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ABSTRACT

The ever-growing demand for higher quality and faster multimedia content delivery

over short distances in home environments drives the quest for higher data rates in wireless

personal area networks (WPANs). One of the candidate IEEE 802.15.3a WPAN proposals

support data rates up to 480 Mbps by using punctured convolutional codes with quadra-

ture phase shift keying (QPSK) modulation for a multi-band orthogonal frequency-division

multiplexing (MB-OFDM) system over ultra wideband (UWB) channels. In the first part of

this dissertation, we combine more powerful near-Shannon-limit turbo codes with bandwidth

efficient trellis coded modulation, i.e., turbo trellis coded modulation (TTCM), to further

improve the data rates up to 1.2 Gbps. A modified iterative decoder for this TTCM coded

MB-OFDM system is proposed and its bit error rate performance under various impulsive

noises over both Gaussian and UWB channel is extensively investigated, especially in mis-

matched scenarios. A robust decoder which is immune to noise mismatch is provided based

on comparison of impulsive noises in time domain and frequency domain.

The accurate estimation of the dynamic noise model could be very difficult or im-

possible at the receiver, thus a significant performance degradation may occur due to noise

mismatch. In the second part of this dissertation, we prove that the minimax decoder in

[38], which instead of minimizing the average bit error probability aims at minimizing the

worst bit error probability, is optimal and robust to certain noise model with unknown prior

probabilities in two and higher dimensions.

Besides turbo codes, another kind of error correcting codes which approach the Shan-

non capacity is low-density parity-check (LDPC) codes. In the last part of this dissertation,
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we extend the density evolution method for sum-product decoding using mismatched noises.

We will prove that as long as the true noise type and the estimated noise type used in

the decoder are both binary-input memoryless output symmetric channels, the output from

mismatched log-likelihood ratio (LLR) computation is also symmetric. We will show the

Shannon capacity can be evaluated for mismatched LLR computation and it can be reduced

if the mismatched LLR computation is not an one-to-one mapping function. We will derive

the Shannon capacity, threshold and stable condition of LDPC codes for mismatched BI-

AWGN and BIL noise types. The results show that the noise variance estimation errors will

not affect the Shannon capacity and stable condition, but the errors do reduce the threshold.

The mismatch in noise type will only reduce Shannon capacity when LLR computation is

based on BIL.
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CHAPTER 1: INTRODUCTION

1.1 Motivations

In 1948, Claude E. Shannon built the mathematical foundation of information theory

[1], in which one of the groundbreaking results established bounds for the maximum amount

of information that can be transmitted reliably over noisy channels, also called channel

capacity. Shannon proved the existence of codes that arbitrarily approach capacity for which

the probability of error of the optimal maximum likelihood (ML) decoder goes to zero as the

block length of the code goes to infinity.

However, Shannon’s theorems are non-constructive because random code ensemble

is assumed in his proof and thus don’t give any method on how to find explicit capacity

approaching codes. Though randomly constructed codes have been shown to be good codes

with high probability, we need to maintain a codebook describing which information bit

sequence (k-tuple) is mapped to which codeword (n-tuple), which is too long to handle in

practical systems when block length becomes large. It is also not likely to be practically

decodable. For non-random code ensemble, linear codes are equipped with efficient encod-

ing algorithm due to their intrinsic algebraic code structure but so far no polynomial-time

algorithm is known under ML decoding algorithms.

A different way is to first find a code ensemble which can be decoded by a sub-

optimal algorithm efficiently. Then we find those good (capacity approaching) codes within

that ensemble based on further performance analysis. The low-density parity-check (LDPC)

codes discovered in the early 1960’s by Gallager in his PhD dissertation [2] are actually
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within such a kind of code ensemble. LDPC codes are largely forgotten after their invention

until recently. The discovery of turbo codes [3] led to a revival of LDPC codes [4] which

were shown to achieve capacity using low-complexity decoders. It is by nature equipped

with efficient iterative decoding algorithms due to its sparse structure. The task then is

to find those codes in the LDPC ensemble that perform very close to Shannon capacity.

Density evolution [5] is an important tool to evaluate asysmptotic ensemble performance of

LDPC codes when iterative decoding is employed and also to find good codes from the code

ensemble. The best LDPC codes found by density evolution is within 0.0045 dB away from

the Shannon limit [6].

In the digital home of the not-too-distant future, people will be sharing photos, mu-

sic, video, data and voice among networked consumer electronics, PCs and mobile devices

throughout the home and even remotely. Requirements for the digital home include high-

speed data transfer for multimedia content, short-range connectivity for transfer to other

devices, low power consumption due to limited battery capacity, and low complexity and

cost due to market pricing pressures and alternative wired connectivity options. Transfer of

video from a camcorder to an entertainment PC is one scenario. The ability to view photos

from the user’s digital camera on a larger HDTV display is the second. Removing all the

wires to the printer, scanner, mass storage devices, and video cameras located in the home

office is another possible scenario.

Current technologies, like Bluetooth or wireless local area networks (WLANs), are

simply not fast enough for wireless multimedia distribution. A leading candidate for short-

range, wireless personal area networks (WPANs) is ultra-wideband (UWB), which features
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large capacity, low power, low interference, low probability of detection and excellent mul-

tipath immunity. In recent years, UWB is making the transition from laboratories to stan-

dardization after the US Federal Communications Commission (FCC) allocated a range of

bandwidth from 3.1 GHz to 10.6 GHz for unlicensed use by UWB radios at a limited trans-

mit power of -41.3 dBm/MHz or less [7], which is a key step towards the development of

real-world products.

While a traditional carrierless UWB transmitter works by sending billions of pulses

across a very wide spectrum of frequency several GHz in bandwidth [8][9][10][11][12][13], a

multi-carrier system based on orthogonal frequency division multiplexing (OFDM) is cur-

rently under intensive discussion. For highly dispersive channels like UWB, an OFDM scheme

is more efficient at capturing multipath energy than an equivalent single-carrier system using

the same total bandwidth [14][15][16][17]. OFDM also can eliminate inter-symbol interfer-

ence (ISI) caused by multipath without using complicated equalization as in the conventional

single carrier receiver [18][19]. OFDM systems posses additional desirable properties, such as

high spectral efficiency, inherent resilience to narrowband RF interface and spectrum flexibil-

ity. One of the candidate proposals for the IEEE 802.15 WPAN project [20] is a multi-band

OFDM (MB-OFDM) system over UWB channel supporting data rate up to 480 Mbps. A

major drawback of OFDM, however, is that it alone cannot take advantage of the diversity

provided by the multipath fading in UWB environment. Appropriate frequency interleaving

and coding becomes necessary for OFDM systems [21].

The current MB-OFDM proposal for IEEE 802.15 WPAN suggests using punctured

convolutional codes. Modern coding theory provides us more powerful error control codes
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with reasonable complexity, such as turbo codes and LDPC codes, which we believe can

improve the overall system performance. Motivated by the principle behind both codes,

researchers have come up with many compound codes with excellent performance, such

as serially concatenated codes [22], parallel concatenated codes [23][24], product code [25],

turbo trellis coded modulation (TTCM) [26][27][28][29][30][31], multilevel codes [32][33][34],

and parity-concatenated codes [35][36][37]. Among these compound codes, TTCM is an

attractive coding scheme for high-data-rate applications, since it combines the impressive

near Shannon limit error correcting capability of turbo codes with the high spectral efficiency

property of trellis coded modulation (TCM).

In [35][36], it has been shown that single parity check (SPC) codes serially concate-

nated with convolutional codes can obtain the performance within 0.45 dB of the Shannon

limit. Motivated by that, we explore the performance using a serial concatenation of SPC

codes with TCM, which is a special case of TTCM. The objective is to develop a novel

coding/decoding scheme suitable for WPAN applications, which require superior bit error

rate performance over severe channels like UWB, with high bandwidth efficiency and low

decoding complexity. Based on this idea, we will build up a TTCM coded MB-OFDM sys-

tem and investigate its performance over both Gaussian and UWB channels via simulation

and density evolution.

Although the assumption of white Gaussian noise is quite appropriate for many ap-

plications, it is well known that many noise environments arising in practice are poorly

modeled by Gaussian statistics. In particular, man-made electromagnetic interference (or

noise), and a great deal of natural interference as well, is basically “impulsive” in nature, i.e.,
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it has a highly structured form, characterized by significant probabilities of large interference

levels. This impulsive or structured character of the interference can significantly degrade

the performance of conventional demodulation systems, which are designed to operate most

effectively against the commonly assumed Gaussian background noise processes. By proper

system design, this noise structure can often be exploited to yield better performance than

would be obtained in the Gaussian case. In this dissertation we will investigate the impact

of various impulsive noises on the above mentioned TTCM coded MB-OFDM system over

both Gaussian and UWB channels. Performance loss due to mismatch is a major concern

in this system.

Further, we investigate a kind of robust decoder under some mismatched cases. The

normally optimal maximum a posterior (MAP) decoder is not always the best robust de-

coder when noise is a mixture of several noise types whose percentage is unclear or varying

to the decoder. So we want to evaluate the robustness of decoders especially when there

is a mismatch between the actual and estimated noise parameters. We find that decod-

ing algorithms based on the minimax rule is robust and optimal for the above mentioned

situation.

Since optimum systems for impulsive channels are usually nonlinear, the analysis of

such problems is often significantly more difficult than in the conventional Gaussian case.

Lastly, we want to do some capacity analysis for another class of important error correcting

codes, LDPC codes, via density evolution methods when there is noise mismatch. We want

to know the effects of mismatched noises on the capacity of LDPC codes under sum-product

decoding algorithm.
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1.2 Dissertation Outline

In this dissertation we mainly focus on combining various advanced coding and mod-

ulation techniques in ultra-wideband environment for high-speed, short-range applications

and investigate the performance and robustness of decoder when impaired with impulsive

noise and its mismatch. This dissertation has totally six chapters, which are organized as

follows:

Chapter 2 introduces all the techniques involved in this dissertation. It starts with a

brief review of the development of ultra-wideband technology covering both carrierless and

carrier-modulated UWB, where our MB-OFDM schemes are within the latter category. An-

other component of our WPAN system, OFDM will be discussed next with applications.

Then we present some previous works done related to trellis coded modulation (TCM)

scheme for bandwidth-limited communication systems, including Ungerboeck’s TCM, up

to the recent parity-concatenated TCM codes. Following this, the principle of turbo codes

is elaborated including both encoder and decoder structures. Different ways of combin-

ing turbo codes and TCM, which lead to different turbo trellis coded modulation (TTCM)

schemes, will be described thereafter. Their corresponding decoding algorithms are men-

tioned as well. This will be the starting point for deriving our own TTCM codes in Chapter

3. Finally we conclude Chapter 2 by an introduction to another class of important cor-

rect correcting codes, LDPC codes and especially message-passing algorithm and density

evolution techniques, which will be used in performance analysis in Chapter 5.

In Chapter 3 we substitute the punctured convolutional codes suggested by one of

the IEEE 802.15.3a WPAN proposals with our new parity-concatenated TCM codes, which
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function as TTCM codes. We come up with an MB-OFDM system with frequency hop-

ping, turbo trellis coded modulation, bit as well as symbol level interleaving, OFDM and

equalization. We explain the flow of data processing and the advantage compared with tra-

ditional OFDM systems. Decoding algorithm works in an iterative way by updating the soft

input and soft output information of each component decoder. It is observed that the soft

information follows Gaussian distribution with changing means and variances, then density

evolution can be used to predict the system performance quite well compared with simula-

tion. The next part is investigation on the effect of a generalized Gaussian noise with various

impulsiveness. An optimal branch metric is derived based on the noise structure, which is

used to enhance decoding performance. Extensive simulation is done for different cases of

noise match and mismatch over both Gaussian and UWB channels. Finally robust solutions

for Gaussian and UWB channels are provided by comparing impulsive noises in time domain

with those in frequency domain.

Further investigation on robust decoder is presented in Chapter 4. The well known

MAP decoder is considered optimal to minimize the average bit error probability by using

the knowledge of the noise structure. What if actual noise is a mixture of several types of

noise with unknown percentage? In this case, we are unable to design an optimal decoder

based on MAP criterion. However, if we look at the problem from an entirely different

angle of view, we actually can build a decoder based on minimax criterion, which means

minimizing the maximum bit error probability, instead of the average one. A decoder based

on minimax rule has been proposed in [38]. In this chapter, we will prove that a minimax

decoder is optimal and robust in both 2-dimensional and K-dimensional cases.
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Chapter 5 extends the density evolution method for sum-product decoding using

mismatched noises. We will prove that as long as the true noise type and the estimated

noise type used in the decoder are binary-input memoryless output symmetric channels, e.g.

the BIAWGN channel and the BIL channel, the output from mismatched log-likelihood ratio

(LLR) computation is also symmetric. We will show the Shannon capacity can be evaluated

for mismatched LLR computation. If the mismatched LLR computation is not an one-to-one

mapping function, then the capacity can be reduced. We will derive the Shannon capacity,

threshold and stable condition of LDPC codes for mismatched BIAWGN and BIL noise

types. The results show that the noise variance estimation errors will not affect the Shannon

capacity and stable condition, but the errors do reduce the threshold. The mismatch in noise

type will only reduce Shannon capacity when LLR computation is based on BIL.

Finally, in Chapter 6 we discuss and summarize the contents of this dissertation

followed by future research directions.

1.3 Contributions

The major contributions in this dissertation are listed as follows:

(1) Density evolution method is applied to our parity-concatenated TCM coded MB-OFDM

sytem over both Gaussian and UWB channels. From it, we can predict system per-

formance pretty well, which can save a lot of time-consuming simulations. (Chapter

3)

(2) We simulated TTCM coded MB-OFDM systems over both Gaussian and UWB channels

impaired by impulsive noises. We discovered impulsive noise in time domain could be
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transformed to Gaussian noise under general condition. Thus, the optimal decoder is

established when its branch metric computation matched to noise model of its decision

statistics. OFDM demodulation typically transforms time domain noise into frequency

domain noise. Consequently, a robust decoder can be established when we apply the

theory in [38] to noise type in frequency domain. (Chapter 3)

(3) We further investigated equivalence between time domain impulsive noises and frequency

domain impulsive noises for other noise scenarios. Thus, the system designer can have

a better guidance on how to select metric to achieve robust decoding. (Chapter 3)

(4) We have proved mathematically that the minimax robust decoder in [38] is optimal for

finite dimensional constellations (to 2-dimension first and then extended to general

K-dimension). That is, the minimax robust decoder in [38] yields minimum worst case

bit error probability. (Chapter 4)

(5) We extended the density evolution method for LDPC codes under sum-product decod-

ing using mismatched noises. We proved that as long as the true noise type and the

estimated noise type used in the decoder are binary-input memoryless output symmet-

ric channels, the output from mismatched log-likelihood ratio (LLR) computation is

also symmetric. (Chapter 5)

(6) We showed the Shannon capacity can be evaluated for mismatched LLR computation.

If the mismatched LLR computation is not an one-to-one mapping function, then the

capacity can be reduced. (Chapter 5)
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(7) We derived the Shannon capacity, threshold and stable condition of LDPC codes for

mismatched BIAWGN and BIL noise types. The results show that the noise variance

estimation errors will not affect the Shannon capacity and stable condition, but the

errors do reduce the threshold. The mismatching in noise type will only reduce Shannon

capacity when LLR computation is based on BIL. (Chapter 5)
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CHAPTER 2: BACKGROUND AND RELATED WORK

2.1 Ultra-Wideband Technology

An increased interest from both major chip manufacturing companies and standard-

ization bodies in Ultra-Wideband (UWB) technology has been witnessed in the last five

years since the U.S. Federal Communications Commission (FCC) approved the first guide-

lines allowing the intentional emission of UWB signals contained within specified emission

masks [7]. Traditionally, UWB signals have been generated by radiating very short pulses,

rather than continuous waveforms. This technique, Impulsive Radio (IR), has been exten-

sively used in radar applications driven by the promise of fine-range resolution that comes

with large bandwidth. However, due to technological limitations and commercial pressure

for reliable communications at that time, research and development were gradually shifted

towards continuous-wave transmissions, and IR remained relatively confined to the radar

field up to recent years. A complete survey of IR-UWB research in both radar and com-

munication fields in its early years is presented by [39]. In the late 1980s, a few small

companies reintroduced the idea of wireless communications based on the UWB concept

and developed UWB technology following the IR paradigm, promoting the transmission of

virtually carrierless and extremely short pulses [40]. The pioneering work to develop UWB

as a commercial communications technology began at the University of Southern California

during the mid-90s [9] [10]. Soon, several start-up companies, like Time Domain and Xtreme

Spectrum produced the first chipset solutions. Finally, the FCC allowed UWB technology to

be commercialized in April 2002, which is a major change in the regulation of RF emissions,
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allowing a significant portion of the RF spectrum, originally allocated in many smaller bands

exclusively for specific uses, to be effectively shared with low-power UWB radios.

According to the FCC’s definition, a signal is considered UWB if its -10 dB band-

width is greater than 20% of its center frequency or greater than 500 MHz. Because

of its large bandwidth, the UWB waveform must friendly coexist with other waveforms

from such as GPS(1.6GHz), PCS(1.9GHz), Bluetooth(2.4GHz), 802.11b(2.4GHz), cordless

phone(2.4GHz), microwave ovens(2.4GHz), 802.11a(5.2GHz), etc., which are present in the

air interface. The coexistence principle makes the FCC also defines rigid transmission power

limits as shown in Figure 2.1, where the frequency range between 3.1 GHz and 10.6 GHz is al-

lowed maximum effective isotropically-radiated power (EIRP), -41.3 dBm/MHz. The FCC’s

power requirement of -41.3 dBm/MHz, equal to 75 nanowatts/MHz for UWB systems, puts

them in the category of unintentional radiators, such as TVs and computer monitors. Such

power restriction allows UWB systems to reside below the noise floor of a typical narrowband

receiver and enables UWB signals to coexist with current radio services with minimal or no

interference. UWB also has some other significant advantages. The huge bandwidth pro-

vides the potential for extremely high data rate over short distances. Limit of low transmit

power also provides the benefit of very low power consumption and frequency reuse. UWB

is particularly well-suited for wireless personal area networks (WPANs). An area of partic-

ular interest is for wireless USB and wireless firewire applications, which eliminate cables in

communications and computer equipments.

However, the UWB concept defined by the FCC is not limited to pulsed transmission,

but can be extended to continuous-like transmission techniques, provided that the occupied
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Figure 2.1: FCC emission mask for UWB devices.

bandwidth of the transmitted signal is greater than 500 MHz. Discussions were triggered

around the advantages of the original IR scheme vs. the carrier-based continuous transmis-

sion alternative. The above lack of agreement is the framework of the IEEE 802.15.3a Task

Group. This group was formed in late 2001 with the task of investigating innovative physical

layer solutions for the development of very high data rate WPANs for applications that in-

volve imaging and multimedia. Currently, two different merged proposals for a physical layer

based on UWB are under consideration: a Multi-Band (MB) approach combining frequency

hopping with Orthogonal Frequency Division Multiplexing (OFDM) [20] being backed by the

WiMedia Alliance [41], which is a large coalition led by major semiconductor manufacturers

like Texas Instruments, Intel, Philips and ST Microelectronics, and a second approach using

Direct-Sequence UWB (DS-UWB) preserving the original UWB pulsed nature [42], which

is heavily supported by Motorola who acquired Xtreme Spectrum. No conclusion has been
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drawn since then and supporters of either proposal will continue their work outside of the

IEEE 802.15.3a task group.

To coexist with existing narrowband systems, IR scheme requires notch filters which

will distort the received signal. The short duration of the pulses required by IR UWB makes

this scheme more susceptible to time jitter, require faster timing acquisition and have more

multipath effects. Multi-band UWB on the other hand, can avoid using frequency bands

where other wireless systems, e.g. 802.11a are present and it does not use such short pulses,

which eases the design of pulse shaping filters and avoids notch filters. It is much easier to do

time acquisition, capture multipath energy and eliminate inter-symbol interference (ISI) at

low complexity [43] [44]. The spectral flexibility and coexistence features of MB-OFDM also

makes it easier to meet the requirements of emerging spectral regulations in other regions

of the world [45]. The major difference between MB-OFDM and traditional OFDM is that

MB-OFDM symbols are not continually sent on a single frequency band; instead, they are

interleaved over different subbands across both time and frequency [20].

Despite the merits mentioned above, the extremely short range, e.g., 10 meters for a

data rate of 110 Mbps, puts UWB at an obvious disadvantage when compared to other com-

petitive technologies, such as the soon coming IEEE 802.11n standard [46], which supports

a data rate of 200 Mbps for around 50 meters in indoor environments. There is a trade-off

between data rates and ranges [47]. Hence, in order to push UWB as an more attractive

option for WPAN applications, it is crucial to improve the range limit of UWB devices at a

fixed data rate or equivalently increase the data rate at fixed distances. In this dissertation,

we will develop a system using more advanced turbo trellis coded modulation (TCM) with
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OFDM to achieve much higher data rate within a short range in UWB environment than

the current MB-OFDM scheme. UWB can also work with additional networking technology

for a larger home coverage, such as a metal backplane (i.e. cable or power line) or mesh

networking from room to room. Using multi-antenna technique with UWB to enhance data

rates and coverage ranges also gains a lot of interest recently [48]. However, these topics are

beyond the scope of this dissertation.

2.2 OFDM Overview

The history of OFDM dates back to the mid 60’s, when Chang published a paper on

the synthesis of bandlimited signals for multichannel transmission [14]. He presents a princi-

ple for transmitting messages simultaneously through a linear bandlimited channel without

interchannel (ICI) and intersymbol interference (ISI). Shortly after Chang’s paper, Saltzberg

performed an analysis of the performance [15], where he concluded that “the strategy of de-

signing an efficient parallel system should concentrate more on reducing crosstalk between

adjacent channels than on perfecting the individual channels themselves, since the distortion

due to crosstalk seems to dominate”. This important conclusion has been proven correct in

digital baseband processing that emerges a few years later.

A major contribution to OFDM was presented in 1971 by Weinstein and Ebert [18],

who used the discrete Fourier transform (DFT) to perform baseband modulation and de-

modulation. This work did not focus on “perfecting the individual channels”, but rather on

introducing efficient processing, eliminating the banks of subcarrier oscillators. To combat

ISI and ICI they used both a guard space between the symbols and raised-cosine windowing
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in the time domain. Their system did not obtain perfect orthogonality between subcarriers

over a dispersive channel, but it was still a major contribution to OFDM.

Another important contribution was due to Peled and Ruiz in 1980 [49], who intro-

duced the cyclic prefix (CP) or cyclic extension, solving the orthogonality problem. Instead

of using an empty guard space, they filled the guard space with a cyclic extension of the

OFDM symbol. This effectively simulates a channel performing cyclic convolution, which

implies orthogonality over dispersive channels when the CP is longer than the impulse re-

sponse of the channel. This introduces an energy loss proportional to the length of the CP,

but the zero ICI generally motivated the loss.

OFDM systems are usually designed with rectangular pulses, but recently there has

been an increased interest in pulse shaping [50][51]. By using pulse other than rectangular,

the spectrum can be shaped to be more well-localized in frequency, which is beneficial from

an interference point of view.

OFDM is currently used in the European digital audio broadcasting (DAB) standard

[52]. Several DAB systems proposed for North America are also based on OFDM [53], and its

applicability to digital TV broadcasting is currently being investigated [54] [55] [56]. OFDM

in combination with multiple-access techniques are subject to significant investigation, see

e.g., [57]. OFDM, under the name DMT, has also attracted a great deal of attention as an

efficient technology for high-speed transmission on the existing telephone network, see e.g.,

[19] [58] [59] [60].

One of the major advantages of OFDM is its robustness against multipath propaga-

tion. Hence, its typical application are in tough radio environments. OFDM is also suitable
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for single frequency networks, since the signals from other transmitters can be viewed as

echoes, i.e., multipath propagation. This means that it is favorable to use OFDM in broad-

casting applications, such DAB and DVB. The use of OFDM in multiuser systems has gained

an increasing interest the last few years. The downlink in those systems is similar to broad-

casting, while the uplink puts high demand on e.g., synchronization. The future of OFDM

as a transmission technique for multiuser systems depends on how well these problems can

be solved.

In wired systems the structure of OFDM offers the possibility of efficient bit load-

ing. By allocating a different number of bits to different subchannels, depending on their

individual SNRs, efficient transmission can be achieved. Although other systems have been

proposed, OFDM is the dominating technique on e.g. digital subscriber lines. Note that

OFDM often goes under the name DMT when used in wired systems with bitloading.

There are also problems associated with OFDM system design. The two main obsta-

cles when using OFDM are the high peak-to-average-power ratio and synchronization. The

former puts high demands on linearity on amplifiers. Synchronization errors, in both time

and frequency, destroy the orthogonality and cause interference. By using a cyclic prefix,

the timing requirements are somewhat relaxed, so the biggest problems are due to high fre-

quency synchronization demands. Degradation due to frequency errors can be caused both

by differences in local oscillators and by Doppler shifts. A great deal of effort is therefore

spent on designing accurate frequency synchronizers for OFDM.

As in any digital communication system, there are two alternatives for modulation:

coherent and differential. The European DAB system uses differential QPSK, while the
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proposed scheme for DVB is coherent 64-QAM. Differential PSK is suitable for low data

rates and gives simple and inexpensive receivers, which is important for portable consumer

products like DAB receivers. However, in DVB the data rate is much higher and low bit-

error rates are difficult to obtain with differential PSK. A natural choice for DVB is therefore

multiamplitude schemes. Due to the structure in OFDM, it is easy to design efficient channel

estimators and equalizers. This is one of the appealing properties of OFDM which could be

exploited to achieve high spectral efficiency.

Coding in wireless OFDM doesn’t differ much from coding in wireless single-carrier

systems. The main difference is that interleaving in OFDM allows symbols to be spread in

both time and frequency. The possibility to interleave in frequency overcomes the drawback

of not obtaining diversity from the equalizer. Since each subchannel experiences flat fading,

code design and performance analysis developed for flat fading channels can be used. Decod-

ing can be performed with a Viterbi decoder, where the metric depends on the (estimated)

channel attenuations. This means that symbols are weighted with their respective channel

strength. This reduces the effect of errors caused by symbols transmitted during a fade.

Multi-band OFDM (MB-OFDM) is one of the promising candidates for PHY layer

for short-range high date-rate UWB communications. It combines OFDM with the above

multi-band approach enabling UWB transmission to inherit all the strength of OFDM tech-

nique which has already been proven for wireless communications (ADSL, DVB, 802.11a,

802.16a, etc.). The difference between MB-OFDM and conventional OFDM lies in that

OFDM symbols are not continually transmitted on the same frequency band. Instead, they

are transmitted using one of the subbands in a particular time-slot. The subband selection
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at each time-slot is determined by a Time-Frequency Code (TFC). The TFC is used not

only to provide frequency diversity in the system but also to distinguish between multiple

users. There are many advantages associated with using the MB-OFDM approach. This

includes the ability to efficiently capture multipath energy, simplified transceiver architec-

ture, enhanced frequency diversity, increased interference mitigation capability and spectral

flexibility to avoid low quality subbands and to cope with local regulations.

2.3 Trellis Coded Modulation

The use of error control coding improves bit error rate performance of a digital commu-

nication system at the expense of bandwidth expansion by an amount equal to the reciprocal

of the code rate. For power-limited channels, e.g., deep space communication channels, one

may trade bandwidth for transmit power to achieve a desired system performance. However,

that is not the case for bandwidth-limited channels, such as telephone channels. Tradition-

ally coding is not favored in such channels, instead a bandwidth-efficient signaling technique

such as Pulse Amplitude Modulation (PAM), Quadrature Amplitude Modulation (QAM),

or Multi-Phase Shift Keying (MPSK) modulation is employed to support a high bandwidth

efficiency (in bits/s/Hz).

Instead of considering coding and modulation as two separate parts, Ungerboeck [61]

introduced a new method of combining them together to achieve significant coding gain

over conventional uncoded multilevel modulation without reducing data rate or increasing

bandwidth in 1976. It was subsequently termed as trellis-coded modulation (TCM) [62]

[63] [64]. To avoid bandwidth expansion, TCM integrates a trellis code with an expanded

bandwidth-efficient signal set and utilize the redundancy from it. Although the expansion
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of a signal set reduces the distance between the signal points if the average signal energy is

kept constant, substantial gain is still obtained by transmitting only constrained sequences

of symbols through trellis coding. Typically one can get a coding gain of about 3-6 dB using

4-256 state convolutional codes by sacrificing neither data rate nor bandwidth. Within years

of its emergence, TCM has become an industry standard. Modem, ADSL, Ethernet, Wi-Fi

and WiMAX are all examples of TCM’s successful application around us.

2.3.1 Ungerboeck’s Trellis Coded Modulation

Ungerboeck’s TCM is composed of a convolutional code followed by a signal set

mapping, which is expanded to provide redundancy for coding. The convolutional code and

signal mapping function are jointly designed to maximize the minimum squared Euclidean

distance (MSED) between coded symbol sequences instead of Hamming distance, which

exceeds the minimum distance between uncoded modulation signals at the same symbol

rate. The general structure of Ungerboeck’s TCM encoder/modulator is shown in Figure 2.2

[64].
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Figure 2.2: General structure of Ungerboeck’s TCM encoder/modulator.
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Information bits are grouped into blocks of length k as the input to the Ungerboeck’s

TCM encoder, among which k̃ bits are coded bits passing through a rate k̃/(k̃ + 1) binary

convolutional encoder with k̃+1 coded bits. These bits are used to select one of 2k̃+1 subsets.

The remaining k − k̃ uncoded bits go directly to signal mapping and select one of the 2k−k̃

signal points from the selected subset. Combined together they form a symbol in a 2k+1

constellation to be transmitted at k bit/s/Hz.

The signal mapping follows a heuristic search technique called “mapping by set parti-

tioning”, which partitions a larger constellation successively into smaller subsets with max-

imally increasing minimum distance ∆0 < ∆1 < ∆2 < · · · between the signals of these

subsets. The partitioning is repeated k̃ + 1 times until ∆k̃+1 is equal or greater than the

desired MSED. This concept is illustrated in Figure 2.3(a) for 16-QAM modulation.

Figure 2.3(b) shows the trellis representation of a 4-state Ungerboeck code (h0, h1) =

(2, 5) [62], where there are 4 parallel (uncoded) paths associated with transition from current

state to next state because each subset contains 4 signal points. A thicker trajectory is also

presented in Figure 2.3(b) to show an error event corresponding to minimum non-parallel

free distance. Then, the free Euclidean distance of this TCM code can be expressed as

dfree = min{∆k̃+1, dfree(k̃)}, where ∆k̃+1 is the minimum distance between parallel transi-

tions and dfree(k̃) denotes the minimum distance between non-parallel paths in the TCM

trellis diagram.

Since there exists parallel branches between states, a branch metric is determined

first by selecting the point within each subset which is closest to the received signal. This

procedure makes the TCM trellis the same as the trellis for a convolutional code. Then, the
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(b) Tresllis representation of a trellis code
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Figure 2.3: Set partition and trellis representation of a 4-state trellis code

Viterbi algorithm [65] can be used to find the mostly likely state sequence that the encoded

signal traverses by finding a path with minimized accumulated metric.

2.4 Turbo Codes and Turbo Trellis Coded Modulation

2.4.1 Concatenated Codes

The exponentially increasing decoding complexity for a large code makes it com-

plicated for implementation. A good idea is to divide it into several smaller component

codes, each with a lower complexity decoder and concatenate them together to achieve near

Shannon capacity. One of the first examples of concatenated codes was put forward by

G. D. Forney in [66], where an algebraic block outer code is serially concatenated with a

convolutional inner code by an block interleaver as shown in Figure 2.4.

A near-ML decoding algorithm for the inner code is used to achieve a moderate error

rate like 10−2− 10−3 at a code rate as close to capacity as possible, then another decoder for

the outer code is applied to drive the error rate further down [67]. With such “separated”

decoding scheme, the error rate could be made to decrease exponentially with block length

at rate less than capacity, while decoding complexity increases only polynomially [66].
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Figure 2.4: Forney’s concatenated coding system

2.4.2 Turbo Codes

Turbo codes represent the most important achievement after Ungerboeck’s TCM in

the coding area [3], whose astonishing performance comes closer to the Shannon limit than

any other class of error correcting codes at that time, with a simple encoding structure and a

practical, implementable iterative decoding algorithms. Turbo codes yield very large coding

gains (10-11 dB) at the expense of a data rate reduction, or bandwidth increase. It once

again shows the potential of concatenated codes formed by two or more simple codes.

Since the appearance of turbo codes, there has been a tremendous amount of research

in many aspects of turbo codes. As a result, many capacity-approaching turbo-like codes

have been introduced [68] [69] [70] [71], and the turbo principle has also been applied to

other communication areas, including equalization [72] [73] and detection [74]. Moreover,

turbo codes have been selected as the Consultative Committee for Space Data Systems

(CCSDS) standard [75] and also one of the universal mobile telecommunication systems

(UMTS) standards by the third-generation partnership project (3GPP) [76].
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2.4.2.1 Turbo Encoder

Turbo codes are in essence parallel concatenated convolutional codes (PCCC) whose

encoder is composed of two or more constituent systematic recursive convolutional (RSC)

encoders joined through one or more pseudo-random interleavers. The structure of a rate

1/3 turbo encoder is shown in Figure 2.5. The input bit sequence uk with block length N

feeds the first RSC encoder ENC1 and, after scrambled by an interleaver π with length N , it

enters the second RSC encoder ENC2. A codeword of a parallel concatenated code consists

of the input bits to the first encoder xk followed by the parity check bits y1k and y2k from

each encoder. Finally, the coded bit sequence [v1, v2, . . . , vN ] is sent to the channel, where

vk = [xk, y1k, y2k] is the output codeword at time k. We note that the systematic output of

ENC2 π(uk) is not sent because it is just a permutation of xk. Different code rates can be

obtained by performing different puncturing on those parity check bits. For example, if y1k

and y2k are selected alternatively, the code rate will become 1/2.

codeword vk = [xk, y1k, y2k]
ENC1

π

ENC2

information bit uk
systematic bit xk

paritiy bit y1k

parity bit y2k

Figure 2.5: A rate 1/3 turbo encoder
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2.4.2.2 BCJR Algorithm

The maximum a posterior (MAP) decoder is designed for each constituent code

using BCJR algorithm [77]. The input will be the received noisy signal sequence rN
1 =

[r1, r2, . . . , rN ] from the channel and the output is the estimated uk, where rk = vk + nk and

nk is channel noise. The goal of the decoder is to estimate uk via the maximum a posterior

(MAP) rule as follows

ûk = sign[L(uk)] (2.1)

where

L(uk) = log

(
P (uk = 1|rN

1 )

P (uk = 0|rN
1 )

)
(2.2)

is the log-likelihood ratio (LLR). So the key is to calculate the LLR before making decision

on uk.

We can rewrite L(uk) using the trellis structure as

L(uk) = log

∑
S1 P (sk−1 = s′, sk = s, rN

1 )∑
S0 P (sk−1 = s′, sk = s, rN

1 )
(2.3)

where sk is the encoder state at time k and Si represents all the state transitions from

sk−1 = s′ to sk = s associated with uk = i.

By using BCJR algorithm, we can obtain

P (sk−1 = s′, sk = s, rN
1 ) = αk−1(s

′)γk(s
′, s)βk(s) (2.4)
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where

αk−1(s
′) = P (sk−1 = s′, rk−1

1 ) (2.5)

γk(s
′, s) = P (sk = s, rk|sk−1 = s′) (2.6)

βk(s) = P (rN
k+1|sk = s) (2.7)

where rk−1
1 = [r1, . . . , rk−1], rN

k+1 = [rk+1, . . . , rN ] are received signal before and after time k,

respectively.

time k − 1

βk(s)

βk+1(s1)

βk+1(s2)

βk+1(sM)

...

αk−1(s1)

αk−1(s2)

...

αk(s)

αk−1(sM)

k k + 1

Figure 2.6: A forward and backward recursive calculation for αk(s) and βk(s).

Further, we can calculate αk(s) and βk(s) at each time k recursively forwards and

backwards as in Figure 2.6, respectively, as

αk(s) =
∑

s′∈S

αk−1(s
′)γk(s

′, s) (2.8)

where α0(s) = 1 if s = 0 and 0 otherwise.

βk(s
′) =

∑
s∈S

γk+1(s
′, s)βk+1(s) (2.9)

where βN(s′) = 1 if s′ = 0 and 0 otherwise. S is the set of all the possible states.
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γk(s
′, s) is related to channel as

γk(s
′, s) = P (sk = s|sk−1 = s′)P (rk|sk−1 = s′, sk = s) (2.10)

where P (sk = s|sk−1 = s′) = P (uk) and P (rk|sk−1 = s′, sk = s) = P (rk|uk, sk−1 = s′) if there

is a valid transition from sk−1 = s′ to sk = s. Otherwise, γk(s
′, s) = 0.

2.4.3 Turbo Trellis Coded Modulation

The bandwidth-efficient TCM concept when used in parallel concatenation with an

interleaved data stream permits the use of iterative decoding that results in error performance

close to turbo codes. This scheme, referred to as turbo trellis coded modulation (TTCM)

was initially proposed by LeGoff, Glavieux and Berrou [29]. In their paper, a simple scheme

is presented in which a standard turbo code, after puncturing to obtain a desired spectral

efficiency, was mapped to a high-density constellation. The constituent encoders encode

m-ary information symbols into (m + 1)-ary code symbols. The encoders are separated by

a symbol interleaver, which means groups of m information bits are interleaved together.

The two sequences of coded symbols are then punctured to reduce the overall code rate and

to ensure that the systematic outputs are only transmitted once. The puncturing imposes

constraints on the symbol interleaver, so that the interleaving gain is reduced. The decoding

first computes the log-likelihood ratios of transmitted bits and then uses standard turbo

decoding algorithm. Although this system utilizes a bandwidth efficient modulation scheme,

the encoder and modulator are not jointly designed as in TCM systems.

Later, turbo codes were embedded in multilevel codes with multistage decoding as

shown in Figure 2.7 [34]. The data sequence is first divided into several sub-sequences
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which are encoded by individual binary turbo encoders as component encoders and then the

combined parallel codewords are mapped to a higher level constellation. Instead of using a

maximum likelihood decoding over an enlarged trellis of multiple turbo codes, a suboptimal

multistage decoding strategy is used to decode each component code individually using turbo

decoders starting from the lowest level.

u Serial/
Parallel

Converter

Turbo Encoder l

Turbo Encoder 2

Turbo Encoder 1

Mapper
Signal

1

2

l l

2

1

...
...

v

v

v

a

u

u

u

Figure 2.7: Multilevel turbo encoder

Robertson and Worz , in [26]-[28], presented a different approach in which two simple

Ungerboeck’s TCM codes were concatenated in parallel in the same way as in a turbo code,

while the interleaver operates on groups of input bits to the second trellis encoder. Figure

2.8 shows the encoder structure.

v

Interleaver

Encoder 1

Encoder 2

Mapper 1

Symbol
Deinterleaver

Mapper 2
k bits k + 1 bits

k bits k + 1 bits

l

u

l~

u
v

v

v

Symbol

Figure 2.8: Turbo TCM encoder with parity symbol puncturing

It is noted that the interleaver is constrained to interleave symbols. That is, the

ordering of k information bits arriving at the interleaver at a particular instant remains

unchanged. For the component trellis code, some of the input bits may not be encoded.
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In practical implementations these inputs do not need to be interleaved, but are directly

used to select the final point in a signal subset. At the receiver, the values of these bits are

estimated by set decoding [62]. The output of the second encoder is de-interleaved. This

ensures that the k information bits which determine the encoded (k + 1) binary digits of

both the upper and lower encoder at a given time instant are identical. The selector then

alternately connects the upper and lower encoder to the channel. Thus, the parity symbols is

alternately chosen from the upper and lower encoder. Each information group appears in the

transmitted sequence only once. A generalized decoding algorithm used by standard binary

turbo codes was used, where the symbol probability is used as the extrinsic information

rather than the bit probability.

A totally different approach was presented by Benedetto et al [30] where two compo-

nent convolutional codes, with entire information block and its interleaved version as inputs,

are used to produce parity bits. The outputs of component codes are then punctured in such

a way that alternate half of the information bits (even) are coded by the first constituent en-

coder and the other alternate half (odd) by the second constituent encoder. The systematic

information bits and the parity bits are often mapped to a higher constellation. A 16QAM

turbo trellis-coded modulation encoder is given in Figure 2.9.

By using MAP decoding [79] slightly superior performance compared to that of the

above two schemes was reported. However, the latter two schemes can be considered as only

special cases of the first scheme, which can be obtained from the former by restricting the

interleaver structure and the puncturing scheme. Further, the additional performance gain
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Figure 2.9: Trubo trellis-coded modulation, 16 QAM, 2bits/s/Hz

of the latter two schemes can be attributed to the choice of better component codes and as

such the schemes itself can not be concluded to be better than the former.

2.5 Low-Density Parity Check Codes

2.5.1 LDPC Codes and Codes on Graphs

LDPC codes are a subset of linear block codes. We concentrate on binariy codes

defined over the field F2 with two elements {0, 1} and assume it has block length n and di-

mension k. Then the codewords can be expressed as the set of all n-tuple x = (x1, x2, . . . , xn)

satisfying the parity check equation x · H> = 0, where H is the (n − k) × n parity check

matrix and > denotes transpose. Each row of H induces one parity check constraint on x.

For n = 10 and k = 5, an example of H is shown as follows. The codes are called low-density

only if they are defined based on a sparse parity check matrix H, i.e. very few ones are
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within H.

H =




1 1 1 1 0 1 1 0 0 0

0 0 1 1 1 1 1 1 0 0

0 1 0 1 0 1 0 1 1 1

1 0 1 0 1 0 0 1 1 1

1 1 0 0 1 0 1 0 1 1




(2.11)

Another useful way of representing LDPC codes is via a graphical representation

called Tanner graph [80], see Fig. 2.10. A Tanner graph G is a bipartite graph with n variable

nodes on the left side and r check nodes on the right side. Variable nodes correspond to

codewords x and also the columns of H. Check nodes correspond to parity check constraints

that any valid codeword x must satisfy, hence they correspond to the rows of H. Edges

in the bipartite graph connect variable nodes to check nodes, where an edge indicates the

associated code bit participates in the associated parity check equation. Thus, the edges

in the graph correspond to the ones in the parity check matrix H. A n-tuple x associated

to the variable nodes is a valid codeword if and only if for each check node the modulo 2

sum of the values of its adjacent variable nodes is 0. Since the number of constraints is r,

the rate of the code (defined as k/n) is at least (n − r)/n. If each parity check constraint

is independent, i.e. H is full-rank, then code dimension k = n − r. In this case, the code

defined in Fig. 2.10 has a rate 0.5.

Since Tanner generalized Gallager’s codes to general bipartite graphs and introduced

max-sum and sum-product decoding algorithms [80], the field of codes on graphs becomes

active. Wiberg extends Tanner graphs to include state variables as well as other symbol

variables, thus turbo codes, LDPC codes and trellis codes are put into a common framework
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Figure 2.10: Tanner graph with n = 10 and r = 5, which is corresponding to the above parity
check matrix H. Here circles and squares denote variable and check nodes, respectively. It
is also a (3, 6) regular LDPC code.

[81]. Further, Kschischang et al generalized Wiberg-type graphs to factor graphs [82], a

natural graphical model of a global function that can be factored into a product of local

functions. Forney later introduces normal graphs [83], which leads to a clean separation of

functions in sum-product decoding. It is because of the sparse graphical model, design of

various efficient iterative decoding algorithms based on message-passing via edges becomes

convenient, which will be discussed later.

If each variable node has the same degree dv and each check node has the same

degree dc, it is called (dv, dc) regular LDPC code. The example given above is actually a

(3, 6) regular LDPC code of block length n = 10. Otherwise, it is irregular. For irregular

LDPC codes, the degree of each variable and check node is random, with distribution given
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by some degree sequence

λ(x) =

dv,max∑
i=1

λix
i−1 and ρ(x) =

dc,max∑
i=1

ρix
i−1 (2.12)

where λi is fraction of edges incident to variable node of degree i and ρi fraction of edges

incident to check node of degree i, i.e.
∑dv,max

i=1 λi =
∑dc,max

i=1 ρi = 1. Here, dv,max and dc,max

is the maximum degree of variable and check nodes, respectively. Regular LDPC code is a

special case with λ(x) = xdv−1 and ρ(x) = xdc−1. It can be easily verified that the code rate

is a function of degree distributions as 1− (
∫ 1

0
ρ(x) dx)/(

∫ 1

0
λ(x) dx).

2.5.2 Message-Passing Algorithms

LDPC codes can be decoded by a class of efficient iterative algorithms, called message-

passing algorithms, based on the graphical model. At each round of the algorithm messages

are passed from variable nodes to check nodes and from check nodes back to variable nodes.

The message sent from a variable node v to a check node c depends on messages sent

from channel and all check nodes incident to v, excluding message sent from c. Similarly, the

message from c to v depends on messages sent from all variable nodes incident to c, excluding

message sent from v. That is, only extrinsic information is exchanged, which turns out to be

an important property of good message-passing decoders and which also makes the analysis

of the decoding algorithm feasible. Fig. 2.11 shows the basic operations in the message-

passing algorithm. It works based on an assumption that messages from different incoming

edges are conditionally independent, under which convergence is guaranteed.
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mch mc2v1

mc3v1

mv2c1

mv3c1

mv4c1

mc1v1

mv5c1

mv6c1

mv1c1

Figure 2.11: Message-passing algorithms (a case for regular (3, 6) LDPC codes). (a) vari-
able node update: outgoing message mv1c1 is determined by message from channel mch and
incoming messages mc2v1 and mc3v1 , but not by mc1v1 . (b) check node update: outgoing
message mc1v1 is determined by incoming messages mv2c1 , . . . , mv6c1 , but not by mv1c1 .

2.5.2.1 Gallager’s algorithm A

The first example of message-passing decoders was given by Gallager [2] for the binary

symmetric channel (BSC). The messages passed back and forth are estimated bits. It obeys

the following rules:

1) Initiation: In the 0-th iteration, the variable nodes send their received value from

channel to their incident check nodes directly.

2) Check node update: In the first half of the l-th iteration, the message sent from check

node c to variable node v is the modulo 2 sum of the message received by c from all

incident variable nodes other than v in the previous round.

3) Variable node update: In the second half of the l-th iteration, the message sent from

variable node v to check node c is b if all the messages received by v from all incident
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check nodes other than c are the same and equal to b. If they are not the same, the

received value from channel will be sent from v to c.

There is also a Gallager’s algorithm B, which is slightly different in step 3). See [2] for

details. Both these two algorithms belong to the class of hard-decision decoding algorithms.

It is simple but performance is not good enough.

2.5.2.2 Belief propagation algorithm

To achieve performance closer to capacity, one needs to use more refined messages.

Precisely, the messages are conditional probability (or soft information), i.e. Pr[x = 0|m1, . . . , ml]

or Pr[x = 1|m1, . . . ,ml], which contains information on hard decision as well as reliability.

Here, mi means current l incoming messages. Usually another equivalent form of message,

i.e. conditional log-likelihood ratios (LLR) defined as

logL(x|m1, . . . , ml) , log

(
Pr[x = 0|m1, . . . ,ml]

Pr[x = 1|m1, . . . ,ml]

)
, (2.13)

is preferred. If x = 0 or 1 with certain, we know LLR = +∞ or −∞, respectively. Other-

wise, LLR ∈ R. The sign of LLR gives hard decision and its magnitude tells how reliable

the decision is. Message-passing algorithm that uses LLR as message is also called belief

propagation algorithm, which is already developed in Artificial Intelligence community [84].

Following Gallager’s rule, we can similarly set up update equations when messages

are in LLR-domain. Let m
(l)
vc be the message passed from variable node v to check node c in

the l-th iteration and m
(l)
cv in the reverse direction. In the 0-th iteration, m

(0)
vc = mch which is

the LLR conditioned on its observed value and it is independent of check node c. In the l-th
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iteration, “tanh” rule and “sum” rule are followed at check and variable nodes, respectively,

due to operation on LLR-domain. For details about so called LLR-algebra, see [25].

Then the messages passed between variable nodes and check nodes can be specified

by the following update rule at variable and check nodes, respectively

m(l)
vc =





mch, if l = 0

mch +
∑

c′∈Cv\{c} m
(l−1)
c′v , if l ≥ 1

(2.14)

m(l)
cv = 2tanh−1


 ∏

v′∈Vc\{v}
tanh

(
m

(l)
v′c/2

)

 (2.15)

where Cv is the set of check nodes incident to variable node v and and Vc the set of variable

nodes incident to check node c, respectively. From the above formulation, we find that sum

operation is used in variable node update while product operation is used in check node

update. So the belief propagation algorithm is also called sum-product algorithm, which is

the most powerful message-passing algorithm.
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CHAPTER 3: NOISE MISMATCH IN TURBO TCM CODED
MB-OFDM SYSTEMS

3.1 Turbo TCM Coded MB-OFDM System

We follow the frequency band allocation scheme in the MB-OFDM proposal for IEEE

802.15.3a project [20]. The entire 3.1 - 10.6 GHz UWB bandwidth is divided into 14 frequency

subbands with 528 MHz each. Among them, the first twelve subbands are grouped into four

band groups each including three bands while the last two subbands are grouped into a

fifth band group. Currently, the only band group that is mandatory is the first band group

between 3168 MHz to 4752 MHz. The other subbands are allocated for optional use or future

expansions since propagation loss severely limits signals at higher frequencies. Information is

transmitted using OFDM modulation on each subband and different Time-Frequency Codes

(TFC), i.e. frequency hopping patterns, are used for channelization.

Instead of using punctured convolutional codes followed by QPSK modulation as in

the MB-OFDM proposal, we use more powerful turbo TCM codes and iterative decoding to

achieve higher data rate.

3.1.1 General Structure of a Multi-Band OFDM System

The diagram of a baseband transceiver of our turbo TCM coded MB-OFDM system

is illustrated as in Figure 3.1.

Information bit sequences are first encoded and mapped by turbo TCM encoder onto

complex points of a higher constellation, such as 16QAM or 64QAM. Then these mapped

data are grouped into blocks of length equal to 100. Together with inserted pilot/guard/null
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Pilot/Guard/Null tones

P/S
Add

ZP/GI

Remove
ZP/GI

S/P

S/PP/STurbo TCM
Decoder

OFDM

Modulation
OFDM

Encoder
Turbo TCM

Channel

n(t)

Demodulation

h(t)

Figure 3.1: A baseband turbo TCM coded MB-OFDM transceiver.

bits, they modulate NFFT = 128 subcarriers of OFDM in a selected frequency subband.

Since the bandwidth of each subband is 528 MHz, the frequency spacing between adjacent

subcarriers is ∆f = 528/128 = 4.125 MHz. A 128-point complex inverse fast Fourier trans-

form (IFFT) is employed for OFDM modulation to construct the 128 time-domain samples

for each subcarrier of an OFDM symbol, which occupies TFFT = 1/∆f = 242.4 ns. Of the

128 subcarriers, there are 100 of them dedicated for data from the mapper and 12 of them

located at subcarrier numbers 5, 15, 25, 35, 45, 55, 73, 83, 93, 103, 113, 123 are used as pilot

tones, which are useful for coherent detection. Another 10 subcarriers located at numbers

57-61 and 67-71 are dedicated for guard tones, which has various purposes such as relaxing

the specifications on the transmitter and receiver filters. The other 6 subcarriers at numbers

0 and 62-66 are simply set to be zero and named null tones, which are reserved for future

use. The subcarrier allocation for each OFDM symbol is summarized in Figure 3.2.

Unlike CP-OFDM method, ZP-OFDM assumes zero-padding prefix (ZP) of length

TZP = 60.6 ns (corresponding to NZP = 32 samples) at the beginning of each OFDM

symbol instead of a cyclic prefix (CP) [90]. Also, a guard interval of length TGI = 9.5 ns

(corresponding to NGI = 5 samples) is appended at the end of each OFDM symbol, which
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Figure 3.2: OFDM subcarrier allocation.

results in a total duration of TSY M = TFFT + TZP + TGI = 312.5 ns (corresponding to

NSY M = NFFT +NZP +NGI = 165 samples) for an OFDM symbol period. A general OFDM

symbol structure is shown in Figure 3.3, where the shaded block represents the start of a

new OFDM symbol period.

����
����
����

����
����
����

an OFDM symbol period

Zero Prefix

242.4 ns

165 samples
312.5 ns

128 samples

Guard Interval

60.6 ns
32 samples

9.5 ns
5 samples

OFDM Subcarriers

Figure 3.3: A general OFDM symbol structure.

The k-th analog baseband OFDM signal after digital-to-analog converter is

sk(t) =





0, t ∈ [0, TZP )

∑NFFT−1
n=0 sk[n]ej2π(n−NFFT

2
)∆f (t−TZP ), t ∈ [TZP , TZP + TFFT )

0, t ∈ [TZP + TFFT , TSY M)

(3.1)

where sk[n] denotes data/pilot/guard/null tones at the n-th subcarrier during the k-th

OFDM symbol period. Further, the complex baseband signal sk(t) is filtered, up-converted
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to an RF signal with a carrier frequency fΘ(k), which is hopping among various subbands fol-

lowing a time-frequency code (TFC). Figure 3.4 illustrates a time-frequency representation

of 6 OFDM symbols, where the carrier frequency index changes following a hopping pattern

Θ(.) defined as

Θ(k) =





1, k mod 6 = 0

3, k mod 6 = 1

2, k mod 6 = 2

1, k mod 6 = 3

3, k mod 6 = 4

2, k mod 6 = 5

(3.2)

where f1 = 3432 MHz, f2 = 3960 MHz, and f3 = 3388 MHz represent center frequencies of

the three subbands within band group 1, respectively, as shown in Figure 3.4.
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Figure 3.4: Time-frequency code of 6 MB-OFDM symbols over band group 1.

Finally, the transmitted multi-band OFDM signal is given by

s(t) =
∑

k

Re{sk(t− kTSY M)g(t− kTg)e
j2πfΘ(k)t} (3.3)

where g(t) denotes the waveform shaping filter of duration Tg and Re{.} takes the real part

of a complex variable.
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After passing through a channel with impulse response h(t) with additive noise n(t),

the received signal can be represented as

r(t) = s(t)⊗ h(t) + n(t) (3.4)

where ⊗ means convolution. At the receiver, zero-padding prefix and guard interval are

removed before OFDM demodulation, which can be implemented efficently as fast Fourier

transform (FFT). Then during each OFDM symbol period, 100 data are extracted from

128 subcarriers after a simple one-tap equalizer is employed to offset the effect of channel

imperfectness. Demodulated OFDM symbols are further passed to the turbo TCM decoder

to recover the information bits.

3.1.2 Turbo TCM Encoder Structure

Now let us take a deep look at the turbo TCM encoder, which is demonstrated in

Figure 3.5 step by step.

First, each of two information bit sequences u1 (or u2) with length L − 2 passes

through an independent random interleaver and generate its scrambled copy u3 (or u4) with

length L−2, respectively. This step is a parity check code and it is constructed as a repeater

followed by an interleaver [92]. Then after appending two tailing bits for each sequence,

u1, u2, u3 and u4 are further encoded by a recursive systematic convolutional (RSC) code

with rate R = 4/3 after puncturing the systematic output for u3 and u4. The output of

RSC is named v0, v1, v2. The parity check outer code is serially concatenated to the RSC

inner code with 16 states and this functions as a turbo code, whose overall rate is 2/3. The

encoder structure of this parity concatenated trellis code is given in Figure 3.6. As proved
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Figure 3.5: Turbo TCM structure in details.

in [93] that this structure is equivalent to Benedetto et al’s TTCM [30], the information bits

only occur once at the output.

D3

π1

π2

+ + + + +

u3

u4

u1

u2 v2

v1

v0

D0 D1 D2

Figure 3.6: Parity concatenated trellis encoder.

We name the 16 states for the trellis of RSC as S0 − S15, where S0 is the initial

state. We will find the tail-bit sequences for (u1, u2, u3, u4) that terminate the trellis to

state S0 such that a better BER performance is obtained. By examining the RSC trellis,
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we know that there are 16 outwards transition branches from each state due to 4-bit input

(u1, u2, u3, u4). Also we find out that actually there exists parallel branches between state

transitions. For example, from state S1 to state S8, there are two parallel branches, one

is (u1, u2, u3, u4) = (0, 1, 0, 1), the other is (u1, u2, u3, u4) = (1, 0, 1, 0). For simplicity, we

represent each binary 4-tuple (u1, u2, u3, u4) using a decimal number by assuming u1 the most

significent bit (MSB) while u4 the least significant bit (LSB). Thus, the above mentioned

two parallel branches from state S1 to state S8 become 5 and 10 in decimal, respectively.

From the trellis, we notice that for those Si (i even), there is a direct transition branch

from Si to S0. However, that is not the case for those Si (i odd). Generally, there only exists

transition branch from Si (i odd) to Sj (j ∈ [8, 15]) and from Si (i even) to Sj (j ∈ [0, 7])

and none otherwise. That means in order to go back to state S0 at time t, the previous state

at time t− 1 must be Si (i even). Based on this fact, we select Si at time t− 1 to be S0 such

that all even states at time t− 2 can connect through it to go back to S0 at time t. Also, we

select Si at time t − 1 to be S8 such that all odd states at time t − 2 can connect through

it to go back to S0 at time t. Since the choice is not unique, there are other possible paths

to go back to S0 within two transitions. All the paths based on our selection are shown in

Figure 3.7.

For simplicity, we only use a single solid line to represent all parallel transitions

between states. The two numbers attached to each line are decimal representation of inputs

(u1, u2, u3, u4) associated with each possible transition branch. From Figure 3.7, we easily

know that a tail-bit of 5 or 10 will bring S1 to S8 and a second tail-bit of 4 or 11 can further
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S0 S0

S8

time t − 2 t

Figure 3.7: Two tail bits to terminate the TTCM trellis.
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go to S0. It is similar for other states to return to S0. Thus, two tail bits are enough for

trellis termination and the input bit sequence length is L.

The multiplexed outputs v0, v1, v2, each with length L = 2×M ×N , are rearranged

one by one into a three-dimensional array, with size 6 ×M × N (six layers, each of which

is a matrix with M columns and N rows). It follows the order of row first, column second,

and layer last, i.e. the order of directions A, B, and C (see Figure 3.5) in serial. In our

system, parameters are set to be L = 8000,M = 200, N = 20. After such a bit level block

interleaver, every six bits on the same row-and-column position of that matrix are grouped

together and mapped onto a 64QAM constellation point, which is a complex number. The

64QAM constellation with gray mapping is shown in Figure 3.8, where the number associated

with each point is the decimal representation of the six bits from different layers. Totally we

have a matrix with size M × N = 200 × 20 of such complex numbers to be modulated by

OFDM.

Before OFDM modulation, there is another symbol level block interleaver to rearrange

the order of these M ×N = 4000 complex numbers in order to combat burst errors due to

the imperfect channel. They are read out columnwise and shift an additional step = 10 rows

downwards for each column as described in Table 3.1, where the entries represent the order

numbers for transmission, starting from 0 and ending at M ×N − 1 = 3999. We define it as

ord ∈ [0,M ×N − 1].

Assume a complex number is located at the I-th row and J-th column within the

matrix with size M × N , where I ∈ [0,M − 1] and J ∈ [0, N − 1]. Then, the symbol level

block interleaver in Table 3.1 functions as a mapping from row-column position (I, J) to its
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Figure 3.8: 64QAM with gray mapping.

Table 3.1: A symbol block interleaver.

20 columns

3811
3810

3809

3800
3999

3801...

...

390

399

391
0
1 581

580

...

200

...

400

...

401

599

...

...

199 389 579

...

...

...

step = 10

200 rows
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order number ord as

ord = J ×M + (I − step× J)M (3.5)

where (.)M denotes (.) mod M .

Once the order number ord is obtained, we can easily know that it is corresponding

to the nsub−th data subcarrier of the nOFDM−th OFDM symbol via

nsub = (ord)NFFT
(3.6)

nOFDM =
ord− nsub

NFFT

(3.7)

where nsub ∈ [0, NFFT − 1], nOFDM ∈ [0, dM×N
NFFT

e− 1] and here d.e means the ceiling function.

For our system NFFT = 100, thus we group the 4000 complex points from the mapper into

40 blocks each with 100 data.

By inserting 12 pilot bits, 10 guard bits and 6 null bits for each block following the

subcarrier allocation rule (see Figure 3.2), we form the samples with length 128, which will

be used to modulate 128 OFDM subcarriers in frequency domain. It is easy to get its time

domain OFDM symbol via IFFT.

3.2 Characteristics of UWB Channel and Impulsive Noise

3.2.1 UWB Channel Modeling

After OFDM symbols are transmitted out, it goes through a channel with impulsive

response h(t) and is further corrupted by an additive noise n(t). We are especially inter-

ested in a UWB indoor channel for home environment and an additive noise with impulsive

characteristics.
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Previous research on signal propagation measurements in home environment has

been done over various bandwidth ranges and transmitter-receiver separation distances

in two different ways, time domain sounding [94][95][96] vs. frequency domain sounding

[97][98][99][100]. In time domain techniques, the channel is excited by a short pulse and

a receiver records samples of the channel response captured by its antenna. However, it

requires the generation of ultra-short pulses and the non-ideal transmit pulses will distort

the observed impulse response. In frequency domain techniques, the bandwidth centered

around the frequency of interest is scanned by a vector network analyzer through discrete

frequencies. For each frequency point, a known sinusoidal signal is transmitted and both

magnitude and phase of the received signal are measured. Thus we get the transfer function

of the channel in frequency domain and the corresponding impulse response in time domain

can be obtained via inverse Fourier transform [101].

Once we get the measurements, we can parameterize a mathematical model to best fit

the data. One method is to model the channel impulse response in time domain [94][102][103].

Several statistical models based on a time domain tapped-delay line model with clusters

[104][105] have been found to be effective in modeling UWB channel with dense multipath.

It assumes multipath components arrive in clusters, thus the channel impulse response is

expressed as

h(t) =
Nc−1∑

l=0

Ne−1∑
m=0

αm,lδ(t− Tl − τm,l)e
jθm,l (3.8)

where Nc is the number of clusters of scatterers, Ne is the number of echoes in each cluster,

αm,l and θm,l are the amplitude and phase shift of the m-th echo of the l-th cluster, respec-

tively, Tl and τm,l are the arrival time of the l-th cluster and the time delay of the m-th
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echo in that cluster with respect to first arriving echo, respectively, and δ(.) is the Dirac

delta function. A modified S-V model based on [104] is finally taken as the IEEE 802.15.3a

standard channel model due to its accuracy for capturing the important characteristics of

the UWB channel, such as RMS delay spread, power decay profile and number of multipath

components [105].

The main disadvantage of channel models based on the description of the channel

impulse response is that they involve a large number of parameters, when a satisfactory

description of a given UWB propagation scenario is required. In [106], it shows that a second

order auto-regressive (AR) model in frequency domain can provide a channel description

closely matching experimental data. The channel model is

Ĥ(fi, t; d) + a1Ĥ(fi−1, t; d) + a2Ĥ(fi−2, t; d) = ni (3.9)

where d denotes the transmitter-receiver separation, Ĥ(fi, t; d) is the channel frequency

response which does not exhibit significant variability in time, ni is the excitation for the

model which is independent identically Gaussian distributed and ai is the model coefficient.

From equation (3.9), we know that the channel frequency response can be generated by

passing a Gaussian noise through an Infinite Impulse Response (IIR) filter. Since this model

is generative and allows simple simulation, we will generate our UWB channel based on this

AR model in this chapter.

3.2.2 Impulsive Noise Modeling

In the real wireless communications systems besides AWGN there are impulsive man-

made noise from ignition of automobile or other sources such as power line which affect
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the performance of the system. The impulsive noise is an additive disturbance that arises

primarily from the switching electric equipment and their statistical characteristics are much

different from those of Gaussian noise.

Analytical characterization of impulsive noise is quite difficult task. Several analytical

and empirical impulsive noise models were proposed in a literature in last twenty years. Some

of these models characterize impulsive noise from particular sources in certain conditions

with high degree of accuracy. However, in many practical situations it is very difficult to

predict statistical properties of impulsive interference. On the other hand, impulsive noise

from any source in any system has two common properties: (a) impulsive noise energy is

concentrated into short periods; (b) impulsive noise energy is much higher than that of

background (thermal) noise.

In this dissertation, we consider a generalized Gaussian noise model [38] as:

p(nk; Ak) =
γC

k

2σ
√

a(γC
k )Γ( 1

γC
k

)
e
− |nk|

γC
k

[a(γC
k

)]
γC
k

/2
σ

γC
k

k (3.10)

where the parameter Ak = (σ2
k, γ

C
k ), nk is the noise added on transmitted symbol, Γ(.) denotes

the Gama function, σ2
k is the variance of the noise and a(γC

k ) =
Γ( 1

γC
k

)

Γ( 3

γC
k

)
. When γC

k = 2, p(n)

is the Gaussian distribution function. When γC
k = 1, p(n) becomes the Laplace distribution

function. And when γC
k = 0.5, p(n) is the Sqrt noise mentioned in [38].

For OFDM system, the longer OFDM symbol duration provides an advantage in a

presence of impulse noise, because impulsive noise energy is spread out among simultaneously

transmitted OFDM subcarriers. However, it has been recently recognized that this advantage

turns into a disadvantage if the impulsive noise energy exceeds certain threshold. When
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OFDM system is applied to UWB channel, the impulsive noise mentioned above will cause

severe degradation of the system performance.

Therefore, a powerful channel decoder is required for such applications, that is robust

against impulsive noise in order to minimize its impact. We have studied the performance of

conventional iterative bit MAP decoder which is designed for Gaussian noise and reported

that, under impulsive noise environment, the bit MAP decoding algorithm for TTCM must

be modified to match the noise statistical characteristics. The code performance is examined

when applied to OFDM systems in non-Gaussian channel environment.

3.3 Impact of Impulsive Noise on MB-OFDM Receivers

At the receiver, the received RF signal is first down-converted to baseband by a

fast switching local oscillator, which uses the same hopping frequency as the TFC used by

the transmitter. Further it goes through a typical matched filter to obtain discrete signal

samples. Since the transmission over different subbands is independent one with respect to

another, the performance loss due to channel and additive noise can be considered almost

the same as the loss of a system using only one subband. Therefore in the following part,

it is sufficient to analyze the impact of channel and noise on a MB-OFDM receiver without

considering frequency hopping. Also as we know that OFDM system is efficient for ISI effects,

only a very simple one-tap equalizer is used for eliminating the channel imperfectness before

OFDM demodulation, which is implemented by FFT.

The MB-OFDM receiver structure is given is Figure 3.9. If the duration of multipath

channel h(t) is shorter than the guard interval, it has been shown in [90] that the ZP-OFDM
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receiver achieves a good performance (close to that of a CP-OFDM receiver) by using simple

overlap-and-add (OLA) operation, FFT and one-tap equalizer.

Receiver

n(t)

Channel
h(t) Equalizer OFDM

Demodulation
Turbo TCM

Decoder

Channel
Estimator

Figure 3.9: The MB-OFDM receiver.

An equivalent receiver model with noise added directly at the input of turbo TCM

decoder is given as in Figure 3.10, where n′(t) is the output of n(t) passing through the

equalizer and OFDM demodulator, which is basically an FFT operation.

Estimator

Equalizer OFDM
Demodulation

Turbo TCMChannel
h(t) Decoder

n
′(t)

Channel

Figure 3.10: An equivalent MB-OFDM receiver with noise added the input of turbo TCM
decoder.

Since OFDM demodulation is implemented via FFT, which means n(t) is impulsive

noise in time-domain while n′(t) is impulsive noise in frequency-domain. Then we have the

relationship before n(t) and n′(t) as follows:

n′[m] =

NFFT−1∑

k=0

n[k]Ĉke
j2πmk/NFFT (3.11)

where n[k] is k-th discrete sample of n(t) at the input of equalizer with one tap coefficient

equal to Ĉk to compensate the channel imperfectness. The noise n[k] is generally non-

Gaussian in time domain, however after passing through an NFFT -point complex FFT the
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output represents the noise in frequency domain, which could be Gaussian according to

central limit theorem. We will compare impulsive noises in time domain and frequency

domain in details using computer simulation.

3.4 Decoding Algorithms for Impulsive Noise

The demodulated data symbols will be fed to the bit MAP decoder for turbo TCM.

The decoder works in an iterative way, first decoding trellis codes then by parity check

codes, separated by de-interleaver. The output of decoder is probability information instead

of bit decision, which means soft. It will be used to pass to the next stage for further

decoding. The interaction between two component decoders will improve performance of

overall system, and approach maximum likelihood performance. The advantage of iterative

decoding over a single maximum likelihood decoder is to reduce the complexity with little

loss in performance.

We still apply the standard turbo iterative decoding scheme except making certain

modifications to match the statistical characteristics of the channel impulsive noise. The

branch metric in the basic MAP algorithm is modified according to the distribution of the

impulsive noise.

Under Gaussian noise environment, the channel transition probability is based on

Gaussian PDF and the Euclidian distance between the received signal and the candidates of

the transmitted signal, which can be described by (3.12):

p(nk) =
1

σk

√
2π

e−
n2

k
2σ2 (3.12)
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where

|nk| =
√

(Re {Y } − Re {X})2 + (Im {Y } − Im {X})2 (3.13)

where Re{.} and Im{.} represent in-phase and quadrature component of the transmitted

symbol X within constellation and received noisy symbol Y , respectively. And |nk| is the

Euclidian distance between X and Y . So the conventional MAP decoding is optimized

for Gaussian noise by selecting the symbol which has minimum Euclidean distance from

transmitted one.

For channels with impulsive noise, the channel noise can not be approximated through

Gaussian PDF any more. Therefore, the channel transition probability should be modified

accordingly and take into account the statistical distribution of the channel noise. The

modified channel probability is given in (3.10) by substituting

|nk| = (|Re {Y } − Re {X}|γC
k + |Im {Y } − Im {X}|γC

k )1/γC
k (3.14)

where |nk| is the modified distance between constellation point X and received symbol Y ,

which is exactly the same as (3.13) if γC
k = 2.

If we assume γC
k and γD

k are the actual and estimated noise parameter, respectively.

Obviously, the optimal decoder requires that γD
k = γC

k . Otherwise, due to channel variation

or estimation error, an additional mismatched error will occur to increase the total error

probability at the decoder.
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3.5 Performance Evaluation

Coherent detection and ideal Channel State Information (CSI) are assumed in our

computer simulation. We compare performance over a UWB channel and memoryless Gaus-

sian channel assuming h(t) = δ(t).

3.5.1 Density Evolution for Gaussian and UWB Channels

Density evolution is used to determine the threshold, which is the minimum SNR for

the decoder to converge assuming infinite block length as well as the extrinsic information

exchanged between component decoders is independent Gaussian. In density evolution chart,

as long as the SNR is above the threshold, these two constituent transfer curves will never

intersect, which means convergence in the limiting case.

In Figure 3.11, we show density evolution for OFDM systems using 16QAM on Gaus-

sian and UWB channels. For Gaussian channels, we find the threshold is 2.6dB and show the

EXIT chart for Eb/No = 2.8dB. On UWB channels, we found that if we take average over

all 2000 channels, then EXIT chart shows the clear case of convergence (see curves with solid

squares in figure 3.11). However, if we run EXIT over each individual channel instance, then

some channel instances require much large SNRs to allow iterative decoding to converge to

correct codewords. For example, at Eb/No = 5.5dB, about 2% of the channels are difficult

to converge (see curves with crosses in figure 3.11). We call them “bad” channels. When

Eb/No is small, the percentage of worst channels increases significantly. For example, when

Eb/No = 4.5dB, about 20% of channels are bad. Good performance can only be achieved

unless the interleave can fully randomize the extrinsic information over all channels. If the
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bits of a packet are interleaved over a number of channels containing significant amount of

“bad” channels, then the performance will be much poorer.
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Figure 3.11: Density evolution for 16QAM/OFDM on AWGN and UWB channels.

Figure 3.12 presents the density evolution analysis for OFDM system using 64QAM

on Gaussian and UWB channels. For Gaussian channels, we find the threshold is 3.7dB and

show the EXIT chart for Eb/No = 4.2dB. For UWB channels, when we set Eb/No = 9.2dB,

about 2% of the channels are bad.

3.5.2 Impulsive Noise Mismatch

Based on two different settings in Figures 3.9 and 3.10, we do simulation for both

Gaussian and UWB channels with impulsive noise inserted either before or after the FFT

block within OFDM demodulation.

1) Case I: AWGN channel before FFT.
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Figure 3.12: Density evolution for 64QAM/OFDM on AWGN and UWB channels.

We generate impulsive noise n(t) following the generalized Gaussian model with var-

ious γC as in Figure 3.9. Normalized distribution of the equivalent noise n′(t) after FFT

for each different γC is shown in Figure 3.13-3.15. It is more like Gaussian distribution

(corresponding to γD = 2.0) than Sqrt (corresponding to γD = 0.5) or Laplace distribution

(corresponding to γD = 1.0) no matter what actual value γC is.

BER performance vs. SNR curves are presented in Figure 3.16-3.19 for both matched

and mismatched cases. We see that in this setting decoder matched to n(t) is not necessarily

better than those mismatched cases. The results show that γD = 2.0 is always better than

γD = 0.5 or 1.0 no matter what γC is, since γD = 2.0 is always matched to the distribution

of the equivalent noise n′(t) shown above. So we suggest Gaussian decoder with γD = 2.0

in this setting, which is always matched to n′(t) and is quite robust to the impulsive noise

mismatch.
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Figure 3.13: Normalized noise n′(t) distribution after FFT. (γC = 0.5)
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Figure 3.14: Normalized noise n′(t) distribution after FFT. (γC = 1.0)
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Figure 3.15: Normalized noise n′(t) distribution after FFT. (γC = 2.0)
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Figure 3.16: BER vs. SNR: AWGN before FFT. (γC = γD = 0.5, 1.0, 2.0, respectively)
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Figure 3.17: BER vs. SNR: AWGN before FFT. (γC = 0.5, γD = 0.5, 1.0, 2.0, respectively)
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Figure 3.18: BER vs. SNR: AWGN before FFT. (γC = 1.0, γD = 0.5, 1.0, 2.0, respectively)
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Figure 3.19: BER vs. SNR: AWGN before FFT. (γC = 2.0, γD = 0.5, 1.0, 2.0, respectively)

2) Case II: UWB channel before FFT.

We again generate impulsive noise n(t) following the generalized Gaussian model with

various γC as in Figure 3.9. Normalized distribution of the equivalent noise n′(t) after FFT

for each different γC is shown in Figure 3.20 - 3.22. It is more like Sqrt distribution (corre-

sponding to γD = 0.5) than Laplace (corresponding to γD = 1.0) or Gaussian distribution

(corresponding to γD = 2.0) no matter what actual value γC is.

BER performance vs. SNR curves are presented in Figure 3.23- 3.34 for both matched

and mismatched cases. Again, We see that decoder matched to n(t) is not necessarily better

than mismatched cases. The results show that γD = 0.5 is always better than γD = 1.0

or 2.0 no matter what γC is, since γD = 0.5 is always matched to the distribution of the
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Figure 3.20: Normalized noise n′(t) distribution after FFT. (γC = 0.5)
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Figure 3.21: Normalized noise n′(t) distribution after FFT. (γC = 1.0)
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Figure 3.22: NNormalized noise n′(t) distribution after FFT. (γC = 2.0)

equivalent noise n′(t) shown above. So we suggest Sqrt decoder with γD = 0.5 in this setting,

which is always matched to n′(t) and is quite robust to the impulsive noise mismatch.

3) Case III: AWGN channel after FFT.

This time we generate impulsive noise n′(t) following the generalized Gaussian model

as in Figure 3.10. BER performance vs. SNR curves are presented in Figure 3.27 - 3.30 for

matched and mismatched cases. The simulation results confirm that decoder matched to

the distribution of n′(t) is always better than mismatched case.

4) Case IV: UWB channel after FFT.

Again we generate impulsive noise n′(t) following the generalized Gaussian model as

in Figure 3.10. BER performance vs. SNR curve is presented in Figure 3.31 - 3.34 for both
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Figure 3.23: BER vs. SNR: UWB before FFT. (γC = γD = 0.5, 1.0, 2.0, respectively)
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Figure 3.24: BER vs. SNR: UWB before FFT. (γC = 0.5, γD = 0.5, 1.0, 2.0, respectively)
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Figure 3.25: BER vs. SNR: UWB before FFT. (γC = 1.0, γD = 0.5, 1.0, 2.0, respectively)
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Figure 3.26: BER vs. SNR: UWB before FFT. (γC = 2.0, γD = 0.5, 1.0, 2.0, respectively)
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Figure 3.27: BER vs. SNR: AWGN after FFT. (γC = γD = 0.5, 1.0, 2.0, respectively)
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Figure 3.28: BER vs. SNR: AWGN after FFT. (γC = 0.5, γD = 0.5, 1.0, 2.0, respectively)
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Figure 3.29: BER vs. SNR: AWGN after FFT. (γC = 1.0, γD = 0.5, 1.0, 2.0, respectively)
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Figure 3.30: BER vs. SNR: AWGN after FFT. (γC = 2.0, γD = 0.5, 1.0, 2.0, respectively)
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matched and mismatched cases. The simulation results confirm that decoder matched to

the distribution of n′(t) is always better than mismatched case.
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Figure 3.31: BER vs. SNR: UWB after FFT. (γC = γD = 0.5, 1.0, 2.0, respectively)

5) Case V: AWGN channel plus mixed Gaussian noise with ε = 0.5.

We generate impulsive noise n(t) as in Figure 3.9 following the mixed Gaussian model:

p(nk) = εp1(nk) + (1− ε)p2(nk) (3.15)

where p1(nk), p2(nk) are two Gaussian PDF with zero mean and different variances equal to

1 and 100, respectively, and p(nk) is the mixed Gaussian PDF for the impulsive noise n(t) as

shown in Figure 3.35. We choose coefficient ε = 0.5. Normalized distribution for equivalent

noise n′(t) after FFT is shown here in Figure 3.36 together with the BER performance

simulation results in Figure 3.37. It is more like Gaussian distribution (corresponding to
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Figure 3.32: BER vs. SNR: UWB after FFT. (γC = 0.5, γD = 0.5, 1.0, 2.0, respectively)
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Figure 3.33: BER vs. SNR: UWB after FFT. (γC = 1.0, γD = 0.5, 1.0, 2.0, respectively)
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Figure 3.34: BER vs. SNR: UWB after FFT. (γC = 2.0, γD = 0.5, 1.0, 2.0, respectively)

γD = 2.0) than Sqrt (corresponding to γD = 0.5) or Laplace distribution (corresponding to

γD = 1.0). Then, γD = 2.0 achieves robust performance as we predicted.

6) Case VI: UWB channel plus mixed Gaussian noise with ε = 0.5.

Again we generate impulsive noise n(t) as in Figure 3.9 following the same mixed

Gaussian model with coefficient ε = 0.5 shown in Figure 3.35. Normalized distribution for

equivalent noise n′(t) after FFT is shown here in Figure 3.38 together with the BER perfor-

mance simulation results in Figure 3.39. It is more like Sqrt distribution (corresponding to

γD = 0.5) than Laplace (corresponding to γD = 1.0) or Gaussian distribution (corresponding

to γD = 2.0). Then, γD = 0.5 achieves robust performance as we predicted.

7) Case VII: AWGN channel with narrowband interference (NBI).
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Figure 3.35: Noise distribution n(t) before FFT. (ε = 0.5)
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Figure 3.36: Normalized noise distribution n′(t) after FFT. (ε = 0.5)
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Figure 3.37: BER vs SNR: AWGN plus mixed Gaussian. (ε = 0.5, γD = 0.5, 1.0, 2.0, respec-
tively)
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Figure 3.38: Normalized noise n′(t) distribution after FFT. (ε = 0.5)
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Figure 3.39: BER vs SNR: UWB plus mixed Gaussian. (ε = 0.5, γD = 0.5, 1.0, 2.0, respec-
tively)

We model impulsive noise n(t) as in Figure 3.9 to be a Gaussian noise plus some

narrowband interference. Here the Gaussian noise is zero mean and unit variance while the

narrowband interference is assumed to be a complex sinusoid with fixed frequency but various

average power. We want to investigate the BER performance vs. signal-to-interference-plus-

noise (SINR) for different sinusoid interference to Gaussian noise power ratio.

When this ratio is low, e.g. 0.01. We observe that the distributions of n(t) and

n′(t) are shown in Figure 3.40 and Figure 3.41, respectively. The BER performance vs.

SINR simulation result is given in Figure 3.42. Since n′(t) is more like Gaussian distribution

(corresponding to γD = 2.0) than Sqrt (corresponding to γD = 0.5) or Laplace distribution

(corresponding to γD = 1.0). Then, γD = 2.0 achieves robust performance as we predicted.
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Figure 3.40: Noise distribution n(t) before FFT. (power ratio is 0.01)
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Figure 3.41: Normalized noise distribution n′(t) after FFT. (power ratio is 0.01)
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Figure 3.42: BER vs SINR: AWGN with NBI. (power ratio is 0.01, γD = 0.5, 1.0, 2.0,
respectively)

When this ratio is high, e.g. 10. We observe that the distributions of n(t) and n′(t)

are shown in Figure 3.43 and Figure 3.44, respectively. The BER performance vs. SINR

simulation result is given in Figure 3.45. Since n′(t) is more like Sqrt distribution (corre-

sponding to γD = 0.5) than Laplace (corresponding to γD = 1.0) or Gaussian distribution

(corresponding to γD = 2.0). Then, γD = 0.5 achieves robust performance as we predicted.

When this ratio is medium, e.g. 0.5. We observe that the distributions of n(t) and

n′(t) are shown in Figure 3.46 and Figure 3.47, respectively. The BER performance vs.

SINR simulation result is given in Figure 3.48. Since n′(t) is more like Laplace distribution

(corresponding to γD = 1.0) than Sqrt (corresponding to γD = 0.5) or Gaussian distribution

(corresponding to γD = 2.0). Then, γD = 1.0 achieves robust performance as we predicted.

8) Case VIII: UWB channel with narrowband interference (NBI).
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Figure 3.43: Noise distribution n(t) before FFT. (power ratio is 10)
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Figure 3.44: Normalized noise distribution n′(t) after FFT. (power ratio is 10)
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Figure 3.45: BER vs SINR: AWGN with NBI. (power ratio is 10, γD = 0.5, 1.0, 2.0, respec-
tively)
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Figure 3.46: Noise distribution n(t) before FFT. (power ratio is 0.5)

78



−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

awgn, gaussian + sine

actual PDF
Sqrt PDF
Laplace PDF
Gaussian PDF

Figure 3.47: Normalized noise distribution n′(t) after FFT. (power ratio is 0.5)
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Figure 3.48: BER vs SINR: AWGN with NBI. (power ratio is 0.5, γD = 0.5, 1.0, 2.0, respec-
tively)
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Similarly we model impulsive noise n(t) as in Figure 3.9 to be a Gaussian noise plus

some narrowband interference.

However no matter what the sinusoid interference to Gaussian noise power ratio is,

we observe that the distribution of n′(t) is always like the way shown as in Figure 3.49, which

is more like Sqrt distribution (corresponding to γD = 0.5) than Laplace (corresponding to

γD = 1.0) or Gaussian distribution (corresponding to γD = 2.0). The BER performance

vs. SINR simulation result is given in Figure 3.50-3.52 for power ratio 0.01, 10 and 0.5,

respectively. Then, γD = 0.5 achieves robust performance as we predicted.
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Figure 3.49: Normalized noise distribution n′(t) after FFT. (No matter power ratio is 0.01,
10, or 0.5)

Based on the above observation in Case VII and VIII, we are interested in how the

sinusoid interference to Gaussian noise power ratio affects the BER vs. SINR performance

over both AWGN and UWB channels. We summarize their relationship via Figure 3.53.
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Figure 3.50: BER vs SINR: UWB with NBI. (power ratio is 0.01, γD = 0.5, 1.0, 2.0, respec-
tively)
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Figure 3.51: BER vs SINR: UWB with NBI. (power ratio is 10, γD = 0.5, 1.0, 2.0, respec-
tively)
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Figure 3.52: BER vs SINR: UWB with NBI. (power ratio is 0.5, γD = 0.5, 1.0, 2.0, respec-
tively)

For AWGN channel, we find out that when the power ratio is less than 0.1, receiver

based on γD = 2.0 is better than 1.0, which is further better than 0.5. When the power

ratio is between 0.1 and 0.8, receiver based on γD = 1.0 is better than 0.5, which is further

better than 2.0. When the power ratio is larger thn 0.8, receiver based on γD = 0.5 is better

than 1.0, which is further better than 2.0. This result is consistent with our BER vs. SINR

simulation in Case VII for power ratio equal to 0.01, 10 and 0.5.

For UWB channel, we find out that no matter what power ratio is, receiver based on

γD = 0.5 is better than 1.0, which is further better than 2.0. This result is also consistent

with our BER vs. SINR simulation in Case VIII for power ratio equal to 0.01, 10 and 0.5.
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Figure 3.53: SINR threshold at BER = 10−4 vs. sinusoid inference to Gaussian noise power
ratio over both AWGN and UWB channels. (γD = 0.5, 1.0, 2.0, respectively)

3.6 Conclusions

In this chapter, we demonstrated an MB-OFDM system using powerful parity-concatenated

TCM schemes for IEEE 802.15.3a WPAN applications. Frequency hopping, turbo trellis

coded modulation, bit as well as symbol level interleaving, OFDM and equalization were

described step by step. An modified MAP decoder for TTCM, whose branch metrics were

matched to general Gaussian noise structure, was provided to enhance decoding performance.

Extensive simulation was done for different cases of noise match and mismatch over both

Gaussian and UWB channels. Finally robust solutions for Gaussian and UWB channels were

provided by comparing impulsive noises in time domain with those in frequency domain.
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CHAPTER 4: OPTIMALITY ON PROBABILISTIC MINIMAX
ROBUST DECODER

Since the invention of turbo codes [3] [107] and the rediscovery of LDPC codes [2] [80]

[85] [108], there has been renewed interest in these two classes of codes which can approach

asymptotically the Shannon limit while still having a low-complexity decoder. Both classes

of codes rely on the application of the iterative soft-decision decoder where a posteriori

probability (APP) decoding plays an important role.

As we know, the Viterbi [65] and BCJR algorithms [77] are optimal if the noise distri-

bution is perfectly known to the decoder. Otherwise, a significant performance degradation

may occur due to mismatch. However, the probability density function (PDF) of the noise

could change within a short frame in an unpredictable manner. This could be caused by

either a natural phenomenon such as lighting or man-made noise such as automotive noise

and power-line noise [124]. The accurate estimation of the dynamic noise model could be

very difficult or impossible in practice. A robust decoder which is immune to unknown noise

model is very useful. In [38] we introduced a probabilistic minimax decoder and showed its

robustness by extensive simulation. In this chapter, we will demonstrate its optimality in

terms of minimizing the worst case bit error probability for channels with two-type noise

model with unknown prior probabilities. Further, we extend some results to more general

K-type noise model.

This chapter is organized as follows. In Section 1, we present the signal and system. In

Section 2, we show the optimal decoder for known noise. In Section 3 we prove the optimality

of our minimax robust decoder for channels with two-type noise model with unknown prior
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probabilities. More general K-dimensional case is discussed in Section 4. Section 5 gives a

simple example and Section 6 concludes this chapter.

4.1 Signals and Systems

Let [u]l1 = [u1, u2, . . . , ukl] and [v]l1 = [v1, v2, . . . , vnl] be the input and output se-

quences of a rate k/n convolutional encoder, respectively, where l is the length of sequence,

[uik−k+1, . . . , uik] and [vin−n+1, . . . , vin] are the k-tuple input and the n-tuple output at time

i, respectively, and ui, vi ∈ {0, 1}. By BPSK modulation, the transmitted sequence is

[s]l1 = [s1, s2, . . . , snl], where si =
√

Ebk/n(2vi − 1) and Eb is the signal power per source

bit. The received signal [r]l1 = [r1, r2, . . . , rnl] can be expressed as ri = si + ni, where ni is

the channel noise whose PDF may change from slot to slot.

The decoding problem is to recover sequence [u]l1 from sequence [r]l1 based on certain

design criterion. We assume that the noise variables ni for time slots i = 1, . . . , nl are

mutually independent so that decoding can be done on a slot-by-slot basis. It forms a

binary hypothesis detection problem: given ri ∈ R, the decoder accepts ui = 0 (hypothesis

H0) or ui = 1 (hypothesis H1). The noise model for time slot i can be described as the noise

PDF pni
(ni;Ai), or equivalently, a pair of conditional PDFs, pri|H0(ri|H0;Ai) if “0” is sent

and pri|H1(ri|H1;Ai) if “1” is sent, where Ai is a time-varying parameter vector defining the

noise type. For a Gaussian PDF, Ai = (µi, σ
2
i ) where µi is the mean and σ2

i is the variance.

Let Ac
i be the actual model parameter vector for the channel and Ad

i be its estimation

at the decoder. Later on we will just omit the subscript i for simplicity.

85



4.2 Optimal Decoder for Known Noise

The decoder partitions the entire observation space R into two non-overlap regions

Z0 and Z1 (Z0 ∩ Z1 = ∅ and Z0 ∪ Z1 = R) and make decisions following this rule: u = j if

r ∈ Zj (j = 0, 1). One of the most reasonable design criteria is to minimize the average bit

error probability (BEP). The decoder design and therefore its performance clearly depends

on how much information the receiver knows about the noise. It can be classified into four

cases of different levels:

i) noise type known for each time slot;

ii) a priori probability of each noise type known;

iii) nothing else known except possible types of noise;

iv) nothing known at all about noise.

Naturally, in case iv) the receiver has the worst performance. However, with some knowledge

about the noise model we can perform better. In the following two subsections, we will first

address cases i) and ii), respectively, which will be useful to case iii) later. Case iii) will be

studied in Section 4, which is the main focus of this chapter.

4.2.1 Single-Type Noise Model

For case i), we assume that the noise model is exactly known, which means the

parameter vector estimated by the decoder is equal to the actual parameter vector, i.e.
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Ad = Ac. Then, the BEP can be defined as

R(Ac) =
1∑

j=0

P (Hj)

∫

Z1−j

pr|Hj
(r|Hj;A

c) dr (4.1)

where P (Hj) is the probability of u = j. The decoder can find the optimal decision regions

{Z0, Z1} via the following minimization problem:

min{Z0,Z1} R(Ac) (4.2)

Finally, we can get the following decision rule:

pr|H1(r|H1;A
c)

pr|H0(r|H0;Ac)

Z1

≷
Z0

P (H0)

P (H1)
(4.3)

which is the likelihood ratio test. If we know P (Hj), from equation (4.3) we get the optimal

{Z∗
0 , Z

∗
1} and then the minimum BEP from equation (4.1).

For a standard Viterbi decoder which is optimized towards Gaussian noise model, we

just need to change the branch metrics from |r− ŝ|2 to − log (pn(r − ŝ;Ac)). For a standard

BCJR decoder, we simply replace the Gaussian PDF by the known pn(r − ŝ;Ac) in branch

metric calculation.

4.2.2 Two-Type Noise Model with Known Prior Probabilities

As for case ii), we consider two noise models (denoted by A1 and A2) occur with a pri-

ori probabilities P (A1) and P (A2), respectively, and the decoder knows these probabilities.

The BEP is further averaged over two noises as

R(A1,A2) =
2∑

k=1

P (Ak)R(Ak) (4.4)

where R(Ak) is defined as in (4.1) by substituting Ac by Ak.
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The decoder will find the optimal decision regions {Z0, Z1} via the following mini-

mization problem:

min{Z0,Z1} R(A1,A2) (4.5)

Similar to the procedure in the previous subsection, we can get the following decision rule:

∑2
k=1 P (Ak)pr|H1(r|H1;A

k)∑2
k=1 P (Ak)pr|H0(r|H0;Ak)

Z1

≷
Z0

P (H0)

P (H1)
(4.6)

which is a generalized version of (4.3). Thus we can get {Z∗
0 , Z

∗
1} and then minimum BEP

from equation (4.4).

For a standard Viterbi decoder, similarly we just need to change the branch metrics

from |r − ŝ|2 to − log
(∑2

k=1 P (Ak)pn(r − ŝ;Ak)
)
. For a standard BCJR decoder, we sim-

ply replace the Gaussian PDF by the averaged
∑2

k=1 P (Ak)pn(r − ŝ;Ak) in branch metric

calculation.

4.3 Minimax Decoder for Noise with Unknown Prior
Probabilities

As we know from Section 3, the PDF pr|Hj
(r|Hj;A) is used to derive various branch

metrics for optimal trellis-based decoding algorithms such as standard Viterbi and BCJR

algorithms. If the true noise model is known, so that Ac = Ad , then the Viterbi and

BCJR decoders are optimal. When the true noise model is unknown, we have Ac 6= Ad ,

and the standard Viterbi and BCJR decoders are no longer optimal due to mismatch errors.

However, it is often difficult to know the exact noise PDFs because of the existence of the

so-called man-made noise such as power-line noise, automobile noise, etc. These man-made

noise types are often impulsive, which could result in mixed type of noise even in one packet

88



(about 200 bits). The impulsive noise often lasts a short period of time, which makes noise

estimation a very difficult task.

4.3.1 Minimax Criterion

With the knowledge of noise as described in case i) and ii), Section 3 actually follows

the maximum a posteriori probability (MAP) criterion if P (Hj) is known. It is equivalent to

the maximum likelihood (ML) criterion if we assume P (H0) = P (H1).

If we don’t know anything about the noise, nothing we can do better than guessing.

However, if we can know all the possible types of noise according to prior knowledge though

their probabilities are not clear, which is exactly case iii), we can do better than guessing.

Instead of minimizing the average BEP, we try to minimize the maximum BEP for each

possible noise type.

Again we consider a model with two noise types (denoted by A1 and A2) but with

unknown priori probabilities. By minimax criterion, we do optimization as follows:

min{Z0,Z1} maxk∈{1,2}R(Ak) (4.7)

where R(Ak) is defined the same way as before.

4.3.2 Minimax Decoder is Robust

In this subsection we only discuss a two-type noise model where the model prior

probabilities are unknown to the decoder. We want to investigate the following problem:

if the actual a priori probability P (A1) = p, but somehow we use an “optimal” decoder

matched to P (A1) = q, what will be the average BEP R(p; q) of this mismatched case? And
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what is the best we can do if p is unknown. Here the “optimal” decoder is in the MAP sense

based on the optimization in Subsection 4.2.2.

From the case discussed in Subsection 4.2.2, we know that if the actual probability

p is known, we can design the optimal decoder matched to q = p, then the average BEP

R(p; p) will be the optimum. We can plot a curve C as in Figure 4.1. It forms a lower bound

for the average BEP performance, which is achieved only if the design probability matches

the actual probability, i.e. q = p. For q 6= p, which is usual for the unknown noise model as

in case iii), there is performance degradation due to mismatch.

p

Ra

R

L∗ : R(p; q = P ∗)

P ∗ 10

Rb

R∗

Pa Pb

Rh

Rc

Rl

La : R(p; q = Pa)

C : R(p; p)

Figure 4.1: Average BEP R versus actual probability p.
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We find some interesting properties of the minimax decoder as follows.

Property 1. If the design probability q = q0 is fixed, the average BEP R(p; q0) is a linear

function of actual probability p. And it is a straight line tangent to the curve R(p; p) at point

p = q0.

Proof : We design our decoder based on q = q0. The mismatched decision regions

{Z4
0 , Z4

1 } are obtained via solving equation (4.6) by substituting P (A1) = q0 and P (A2) =

1− q0.

For noise type A1, we have probability of miss PM(A1) =
∫

Z40
pr|Hj

(r|H1;A
1) dr and

probability of false-alarm PF (A1) =
∫

Z41
pr|Hj

(r|H0;A
1) dr, both of which are fixed when

{Z4
0 , Z4

1 } are determined.

Thus, the BEP for noise type A1, i.e. R(A1) = P (H1)PM(A1) + P (H0)PF (A1), is

also fixed.

Similarly, the BEP for noise type A2, i.e. R(A2), is fixed, too.

Then, R(p; q0) = P (A1)R(A1) + P (A2)R(A2) = pR(A1) + (1− p)R(A2) = R(A2) +

p[R(A1)−R(A2)] is a linear function of p only.

Easily we know that p = q0 is a solution to equation R(p; q0) = R(p; p), which means

the straight line R(p; q0) intersects the curve R(p; p) at point p = q0. Actually, the curve is

always below the straight line where the gap between them is the mismatch BEP loss. So

the straight line R(p; q0) is tangent to the curve R(p; p) at point p = q0. ¤

For example, we design a decoder based on q = Pa, then the BEP for actual proba-

bility p can be described as a straight line La : R(p; q = Pa), where Ra = R(p = Pa; q = Pa)
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means matched case. If p = Pb instead, the BEP becomes Rc = R(p = Pb; q = Pa) which

will be greater than Rb = R(p = Pb; q = Pb) as if we design the decoder based on q = Pb.

The BEP loss due to mismatch is Rc −Rb as you can see in Figure 4.1.

Property 2. The curve R(p; p) is concave and has a maximum R∗ at p = P ∗.

Proof : This follows from the fact that for any p, R(p; q) ≥ R(p; p). That means the

curve C is always below the straight line tangent to it.

Since P (A1) = p, by solving

p pr|H1(r|H1;A
1) + (1− p)pr|H1(r|H1;A

2)

p pr|H0(r|H0;A1) + (1− p)pr|H0(r|H0;A2)

Z1

≷
Z0

P (H0)

P (H1)
,

we get the optimal decision regions {Z∗
0 , Z

∗
1} which minimize the average BEP according to

Subsection 4.2.2. And its minimum is exactly R(p; p).

If we instead get a set of different decision regions {Z4
0 , Z4

1 } by solving

q pr|H1(r|H1;A
1) + (1− q)pr|H1(r|H1;A

2)

q pr|H0(r|H0;A1) + (1− q)pr|H0(r|H0;A2)

Z1

≷
Z0

P (H0)

P (H1)
,

we know that the corresponding BEP is R(p; q), which is not necessarily the minimum. Thus,

R(p; q) ≥ R(p; p).

Since R(p; p) is concave, it has a maximum either at a point p = P ∗ with zero slope

or at one of the endpoints p = 0 or 1. ¤

Property 3. The minimax criterion defined in equation (4.7) is equivalent to the following

criterion:

maxpR(p; p) (4.8)
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Proof : It is not difficult to understand that the minimax criterion (4.7) actually

means

minqmaxpR(p; q) (4.9)

which minimizes the maximum BEP. Once the design probability q is given, the BEP perfor-

mance is decided by the actual probability p only and has its maximum achieved at certain

value of p. We try to choose a q such that the maximum BEP is as small as possible. It

takes maximization of R(p; q) over p by fixing q first, then takes minimization over q.

We can also do minimization over q by fixing p first, and get a function of p only,

which is exactly R(p; p) = minqR(p; q). Then we can do maximization over p. This is exactly

what equation (4.8) does.

So equation (4.8) is equivalent to equation (4.9), which means equation (4.8) is an

alternative representation to the minimax criterion. ¤

Property 4. Suppose P ∗ = arg maxpR(p; p) and the slope of the line L∗ : R(p; q = P ∗) is

zero, then the decoder with design probability P ∗ is robust to unknown noise prior probabili-

ties.

Proof : From Property 1, we know that R(p; q) = R(A2) + p[R(A1)−R(A2)]. When

q = P ∗, we get a zero slope, i.e. R(A1) = R(A2) , R∗.

Given any actual probability P (A1) = p, we can calculate average BEP from equation

(4.4): pR(A1) + (1 − p)R(A2) = R∗, which is a constant independent of unknown a priori

probability p over the entire range p ∈ [0, 1]. In this sense, the minimax decoder is “robust”.

It is the optimal solution to our unknown noise model for case iii). ¤
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4.4 K-Dimensional Cases

For K-dimensional cases, there are totally K noise models with unknown priors. Let

pk = P (Ak) for k = 1, 2, . . . , K where
∑K

k=1 pk = 1.

The bit error probability (BEP) is defined as follows:

R(A1, A2, . . . , AK) =
K∑

k=1

pkR(Ak)

where the conditional risk when noise model k appears can be described as

R(Ak) = P (H0)

∫

Z1

pr|H0(r|H0; Ak) dr + P (H1)

∫

Z0

pr|H1(r|H1; Ak) dr

Since pK = 1 − ∑K−1
k=1 pk, BEP can be expressed as a function of K − 1 variables,

p1, p2, . . . , pK−1. Let p = [p1, p2, . . . , pK−1]
T , which means a vector in a (K − 1)-dimensional

space.

If the prior distribution for p is known to be p0, then according to Section 4.2.2, we

can get the optimum BEP R∗ by minimizing R(A1, A2, . . . , AK), i.e. by solving the inequality

∑K
k=1 p0kpr|H1(r|H1; Ak∑K
k=1 p0kpr|H0(r|H0; Ak)

Z1

≷
Z0

P (H0)

P (H1)

For each particular distribution p, we can get the above mentioned optimum. Thus

we can name such an optimum as a function of distribution, R∗(p).

Property 5. R∗(p) is a lower bound of BEP for any rule.

Proof. Given any valid p ∈ [0, 1]K , R∗ is the minimum BEP we can get by minimizing

R(A1, A2, . . . , AK).
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However, this lower bound is not achievable when p is unknown. A implementable

rule is to design a rule independent of unknown p.

Property 6. For every rule which is independent of p, BEP is a linear function of p.

Proof. Once a rule is chosen, {Z0, Z1} is then determined also independent of p, such that the

conditional risk R(Ak) is determined independent of p. By substituting pK = 1−∑K−1
k=1 pk,

R(A1, A2, . . . , AK) = aTp + b, where a = [R(A1)−R(AK), R(A2)− R(AK), . . . , R(AK−1)−

R(AK)]T and b = R(AK).

Minimax is a very reasonable rule for unknown prior distributions p, which minimizes

the maximum conditional risks as follows

min max{R(A1), R(A2), . . . , R(AK)}

Corollary 1. A minimax rule is also a linear function of p.

Property 7. A rule, which is independent of p, cannot be a solution for minimax rule if it

is not tangent to the curve R∗(p).

Proof. Since the rule is independent of p, it can be described as the linear function R =

aTp+b. If it is not tangent to R∗(p), there must exist another parallel line tangent to R∗(p)

which has the form R′ = aTp + b′, where b′ < b. We know that for every p, R′ < R. Then

max R′ < max R. It means R cannot be a solution to min max R.

Actually a rule tangent to R∗(p) at p0 means that though we don’t know the actual

distribution, we design the decoder based on the distribution p0. The corresponding BEP

is a function of the actual distribution p as R(p;p0). Then we can see that the previously
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defined R∗(p) = R(p;p). According to the above property, the solution for a minimax rule

must be within the family of straight lines tangent to the lower bound R∗(p), i.e. R(p;q).

We can do minimax operation over these candidates only instead of over the entire rule

space.

Property 8. Minimax, i.e. minqmaxpR(p;q) is equivalent to Maximin, i.e. maxpminqR(p;q) =

maxpR(p;p).

Proof. Similar to proof of Property 3.

It means if we want to find a minimax solution, we can actually a maximum of R(p;p)

or equivalently R∗(p). The only question left is the existence of a maximum of R(p;p), which

will be guaranteed by the following property.

Property 9. R∗(p) is concave, which guarantees the existence of a maximum solution of

R(p;p), and then the existence of a minimax solution of minqmaxpR(p;q).

Proof. For any pa,pb ∈ [0, 1]× · · · × [0, 1]︸ ︷︷ ︸
K−1 times

and any λ ∈ [0, 1], let

pc = λpa + (1− λ)pb

that is, pci = λpai + (1− λ)pbi for i = 1, 2, . . . , K − 1.

Then

pc − pa

pb − pc

=
1− λ

λ

which means

pb − pa

pc − pa

=
1

1− λ
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Since we have

R(pb;pc)−R(pa;pc)

pb − pa

=
R∗(pc)−R(pa;pc)

pc − pa

we get

R(pb;pc)−R(pa;pc)

R∗(pc)−R(pa;pc)
=

pb − pa

pc − pa

=
1

1− λ

that is

R∗(pc) = λR(pa;pc) + (1− λ)R(pb;pc)

However, R(pa;pc) ≥ R(pa;pa) = R∗(pa) and R(pb;pc) ≥ R(pb;pb) = R∗(pb).

Thus, we finally get

R∗(pc) ≥ λR∗(pa) + (1− λ)R∗(pb)

which means R∗(p) is concave.

4.5 Numerical Results

We use some numerical examples to confirm our results. In [38] (Fig. 2), a two-type

noise model is introduced. Their PDFs can be described as follows:
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p(r|H1;A
1) =





1
4
(r + 1), if −1 6 r < 1

3
;

1
3
, if 1

3
6 r < 2

3
;

−1
4
(r − 2), if 2

3
6 r < 1;

−1
4
(r − 3), if 1 6 r < 7

3
;

1
6
, if 7

3
6 r < 8

3
;

1
4
(r − 2), if 8

3
6 r < 3;

0, otherwise.

p(r|H1;A
2) =





1
6
, if −1 6 r < 1;

1
3
, if 1 6 r < 3;

0, otherwise.

and

p(r|H0;A
1) = p(r + 2|H1;A

1)

p(r|H0;A
2) = p(r + 2|H1;A

2)

If only A1 type noise exists, the optimal decoder should follow the results in Sub-

section 4.2.1. The optimal decision regions are Z0 = (−∞, 0) and Z1 = [0, +∞) and the

minimum BEP is 23
144

. Similarly, if only A2 type noise exists, the optimal decision regions

are Z0 = (−∞, 1) and Z1 = [1, +∞) and the minimum BEP is 1
6
.
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When both noises exist and the actual probability p is known, we can always design

a decoder matched to p and get the best BEP performance. The optimal decision region will

rely on both received r and the model probability p. It is easy to verify that r ∈ (−∞, 0] ⊂ Z0

and r ∈ [1, +∞) ⊂ Z1 for any p. For r ∈ (0, 1), we get the optimal decision regions for each

pair of (r, p) as shown in Figure 4.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

r Z
1
 Z

0

Figure 4.2: Optimal decision regions for r ∈ (0, 1).

When both noises exist but the a priori probability P (A1) is unknown to the decoder,

there will be mismatch if we use the optimal decoder matched to either type of noise. For

an actual probability p, the straight line L1 : R = − 13
144

p + 1
4

in Figure 4.3 denotes the BEP

when the decoder matches A1 only, and the straight line L2 : R = 7
144

p + 1
6

denotes the

BEP when the decoder matches A2 only. We can use the minimax criterion to design our

robust decoder and the optimal BEP is 55
288

, which is corresponding to the horizontal line

L3 : R = 55
288

. All the results we obtain here are consistent with those in [38].
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Figure 4.3: Average BEP R versus actual probability p. (L1: decoder matched to A1 only;
L2: decoder matched to A2 only; L3: minimax robust decoder.)

4.6 Conclusions

In this chapter, we discussed the decoder design problem under different noise mod-

els. After reviewing the optimal MAP decoder under known noise model, we formulated a

minimax decoder for channels with two-type noise model with unknown prior probabilities.

We generated an alternative optimization problem which actually is equivalent to minimax

criterion. Further, we proved that minimax decoder is robust to unknown noise model and

it is an optimal solution to our problem. Numerical examples further confirmed our results.
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CHAPTER 5: CAPACITY OF LDPC CODES UNDER
SUM-PRODUCT DECODING AND NOISE MISMATCH

A decade after the break-through of turbo codes [3] [107], many coding schemes

can now closely approach the Shannon limit. These coding schemes include turbo codes

[110] [111] [112], LDPC codes [2] [6], “repeat-accumulate” (RA) codes [113], and several

concatenated coding schemes using simple parity-check codes [114] [115] [116] [117] [118].

Density evolution and the Tanner graph have played an essential role in code optimization

and decoding performance analysis [85] [108] [80].

Both the Viterbi [65] and BCJR algorithms [77] algorithms are special cases of min-

sum and sum-product algorithms [81]. In [119] Forney provided a detailed description of the

two-way algorithms as well as a review of their rich history. Both algorithms are optimal

if the decoders know the exact probability density function (PDF) of the channel noises;

otherwise, a significant performance degradation may occur. In other words, we need to

know the exact noise PDF of the channel to design the optimal decoders. In practice, if

the noise PDF changes slowly or are constant, then it can be estimated [120] [121] [122].

However, in the real world, the noise could change within a short time frame in an uncertain

manner. This could be caused by either natural phenomenon such as lighting or man-made

noise such as automotive noise and power-line noise [123] [124]. The characteristic of one

type of man-made noise is impulsive with a typical rate of 10-500 impulses/second [123].

For a mobile phone with a data rate of 10 Kbits/s, it could experience up to one impulse

every 200 bits (roughly every speech packet will be affected). For a HF radio with a data

rate of 1 Kbits/s, the situation will be worse. Some types of man-made noise can still be
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approximated by Gaussian noise, while others might only be modeled as other types of noise

(for example, impulsive Laplace noise). Furthermore, even in Gaussian channels the sum-

product decoder needs to estimate the noise variance. The accurate estimation of these noise

parameters could be very difficult if not impossible in practice. Alternatively, we can design

decoders robust to mismatched noises and noise parameter estimation errors [125] [38].

LDPC codes and turbo codes have been included in many practical application re-

cently. Impulsive noise has become a major focus in application of turbo and LDPC codes in

practice [126] [127] [128] [129]. However, it is unclear whether the main analytical results of

density evolution in [5] and [130] can be extended to mismatched cases. In other words, can

we analyze the threshold for LDPC codes with sum-product decoder designed to match the

AWGN noise under the effect of impulsive Laplace noises? Does the symmetric condition

hold? Is the Shannon capacity affected by the mismatched noise used in the decoder? How is

the stable condition affected by the mismatched noise? This chapter is dedicated to answer

these questions. In this chapter, we will focus on binary input AWGN (BIAWGN) channels

and binary input Laplace (BIL) channels, as example. The general results can be applied to

many other mismatched noise cases.

5.1 Capacity for BIAWGN and BIL Channels with Mismatched
Noise

Figure 5.1 shows the block diagram of the system. Let xD ∈ {±1} denote the binary

input information source. Let x denote the binary coded bit with probability q = Prob(x =

1) (here Prob(.) means probability, not PDF), which is passed through an additive channel

and the output is y = x + n, where n is the independent noise component. L(·) denotes the
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computation of log-likelihood ratio (LLR) given y, channel type and channel parameters.

The initial log-likelihood ratio value is passed to the sum-product decoder. In order to

compute the log-likelihood ratio value, we need to know the channel type and estimate the

channel parameters such as the variance. In practice, we may use wrong type of channels

or an inaccurate channel parameters in the decoder. For clarification, we use subscript “c”

denotes the true channel type and channel parameters, and subscript “r” to denote the

estimated channel type and channel parameters used in the decoders.

vdata (x    )
D

data (x    ) BPSK mapping
Encoder

x

n

y
L( . )

decoder
sum−product

D

Figure 5.1: Block Diagram of the System

Property 10. Mismatch between true channel (type and parameters) and the estimated

channel (type and parameters) used in the decoder will only affect the performance of sum-

product decoder through the log-likelihood ratio computation for any binary-input memoryless

output symmetric channels.

Proof. At first, we prove that the channel symmetric condition holds as long as both the true

channel and the channel used in the receiver are binary-input memoryless output symmetric.

Presumably, we have pc(y|xc = 1) = pc(−y|xc = −1) and pr(y|xr = 1) = pr(−y|xr = −1)

where xc means true bit sent at the transmitter while xr means estimated bit at the receiver,

then we have p(v|xc = 1) = p(y|xc = 1)|dy|/|dv| and p(v|xc = −1) = p(y|xc = −1)|dy|/|dv|,

where v = log pr(y|xr=1)
pr(y|xr=−1)

, f(y). Since −v = −log pr(y|xr=1)
pr(y|xr=−1)

= log pr(−(−y)|xr=−1)
pr(−(−y)|xr=1)

=

log pr(−y|xr=1)
pr(−y|xr=−1)

= f(−y), we obtain p(−v|xc = −1) = p(−y|xc = −1)|dy|/|dv| = p(y|xc =
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1)|dy|/|dv| = p(v|xc = 1). Thus, the output from mismatched LLR computation is also

symmetric. One shall note that for the mismatched case, we do have p(v) 6= evp(−v).

Secondly, it is easily verified that the symmetric conditions on check node and variable

nodes are maintained regardless of mismatch or not. Thus, we can analyze the behavior of

sum-product decoder from its behavior assuming transmission of the all-one codeword [85].

Finally, the computation of discrete density evolution of sum-product decoder is re-

lated to outputs of channel only through the initial message density of the likelihood ratios.

Thus, regardless matched or mismatched channel type or parameters, we can use density

evolution to evaluate its performance as long as we find appropriate initial message den-

sity.

Now, let us take two channels as examples, one is binary input additive white Gaussian

noise (BIAWGN) channels and another is binary input Laplace (BIL) channels. The results

for matched cases can be found at [5], [85] and [130]. Now, we will focus on mismatched

cases.

For BIAWGN channels, n is Gaussian distribution of zero mean and variance σ2
c and

pc,BIAWGN(y|x) =
1√

2πσc

e
− (y−x)2

2σ2
c (5.1)

For BIL channels, n is Laplace distribution of zero mean and variance 2λ2
c and

pc,BIL(y|x) =
1

2λc

e−
|y−x|

λc (5.2)

where p(·) denotes the probability density function. One can replace subscript “c” by sub-

script “r” to obtain the estimated channel noise PDF used in the decoders as

pr,BIAWGN(y|x) =
1√

2πσr

e
− (y−x)2

2σ2
r (5.3)
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pr,BIL(y|x) =
1

2λr

e−
|y−x|

λr (5.4)

The signal to noise ratio (SNR) is 1
σ2

c
and 1

2λ2
c

for BIAWGN and BIL channels respec-

tively. Bit energy to noise density ratio Eb

No
is then related to SNR as Eb

No
= SNR

2R
, where R

denotes the code rate.

L(·) computation for the BIAWGN channel is

v = log
pr,BIAWGN(y|x = 1)

pr,BIAWGN(y|x = −1)
=

2y

σ2
r

(5.5)

It is a linear operation.

L(·) computation for the BIL channel is

v = log
pr,BIL(y|x = 1)

pr,BIL(y|x = −1)
=





− 2
λr

, y ≤ −1

2y
λr

, −1 < y ≤ 1

2
λr

, y > 1

(5.6)

It is a non-linear operation.

The initial message density given all one-codeword, i.e., the PDF of v given x = 1,

or p(v|x = 1) = pc(y|x = 1)|dy|/|dv| as

1√
2πσc

e
− (y−1)2

2σ2
c · σ2

r

2

∣∣∣∣
y=vσ2

r/2

=
σ2

r

2
√

2πσc

e
− (vσ2

r−2)2

8σ2
c (5.7)

and

1

2λc

e−
|y−1|

λc · σ2
r

2

∣∣∣∣
y=vσ2

r/2

=
σ2

r

4λc

e−
| vσ2

r
2 −1|
λc (5.8)

for BIAWGN and BIL channels, respectively, where the decoder uses the BIAWGN noise

type, i.e., L(·) is computed by (5.5).
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When the decoder uses the BIL to calculate v via (5.6), due to its nonlinearity, we

can calculate p(v|x = 1) separately as follows.

Prob(v = − 2

λr

|x = 1) = Prob(y ≤ −1|x = 1) =

∫ −1

−∞
pc(y|x = 1)dy , F1 (5.9)

Prob(v =
2

λr

|x = 1) = Prob(y > 1|x = 1) =

∫ ∞

1

pc(y|x = 1)dy , F2 (5.10)

When v = 2y
λr
∈ (− 2

λr
, 2

λr
), its PDF is

p(v|x = 1) = pc(y|x = 1) · λr

2

∣∣∣∣
y= vλr

2

, F (v) (5.11)

Also, we know that p(v|x = 1) = 0 when v < − 2
λr

or v > 2
λr

.

Overall, the PDF of v is

p(v|x = 1) = F1δ(v +
2

λr

) + F2δ(v − 2

λr

) + F (v)Πv(
2

λr

) (5.12)

where the rectangular pulse function is Πv(x) = 1 if |v| < x, 0 elsewhere.

Therefore, we have p(v|x = 1) as

Q(
2

σc

)δ(v +
2

λr

) +
1

2
δ(v − 2

λr

) +
λr

2
√

2πσc

e−
( vλr
2σc

− 1
σc

)2

2 Πv(
2

λr

) (5.13)

and

1

2
e−

2
λc δ(v +

2

λr

) +
1

2
δ(v − 2

λr

) +
λr

4λc

e−|
vλr
2λc

− 1
λc
|Πv(

2

λr

) (5.14)

for BIAWGN and BIL channels, respectively, where the decoder uses the BIL noise type,

i.e., L(·) is computed by (5.6) and Q(x) =
∫∞

x
1√
2π

e−z2/2dz.

By replacing v by −v in (5.7), (5.8), (5.13) and (5.14), we obtain corresponding

p(v|x = −1) as

σ2
r

2
√

2πσc

e
− (vσ2

r+2)2

8σ2
c (5.15)
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σ2
r

4λc

e−
| vσ2

r
2 +1|
λc (5.16)

Q(
2

σc

)δ(v − 2

λr

) +
1

2
δ(v +

2

λr

) +
λr

2
√

2πσc

e−
( vλr
2σc

+ 1
σc

)2

2 Πv(
2

λr

) (5.17)

and

1

2
e−

2
λc δ(v − 2

λr

) +
1

2
δ(v +

2

λr

) +
λr

4λc

e−|
vλr
2λc

+ 1
λc
|Πv(

2

λr

) (5.18)

Property 11. (a) The Shannon capacity for the matched channels is given by

Cc = max
Prob(x)

I(X; Y ) (5.19)

or for the mismatched case is

Cv = max
Prob(x)

I(X; V ) (5.20)

where the mutual information between X and Z (where Z can be either Y or V ) is

I(X; Z) = H(Z)−H(Z|X) (5.21)

H(Z) =

∫

Z

−p(z)log2p(z)dz (5.22)

H(Z|X) =

∫

Z

∫

X

−p(z, x)log2p(z|x)dzdx (5.23)

p(z) = p(z|x = 1)q + p(z|x = −1)(1− q) (5.24)

p(z, x) = p(z|x)Prob(x) (5.25)
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(b) If L(·) is a linear function, then mismatch does not reduce the Shannon capacity. If

L(·) is a non-linear function, then mismatch may reduce the Shannon capacity.

Proof. The proof is based on the well-known fact that the mutual information between X

and Y is identical to the mutual information between X and f(Y ) as long as f(·) is a

one-to-one mapping function.

Linear transform in (5.5) does not reduce the capacity, but non-linear transform in

(5.6) may reduce the capacity. For parameter mismatched cases, we can convert it to matched

parameters by a linear scaling, for example, multiplying (5.5) by σ2
r/σ

2
c or multiplying (5.6)

by λr/λc. However, a non-linear transform given in (5.6) could result in a capacity reduction

Cv < Cc since we will not be able to map v back to y once we map the values of y into v.

Let the first letter (either G or L) in the subscript denote the channel types (BIAWGN

or BIL, respectively) and the second letter (either G or L) denote the decoder type used in

LLR computation. Then for BIAWGN and BIL channels and decoder matched to BIAWGN

and BIL channels, we will obtain four capacities, CG,G, CL,G, CG,L, CL,L. Although CG,G and

CL,L use the same type of noise, mismatching could come from the parameter mismatch, for

example, σ2
r instead of σ2

c and λr instead of λc. In the following property, we show that for

the LLR computation matched to BIAWGN will not reduce the capacity. We also show the

mismatched parameters will not reduce the capacity for CL,L and CG,L, even though we did

not find close-form solution for CG,L.

Property 12. (a)

CG,G =

∫

Y

−p(y)log2p(y)dy − 1

2
log2(2πeσ2

c ) (5.26)
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(b)

CL,G = CL,L =
4 tan−1(e−

1
λc )− π

2e
1

λc ln 2
− log2

1 + e−
2

λc

2
(5.27)

(c)

CG,L = Q( 2
σc

)log2
4Q(2/σc)

2Q(2/σc)+1
+ 1

2
log2

2
2Q(2/σc)+1

− 1√
2π

∫ 2/σc

0
e−α2/2log2(

1+e
2α
σc
− 2

σ2
c

2
)dα

(5.28)

Proof. According to Property 11, we have the capacity CG,G and CL,G are equal to the

capacity of BIAWGN and BIL channels, regardless the noise parameter mismatches, which

are the right hand sides of Eqns. (5.26) (5.27), respectively [85] [130].

For the CG,G case, it is very straightforward from capacity of BIAWGN channel as

CG,G = I(X; Y )|q=0.5 = H(Y )−H(Y |X)|q=0.5 (5.29)

where H(Y |X)|q=0.5 = 1
2
log2(2πeσ2

c ).

Now let us prove for the CL,L case. Given q = 0.5 and v in (5.14), we have

CL,L = I(X; V )|q=0.5

=
1

2

∫

R

p(v|x = 1)log2
2p(v|x = 1)

p(v|x = 1) + p(v|x = −1)

+
1

2

∫

R

p(v|x = −1)log2
2p(v|x = −1)

p(v|x = 1) + p(v|x = −1)

=
1

2
e−

2
λc log2

2e−
2

λc

e−
2

λc + 1
+

1

2
log2

2

e−
2

λc + 1
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+
λr

8λc

e−
1

λc

∫ 2/λr

−2/λr

e
vλr
2λc log2

2evλr/(2λc)

evλr/(2λc) + e−vλr/(2λc)
dv

+
λr

8λc

e−
1

λc

∫ 2/λr

−2/λr

e−
vλr
2λc log2

2e−vλr/(2λc)

evλr/(2λc) + e−vλr/(2λc)
dv

=
1

2
e−

2
λc log2

2e−
2

λc

e−
2

λc + 1
+

1

2
log2

2

e−
2

λc + 1

+
1

2
e−

1
λc

∫ e1/λc

e−1/λc

log2
2α2

α2 + 1
dα

=
4 tan−1(e−

1
λc )− π

2e1/λc ln 2
− log2

(
1 + e−2/λc

2

)
(5.30)

where α = evλr/(2λc).

Next let us prove for the CL,G case. Given q = 0.5 and v in (5.8), we have

CL,G = I(X; V )|q=0.5

=
1

2

∫

R

p(v|x = 1)log2
2p(v|x = 1)

p(v|x = 1) + p(v|x = −1)

+
1

2

∫

R

p(v|x = −1)log2
2p(v|x = −1)

p(v|x = 1) + p(v|x = −1)

=

∫ − 2

σ2
r

−∞

σ2
r

4λc

e
vσ2

r−2

2λc log2


 2e

vσ2
r−2

2λc

e
vσ2

r−2
2λc + e

vσ2
r+2

2λc


 dv
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+

∫ ∞

2

σ2
r

σ2
r

4λc

e−
vσ2

r−2

2λc log2


 2e−

vσ2
r−2

2λc

e−
vσ2

r−2
2λc + e−

vσ2
r+2

2λc


 dv

+

∫ 2

σ2
r

− 2

σ2
r

σ2
r

4λc

e
vσ2

r−2

2λc log2


 2e

vσ2
r−2

2λc

e
vσ2

r−2
2λc + e−

vσ2
r+2

2λc


 dv

=

∫ − 2

σ2
r

−∞

σ2
r

4λc

e
vσ2

r−2

2λc log2
2

1 + e2/λc
dv

+

∫ ∞

2

σ2
r

σ2
r

4λc

e−
vσ2

r−2

2λc log2
2

1 + e−2/λc
dv

+

∫ 2

σ2
r

− 2

σ2
r

σ2
r

4λc

e
vσ2

r−2

2λc log2
2

1 + e−vσ2
r/λc

dv

=
1

2
e−

2
λc log2

2

1 + e2/λc
+

1

2
log2

2

1 + e−2/λc

+
1

2
e−

1
λc

∫ e1/λc

e−1/λc

log2
2α2

α2 + 1
dα

=
4 tan−1(e−

1
λc )− π

2e1/λc ln 2
− log2

(
1 + e−2/λc

2

)
= CL,L (5.31)

where α = evσ2
r/(2λc). So we also verified that CL,G = CL,L which is the result of Property 11.

Following the similar procedure, we can prove the CG,L case. Given q = 0.5 and v in

(5.13), we have
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CG,L = I(X; V )|q=0.5

=
1

2

∫

R

p(v|x = 1)log2
2p(v|x = 1)

p(v|x = 1) + p(v|x = −1)

+
1

2

∫

R

p(v|x = −1)log2
2p(v|x = −1)

p(v|x = 1) + p(v|x = −1)

= Q(
2

σc

)log2
4Q(2/σc)

2Q(2/σc) + 1
+

1

2
log2

2

2Q(2/σc) + 1

+
λr

2
√

2πσc

∫ 2/λr

−2/λr

e
− (vλr−2)2

8σ2
c log2

2

1 + e−vλr/σ2
c
dv

= Q(
2

σc

)log2
4Q(2/σc)

2Q(2/σc) + 1
+

1

2
log2

2

2Q(2/σc) + 1

− 1√
2π

∫ 2/σc

0

e−α2/2log2

(
1 + e

2α
σc
− 2

σ2
c

2

)
dα (5.32)

where α = 2−vλr

2σc
.

Clearly, CG,L is the only capacity reduced, i.e., CG,L < CG,G.

The following Property states the behavior of Eb

No
as the code rate approaches to zero,

i.e., R → 0, or equivalently σc →∞ for BIAWGN and λc →∞ for BIL.

Property 13. (a) limR→0(Eb/N0)G,G = ln2,
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(b) limR→0(Eb/N0)G,L = π ln(2)/2,

(c) limR→0(Eb/N0)L,L = limR→0(Eb/N0)L,G=ln(2)/2

Proof. (a) limR→0(Eb/N0)G,G = limσc→∞
1

2σ2
cCG,G

,

lim
σc→∞

2σ2
cCG,G

= − lim
σc→∞

2σ2
c





1

2

∫ ∞

−∞

1√
2πσc

e
− (y−1)2

2σ2
c log2


 2e

− (y−1)2

2σ2
c

e
− (y−1)2

2σ2
c + e

− (y+1)2

2σ2
c


 dy

+
1

2

∫ ∞

−∞

1√
2πσc

e
− (y+1)2

2σ2
c log2


 2e

− (y+1)2

2σ2
c

e
− (y+1)2

2σ2
c + e

− (y−1)2

2σ2
c


 dy





= − lim
σc→∞

σc√
2π

∫ ∞

−∞
e
− (y−1)2

2σ2
c log2

1 + e
− 4y

2σ2
c

2
dy

− lim
σc→∞

σc√
2π

∫ ∞

−∞
e
− (y+1)2

2σ2
c log2

1 + e
4y

2σ2
c

2
dy

= lim
β→0

−4
∫∞
−∞ e−

y2

2 log2(
(1+e−β2

+eyβ−β2

2 +e−yβ−β2

2 )
4

)dy√
2πβ2

= 2log2(e)− lim
β→0

log2(e)
∫∞
−∞ e−

y2

2 (yeyβ−β2

2 − ye−yβ−β2

2 )dy

2
√

2πβ
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= 2log2(2)− log2(e)√
2π

∫ ∞

−∞
y2e−y2/2dy = log2(e) (5.33)

where β = 2
σc

.

Thus, limR→0(Eb/N0)G,G = 1/log2(e) = ln2.

(b) limR→0(Eb/N0)G,L = limσc→∞
1

2σ2
cCG,L

,

lim
σc→∞

2σ2
cCG,L

= lim
σc→∞

2σ2
c

{
Q(

2

σc

)log2
4Q(2/σc)

2Q(2/σc) + 1
+

1

2
log2

2

2Q(2/σc) + 1

− 1√
2π

∫ 2/σc

0

e−α2/2log2(
1 + e

2α
σc
− 2

σ2
c

2
)dα

}

= lim
β→0

8Q(β)log2(4Q(β)) + 4− 4(2Q(β) + 1)log2(2Q(β) + 1)

β2

= lim
β→0

−4log2(4Q(β)) + 4log2(2Q(β) + 1)

β
√

2π

= lim
β→0

2log2(e)

π

(
1

Q(β)
− 2

2Q(β) + 1

)

=
2log2(e)

π
(5.34)

where β = 2
σc

.

Thus, limR→0(Eb/N0)G,L = 1
2log2(e)/π

= π ln(2)/2.
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(c) limR→0(Eb/N0)L,L = limR→0(Eb/N0)L,G = limλc→∞
1

4λ2
cCL,L

lim
λc→∞

4λ2
cCL,L

= lim
λc→∞

4λ2
c

[
4 tan−1(e−

1
λc )− π

2e1/λc ln 2
− log2

(
1 + e−2/λc

2

)]

= lim
β→0

8e−β tan−1(e−β)− 2πe−β

β2 ln(2)
− 4log2(

1+e−2β

2
)

β2

= lim
β→0

−4e−β tan−1(e−β) + πe−β

β ln(2)

= lim
β→0

4e−β tan−1(e−β)− πe−β + 4e−2β

1+e−2β

ln(2)

= 2log2(e) (5.35)

where β = 1
λc

.

Thus, limR→0(Eb/N0)L,L = limR→0(Eb/N0)L,G = 1
2log2(e)

= ln(2)/2.

5.2 Capacity and Stability for LDPC Codes Under Sum-Product
Decoding with Mismatched Noises

In this section, we will use density evolution to evaluate the capacity for infinite length

of LDPC codes and also evaluate the stability of sum-product decoding with mismatched

noises. The details of technics used here can be found in [5] [130].
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A LDPC code can be represented by a Tanner graph. Typically, the variable nodes

are drawn at the left-hand side and the check nodes are listed at the right-hand side. A

variable node can only connect to check nodes and a check node can only connect to variable

nodes. The degree of a node denotes the number of other type of nodes that it connects to.

We call the graph a regular LDPC code if all degrees are the same for variable nodes and

also if all degrees are the same for check nodes, and an irregular LDPC code if not. For

example, in the Tanner graph for a regular (3,6) LDPC code each variable node connects to

3 check nodes and each check node connects to 6 variable nodes.

Let λ(x) and ρ(x) denote the degree distributions of variable and check nodes (often

called the left and right degree), where λ(x) =
∑dl

i=2 λix
i−1 and ρ(x) =

∑dr

j=2 ρjx
j−1. Here,

λi is the fraction of edges that belong to degree-i variable nodes, ρj is the fraction of edges

that belong to degree-j check nodes, dl denotes the maximum variable degree, and dr is the

maximum check degree. Then, the code rate is R = 1 −
∫ 1
0 ρ(x)dx∫ 1
0 λ(x)dx

. If λdv = 1 and ρdc = 1,

then it is reduced to regular (dv, dc) LDPC codes.

We apply the discrete density evolution method [130] to analyze the performance of

LDPC codes under sum-product decoding with mismatched noises. In short, we use log-

likelihood ratio for messages, i.e., w = log p(z|x=1)
p(z|x=−1)

, where x is the bit value of the node and

z denotes all the messages available to the node up to the present iteration obtained from

edges other than one carrying w. For the variable nodes, we have [130]

p(l+1)
u = ρ(p(l)

v ) (5.36)

p(l+1)
v = pu0 ∗ λ(p(l)

u ) (5.37)
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where pu0 = p(v|x = 1) given in (5.7), (5.8), (5.13) and (5.14), λ(p) =
∑dl

i=2 λi ⊗i−1 p and

ρ(p) =
∑dr

j=2 ρjRj−1p, ⊗ denotes discrete convolution, Rj−1p = R(p,R(p, ...,R(p, p))), and

R(p1, p2) = 2 tanh−1
(
Π2

i=1 tanh(pi)
)

(5.38)

For four different cases, the initial density functions (pu0) are given in (5.7), (5.8),

(5.13) and (5.14), respectively. These four types of initial density functions satisfies the

channel symmetric condition [85]. Thus, substituting these initial density functions into

(5.36) and (5.37), we can obtain the thresholds for LDPC codes. Let γ = λr

λc
= σr

σc
, where

2λ2 = σ2. The numerical examples can be found in Table 5.2-5.5.

In [85] and [130] a stability function S(N ) is introduced to study the behavior of

density evolution near the zero probability of error, where N denotes the channel parameter

and

S(N ) = inf
s<0

∫

R
esupu0du. (5.39)

In detail, if λ′(0)ρ′(1) < S−1(N ), then the error probability will converge to zero if it is

initially small enough, and if λ′(0)ρ′(1) > S−1(N ), then the error probability is bounded

away from zero. Since λ′(0)ρ′(1) = λ2

∑dr

j=2 ρj(j − 1) the limitation is mainly on degree 2

variable nodes. If S(N ) →∞, then no degree 2 variable node is allowed.

For mismatched cases, we have the following property on stability condition.

Property 14. (a)

SG,G(σc, γ) = e
−1

2σ2
c (5.40)

(b)

SL,G(λc, γ) =
e1−
√

1+1/λ2
c

2λc

√
1 + λ2

c − 2λ2
c

(5.41)
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(c)

SG,L(σc, γ) = infs<0 0.5e
2
√

2s
γσc + Q( 2

σc
)e

−2
√

2s
γσc

+
(
Q(−2

√
2s

γ
− 2

σc
)−Q(−2

√
2s

γ
)
)

e
4s2

γ2 + 2
√

2s
γσc

(5.42)

(d)

SL,L(λc, γ) = (1 +
1

λc

)e−
1

λc (5.43)

Proof. (a) Substituting (5.7) into (5.39) we have

SG,G(σc, γ) = inf
s<0

∫

R
esu σ2

r

2
√

2πσc

e
− (uσ2

r−2)2

8σ2
c du

= inf
s<0

∫

R

σ2
r

2
√

2πσc

e
−u2σ4

r−4u(σ2
r+2σ2

c s)+4

8σ2
c du

= inf
s<0

∫

R

σ2
r

2
√

2πσc

e
−

(
uσ2

r−
2(σ2

r+2σ2
c s)

σ2
r

)2

+4− 4(σ2
r+2σ2

c s)2

σ4
r

8σ2
c du

= inf
s<0

e
(σ2

r+2σ2
c s)2−σ4

r
2σ4

rσ2
2

= inf
s<0

e
(γ2+2s)2σ2

c−γ4

2γ4σ2
c (5.44)

where γ = σr

σc
.

By solving ∂
∂s

(
e

(γ2+2s)2σ2
c−γ4

2γ4σ2
c

)
= 0, we get s∗ = −γ2

2
. Substituting it back to the above

equation, we finally get SG,G(σc, γ) = e
− 1

2σ2
c .
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(b) Substituting (5.8) into (5.39) we have

SL,G(λc, γ) = inf
s<0

∫

R
esu σ2

r

4λc

e−
|uσ2

r
2 −1|
λc du

= inf
s<0





∫ 2

σ2
r

−∞

σ2
r

4λc

e
uσ2

r
2 −1

λc esudu +

∫ ∞

2

σ2
r

σ2
r

4λc

e−
uσ2

r
2 −1

λc esudu





= inf
s<0





σ2
r

4λc

e−
1

λc

∫ 2

σ2
r

−∞
eu(

σ2
r

2λc
+s)du +

σ2
r

4λc

e
1

λc

∫ ∞

2

σ2
r

eu(− σ2
r

2λc
+s)du





= inf
s<0





σ2
r

4λc

e−
1

λc
1

σ2
r

2λc
+ s

eu(
σ2

r
2λc

+s)

∣∣∣∣∣

2

σ2
r

−∞
+

σ2
r

4λc

e
1

λc
1

− σ2
r

2λc
+ s

eu(− σ2
r

2λc
+s)

∣∣∣∣∣

∞

2

σ2
r





= inf
− σ2

r
2λc

<s<0

{
σ2

r

4λc

e−
1

λc
1

σ2
r

2λc
+ s

e
2

σ2
r
(

σ2
r

2λc
+s) − σ2

r

4λc

e
1

λc
1

− σ2
r

2λc
+ s

e
2

σ2
r
(− σ2

r
2λc

+s)

}

= inf
− σ2

r
2λc

<s<0

{
( σ2

r

2λc
)2

( σ2
r

2λc
)2 − s2

e
2s

σ2
r

}

= inf
−γ2λc<s<0

{
(λcγ

2)2

(λcγ2)2 − s2
e

s

λ2
cγ2

}
(5.45)

where γ = σr√
2λc

.

By solving ∂
∂s

(
1

(λcγ2)2−s2 e
s

λ2
cγ2

)
= 0, we get

e
s

λ2
cγ2 1

λ2
cγ2

(λcγ2)2 − s2
+

e
s

λ2
cγ2 2s

[(λcγ2)2 − s2]2
= 0

or simply
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s2 − 2λ2
cγ

2s− λ2
cγ

4 = 0

Taking the negative solution of the above equation, we get s∗ = λ2
cγ

2(1−
√

1 + 1/λ2
c)

which we can easily verify that −γ2λc < s∗ < 0. Substituting it back to the original

equation (5.45), we finally get SL,G(λc, γ) = e
1−
√

1+1/λ2
c

2λc

√
1+λ2

c−2λ2
c

.

(c) Substituting (5.13) into (5.39) we have

SG,L(σc, γ) = inf
s<0

∫

R
esu

[
Q(

2

σc

)δ(u +
2

λr

)

+
1

2
δ(u− 2

λr

) +
λr

2
√

2πσc

e−
( uλr
2σc

− 1
σc

)2

2 Π(
2

λr

)

]
du

= inf
s<0

Q(
2

σc

)e
−2s
λr + 0.5e

2s
λr +

∫ 2
λr

− 2
λr

esuλr

2
√

2πσc

e−
( uλr
2σc

− 1
σc

)2

2 du

= inf
s<0

Q(
2

σc

)e
−2s
λr + 0.5e

2s
λr + e

(λr+2σ2
c s)2−λ2

r
2λ2

rσ2
c

∫ − 2σcs
λr

− 2σcs
λr

− 2
σc

e−
u2

2 du

= inf
s<0

Q(
2

σc

)e
−2
√

2s
γσc + 0.5e

2
√

2s
γσc

+

(
Q(−2

√
2s

γ
− 2

σc

)−Q(−2
√

2s

γ
)

)
e

4s2

γ2 + 2
√

2s
γσc (5.46)

where γ =
√

2λr

σc
.

No close-form solution has been found in this case. Later we will give an upper bound

instead.
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(d) Substituting (5.14) into (5.39) we have

SL,L(λc, γ) = inf
s<0

∫

R
esu

[
1

2
e−

2
λc δ(u +

2

λcγ
)

+
1

2
δ(u− 2

λcγ
) +

γ

4
e−|

uγ
2
− 1

λc
|Π(

2

λcγ
)

]
du

= inf
s<0

1

2
e−

2
λc
− 2s

λcγ +
1

2
e

2s
λcγ +

∫ 2
λcγ

− 2
λcγ

γesu

4
e

uγ
2
− 1

λc du

= inf
s<0

1

2
e−

2
λc
− 2s

λcγ +
1

2
e

2s
λcγ +

γ

4(s + γ/2)

(
e

2s
λcγ − e

−2s
λcγ

− 2
λc

)
(5.47)

where γ = λr

λc
.

By solving ∂
∂s

[
1
2
e−

2
λc
− 2s

λcγ + 1
2
e

2s
λcγ + γ

4(s+γ/2)

(
e

2s
λcγ − e

−2s
λcγ

− 2
λc

)]
= 0, we get

(
1

λcγ
+

γ

(2s + γ)2
)(e

2s
λcγ − e−

2(s+γ)
λcγ ) +

1

λc(2s + r)
(e

2s
λcγ + e−

2(s+γ)
λcγ ) = 0

or simply

[(2s + γ)2 + γ(2s + γ)− λcγ
2]e

2(2s+γ)
λcγ = (2s + γ)2 − γ(2s + γ)− λcγ

2

We find that s∗ = −γ
2

is the solution to the above equation. Substituting it into the

original equation (5.47), we can get SL,L(λc, γ) = e−
1

λc + lims→− γ
2

γ(e
2s

λcγ −e
− 2(s+γ)

λcγ )
2(2s+γ)

=

(1 + 1
λc

)e−
1

λc .

121



For the (G,L) case, although no close-form solution has been found for equation

(5.46), we can obtain an upper bound on SG,L(σc, γ) by substituting s = − γ

2
√

2σc
into the

right-hand side of (5.46), i.e.,

SG,L(σc, γ) ≤ 1
2
e
− 1

σ2
c + Q( 2

σc
)e

1

σ2
c + (1− 2Q( 1

σc
))e

− 1

2σ2
c

≤ (1
2

+ σc

2
√

2π
)e
− 1

σ2
c + (1− 2Q( 1

σc
))e

− 1

2σ2
c .

(5.48)

where the second inequality follows Q(x) ≤ 1√
2πx

e−
x2

2 .

5.3 Numerical Results

We first evaluate the Shannon capacity loss due to mismatched noises. We then

examine the threshold for regular LDPC codes due to mismatched noises. After that, stability

conditions are compared between matched and mismatched cases. Finally, we examine the

threshold for two irregular LDPC codes under mismatched noises.

The results in Table 5.1 show: (a) The non-linear transformation in (5.6) will reduce

the capacity mainly for R ≤ 1/2. It has marginal effects on higher rate. (b) The capacity (in

term of Eb/No) of a decoder with mismatched noise density given in (5.13) will decrease to

-0.46 dB as rate reduces from 0.9 to 1/8, then increases to 0.369 dB as rate further decreases.

(c) Laplace channel has a higher capacity (i.e., lower Eb/No) for rate less than 2/3, reverses

for the higher rate.

It is worth-mentioning here we assume that the impulsive Laplace noise and non-

impulsive Gaussian noise have the same power level, i.e., σ2
c = 2λ2

c . In practice, when the

impulsive noise happens, it often has much higher power levels than the non-impulsive noise.
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Table 5.1: Capacity of channels with and without mismatched noises

C σG,G, Eb

No
dB σG,L, Eb

No
dB λL,L, Eb

No
dB

0 ∞, -1.59 ∞, 0.369 ∞, -4.602

1/8 2.30, -1.21 2.11, -0.46 2.03, -3.12

1/4 1.55, -0.79 1.47, -0.36 1.30, -2.26

1/3 1.29, -0.49 1.25, -0.20 1.05, -1.70

1/2 0.979, 0.19 0.964, 0.32 0.752, -0.54

2/3 0.767, 1.06 0.763, 1.10 0.552, 0.90

3/4 0.677, 1.63 0.675, 1.65 0.469, 1.80

4/5 0.625, 2.04 0.623, 2.05 0.422, 2.44

7/8 0.545, 2.84 0.544, 2.86 0.354, 3.61

9/10 0.516, 3.20 0.515, 3.20 0.323, 4.25
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Table 5.2: Threshold of regular LDPC codes on BIAWGN under sum-product decoding of
BIAWGN with mismatched noise variance. Let σα = σG,G(γ = α)

C dv dc σopt σ1.0 σ1.4 σ1.2 σ0.83 σ0.71

1/4 3 4 1.55 1.26 1.11 1.21 1.20 1.10

1/2 3 6 0.979 0.88 0.80 0.85 0.86 0.84

2/3 3 9 0.767 0.70 0.64 0.69 0.69 0.69

3/4 3 12 0.677 0.63 0.58 0.61 0.63 0.62

4/5 3 15 0.625 0.58 0.54 0.57 0.58 0.57

7/8 3 24 0.545 0.52 0.48 0.50 0.52 0.51

9/10 3 30 0.516 0.49 0.46 0.48 0.48 0.48

In Tables 5.2-5.5, we list thresholds of regular LDPC codes with different rates for

various mismatched cases. In the computation we set the maximum number of iterations to

1000, the bit error rate limit to 10−10.

Tables 5.2 and 5.3 show that if we use the BIL decoder for BIAWGN noises, then the

reductions on Eb/No are 0.57 dB, 0.31 dB, 0.13 dB, 0.14 dB, 0.0 dB, 0.17 dB, 0.18 dB for

rate 1/4, 1/2, 2/3, 3/4, 7/8, 9/10, respectively. Tables 5.4 and 5.5 show that if we use the

BIAWGN decoder for BIL noises, then the reductions on Eb/No are 0.81 dB, 0.55 dB, 0.18

dB, 0.21 dB, 0.23 dB, 0.27 dB, 0.29 for rate 1/4, 1/2, 2/3, 3/4, 7/8, 9/10, respectively. On

BIAWGN channels, the gap between capacities of LDPC codes and channels are from 1.8 dB

for rate 1/4 to 0.45 dB for rate 9/10. Similarly, on BIL channels, the gap between capacities

of LDPC codes and channels are from 2.19 dB for rate 1/4 to 0.64 dB for rate 9/10.
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Table 5.3: Threshold of regular LDPC codes on BIAWGN under sum-product decoding of
BIL with mismatched noise variance. Let σα = σG,L(γ = α)

C dv dc σopt σ1.0 σ1.4 σ1.2 σ0.83 σ0.71

1/4 3 4 1.47 1.18 1.17 1.19 1.15 1.12

1/2 3 6 0.964 0.85 0.82 0.84 0.85 0.84

2/3 3 9 0.763 0.69 0.66 0.68 0.69 0.69

3/4 3 12 0.675 0.62 0.58 0.60 0.62 0.62

4/5 3 15 0.623 0.58 0.54 0.56 0.58 0.58

7/8 3 24 0.544 0.51 0.46 0.49 0.51 0.51

9/10 3 30 0.515 0.48 0.43 0.46 0.48 0.48

Table 5.4: Threshold of regular LDPC codes on BIL under sum-product decoding of BI-
AWGN with mismatched noise variance. Let λα = λL,G(γ = α)

C dv dc λopt λ1.0 λ1.4 λ1.2 λ0.83 λ0.71

1/4 3 4 1.30 0.92 0.80 0.88 0.86 0.83

1/2 3 6 0.752 0.61 0.57 0.61 0.59 0.58

2/3 3 9 0.552 0.47 0.45 0.48 0.45 0.45

3/4 3 12 0.469 0.41 0.41 0.41 0.40 0.40

4/5 3 15 0.422 0.37 0.37 0.38 0.36 0.37

7/8 3 24 0.354 0.31 0.31 0.32 0.31 0.31

9/10 3 30 0.323 0.29 0.30 0.29 0.29 0.29
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Table 5.5: Threshold of regular LDPC codes on BIL under sum-product decoding of BIL
with mismatched noise variance. Let λα = λL,L(γ = α)

C dv dc λopt λ1.0 λ1.4 λ1.2 λ0.83 λ0.71

1/4 3 4 1.30 1.01 0.96 1.00 1.00 0.96

1/2 3 6 0.752 0.65 0.62 0.64 0.64 0.63

2/3 3 9 0.552 0.48 0.47 0.48 0.48 0.46

3/4 3 12 0.469 0.42 0.41 0.42 0.42 0.42

4/5 3 15 0.422 0.38 0.37 0.38 0.38 0.37

7/8 3 24 0.354 0.32 0.31 0.32 0.32 0.31

9/10 3 30 0.323 0.30 0.29 0.29 0.29 0.29

Figs. 5.2 and 5.3 show the results of Property 14. We conclude (a) the stability func-

tions are independent of γ; (b) for mismatched decoders the limitation on degree 2 variable

nodes from stability functions are marginally tightened than their matched counterparts.

Lastly, we consider two rate 1/2 irregular LDPC codes. The first one is from Table

I in [85] with λ2 = 0.25105, λ3 = 0.30938, λ4 = 0.00104, λ10 = 0.43853, ρ7 = 0.63676, and

ρ8 = 0.36324. The second code is from Table 8.1 in [130] with λ2 = 0.234029, λ3 = 0.212425,

λ6 = 0.146898, λ7 = 0.102840 λ20 = 0.303808, ρ8 = 0.71875, and ρ9 = 0.28125.

The degradation for the (G,L) case compared with the (G,G) case is 0.34 and 0.41

dB for codes 1 and 2, respectively. The degradation for the (L,G) case compared to the

(L,L) case is 0.53 and 1.1 dB for codes 1 and 2, respectively. 20% under and over estimating

the noise variance will have little effect on threshold of LDPC codes with and without noise

mismatches.
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Table 5.6: Threshold of rate 1/2 irregular LDPC code 1

opt γ = 1.0 γ = 1.4 γ = 1.2 γ = 0.83 γ = 0.71

σG,G 0.979 0.955 0.843 0.917 0.928 0.894

σG,L 0.964 0.918 0.899 0.915 0.918 0.905

λL,G 0.752 0.648 0.608 0.649 0.641 0.637

λL,L 0.752 0.689 0.684 0.686 0.686 0.685

Table 5.7: Threshold of rate 1/2 irregular LDPC code 2

opt γ = 1.0 γ = 1.4 γ = 1.2 γ = 0.83 γ = 0.71

σG,G 0.979 0.965 0.845 0.923 0.913 0.885

σG,L 0.964 0.921 0.904 0.917 0.919 0.886

λL,G 0.752 0.624 0.611 0.623 0.624 0.623

λL,L 0.752 0.706 0.696 0.704 0.706 0.702

127



0 0.5 1 1.5
0

1

2

3

4

5

6

7

σ
c

(S
G

,−
−(N

))
−1

(G,L)
(G,L) bound
(G,G)

Figure 5.2: Stability as a function of γ for the (G,G) and (G,L) cases.

5.4 Discussion and Conclusion

In this chapter, we proved that as long as the true noise type and the estimated noise

type used in the decoder are binary-input memoryless output symmetric channels, the output

from mismatched log-likelihood ratio (LLR) computation is also symmetric. Therefore, we

can analyze the threshold of LDPC codes under sum-product decoder using mismatched

noises by the density evolution method. We have also showed the Shannon capacity can

be evaluated for mismatched LLR computation. If the mismatched LLR computation is

not an one-to-one mapping function, then the capacity could be reduced. We derived the

Shannon capacity, threshold and stable condition of LDPC codes for mismatched BIAWGN

and BIL noise types. The results show that the noise variance estimation errors will not

128



0 0.5 1 1.5
0

1

2

3

4

5

6

7

λ
c

(S
L,

−−
(N

))
−1

(L,G)
(L,L)

Figure 5.3: Stability as a function of γ for the (L,L) and (L,G) cases.

affect the Shannon capacity and stable condition, but the errors do reduce the threshold.

The mismatching in noise type will only reduce Shannon capacity when LLR computation

is based on BIL. The stable condition is marginally affected by the noise mismatches.

Although we only analyzed two types of noises, BIAWGN and BIL, the work can be

applied to many symmetric channels in practice. These theoretic results are important for

studying robust decoding for turbo and LDPC codes.
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CHAPTER 6: SUMMARY AND FUTURE WORKS

6.1 Summary

An entire MB-OFDM system over UWB channel for WPAN applications was pre-

sented in the first part of this dissertation, which included frequency hopping, TTCM en-

coder, bit and symbol interleaver, OFDM and equalizer. We used a simple parity-check code

as the outer codes and trellis coded modulation as the inner codes, which has less complexity

compared to traditional TTCM codes. Excellent performance of this system were verified

by density evolution. An iterative decoder with modified branch metric computation for

this TTCM coded MB-OFDM system was proposed to optimize the bit error performance,

which was extensively examined under various impulsive noises over both Gaussian and

UWB channel, especially in mismatched scenarios. Impulsive noises at time domain were

compared with their counterparts in frequency domain after passing through equalizer and

OFDM demodulator. A robust decoder which is immune to noise mismatch was provided

based on comparison of impulsive noises in time domain and frequency domain.

In the second part of this dissertation, we proved that the minimax decoder proposed

in [38], which instead of minimizing the average bit error probability aims at minimizing the

worst bit error probability, is optimal and robust to certain noise model with unknown prior

probabilities. We extended some results from two dimensions to higher dimensions.

In the last part of this dissertation, density evolution was extended for sum-product

decoding using mismatched noises. We showed that the output from mismatched log-

likelihood ratio (LLR) computation is also symmetric, as long as the true noise type and the
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estimated noise type used in the decoder are both binary-input memoryless output symmetric

channels. We used BIAWGN and BIL channels to derive our conclusions. We demonstrated

that the Shannon capacity can be evaluated for mismatched LLR computation and it can

be reduced if the mismatched LLR computation is not an one-to-one mapping function. We

further derived the Shannon capacity, threshold and stable condition of LDPC codes for

mismatched BIAWGN and BIL noise types. Based on our investigation, the noise variance

estimation errors will not affect the Shannon capacity and stable condition, although the

threshold can be reduced.

6.2 Future Works

(1) This dissertation only investigated simple parity-concatenated TCM codes. More pow-

erful outer code such as LDPC codes could provide more error correcting capacity and

get considerable coding gains if complexity issue is well considered.

(2) Only two-dimensional constellation with gray was considered in this dissertation. Em-

ploying different mapping schemes with multi-dimensional constellation to achieve bet-

ter error performance improvement is an attractive subject as well.

(3) Other impulsive noise cancelation methods in OFDM system, such as clipping, blanking,

etc. need to be combined with our decoding algorithm to get additional performance

benefit. Iterative noise cancelation is also of interest to be included inside our iterative

decoder.

(4) Minimax robust decoder could be applied to achieve better performance in our MB-

OFDM system. Both numerical simulation and theoretical analysis need to be done.
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