binomial distribution.

(C.l)
(
nk,·)=_n!

k!(n - k)!

Binomial Probability Mass Function Where n is number of trials, k the number of

successes and p the probability of success.

The probability of having k nod;: failures in n nodes failing with probability p is

indicated by Equation C.I. In terms of accomplishing this in practice, a pseudo random

number would be generated at each timestep driving a failure function. The following, for

example, would fail the host with a probability of lin:

158

FailO

{

}

if (rand(n) == int(n12)) then return true

else return false

The implication of modeling node failures as individuai Bernoulli trials is that the

probability of failure doesn't change but remains constant. The intention is to test all

methods for reliability, including the RPP paradigm and any variants of it, under

controlled conditions of node failure. Each time the probability is changed, .1 completely

new and separate seri.es of Bernoulli trials will be conducted over a controlled numb·~r of

time steps T> makespa..'1 M. Nodes will be assumed to fail at the same probability iii each

trial but with differing probabilities in different trials. Therefore changes in probability of

individual node failure will take place "manually" rather than automatically according to

time of day a~ part of the computer simulation.

Task length is another issue of importance in simulating the effects of host failure.

Failure results when a task fails to complete or. time The longer the task, the greater the

probability that a node will become unavailable during task execution. Variatjon of task

length is of interest in determining the effectiveness of the RPP paradigm bU1 does .not

influence design ()fthe basic model.

159

c.s Other Failure Models

Time o[Day: Of course there an: othel ways to model the failure of individual

nodes. As mentioned previously, a failure rate could be assigned according to time of day

in the simulation in an attempt to model the changing failure rate on an actual running

grid. In this model, each node would have the same rate of failure which would change

according to time of day and might be modeled '.vith a Wei bull distribution.

The benefit of this sort of model would be to preclude questions about how

realistic the simulation in fact is. In this model, th~ failure rate in a particular time step

would be set to increase or decrease depending on the simulated time of day. All actual

grids haveditfering schedules of use IS !Clnd differing rates of change thmughout the day in

the failure rate. Approximation of aggregate failure rate is ~nailable from a handful of

published sources. Approximation of the change in failure depending ou t.ime 01 day

would be more diffi.cult to obtain, and is not the essential point of this research. So the

change in failure rate of any individual grid would have to be arbitrary because data

likely would not be available. Also, it is difficult to see how a steadily decreasing or

increasing change in the failure rate could affect the outcome of a RPP trial. An

increasing failure rate makes it more likely that replicants of data will be destroyed and

the job will last longer. A decreasing rate of failure makes it less likely. Also, in terms of

~btaining a statistic, this model is similar to the Bernoulli. In essence the mean or

aggregate probabilIty of failure for the life of the job is the same [or each machine even

though individual machine probability changes at every timest~p. In any case job failure

can be adequately simulated and more easily controlled by doing more than one run in a

160

model with static probability of failure rather than allowing the probability to change

with each timestep.

A Priori Availability and Failure: Various systems have been described in

research involving grid scheduling that attempt to use knowledge about past availability

or even job success to determine which job to send to a particular node. Such a model

allows scheduling heuristics such as longest job to best node or many others. Using a

priori information lends itself to modeling on a simulated grid system but would require a

priori knowledge about each machine in the grid. Such information is at best difficult to

obtain and often impossible. Again, setting appropriate parameters for the Weibull based

on actual grid opt'ration might provide the best model of reliability. In fact. replicatIOn

strategies such as the RPP paradigm me an attempt to obtain reliability without such

knowledge.

In any case, it would be possible to somewhat arbitrarily assign an individual

failure relte to each machine on the grid based on some a priori knowledge about the

failur~ rates of particular machines. Rate of failure at each timestep \\ould be geared

toward past performance of the machine.

The probability distribution of availability, the times between failures, created by

such a uniform set of random failures on each machine could be modeled by the

exponential distribution.

, {,\c- At

(C.2) ftx;'\) = 0

161

Equation C.2 defines the density function of an exponential distribution where A

represents the failure rate.

In summary, considering the independence of failure among executior. hosts in a

grid and the nature of the outcome being tested - task failure in the face of replication

and data permutation - a reliability model that includes an exponential distribution secms

reasonable.

162

Name

Address

Education

Publications

CURRICULU-M VITAE

Nathan Patrick Johnson

Dahlem Supercomputer Lab
Vogt 204 Speed School of Engineering
University of LOUIsville
Louisville, KY 40292

Masters of Science, Computer Science, University of Louisville,
Speed Scientific School, 2002
Bachelor of Arts, Journalism, Western Kentucky University

Nathan P. Johnson, James H. Graham, " Predicting Makespan with
Latin Square Replicatic-T1 on Computational Grids," 25 th IntI.
Conference on Computers and Their Applications (CATA-201O).

Nathan P. Johnson, James H. Graham: "Reliability thr0ugh
Replication on Desktop Grids," ISCA 22nd International
Conference on Parallel and Distributed Computing and
Communication Systems PDCCS-2009), 83-90

N. Johnson, J. Graham, "An ApplicativIl of Grid Computing to
Pharmacophore Discovery Using Inductive Logic Programming,"
21 st IntI. Conference on Computers and Their .Applications
(CATA-2006), Seattle, WA, March 2006, pp. 418-423.

N. Johnson, "A Fuzzy System For Grading Symbolic Math
Problems," accepted for 11 th ICIS Conference OIl Emerging
Technologies, July, 18-20. 2002

Work Experience 2000 - present UnlYCIsity of Louisville, Louisville, KY
Assistant Director, Dahlem Supercomputer Lab
(Linux System Administrator)

163

• Installed and administered SUSE linux Adelie cluster wIth dual
head 4 terabyte NAS with 19 dual processor nodes, the rnain
server for Speed Engineering School.

• Administered Kybriu Cluster used by various schools running
bioinformatil:s programs. Had NAS 42 CPUs wIth database
software, web services etc.

• Installed 256 processor cluster for physics condensed matter
group.

• Administered 112 processor IBM RS6000 SP2 running AIX
• Administered/in;~ta!l[:ijon of26 processor Linux cluster running

Redhat Linux
• Installed numerous other servers and systems including

database and license servers
• Administered/installation of access grid node internet

conference system
• Worked extensively with users to port/write program~ in C and

Fortran to run on parallel systems
• Wrote/ported numerous C and BASIC programs for users on

Unix and Windows systems
• Installed numerous software packages including Ansys. ideas.

Fluent, Gaussian, Amber, PBS, MPICH, Sendmail and a.
variety of others

• Taught several seminars in parallel programming using MPI
• Aided in decision-making for hardware upgrades and

administratior: of the Dahlem Supercomputer Lab
• Worked with vendors and obtained quotes and specifications

for various sy~tems

Contract Configuration Management Database system
Vanderlande Inc. United Parcel Service Hub 2000 project

• 2002: The system allowed multiple views of the hundreds of
devices in the UPS Hub 2000 sorting system and produced an
output file suitable for use with thetr Sun supercomputer
routing system

1999-2000 Indiana University Southeast, New Albany, IN
Visiting Lecturer

• Taught C20 1 Introduction to Computer Programming with
Visual Basic

164

• C311 Survey of Progr~mming Languages (Design of
Computer Languages using a variety of languages to show
design principles)

• CI06 Introduction to Computers and Their Use

1996-1999 Indiana University Southeast, New Albany, IN
Adjunct Faculty

• Taught C201 Introduction to Computer Program:ning with
Visual Basic

• C203 Introduction to COBOL
• C320 Advanced COBOL
• CI06 Introduction to Computers and Their Use
• CIOO Microsi)ft Word 97, Access, Excel, PowerPoint,

Windows
• CIOO Novel \\lordPelfect, Paradox, Quattro Pro for Windows

1995-1997 Consultant States News Service, a Washington,
D.C. based radio Hews service suppor~ing reporters in 50 states
transmit stories to the main system

1990-1992 The News-Enterprise, Elizabethtown, KY
Assistant Editor

• Supervised reporters and photographers
• Edited locally produced copy
• Served on the Editorial Board

Opinion Page Editor

• Editorial writing
• Opinion page con1ent
• Column writing
• Editing letters and reader hotline

1984-1989 Hattiesburg American, Hattiesburg, MS
Weekend News Editor

• Special projects reporting
• Headed computer graphics department including training at

Gannett Graphics Network in Washmgton, D.C

165

Awards
and Honors

• Saturday and Sunday front page layout
• Copy editing/headline \\<Titing

Reporter

• Government rcporter covering state legislature, city-county
government

• Wrote political news analysis
• Wrote variety of feature pieces

1982-1984 Kentucky Standard, Bardstown, KY
Reporter

• Covered courts, county and city government, \\Tote features,
shot and photos, did some page layout and editing

1981 Kentucky Standard, Bardstown, KY
Reporting intern

1980-1982 College Heights Herald, Bowling Green, KY
Reporter/Copy Editor/Chief (administration and
budget) reporter

• Newspaper won the national Pacemaker award

• Reviewer 2009, PDCCS Conference, Louisville, KY
• Graduate Deans Citation, 2002, UniversIty of

Louisville
• 2nd place Best Column, 1992 Kentucky Press Association" 1 st

place, Best General News Story, 1991 Kentucky Press
Association; 1 st place, Best Front Page Layout, 1990
Mississippi Press Association; 2nd place, Best Feature Story,
1986 Mississippi Press Association; 2nd place, Best
Investigative: st(lry. 1983 Kentucky Press Association: 3rd
place. news slory, honorable mention, column. 1982 Kentucky
Press Associ:l~ioll, 1 st place feature writing, 1981 Kentucky
Intercollegiate Press Association, 1 st place feature story, 1979
University of Kentucky Community College system and other
intra-company and staff awards

• National merit semifinalist
• 1987 President South Mississippi Chapter of the Society of

Professional loumalists

166

Languages

Systems

Speed projects

C#, C/C++, Visaal C-H, Visual Basic, SQL COBOL some
Fortran, some Java, Bash and A WK script, Message Passing
Interface for parallel systems, Maple programming language, 3D
graphics programming with OpenGL, ODBC, JDBC, some
Smalltalk ModSim, LIsp on Linux or Windows platforms

2002: Master's Thesis -- "A System For Grading Symbolic
Mathematical Expressions 'Using Maple With Fuzzy Sets" -­
Compared t,,\{) symhoEc mathematical expression and returned the
degree of similarity using Maple Programming Language, C++,
Java with ODBC aTld JOBe as well as artificial intelligence
techniques

• 1997: Maple Assisted Math Grading Program
• Primarily responsible for the central control module and client

interface for a Maple assisted math grading system.

• Network Search Using Multiple Networked ProceSS(lrs ill
UNIX -- My partner and I used Parallel Virtual Machine to
search a theoretical network. PVM is a C library that allows
remote procedure calls. The project spawned Jobs among the
computers on an lIP system at the University of Louisville in
an attempt to find the fastest route from one point to another
through a simulated eetwork. The purpose was to work toward
establishing n::al-tirne lOutes for multimedia.

• Topological Surface Rendering -- I designed and implemented
a system for converting V.S. Geological Survey elevatIOn tIles
into an accurate three dimensional rendering of the earth's
surface. Specifi.cally I used Visual C++ and OpenGL to render
the topology of Louisville. KY in three dimensions.

• Student Advising Sy'>tem -- My primary responsibility was
writing a Visual C++ client interface to allow academic
advisors to view a student's academic requirements,
prerequisites completed and other cours(' ini'ormatitT. stored in
a Microsoft 5QL Server database. i also p:lrtk~pated in the
database design. The client module used ODBC to connect to
the database,

. 167· .

	Enhancing reliability with Latin Square redundancy on desktop grids.
	Recommended Citation

	tmp.1423685735.pdf.62ZTA

