40 research outputs found

    A digital polar transmitter for multi-band OFDM Ultra-WideBand

    No full text
    Linear power amplifiers used to implement the Ultra-Wideband standard must be backed off from optimum power efficiency to meet the standard specifications and the power efficiency suffers. The problem of low efficiency can be mitigated by polar modulation. Digital polar architectures have been employed on numerous wireless standards like GSM, EDGE, and WLAN, where the fractional bandwidths achieved are only about 1%, and the power levels achieved are often in the vicinity of 20 dBm. Can the architecture be employed on wireless standards with low-power and high fractional bandwidth requirements and yet achieve good power efficiency? To answer these question, this thesis studies the application of a digital polar transmitter architecture with parallel amplifier stages for UWB. The concept of the digital transmitter is motivated and inspired by three factors. First, unrelenting advances in the CMOS technology in deep-submicron process and the prevalence of low-cost Digital Signal processing have resulted in the realization of higher level of integration using digitally intensive approaches. Furthermore, the architecture is an evolution of polar modulation, which is known for high power efficiency in other wireless applications. Finally, the architecture is operated as a digital-to-analog converter which circumvents the use of converters in conventional transmitters. Modeling and simulation of the system architecture is performed on the Agilent Advanced Design System Ptolemy simulation platform. First, by studying the envelope signal, we found that envelope clipping results in a reduction in the peak-to-average power ratio which in turn improves the error vector magnitude performance (figure of merit for the study). In addition, we have demonstrated that a resolution of three bits suffices for the digital polar transmitter when envelope clipping is performed. Next, this thesis covers a theoretical derivation for the estimate of the error vector magnitude based on the resolution, quantization and phase noise errors. An analysis on the process variations - which result in gain and delay mismatches - for a digital transmitter architecture with four bits ensues. The above studies allow RF designers to estimate the number of bits required and the amount of distortion that can be tolerated in the system. Next, a study on the circuit implementation was conducted. A DPA that comprises 7 parallel RF amplifiers driven by a constant RF phase-modulated signal and 7 cascode transistors (individually connected in series with the bottom amplifiers) digitally controlled by a 3-bit digitized envelope signal to reconstruct the UWB signal at the output. Through the use of NFET models from the IBM 130-nm technology, our simulation reveals that our DPA is able to achieve an EVM of - 22 dB. The DPA simulations have been performed at 3.432 GHz centre frequency with a channel bandwidth of 528 MHz, which translates to a fractional bandwidth of 15.4%. Drain efficiencies of 13.2/19.5/21.0% have been obtained while delivering -1.9/2.5/5.5 dBm of output power and consuming 5/9/17 mW of power. In addition, we performed a yield analysis on the digital polar amplifier, based on unit-weighted and binary-weighted architecture, when gain variations are introduced in all the individual stages. The dynamic element matching method is also introduced for the unit-weighted digital polar transmitter. Monte Carlo simulations reveal that when the gain of the amplifiers are allowed to vary at a mean of 1 with a standard deviation of 0.2, the binary-weighted architecture obtained a yield of 79%, while the yields of the unit-weighted architectures are in the neighbourhood of 95%. Moreover, the dynamic element matching technique demonstrates an improvement in the yield by approximately 3%. Finally, a hardware implementation for this architecture based on software-defined arbitrary waveform generators is studied. In this section, we demonstrate that the error vector magnitude results obtained with a four-stage binary-weighted digital polar transmitter under ideal combining conditions fulfill the European Computer Manufacturers Association requirements. The proposed experimental setup, believed to be the first ever attempted, confirm the feasibility of a digital polar transmitter architecture for Ultra-Wideband. In addition, we propose a number of power combining techniques suitable for the hardware implementation. Spatial power combining, in particular, shows a high potential for the digital polar transmitter architecture. The above studies demonstrate the feasibility of the digital polar architecture with good power efficiency for a wideband wireless standard with low-power and high fractional bandwidth requirements

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Advanced Coding And Modulation For Ultra-wideband And Impulsive Noises

    Get PDF
    The ever-growing demand for higher quality and faster multimedia content delivery over short distances in home environments drives the quest for higher data rates in wireless personal area networks (WPANs). One of the candidate IEEE 802.15.3a WPAN proposals support data rates up to 480 Mbps by using punctured convolutional codes with quadrature phase shift keying (QPSK) modulation for a multi-band orthogonal frequency-division multiplexing (MB-OFDM) system over ultra wideband (UWB) channels. In the first part of this dissertation, we combine more powerful near-Shannon-limit turbo codes with bandwidth efficient trellis coded modulation, i.e., turbo trellis coded modulation (TTCM), to further improve the data rates up to 1.2 Gbps. A modified iterative decoder for this TTCM coded MB-OFDM system is proposed and its bit error rate performance under various impulsive noises over both Gaussian and UWB channel is extensively investigated, especially in mismatched scenarios. A robust decoder which is immune to noise mismatch is provided based on comparison of impulsive noises in time domain and frequency domain. The accurate estimation of the dynamic noise model could be very difficult or impossible at the receiver, thus a significant performance degradation may occur due to noise mismatch. In the second part of this dissertation, we prove that the minimax decoder in \cite, which instead of minimizing the average bit error probability aims at minimizing the worst bit error probability, is optimal and robust to certain noise model with unknown prior probabilities in two and higher dimensions. Besides turbo codes, another kind of error correcting codes which approach the Shannon capacity is low-density parity-check (LDPC) codes. In the last part of this dissertation, we extend the density evolution method for sum-product decoding using mismatched noises. We will prove that as long as the true noise type and the estimated noise type used in the decoder are both binary-input memoryless output symmetric channels, the output from mismatched log-likelihood ratio (LLR) computation is also symmetric. We will show the Shannon capacity can be evaluated for mismatched LLR computation and it can be reduced if the mismatched LLR computation is not an one-to-one mapping function. We will derive the Shannon capacity, threshold and stable condition of LDPC codes for mismatched BIAWGN and BIL noise types. The results show that the noise variance estimation errors will not affect the Shannon capacity and stable condition, but the errors do reduce the threshold. The mismatch in noise type will only reduce Shannon capacity when LLR computation is based on BIL

    A high speed image transmission system for ultra-wideband wireless links

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (p. 97-98).Ultra-wideband (UWB) communication is an emerging technology that offers short range, high data rate wireless transmission, with low power consumption and low consumer cost. Operating in the 3.1 GHz - 10.6 GHz frequency band with bandwidth above 500 MHz, it is an overlay technology that can co-exist with other narrowband services in the same frequency range, thus alleviating the problem of over-crowded spectrum. In particular, pulse-based UWB technologies allows for building of ultra-low power, medium- to long-range transceivers, at the expense of data transmission rate. This thesis presents a pulse-based, non-coherent UWB wireless image transmission platform. The system features a one-way wireless link. On the transmitter side, a host PC processes the images into transmittable packets in MATLAB, and sends them to the UWB radio through an interfacing FPGA module. On the receiver side, the UWB receiver radio receivers the packets, decodes the bits, and passes them back to the receiver host PC through another interfacing FPGA module. The receiver host PC collects the decoded bits and reconstructs the original image in MATLAB. The unidirectional wireless channel is complemented by a feedback path, provided through internet connection between the two host PCs. To improve usability, graphical user interfaces are setup on both host PCs. The overall system transmits 120 x 160 uncompressed bitmap images. It achieves a maximum payload data rate of 8 Mb/s.(cont.) It is able to transmit data reliably, with above 95% packet reception rate and below 2 x 10-5 bit error rate, for distances up to 16 meters. At 16 meters, the system has a maximum transmission data rate of 2.67 Mbps.by Helen He Liang.M.Eng

    Optical techniques for broadband in-building networks

    Get PDF
    Optical fibres, which can easily handle any bandwidth demand, have been rolled out to more than 32 million consumer’s homes and professional buildings worldwide up to 2010. The basic technological and economical challenges of fibre-to-the-home (FTTH) has been solved. The current FTTH technology can now providing baseband Gbit Ethernet and high definition TV services to the gates of homes. Thus, the bottleneck for delivery of broadband services to the end users is shifting from the access network to the in-building network. In the meantime, the need for high-capacity transmission between devices inside the building, e.g. between desktop PC and data services, are also rapidly increase. How to bring high bandwidth to the mobile terminals such as laptops, PDAs or cell phones as well as to the fixed terminals such as desktop PCs and HDTV equipment in an all-in-one network infrastructure is a challenge we are facing. Building on the flexibility of the wireless access networks and the latent vast bandwidth of a fibre infrastructure, radio-over-fibre (RoF) techniques have been proposed as a cost-effective solution to the future integrated broadband services in in-building networks. This thesis investigates techniques to deliver high data rate wireless services via in-building networks: high capacity RoF links employing optical frequency multiplication (OFM) and sub-carrier multiplexing (SCM) techniques, with single- or multi-carrier signal formats. The orthogonal frequency division multiplexing (OFDM) format is investigated for the RoF transmission system, particularly with regard to the optical system nonlinearity. For low-cost short-range optical backbone networks, RoF transmission over large-core diameter plastic optical fibre (POF) links has been studied, including the transmission of the WiMedia-compliant multiband OFDM UWB signal over bandwidth-limited large-core POF as well as a full-duplex bi-directional UWB transmission over POF. In order to improve the functionalities for delivery of wireless services of in-building networks, techniques to introduce flexibility into the network architecture and to create dynamic capacity allocation have been investigated. By employing optical switching techniques based on optical semiconductor amplifiers (SOA), an optically routed RoF system has been studied. The dynamic capacity allocation is addressed by investigating one-dimensional and two-dimensional routing using electrical SCM and optical wavelengths. In addition, next to RoF networking, this thesis explores techniques for wired delivery of baseband high capacity services over POF links by employing a multi-level signal modulation format, in particular discrete multi-tone (DMT) modulation. Transmission of 10 Gbit/s data over 1 mm core diameter PMMA POF links is demonstrated, as a competitor to more expensive fibre solutions such as silica single and multimode fibre. A record transmission rate of more than 40 Gbit/s is presented for POF whose core diameter is comparable with silica multimode fibre. Finally, from the network perspective, the convergence of wired and wireless multi-standard services into a single fibre-based infrastructure has been studied. Techniques have been designed and demonstrated for in-building networks, which can convey both high capacity baseband services and broadband radio frequency (RF) services over a POF backbone link. The multi-standard RoF signals carry different wireless services at different radio frequencies and with different bandwidths, including WiFi, WiMax, UMTS and UWB. System setups to carry them together over the same multimode optical fibre based network have been designed and experimentally shown. All the concepts, designs and system experiments presented in this thesis underline the strong potential of multimode (silica and plastic) optical fibre techniques for the delivery of broadband services to wired and wireless devices in in-building networks, in order to extend to the end user the benefits of the broadband FTTH networks which are being installed and deployed worldwide

    Myoelectric Signal Monitoring System

    Get PDF
    The Electromyography (EMG) is an important tool for gait analyzes and disorders diagnoses. Traditional methods involve equipment that can disturb the analyses, being gradually substituted by different approaches, like wearable and wireless systems. The cable replacement for autonomous systems demands for technologies capable of meeting the power constraints. This work presents the development of an EMG and kinematic data capture wireless module, designed taking into account power consumption issues. This module captures and converts the analog myoeletric signal to digital, synchronously with the capture of kinetic information. Both data are time multiplexed and sent to a PC via Bluetooth link. The work carried out comprised the development of the hardware, the firmware and a graphical interface running in an external PC. The hardware was developed using the PIC18F14K22, a low power family of microcontrollers. The link was established via Bluetooth, a protocol designed for low power communication. An application was also developed to recover and trace the signal to a Graphic User Interface (GUI), coordinating the message exchange with the firmware. Results were obtained which allowed validating the conceived system in static and with the subject performing short movements. Although it was not possible to perform the tests within more dynamic movements, it is shown that it is possible to capture, transmit and display the captured data as expected. Some suggestions to improve the system performance also were made

    Receiver design for nonlinearly distorted OFDM : signals applications in radio-over-fiber systems

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Universidade do Porto. Faculdade de Engenharia. 201
    corecore