7 research outputs found

    Broadband Continuous-time MASH Sigma-Delta ADCs

    Get PDF

    Multi-Stage Noise-Shaping Continuous-Time Sigma-Delta Modulator

    Get PDF
    The design of a single-loop continuous-time ∑∆ modulator (CT∑∆M) with high resolution, wide bandwidth, and low power consumption is very challenging. The multi-stage noise-shaping (MASH) CT∑∆M architecture is identified as an advancement to the single-loop CT∑∆M architecture in order to satisfy the ever stringent requirements of next generation wireless systems. However, it suffers from the problems of quantization noise leakage and non-ideal interstage interfacing which hinder its widespread adoption. To solve these issues, this dissertation proposes a MASH CT∑∆M with on-chip RC time constant calibration circuits, multiple feedforward interstage paths, and a fully integrated noise cancellation filter (NCF). The prototype core modulator architecture is a cascade of two single-loop second- order CT∑∆M stages, each of which consists of an integrator-based active-RC loop filter, current-steering feedback digital-to-analog converters, and a four-bit flash quantizer. On-chip RC time constant calibration circuits and high gain multi-stage operational amplifiers are realized to mitigate quantization noise leakage due to process variation. Multiple feedforward interstage paths are introduced to (i) synthesize a fourth-order noise transfer function with DC zeros, (ii) simplify the design of NCF, and (iii) reduce signal swings at the second-stage integrator outputs. Fully integrated in 40 nm CMOS, the prototype chip achieves 74.4 dB of signal-to-noise and distortion ratio (SNDR), 75.8 dB of signal-to-noise ratio, and 76.8 dB of dynamic range in 50.3 MHz of bandwidth (BW) at 1 GHz of sampling frequency with 43.0 mW of power consumption (P). It does not require external software calibration and possesses minimal out-of-band signal transfer function peaking. The figure-of-merit (FOM), defined as FOM = SNDR + 10 log10(BW/P), is 165.1 dB

    Design of a Moderate-Resolution Dual-Slope ADC using Noise-Shaping Techniques and a Double Speed Quantizer

    Get PDF
    Being the slowest Analog-to-Digital Converter, the Dual-Slope quantizer is often used in sigma-delta ADC or SAR converter architectures, and in measurement instruments, due to its high accuracy. Despite the utility of the quantizer and the existent techniques to increase the accuracy and the conversion speed, the usability of this converter is still very limited by the its slow conversion rate. The main interest of the Dual-Slope Quantizer lies in the high accuracy from the quantization technique used. To convert the input value, the value is integrated in the charge phase, by an integrator circuit, to be quantized, in the discharging phase using a digital block. Other benefits of the Dual-Slope Quantizers are the small size when implemented in a system on a chip (SOC) and the low power consumption. By reducing the the conversion time of this ADC, while maintaining the high accuracy it will be possible to increase the converters utility, such as in IoT devices, or even mobile devices, benefiting all from the high accuracy and low power consumption of this circuit. Nowadays, many techniques are being used in the Dual-Slope converters, such as, the addition of bi-directional capabilities, to increase the conversion speed, the addition of an half LSB compensation, to increase the accuracy, and the use of Noise-Shaping capabilities originated from the quantization error from each discharge phase. All of this techniques are presented and used in this research. For the proposed solution, a Double-Speed Quantizer composed of two additional comparators will be added to grant the conversion speed increase, which will increase the power consumption and will lead to a redesigning of the digital block to receive more inputs. As result the conversion speed will double in comparison to the existent 4 bit dual slope quantizer, being needed 8 clock cycles to quantize a input value, instead of 16

    A Robust 96.6-dB-SNDR 50-kHz-Bandwidth Switched-Capacitor Delta-Sigma Modulator for IR Imagers in Space Instrumentation

    Get PDF
    Infrared imaging technology, used both to study deep-space bodies' radiation and environmental changes on Earth, experienced constant improvements in the last few years, pushing data converter designers to face new challenges in terms of speed, power consumption and robustness against extremely harsh operating conditions. This paper presents a 96.6-dB-SNDR (Signal-to-Noise-plus-Distortion Ratio) 50-kHz-bandwidth fourth-order single-bit switched-capacitor delta-sigma modulator for ADC operating at 1.8 V and consuming 7.9 mW fit for space instrumentation. The circuit features novel Class-AB single-stage switched variable-mirror amplifiers (SVMAs) enabling low-power operation, as well as low sensitivity to both process and temperature deviations for the whole modulator. The physical implementation resulted in a 1.8-mm 2 chip integrated in a standard 0.18-μm 1-poly-6-metal (1P6M) CMOS technology, and it reaches a 164.6-dB Schreier figure of merit from experimental SNDR measurements without making use of any clock bootstrapping, analog calibration, nor digital compensation technique. When coupled to a IR imager, the current design allows more than 50 frames per minute with a resolution of 16 effective number of bits (ENOB) while consuming less than 300 mW
    corecore