1,015 research outputs found

    Efficient and Linear CMOS Power Amplifier and Front-end Design for Broadband Fully-Integrated 28-GHz 5G Phased Arrays

    Get PDF
    Demand for data traffic on mobile networks is growing exponentially with time and on a global scale. The emerging fifth-generation (5G) wireless standard is being developed with millimeter-wave (mm-Wave) links as a key technological enabler to address this growth by a 2020 time frame. The wireless industry is currently racing to deploy mm-Wave mobile services, especially in the 28-GHz band. Previous widely-held perceptions of fundamental propagation limitations were overcome using phased arrays. Equally important for success of 5G is the development of low-power, broadband user equipment (UE) radios in commercial-grade technologies. This dissertation demonstrates design methodologies and circuit techniques to tackle the critical challenge of key phased array front-end circuits in low-cost complementary metal oxide semiconductor (CMOS) technology. Two power amplifier (PA) proof-of-concept prototypes are implemented in deeply scaled 28- nm and 40-nm CMOS processes, demonstrating state-of-the-art linearity and efficiency for extremely broadband communication signals. Subsequently, the 40 nm PA design is successfully embedded into a low-power fully-integrated transmit-receive front-end module. The 28 nm PA prototype in this dissertation is the first reported linear, bulk CMOS PA targeting low-power 5G mobile UE integrated phased array transceivers. An optimization methodology is presented to maximizing power added efficiency (PAE) in the PA output stage at a desired error vector magnitude (EVM) and range to address challenging 5G uplink requirements. Then, a source degeneration inductor in the optimized output stage is shown to further enable its embedding into a two-stage transformer-coupled PA. The inductor helps by broadening inter-stage impedance matching bandwidth, and helping to reduce distortion. Designed and fabricated in 1P7M 28 nm bulk CMOS and using a 1 V supply, the PA achieves +4.2 dBm/9% measured Pout/PAE at −25 dBc EVM for a 250 MHz-wide, 64-QAM orthogonal frequency division multiplexing (OFDM) signal with 9.6 dB peak-to-average power ratio (PAPR). The PA also achieves 35.5%/10% PAE for continuous wave signals at saturation/9.6dB back-off from saturation. To the best of the author’s knowledge, these are the highest measured PAE values among published K- and K a-band CMOS PAs to date. To drastically extend the communication bandwidth in 28 GHz-band UE devices, and to explore the potential of CMOS technology for more demanding access point (AP) devices, the second PA is demonstrated in a 40 nm process. This design supports a signal radio frequency bandwidth (RFBW) >3× the state-of-the-art without degrading output power (i.e. range), PAE (i.e. battery life), or EVM (i.e. amplifier fidelity). The three-stage PA uses higher-order, dual-resonance transformer matching networks with bandwidths optimized for wideband linearity. Digital gain control of 9 dB range is integrated for phased array operation. The gain control is a needed functionality, but it is largely absent from reported high-performance mm-Wave PAs in the literature. The PA is fabricated in a 1P6M 40 nm CMOS LP technology with 1.1 V supply, and achieves Pout/PAE of +6.7 dBm/11% for an 8×100 MHz carrier aggregation 64-QAM OFDM signal with 9.7 dB PAPR. This PA therefore is the first to demonstrate the viability of CMOS technology to address even the very challenging 5G AP/downlink signal bandwidth requirement. Finally, leveraging the developed PA design methodologies and circuits, a low power transmit-receive phased array front-end module is fully integrated in 40 nm technology. In transmit-mode, the front-end maintains the excellent performance of the 40 nm PA: achieving +5.5 dBm/9% for the same 8×100 MHz carrier aggregation signal above. In receive-mode, a 5.5 dB noise figure (NF) and a minimum third-order input intercept point (IIP₃) of −13 dBm are achieved. The performance of the implemented CMOS frontend is comparable to state-of-the-art publications and commercial products that were very recently developed in silicon germanium (SiGe) technologies for 5G communication

    Four-element phased-array beamformers and a self-interference canceling full-duplex transciver in 130-nm SiGe for 5G applications at 26 GHz

    Get PDF
    This thesis is on the design of radio-frequency (RF) integrated front-end circuits for next generation 5G communication systems. The demand for higher data rates and lower latency in 5G networks can only be met using several new technologies including, but not limited to, mm-waves, massive-MIMO, and full-duplex. Use of mm-waves provides more bandwidth that is necessary for high data rates at the cost of increased attenuation in air. Massive-MIMO arrays are required to compensate for this increased path loss by providing beam steering and array gain. Furthermore, full duplex operation is desirable for improved spectrum efficiency and reduced latency. The difficulty of full duplex operation is the self-interference (SI) between transmit (TX) and receive (RX) paths. Conventional methods to suppress this interference utilize either bulky circulators, isolators, couplers or two separate antennas. These methods are not suitable for fully-integrated full-duplex massive-MIMO arrays. This thesis presents circuit and system level solutions to the issues summarized above, in the form of SiGe integrated circuits for 5G applications at 26 GHz. First, a full-duplex RF front-end architecture is proposed that is scalable to massive-MIMO arrays. It is based on blind, RF self-interference cancellation that is applicable to single/shared antenna front-ends. A high resolution RF vector modulator is developed, which is the key building block that empowers the full-duplex frontend architecture by achieving better than state-of-the-art 10-b monotonic phase control. This vector modulator is combined with linear-in-dB variable gain amplifiers and attenuators to realize a precision self-interference cancellation circuitry. Further, adaptive control of this SI canceler is made possible by including an on-chip low-power IQ downconverter. It correlates copies of transmitted and received signals and provides baseband/dc outputs that can be used to adaptively control the SI canceler. The solution comes at the cost of minimal additional circuitry, yet significantly eases linearity requirements of critical receiver blocks at RF/IF such as mixers and ADCs. Second, to complement the proposed full-duplex front-end architecture and to provide a more complete solution, high-performance beamformer ICs with 5-/6- b phase and 3-/4-b amplitude control capabilities are designed. Single-channel, separate transmitter and receiver beamformers are implemented targeting massive- MIMO mode of operation, and their four-channel versions are developed for phasedarray communication systems. Better than state-of-the-art noise performance is obtained in the RX beamformer channel, with a full-channel noise figure of 3.3 d

    Quadrature Phase-Domain ADPLL with Integrated On-line Amplitude Locked Loop Calibration for 5G Multi-band Applications

    Get PDF
    5th generation wireless systems (5G) have expanded frequency band coverage with the low-band 5G and mid-band 5G frequencies spanning 600 MHz to 4 GHz spectrum. This dissertation focuses on a microelectronic implementation of CMOS 65 nm design of an All-Digital Phase Lock Loop (ADPLL), which is a critical component for advanced 5G wireless transceivers. The ADPLL is designed to operate in the frequency bands of 600MHz-930MHz, 2.4GHz-2.8GHz and 3.4GHz-4.2GHz. Unique ADPLL sub-components include: 1) Digital Phase Frequency Detector, 2) Digital Loop Filter, 3) Channel Bank Select Circuit, and 4) Digital Control Oscillator. Integrated with the ADPLL is a 90-degree active RC-CR phase shifter with on-line amplitude locked loop (ALL) calibration to facilitate enhanced image rejection while mitigating the effects of fabrication process variations and component mismatch. A unique high-sensitivity high-speed dynamic voltage comparator is included as a key component of the active phase shifter/ALL calibration subsystem. 65nm CMOS technology circuit designs are included for the ADPLL and active phase shifter with simulation performance assessments. Phase noise results for 1 MHz offset with carrier frequencies of 600MHz, 2.4GHz, and 3.8GHz are -130, -122, and -116 dBc/Hz, respectively. Monte Carlo simulations to account for process variations/component mismatch show that the active phase shifter with ALL calibration maintains accurate quadrature phase outputs when operating within the frequency bands 600MHz-930MHz, 2.4GHz-2.8GHz and 3.4GHz-4.2GHz

    Interpolation based wideband beamforming frontends for 5G millimetre wave communication

    Get PDF

    Analysis and design of wideband voltage controlled oscillators using self-oscillating active inductors.

    Get PDF
    Voltage controlled oscillators (VCOs) are essential components of RF circuits used in transmitters and receivers as sources of carrier waves with variable frequencies. This, together with a rapid development of microelectronic circuits, led to an extensive research on integrated implementations of the oscillator circuits. One of the known approaches to oscillator design employs resonators with active inductors electronic circuits simulating the behavior of passive inductors using only transistors and capacitors. Such resonators occupy only a fraction of the silicon area necessary for a passive inductor, and thus allow to use chip area more eectively. The downsides of the active inductor approach include: power consumption and noise introduced by transistors. This thesis presents a new approach to active inductor oscillator design using selfoscillating active inductor circuits. The instability necessary to start oscillations is provided by the use of a passive RC network rather than a power consuming external circuit employed in the standard oscillator approach. As a result, total power consumption of the oscillator is improved. Although, some of the active inductors with RC circuits has been reported in the literature, there has been no attempt to utilise this technique in wideband voltage controlled oscillator design. For this reason, the dissertation presents a thorough investigation of self-oscillating active inductor circuits, providing a new set of design rules and related trade-os. This includes: a complete small signal model of the oscillator, sensitivity analysis, large signal behavior of the circuit and phase noise model. The presented theory is conrmed by extensive simulations of wideband CMOS VCO circuit for various temperatures and process variations. The obtained results prove that active inductor oscillator performance is obtained without the use of standard active compensation circuits. Finally, the concept of self-oscillating active inductor has been employed to simple and fast OOK (On-Off Keying) transmitter showing energy eciency comparable to the state of the art implementations reported in the literature

    Digitally-Assisted RF IC Design Techniques for Reliable Performance

    Get PDF
    Semiconductor industries have competitively scaled down CMOS devices to attain benefits of low cost, high performance, and high integration density in digital integrated circuits. On the other hand, deep scaled technologies inextricably accompany a large process variation, supply voltage scaling, and reduction in breakdown voltages of transistors. When it comes to RF/analog IC design, CMOS scaling adversely affects its reliability due to large performance variation and limited linearity. For addressing the issues related to variations and linearity, this research proposes the following digitally-assisted RF circuit design techniques: self-calibration system for RF phase shifters and wide dynamic range LNAs. Due to PVT variations in scaled technologies, RF phase shifter design becomes more challenging with device scaling. In the proposed self-calibration topology, we devised a novel phase sensing method and a pulsewidth-to-digital converter. The feedback controller is also designed in digital domain, which is robust to PVT variations. These unique techniques enable a sensing/control loop tolerant to PVT variations. The self-calibration loop was applied to a 7 to 13GHz phase shifter. With the calibration, the estimated phase error is less than 2 degrees. To overcome the linearity issue in scaled technologies, a digitally-controlled dual-mode LNA design is presented. A narrowband (5.1GHz) and a wideband (0.8 to 6GHz) LNA can be toggled between high-gain and high-linearity modes by digital control bits according to the input signal power. A compact design, which provides negligible performance degradation by additional circuitry, is achieved by sharing most of the components between the two operation modes. The narrowband and the wideband LNA achieves an input-referred P1dB of -1.8dBm and +4.2dBm, respectively

    A verified equivalent-circuit model for slotwaveguide modulators

    Get PDF
    We formulate and experimentally validate an equivalent-circuit model based on distributed elements to describe the electric and electro-optic (EO) properties of travellingwave silicon-organic hybrid (SOH) slot-waveguide modulators. The model allows to reliably predict the small-signal EO frequency response of the modulators exploiting purely electrical measurements of the frequency-dependent RF transmission characteristics. We experimentally verify the validity of our model, and we formulate design guidelines for an optimum trade-off between optical loss due to free-carrier absorption (FCA), electro-optic bandwidth, and {\pi}-voltage of SOH slot-waveguide modulators

    Analysis and Design of a Sub-THz Ultra-Wideband Phased-Array Transmitter

    Get PDF
    This thesis investigates circuits and systems for broadband high datarate transmitter systems in the millimeter-wave (mm-wave) spectrum. During the course of this dissertation, the design process and characterization of a power efficient and wideband binary phase-shift keying (BPSK) transmitter integrated circuit (IC) with local oscillator (LO) frequency multiplication and 360° phase control for beam steering is studied. All required circuit blocks are designed based on the theoretical analysis of the underlying principles, optimized, fabricated and characterized in the research laboratory targeting low power consumption, high efficiency and broadband operation. The phase-controlled push-push (PCPP) architecture enabling frequency multiplication by four in a single stage is analytically studied and characterized finding an optimum between output power and second harmonic suppression depending on the input amplitude. A PCPP based LO chain is designed. A circuit is fabricated establishing the feasibility of this architecture for operation at more than 200 GHz. Building on this, a second circuit is designed, which produces among the highest saturated output powers at 2 dBm. At less than 100 mW of direct current (DC) power consumption, this results in a power-added efficiency (PAE) of 1.6 % improving the state of the art by almost 30 %. Phase-delayed and time-delayed approaches to beam steering are analyzed, identifying and discussing design challenges like area consumption, signal attenuation and beam squint. A 60 GHz active vector-sum phase-shifter with high gain of 11.3 dB and output power of 5 dBm, improving the PAE of the state of the art by a factor of 30 achieving 6.29 %, is designed. The high gain is possible due to an optimization of the orthogonal signal creation stage enabled by studying and comparing different architectures leading to a trade off of lower signal attenuation for higher area consumption in the chosen electromagnetic coupler. By combining this with a frequency quadrupler, a phase steering enabled LO chain for operation at 220 GHz is created and characterized, confirming the preceding analysis of the phase-frequency relation during multiplication. It achieves a power gain of 21 dB, outperforming comparable designs by 25 dB. This allows the combination of phase control, frequency multiplication and pre-amplification. The radio frequency (RF) efficiency is increased 40-fold to 0.99 %, with a total power consumption of 105 mW. Motivated by the distorting effect of beam squint in phase-delayed broadband array systems, a novel analog hybrid beam steering architecture is devised, combining phase-delayed and time-delayed steering with the goal of reducing the beam squint of phase-delayed systems and large area consumption of time-delayed circuits. An analytical design procedure is presented leading to the research finding of a beam squint reduction potential of more than 83 % in an ideal system. Here, the increase in area consumption is outweighed by the reduction in beam squint. An IC with a low power consumption of 4.3 mW has been fabricated and characterized featuring the first time delay circuit operating at above 200 GHz. By producing most of the beam direction by means of time delay the beam squinting can be reduced by more than 75 % in measurements while the subsequent phase shifter ensures continuous beam direction control. Together, the required silicon area can be reduced to 43 % compared to timedelayed systems in the same frequency range. Based on studies of the optimum signal feeding and input matching of a Gilbert cell, an ultra-wideband, low-power mixer was designed. A bandwidth of more than 100 GHz was achieved exceeding the state of the art by 23 %. With a conversion gain of –13 dB, this enables datarates of more than 100 Gbps in BPSK operation. The findings are consolidated in an integrated transmitter operating around 246 GHz doubling the highest published measured datarates of transmitters with LO chain and power amplifier in BPSK operation to 56 Gbps. The resulting transmitter efficiency of 7.4 pJ/bit improves the state of the art by 70 % and 50 % over BPSK and quadrature phaseshift keying (QPSK) systems, respectively. Together, the results of this work form the basis for low-power and efficient next-generation wireless applications operating at many times the datarates available today.:Abstract 3 Zusammenfassung 5 List of Symbols 11 List of Acronyms 17 Prior Publications 19 1. Introduction 21 1.1. Motivation........................... 21 1.2. Objective of this Thesis ................... 25 1.3. Structure of this Thesis ................... 27 2. Overview of Employed Technologies and Techniques 29 2.1. IntegratedCircuitTechnology................ 29 2.2. Transmission Lines and Passive Structures . . . . . . . . 35 2.3. DigitalModulation ...................... 41 3. Frequency Quadrupler 45 3.1. Theoretical Analysis of Frequency Multiplication Circuits 45 3.2. Phase-Controlled Push-Push Principle for Frequency Quadrupling.......................... 49 3.3. Stand-alone Phase-Controlled Push-Push Quadrupler . 60 3.4. Phase-Controlled Push-Push Quadrupler based LO-chain with High Output Power ............... 72 9 4. Array Systems and Dynamic Beam Steering 91 4.1. Theoretical Analysis of BeamSteering. . . . . . . . . . . 95 4.2. Local Oscillator Phase Shifting with Vector-Modulator PhaseShifters......................... 107 4.3. Hybrid True-Time and Phase-Delayed Beam Steering . 131 5. Ultra-Wide Band Modulator for BPSK Operation 155 6. Broadband BPSK Transmitter System for Datarates up to 56 Gbps 167 6.1. System Architecture ..................... 168 6.2. Measurement Technique and Results . . . . . . . . . . . 171 6.3. Summary and performance comparison . . . . . . . . . 185 7. Conclusion and Outlook 189 A. Appendix 195 Bibliography 199 List of Figures 227 Note of Thanks 239 Curriculum Vitae 241Diese Dissertation untersucht Schaltungen und Systeme fĂŒr breitbandige Transmittersysteme mit hoher Datenrate im Millimeterwellen (mm-wave) Spektrum. Im Rahmen dieser Arbeit werden der Entwurfsprozess und die Charakterisierung eines leistungseffizienten und breitbandigen integrierten Senders basierend auf binĂ€rer Phasenumtastung (BPSK) mit Frequenzvervielfachung des Lokaloszillatorsignals und 360°-Phasenkontrolle zur Strahlsteuerung untersucht. Alle erforderlichen Schaltungsblöcke werden auf Grundlage von theoretischen Analysen der zugrundeliegenden Prinzipien entworfen, optimiert, hergestellt und im Forschungslabor charakterisiert, mit den Zielen einer niedrigen Leistungsaufnahme, eines hohen Wirkungsgrades und einer möglichst großen Bandbreite. Die phasengesteuerte Push-Push (PCPP)-Architektur, welche eine Frequenzvervierfachung in einer einzigen Stufe ermöglicht, wird analytisch untersucht und charakterisiert. Dabei wird ein Optimum zwischen Ausgangsleistung und UnterdrĂŒckung der zweiten Harmonischen des Eingangssignals in AbhĂ€ngigkeit von der Eingangsamplitude gefunden. Es wird eine LO-Kette auf PCPP-Basis entworfen. Eine Schaltung wird prĂ€sentiert, die die Machbarkeit dieser Architektur fĂŒr den Betrieb bei mehr als 200 GHz nachweist. Darauf aufbauend wird eine zweite Schaltung entworfen, die mit 2 dBm eine der höchsten publizierten gesĂ€ttigten Ausgangsleistungen erzeugt. Mit einer Leistungsaufnahme von weniger als 100mW ergibt sich ein Leistungswirkungsgrad (PAE) von 1.6 %, was den Stand der Technik um fast 30 % verbessert. Es werden phasenverzögerte und zeitverzögerte AnsĂ€tze zur Steuerung der Strahlrichtung analysiert, wobei Entwicklungsherausforderungen wie FlĂ€chenverbrauch, SignaldĂ€mpfung und Strahlschielen identifiziert und diskutiert werden. Ein aktiver Vektorsummen-Phasenschieber mit hoher VerstĂ€rkung von 11.3 dB und einer Ausgangsleistung von 5 dBm, der mit einer PAE von 6.29 % den Stand der Technik um den Faktor 30 verbessert, wird entworfen. Die hohe VerstĂ€rkung ist zum Teil auf eine Optimierung der orthogonalen Signalerzeugungsstufe zurĂŒckzufĂŒhren, die durch die Untersuchung und den Vergleich verschiedener Architekturen ermöglicht wird. Bei der Entscheidung fĂŒr einen elektromagnetischen Koppler rechtfertigt die geringere SignaldĂ€mpfung einen höheren FlĂ€chenverbrauch. Durch die Kombination mit einem Frequenzvervierfacher wird eine LO-Kette mit Phasensteuerung fĂŒr den Betrieb bei 220 GHz geschaffen und charakterisiert, was die vorangegangene Analyse der Phasen-FrequenzBeziehung wĂ€hrend der Multiplikation bestĂ€tigt. Sie erreicht einen Leistungsgewinn von 21 dB und ĂŒbertrifft damit vergleichbare Designs um 25dB. Dies ermöglicht die Kombination von Phasensteuerung, Frequenzvervielfachung und VorverstĂ€rkung. Der HochfrequenzWirkungsgrad wird um das 40-fache auf 0.99 % bei einer Gesamtleistungsaufnahme von 105 mW gesteigert. Motiviert durch den verzerrenden Effekt des Strahlenschielens in phasengesteuerten Breitbandarraysystemen, wird eine neuartige analoge hybride Strahlsteuerungsarchitektur untersucht, die phasenverzögerte und zeitverzögerte Steuerung kombiniert. Damit wird sowohl das Strahlenschielen phasenverzögerter Systeme als auch der große FlĂ€chenverbrauch zeitverzögerter Schaltungen reduziert. Es wird ein analytisches Entwurfsverfahren vorgestellt, das zu dem Forschungsergebnis fĂŒhrt, dass in einem idealen System ein Potenzial zur Reduktion des Strahlenschielens von mehr als 83 % besteht. Dabei wird die Zunahme des FlĂ€chenverbrauchs durch die Verringerung des Strahlenschielens aufgewogen. Es wird ein IC mit einer geringen Leistungsaufnahme von 4.3mW hergestellt und charakterisiert. Dabei wird die erste Zeitverzögerungsschaltung entworfen, die bei ĂŒber 200 GHz arbeitet. Durch die Erzeugung eines Großteils der Strahlrichtung mittels Zeitverzögerung kann das Schielen des Strahls bei Messungen um mehr als 75% reduziert werden, wĂ€hrend der nachfolgende Phasenschieber eine kontinuierliche Steuerung der Strahlrichtung gewĂ€hrleistet. Insgesamt kann die benötigte SiliziumflĂ€che im Vergleich zu zeitverzögerten Systemen im gleichen Frequenzbereich auf 43 % reduziert werden. Auf der Grundlage von Studien zur optimalen Signaleinspeisung und Eingangsanpassung einer Gilbert-Zelle wird ein Ultrabreitband-Mischer mit geringem Stromverbrauch entworfen. Dieser erreicht eine Ausgangsbandbreite von mehr als 100 GHz, die den Stand der Technik um 23% ĂŒbertrifft. Bei einer WandlungsverstĂ€rkung von –13dB ermöglicht dies Datenraten von mehr als 100 Gbps im BPSK-Betrieb. Die Erkenntnisse werden in einem integrierten, breitbandigen Sender konsolidiert, der um 246 GHz arbeitet und die höchsten veröffentlichten gemessenen Datenraten fĂŒr Sender mit LO-Signalkette und LeistungsverstĂ€rker im BPSK-Betrieb auf 56 Gbps verdoppelt. Die daraus resultierende Transmitter-Effizienz von 7.4 pJ/bit verbessert den Stand der Technik um 70 % bzw. 50 % gegenĂŒber BPSKund Quadratur Phasenumtastung (QPSK)-Systemen. Zusammen bilden die Ergebnisse dieser Arbeit die Grundlage fĂŒr stromsparende, effiziente, mobile Funkanwendungen der nĂ€chsten Generation mit einem Vielfachen der heute verfĂŒgbaren Datenraten.:Abstract 3 Zusammenfassung 5 List of Symbols 11 List of Acronyms 17 Prior Publications 19 1. Introduction 21 1.1. Motivation........................... 21 1.2. Objective of this Thesis ................... 25 1.3. Structure of this Thesis ................... 27 2. Overview of Employed Technologies and Techniques 29 2.1. IntegratedCircuitTechnology................ 29 2.2. Transmission Lines and Passive Structures . . . . . . . . 35 2.3. DigitalModulation ...................... 41 3. Frequency Quadrupler 45 3.1. Theoretical Analysis of Frequency Multiplication Circuits 45 3.2. Phase-Controlled Push-Push Principle for Frequency Quadrupling.......................... 49 3.3. Stand-alone Phase-Controlled Push-Push Quadrupler . 60 3.4. Phase-Controlled Push-Push Quadrupler based LO-chain with High Output Power ............... 72 9 4. Array Systems and Dynamic Beam Steering 91 4.1. Theoretical Analysis of BeamSteering. . . . . . . . . . . 95 4.2. Local Oscillator Phase Shifting with Vector-Modulator PhaseShifters......................... 107 4.3. Hybrid True-Time and Phase-Delayed Beam Steering . 131 5. Ultra-Wide Band Modulator for BPSK Operation 155 6. Broadband BPSK Transmitter System for Datarates up to 56 Gbps 167 6.1. System Architecture ..................... 168 6.2. Measurement Technique and Results . . . . . . . . . . . 171 6.3. Summary and performance comparison . . . . . . . . . 185 7. Conclusion and Outlook 189 A. Appendix 195 Bibliography 199 List of Figures 227 Note of Thanks 239 Curriculum Vitae 24

    Wireless wire - ultra-low-power and high-data-rate wireless communication systems

    Get PDF
    With the rapid development of communication technologies, wireless personal-area communication systems gain momentum and become increasingly important. When the market gets gradually saturated and the technology becomes much more mature, new demands on higher throughput push the wireless communication further into the high-frequency and high-data-rate direction. For example, in the IEEE 802.15.3c standard, a 60-GHz physical layer is specified, which occupies the unlicensed 57 to 64 GHz band and supports gigabit links for applications such as wireless downloading and data streaming. Along with the progress, however, both wireless protocols and physical systems and devices start to become very complex. Due to the limited cut-off frequency of the technology and high parasitic and noise levels at high frequency bands, the power consumption of these systems, especially of the RF front-ends, increases significantly. The reason behind this is that RF performance does not scale with technology at the same rate as digital baseband circuits. Based on the challenges encountered, the wireless-wire system is proposed for the millimeter wave high-data-rate communication. In this system, beamsteering directional communication front-ends are used, which confine the RF power within a narrow beam and increase the level of the equivalent isotropic radiation power by a factor equal to the number of antenna elements. Since extra gain is obtained from the antenna beamsteering, less front-end gain is required, which will reduce the power consumption accordingly. Besides, the narrow beam also reduces the interference level to other nodes. In order to minimize the system average power consumption, an ultra-low power asynchronous duty-cycled wake-up receiver is added to listen to the channel and control the communication modes. The main receiver is switched on by the wake-up receiver only when the communication is identified while in other cases it will always be in sleep mode with virtually no power consumed. Before transmitting the payload, the event-triggered transmitter will send a wake-up beacon to the wake-up receiver. As long as the wake-up beacon is longer than one cycle of the wake-up receiver, it can be captured and identified. Furthermore, by adopting a frequency-sweeping injection locking oscillator, the wake-up receiver is able to achieve good sensitivity, low latency and wide bandwidth simultaneously. In this way, high-data-rate communication can be achieved with ultra-low average power consumption. System power optimization is achieved by optimizing the antenna number, data rate, modulation scheme, transceiver architecture, and transceiver circuitries with regards to particular application scenarios. Cross-layer power optimization is performed as well. In order to verify the most critical elements of this new approach, a W-band injection-locked oscillator and the wake-up receiver have been designed and implemented in standard TSMC 65-nm CMOS technology. It can be seen from the measurement results that the wake-up receiver is able to achieve about -60 dBm sensitivity, 10 mW peak power consumption and 8.5 ”s worst-case latency simultaneously. When applying a duty-cycling scheme, the average power of the wake-up receiver becomes lower than 10 ”W if the event frequency is 1000 times/day, which matches battery-based or energy harvesting-based wireless applications. A 4-path phased-array main receiver is simulated working with 1 Gbps data rate and on-off-keying modulation. The average power consumption is 10 ”W with 10 Gb communication data per day
    • 

    corecore