We formulate and experimentally validate an equivalent-circuit model based on
distributed elements to describe the electric and electro-optic (EO) properties
of travellingwave silicon-organic hybrid (SOH) slot-waveguide modulators. The
model allows to reliably predict the small-signal EO frequency response of the
modulators exploiting purely electrical measurements of the frequency-dependent
RF transmission characteristics. We experimentally verify the validity of our
model, and we formulate design guidelines for an optimum trade-off between
optical loss due to free-carrier absorption (FCA), electro-optic bandwidth, and
{\pi}-voltage of SOH slot-waveguide modulators