74 research outputs found

    Cable-driven parallel mechanisms for minimally invasive robotic surgery

    Get PDF
    Minimally invasive surgery (MIS) has revolutionised surgery by providing faster recovery times, less post-operative complications, improved cosmesis and reduced pain for the patient. Surgical robotics are used to further decrease the invasiveness of procedures, by using yet smaller and fewer incisions or using natural orifices as entry point. However, many robotic systems still suffer from technical challenges such as sufficient instrument dexterity and payloads, leading to limited adoption in clinical practice. Cable-driven parallel mechanisms (CDPMs) have unique properties, which can be used to overcome existing challenges in surgical robotics. These beneficial properties include high end-effector payloads, efficient force transmission and a large configurable instrument workspace. However, the use of CDPMs in MIS is largely unexplored. This research presents the first structured exploration of CDPMs for MIS and demonstrates the potential of this type of mechanism through the development of multiple prototypes: the ESD CYCLOPS, CDAQS, SIMPLE, neuroCYCLOPS and microCYCLOPS. One key challenge for MIS is the access method used to introduce CDPMs into the body. Three different access methods are presented by the prototypes. By focusing on the minimally invasive access method in which CDPMs are introduced into the body, the thesis provides a framework, which can be used by researchers, engineers and clinicians to identify future opportunities of CDPMs in MIS. Additionally, through user studies and pre-clinical studies, these prototypes demonstrate that this type of mechanism has several key advantages for surgical applications in which haptic feedback, safe automation or a high payload are required. These advantages, combined with the different access methods, demonstrate that CDPMs can have a key role in the advancement of MIS technology.Open Acces

    Development and Validation Methodology of the Nuss Procedure Surgical Planner

    Get PDF
    Pectus excavatum (PE) is a congenital chest wall deformity which is characterized, in most cases, by a deep depression of the sternum. A minimally invasive technique for the repair of PE (MIRPE), often referred to as the Nuss procedure, has been proven to be more advantageous than many other PE treatment techniques. The Nuss procedure consists of placement of a metal bar(s) underneath the sternum, thereby forcibly changing the geometry of the ribcage. Because of the prevalence of PE and the popularity of the Nuss procedure, the demand to perform this surgery is greater than ever. Therefore, a Nuss procedure surgical planner would be an invaluable planning tool ensuring an optimal physiological and aesthetic outcome. In this dissertation, the development and validation of the Nuss procedure planner is investigated. First, a generic model of the ribcage is developed to overcome the issue of missing cartilage when PE ribcages are segmented and facilitate the flexibility of the model to accommodate a range of deformity. Then, the CT data collected from actual patients with PE is used to create a set of patient specific finite element models. Based on finite element analyses performed over those models, a set force-displacement data set is created. This data is used to train an artificial neural network to generalize the data set. In order to evaluate the planning process, a methodology which uses an average shape of the chest for comparison with results of the Nuss procedure planner is developed. This method is based on a sample of normal chests obtained from the ODU male population using laser surface scanning and overcomes challenging issues such as hole-filling, scan registration and consistency. Additionally, this planning simulator is optimized so that it can be used for training purposes. Haptic feedback and inertial tracking is implemented, and the force-displacement model is approximated using a neural network approach and evaluated for real-time performance. The results show that it is possible to utilize this approximation of the force-displacement model for the Nuss procedure simulator. The detailed ribcage model achieves real-time performance

    Robotic simulators for tissue examination training with multimodal sensory feedback

    Get PDF
    Tissue examination by hand remains an essential technique in clinical practice. The effective application depends on skills in sensorimotor coordination, mainly involving haptic, visual, and auditory feedback. The skills clinicians have to learn can be as subtle as regulating finger pressure with breathing, choosing palpation action, monitoring involuntary facial and vocal expressions in response to palpation, and using pain expressions both as a source of information and as a constraint on physical examination. Patient simulators can provide a safe learning platform to novice physicians before trying real patients. This paper reviews state-of-the-art medical simulators for the training for the first time with a consideration of providing multimodal feedback to learn as many manual examination techniques as possible. The study summarizes current advances in tissue examination training devices simulating different medical conditions and providing different types of feedback modalities. Opportunities with the development of pain expression, tissue modeling, actuation, and sensing are also analyzed to support the future design of effective tissue examination simulators

    A Review of Virtual Reality Based Training Simulators for Orthopaedic Surgery

    Get PDF
    This review presents current virtual reality based training simulators for hip, knee and other orthopaedic surgery, including elective and trauma surgical procedures. There have not been any reviews focussing on hip and knee orthopaedic simulators. A comparison of existing simulator features is provided to identify what is missing and what is required to improve upon current simulators. In total 11 total hip replacement pre-operative planning tools were analysed, plus 9 hip trauma fracture training simulators. Additionally 9 knee arthroscopy simulators and 8 other orthopaedic simulators were included for comparison. The findings are that for orthopaedic surgery simulators in general, there is increasing use of patient-specific virtual models which reduce the learning curve. Modelling is also being used for patient-specific implant design and manufacture. Simulators are being increasingly validated for assessment as well as training. There are very few training simulators available for hip replacement, yet more advanced virtual reality is being used for other procedures such as hip trauma and drilling. Training simulators for hip replacement and orthopaedic surgery in general lag behind other surgical procedures for which virtual reality has become more common. Further developments are required to bring hip replacement training simulation up to date with other procedures. This suggests there is a gap in the market for a new high fidelity hip replacement and resurfacing training simulator

    Real-time haptic modeling and simulation for prosthetic insertion

    Get PDF
    In this work a surgical simulator is produced which enables a training otologist to conduct a virtual, real-time prosthetic insertion. The simulator provides the Ear, Nose and Throat surgeon with real-time visual and haptic responses during virtual cochlear implantation into a 3D model of the human Scala Tympani (ST). The parametric model is derived from measured data as published in the literature and accounts for human morphological variance, such as differences in cochlear shape, enabling patient-specific pre- operative assessment. Haptic modeling techniques use real physical data and insertion force measurements, to develop a force model which mimics the physical behavior of an implant as it collides with the ST walls during an insertion. Output force profiles are acquired from the insertion studies conducted in the work, to validate the haptic model. The simulator provides the user with real-time, quantitative insertion force information and associated electrode position as user inserts the virtual implant into the ST model. The information provided by this study may also be of use to implant manufacturers for design enhancements as well as for training specialists in optimal force administration, using the simulator. The paper reports on the methods for anatomical modeling and haptic algorithm development, with focus on simulator design, development, optimization and validation. The techniques may be transferrable to other medical applications that involve prosthetic device insertions where user vision is obstructed

    A review of virtual reality based training simulators for orthopaedic surgery

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThis review presents current virtual reality based training simulators for hip, knee and other orthopaedic surgery, including elective and trauma surgical procedures. There have not been any reviews focussing on hip and knee orthopaedic simulators. A comparison of existing simulator features is provided to identify what is missing and what is required to improve upon current simulators. In total 11 hip replacements pre-operative planning tools were analysed, plus 9 hip trauma fracture training simulators. Additionally 9 knee arthroscopy simulators and 8 other orthopaedic simulators were included for comparison. The findings are that for orthopaedic surgery simulators in general, there is increasing use of patient-specific virtual models which reduce the learning curve. Modelling is also being used for patient-specific implant design and manufacture. Simulators are being increasingly validated for assessment as well as training. There are very few training simulators available for hip replacement, yet more advanced virtual reality is being used for other procedures such as hip trauma and drilling. Training simulators for hip replacement and orthopaedic surgery in general lag behind other surgical procedures for which virtual reality has become more common. Further developments are required to bring hip replacement training simulation up to date with other procedures. This suggests there is a gap in the market for a new high fidelity hip replacement and resurfacing training simulator.Wessex Academic Health Science Network (Wessex AHSN) Innovation and Wealth Creation Accelerator Fund 2014/15Bournemouth Universit

    Marker-free surgical navigation of rod bending using a stereo neural network and augmented reality in spinal fusion

    Full text link
    The instrumentation of spinal fusion surgeries includes pedicle screw placement and rod implantation. While several surgical navigation approaches have been proposed for pedicle screw placement, less attention has been devoted towards the guidance of patient-specific adaptation of the rod implant. We propose a marker-free and intuitive Augmented Reality (AR) approach to navigate the bending process required for rod implantation. A stereo neural network is trained from the stereo video streams of the Microsoft HoloLens in an end-to-end fashion to determine the location of corresponding pedicle screw heads. From the digitized screw head positions, the optimal rod shape is calculated, translated into a set of bending parameters, and used for guiding the surgeon with a novel navigation approach. In the AR-based navigation, the surgeon is guided step-by-step in the use of the surgical tools to achieve an optimal result. We have evaluated the performance of our method on human cadavers against two benchmark methods, namely conventional freehand bending and marker-based bending navigation in terms of bending time and rebending maneuvers. We achieved an average bending time of 231s with 0.6 rebending maneuvers per rod compared to 476s (3.5 rebendings) and 348s (1.1 rebendings) obtained by our freehand and marker-based benchmarks, respectively

    The HoloLens in Medicine: A systematic Review and Taxonomy

    Full text link
    The HoloLens (Microsoft Corp., Redmond, WA), a head-worn, optically see-through augmented reality display, is the main player in the recent boost in medical augmented reality research. In medical settings, the HoloLens enables the physician to obtain immediate insight into patient information, directly overlaid with their view of the clinical scenario, the medical student to gain a better understanding of complex anatomies or procedures, and even the patient to execute therapeutic tasks with improved, immersive guidance. In this systematic review, we provide a comprehensive overview of the usage of the first-generation HoloLens within the medical domain, from its release in March 2016, until the year of 2021, were attention is shifting towards it's successor, the HoloLens 2. We identified 171 relevant publications through a systematic search of the PubMed and Scopus databases. We analyze these publications in regard to their intended use case, technical methodology for registration and tracking, data sources, visualization as well as validation and evaluation. We find that, although the feasibility of using the HoloLens in various medical scenarios has been shown, increased efforts in the areas of precision, reliability, usability, workflow and perception are necessary to establish AR in clinical practice.Comment: 35 pages, 11 figure

    From Concept to Market: Surgical Robot Development

    Get PDF
    Surgical robotics and supporting technologies have really become a prime example of modern applied information technology infiltrating our everyday lives. The development of these systems spans across four decades, and only the last few years brought the market value and saw the rising customer base imagined already by the early developers. This chapter guides through the historical development of the most important systems, and provide references and lessons learnt for current engineers facing similar challenges. A special emphasis is put on system validation, assessment and clearance, as the most commonly cited barrier hindering the wider deployment of a system

    Designing a robotic port system for laparo-endoscopic single-site surgery

    Get PDF
    Current research and development in the field of surgical interventions aim to reduce the invasiveness by using few incisions or natural orifices in the body to access the surgical site. Considering surgeries in the abdominal cavity, the Laparo-Endoscopic Single-site Surgery (LESS) can be performed through a single incision in the navel, reducing blood loss, post-operative trauma, and improving the cosmetic outcome. However, LESS results in less intuitive instrument control, impaired ergonomic, loss of depth and haptic perception, and restriction of instrument positioning by a single incision. Robot-assisted surgery addresses these shortcomings, by introducing highly articulated, flexible robotic instruments, ergonomic control consoles with 3D visualization, and intuitive instrument control algorithms. The flexible robotic instruments are usually introduced into the abdomen via a rigid straight port, such that the positioning of the tools and therefore the accessibility of anatomical structures is still constrained by the incision location. To address this limitation, articulated ports for LESS are proposed by recent research works. However, they focus on only a few aspects, which are relevant to the surgery, such that a design considering all requirements for LESS has not been proposed yet. This partially originates in the lack of anatomical data of specific applications. Further, no general design guidelines exist and only a few evaluation metrics are proposed. To target these challenges, this thesis focuses on the design of an articulated robotic port for LESS partial nephrectomy. A novel approach is introduced, acquiring the available abdominal workspace, integrated into the surgical workflow. Based on several generated patient datasets and developed metrics, design parameter optimization is conducted. Analyzing the surgical procedure, a comprehensive requirement list is established and applied to design a robotic system, proposing a tendon-driven continuum robot as the articulated port structure. Especially, the aspects of stiffening and sterile design are addressed. In various experimental evaluations, the reachability, the stiffness, and the overall design are evaluated. The findings identify layer jamming as the superior stiffening method. Further, the articulated port is proven to enhance the accessibility of anatomical structures and offer a patient and incision location independent design
    corecore