102 research outputs found

    Polysaccharide–dextrin thickened fluids for individuals with dysphagia: recent advances in flow behaviors and swallowing assessment methods

    Get PDF
    \ua9 2024 The Author(s). Published with license by Taylor & Francis Group, LLC.The global aging population has brought about a pressing health concern: dysphagia. To effectively address this issue, we must develop specialized diets, such as thickened fluids made with polysaccharide–dextrin (e.g., water, milk, juices, and soups), which are crucial for managing swallowing-related problems like aspiration and choking for people with dysphagia. Understanding the flow behaviors of these thickened fluids is paramount, and it enables us to establish methods for evaluating their suitability for individuals with dysphagia. This review focuses on the shear and extensional flow properties (e.g., viscosity, yield stress, and viscoelasticity) and tribology (e.g., coefficient of friction) of polysaccharide–dextrin-based thickened fluids and highlights how dextrin inclusion influences fluid flow behaviors considering molecular interactions and chain dynamics. The flow behaviors can be integrated into the development of diverse evaluation methods that assess aspects such as flow velocity, risk of aspiration, and remaining fluid volume. In this context, the key in-vivo (e.g., clinical examination and animal model), in-vitro (e.g., the Cambridge Throat), and in-silico (e.g., Hamiltonian moving particles semi-implicit) evaluation methods are summarized. In addition, we explore the potential for establishing realistic assessment methods to evaluate the swallowing performance of thickened fluids, offering promising prospects for the future

    Polysaccharide–dextrin thickened fluids for individuals with dysphagia:Recent advances in flow behaviors and swallowing assessment methods

    Get PDF
    The global aging population has brought about a pressing health concern: dysphagia. To effectively address this issue, we must develop specialized diets, such as thickened fluids made with polysaccharide–dextrin (e.g., water, milk, juices, and soups), which are crucial for managing swallowing-related problems like aspiration and choking for people with dysphagia. Understanding the flow behaviors of these thickened fluids is paramount, and it enables us to establish methods for evaluating their suitability for individuals with dysphagia. This review focuses on the shear and extensional flow properties (e.g., viscosity, yield stress, and viscoelasticity) and tribology (e.g., coefficient of friction) of polysaccharide–dextrin-based thickened fluids and highlights how dextrin inclusion influences fluid flow behaviors considering molecular interactions and chain dynamics. The flow behaviors can be integrated into the development of diverse evaluation methods that assess aspects such as flow velocity, risk of aspiration, and remaining fluid volume. In this context, the key in-vivo (e.g., clinical examination and animal model), in-vitro (e.g., the Cambridge Throat), and in-silico (e.g., Hamiltonian moving particles semi-implicit) evaluation methods are summarized. In addition, we explore the potential for establishing realistic assessment methods to evaluate the swallowing performance of thickened fluids, offering promising prospects for the future

    Biomechanical modeling of deglutition

    Get PDF
    Swallowing is a physiological process whose malfunction a effects the human quality of life, e.g. malnutrition, dehydration or asphyxia, and has been studied using in vivo approaches. However, advances in computational capacity have encouraged the production of more accurate computational models of offering advantages such as flexibility and reduced experimental costs. Hence, this work proposed the numerical solution of a 2D sagittal swallowing model with physiological accurate tongue's dorsum dynamics based on real time magnetic resonance imaging (RT-MRI) of a healthy young adult. The work designed a full factorial set of simulations and with a second order Box Behnken' surface response design, dimensional relationships were established between food bolus' rheology, swallowing speed, output flow rate, force and shear force over the tongue. Moreover, a dimensionless model was also proposed and exponential behaviors of pressure and friction coefficients as a function of Reynolds numbers were found with an exponential relationship. Such results are intended to predict swallowing flow conditions based on bolus' rheology and the speed of the swallowing event, and also serve as a first validation for more complex models that use other representation techniques. As validation approaches, the work addressed three indirect validations.MaestríaMAGISTER EN INGENIERÍA ÉNFASIS EN INGENIERÍA MECÁNIC

    Meshfree and Particle Methods in Biomechanics: Prospects and Challenges

    Get PDF
    The use of meshfree and particle methods in the field of bioengineering and biomechanics has significantly increased. This may be attributed to their unique abilities to overcome most of the inherent limitations of mesh-based methods in dealing with problems involving large deformation and complex geometry that are common in bioengineering and computational biomechanics in particular. This review article is intended to identify, highlight and summarize research works on topics that are of substantial interest in the field of computational biomechanics in which meshfree or particle methods have been employed for analysis, simulation or/and modeling of biological systems such as soft matters, cells, biological soft and hard tissues and organs. We also anticipate that this review will serve as a useful resource and guide to researchers who intend to extend their work into these research areas. This review article includes 333 references

    Brightest cluster galaxies in cosmological simulations: achievements and limitations of AGN feedback models

    Get PDF
    We analyze the basic properties of Brightest Cluster Galaxies (BCGs) produced by state of the art cosmological zoom-in hydrodynamical simulations. These simulations have been run with different sub-grid physics included. Here we focus on the results obtained with and without the inclusion of the prescriptions for supermassive black hole (SMBH) growth and of the ensuing Active Galactic Nuclei (AGN) feedback. The latter process goes in the right direction of decreasing significantly the overall formation of stars. However, BCGs end up still containing too much stellar mass, a problem that increases with halo mass, and having an unsatisfactory structure. This is in the sense that their effective radii are too large, and that their density profiles feature a flattening on scales much larger than observed. We also find that our model of thermal AGN feedback has very little effect on the stellar velocity dispersions, which turn out to be very large. Taken together, these problems, which to some extent can be recognized also in other numerical studies typically dealing with smaller halo masses, indicate that on one hand present day sub-resolution models of AGN feedback are not effective enough in diminishing the global formation of stars in the most massive galaxies, but on the other hand they are relatively too effective in their centers. It is likely that a form of feedback generating large scale gas outflows from BCGs precursors, and a more widespread effect over the galaxy volume, can alleviate these difficulties.Comment: 17 pages, 14 figures, accepted for publication on MNRAS, comments welcom
    corecore