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Resumo 

 

O sistema vestibular é a estrutura do ouvido interno responsável por manter o equilíbrio do corpo 

humano. Os três canais semicirculares em conjunto com o vestíbulo contêm as cúpulas e a mácula 

constituídas por células ciliadas que propagam a informação do deslocamento e posicionamento do 

corpo, através da circulação da endolinfa. A sua modelação computacional e consequente análise será 

o principal objetivo da presente tese. Existem diversas doenças associadas ao sistema vestibular, 

sendo a vertigem o sintoma mais usualmente relatado resultante desses distúrbios. A sensação de 

incapacidade resultante dos sintomas de vertigem e tonturas afeta uma grande parte da população, 

principalmente acima dos 60 anos. Hoje em dia, a reabilitação vestibular é a principal terapia aplicada 

nestes casos, e apesar dos resultados com elevada taxa de eficiência, trata-se de um processo empírico, 

que pode beneficiar muito de ferramentas como a simulação computacional. Este facto associado ao 

desconforto e instabilidade gerado pelas síndromes vertiginosas numa parte significativa da 

população são a principal motivação para este trabalho. 

O modelo computacional do sistema vestibular foi construído recorrendo ao método de elementos 

finitos e foi desenvolvido por etapas, de forma a validar os diferentes procedimentos. A validação da 

metodologia utilizada para simulação do fluído foi o primeiro passo, sendo um método sem malha 

pela primeira vez utilizado para simular a endolinfa. Os resultados obtidos com o método Smoothed 

Particle Hydrodynamics e utilizando um canal semicircular foram comparados com outros autores que 

utilizaram métodos convencionais. A este modelo tridimensional do canal semicircular foi adicionada 

a cúpula, tornando o modelo mais próximo da situação real do sistema vestibular. O modelo 

construído foi validado experimentalmente utilizando um modelo de silicone. Após estas etapas de 

desenvolvimento, foi construído o modelo global do sistema vestibular com todos os seus 

constituintes, o qual permitiu simular a manobra de Epley num caso de síndrome vestibular com uma 

otocónia no canal horizontal, denominada de canalitíase. A recolha do movimento efetuado durante 

as manobras de reabilitação através de um acelerómetro foi também obtida de forma a ser realizada 

uma simulação correspondente ao movimento real.  

Um outro estudo desenvolvido no decorrer desta tese, foi a análise das vibrações livres da cúpula do 

ouvido interno. Dois modelos da cúpula (um bidimensional e outro tridimensional) foram 

construídos dando origem igualmente ao desenvolvimento de uma análise numérica de comparação 

da performance de dois métodos sem malha com o método de elementos finitos no caso de estruturas 

biológicas. Neste estudo também foi analisada uma doença do sistema vestibular denominada, 

cupulolitíase; a qual ocorre quando as otocónias aderem à cúpula induzindo sintomas de vertigem.  
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No âmbito da sintomatologia da vertigem foi ainda realizado um estudo estatístico com uma amostra 

de mulheres jovens, de modo a investigar a influência da intensidade da atividade física nos sintomas 

de vertigem. Foi utilizado um questionário validado para recolher os dados relativos à sintomatologia 

(Dizziness Handicap Inventory), e a quantificação da atividade física dos participantes do estudo foi 

efetuada com recurso a um acelerómetro. 

Assim, os métodos numéricos computacionais provaram ser uma ferramenta importante no estudo 

da biomecânica, e neste caso em particular apresentaram resultados fundamentais para a expansão do 

conhecimento na área vestibular. O desenvolvimento de um modelo computacional do sistema 

vestibular do ouvido interno, bem como das suas estruturas, permitiu avaliar as duas principais 

situações de síndrome vertiginoso onde é aplicada a reabilitação vestibular que correspondem à 

vertigem posicional paroxismal benigna: a canalítiase e a cupulolitíase. 
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Abstract 

 

 

The vestibular system is the inner ear structure in charge for maintaining the human body balance. 

The three semicircular canals and the vestibule contain the cupulas and macula, respectively; which 

have hair cells that transmit the information regarding the displacement and position of the body 

through the endolymph flow. The computational numerical modeling and analysis of the vestibular 

system was the main goal of the present thesis. There are several vestibular system disorders, being 

vertigo and dizziness the most commonly symptoms reported. The disability developed from those 

symptoms affects a wide population range, mainly elders. Nowadays, vestibular rehabilitation is the 

main therapy applied in these cases. Despite the high efficiency results obtained, it is still an empirical 

process, which can profit from tools such as computational simulation. This factor combined with 

the anxiety and instability developed by vertiginous syndromes in a significant part of the population 

is the main motivation for this work. 

The computational model of the vestibular system was built using the finite element method and it 

was developed along distinct stages, in order to validate the different procedures. The validation of 

the fluid simulation methodology was the first step, being the endolymph simulated with a meshless 

method for the first time. The results obtained with the Smoothed Particle Hydrodynamics method 

and using a semicircular canal were compared with other authors using traditional numerical methods. 

The cupula was added to this three-dimensional model of the semicircular canal, allowing to achieve 

a computational model closer to the actual semicircular canal. The computational model was validated 

experimentally using a silicone model. After these development stages, the global vestibular system 

model with all its components was built, allowing to simulate the Epley maneuver in a vestibular 

syndrome condition with an otoconia in the horizontal canal, which is called canalithiasis. Using an 

accelerometer, the movement data during the rehabilitation maneuvers was acquired, allowing to 

perform a computational simulation of the corresponding actual movement. 

Another development during this thesis was the free vibrations analysis of cupula of the inner ear, 

using two-dimensional and three-dimensional models. Considering this biological structure, a 

numerical comparison between two meshless methods and the finite element method was performed. 

A vestibular system disorder called cupulolithiasis was also analyzed; which occurs when the otoconia 

get attached to the cupula inducing dizziness symptoms. 

Considering the dizziness symptoms, a statistical analysis was also performed using a young women 

sample aiming to investigate the influence of physical activity intensity on the vertiginous symptoms. 

A validated questionnaire (Dizziness Handicap Inventory) was used to obtain the symptoms data, 
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and the physical activity quantification was made using an accelerometer during a week routine of the 

participants. 

Therefore, computational numerical methods proved to be an important tool in biomechanics, and 

in this particular work shown fundamental results for the knowledge expansion in the vestibular field. 

The computational models development of the vestibular system structures allowed the evaluation 

of the two main conditions of vertiginous syndrome where vestibular rehabilitation is applied, 

corresponding to benign paroxysmal positional vertigo: canalithiasis and cupulolithiasis. 
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Chapter I 
Structural Overview 
 
 

1.1. Introduction 

The inner ear is a sensory organ, lodged in the temporal bone, that comprises the vestibular 

system and the cochlea. The hearing function is supported by the cochlea and the vestibular system 

rules the balance 1, which is the focus of the present thesis. 

The human vestibular anatomy consists of a membranous labyrinth filled with endolymph 

enclosed by a bony labyrinth with the same configuration, see Figure 1.1. Between both labyrinths 

circulates the perilymph 2. The bony labyrinth consists in the three semicircular canals (SCCs), 

anterior, posterior, and horizontal; placed orthogonally and connected to a central chamber called 

vestibule. Consequently, the membranous labyrinth contains three semicircular ducts (SCDs) within 

the SCCs and the otolith organs, utricle and saccule, inside the vestibule. Moreover, each SCD 

comprehends an ampullar section which contain the cupula. The cupula contains hair cells embedded 

on a tuft of blood vessels and nerve fibers covered by a gelatinous tissue, which is related with the 

angular head movements 3. Inside the utricle and the saccule it can be found the macula, which detects 

the linear head movement and it is constituted by three layers. The bottom layer contains the sensory 

hair cells and it is covered by a jelly layer, while the top layer (above it) is composed by calcium 

carbonate crystals, known as otoconia 2,4,5. 

 The hair cells from the cupula and the macula are mechanoreceptors which send electrical signals 

to the brain about the movement performed by the head related to the body position. The cupula 

deflection, leading to the hair cell movement, is driven by the endolymph flow, and the macula hair 

cells are forced to move, helped by the otoconia.  

1
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Balance physiology is a complex process, which coordinates the vestibular signals with the visual 

and proprioceptive sensors. The central nervous system (CNS) integrates the sensory information 

provided by each one of these systems in order to maintain posture and control static and dynamic 

balance 6. These integrated pathways have an important role in vestibular disorders diagnosis, 

considering that eye movement assessment and posture analysis were used to infer the functional 

status of the vestibular sensory organs 7,8. The reduced dimensions of the vestibular system are one 

of the main hindrance to obtain direct data from its sensory cells.  

 

Figure 1.1 – Scheme of the vestibular system. 

 

All perturbations in the described process could induce vestibular syndromes. The pathologies 

that induce vestibular syndromes can have a peripheral or central origin. Peripheral disorders affect 

the end organ pathway, around or within the vestibular system, as benign paroxysmal positioning 

vertigo (BPPV), Ménière's disease, vestibular neuritis, bilateral vestibulopathy, vestibular paroxysmia, 

and superior canal dehiscence syndrome 9.  

BPPV is the most common vestibular disorder, and it occurs when the otoconia are misplaced 

from the macula to the SCDs, inducing a vertigo sensation in the sensory cupula’s hair cells 3,10. The 

vertigo episodes start suddenly and last from a few seconds to minutes in severe cases. Furthermore, 

the dizziness spinning sensation is described by the patients as being an incapacitate condition, and 

it could happen in two distinct forms: canalithiasis and cupulolithiasis. During canalithiasis, the 

otoconia lost itself inside the duct path, and in the cupulolithiasis the otoconia attaches itself to the 

cupula. At the moment, the detachment of the otoconia debris from the macula is not entirely 

condition, and it is also common during the usual aging process 11.  

2

understood, however it is reported that impact sports or car accidents could lead to a BPPV 
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The main vestibular rehabilitation procedure applied to recover from canalithiasis consists in a 

set of personalized programed exercises, known as the otoconia repositioning maneuvers. After the 

diagnosis, where the affected canal is defined, the suitable maneuver is selected. The Epley or Semont 

maneuvers are applied when the posterior canal is affected, which is the most common occurrence, 

while the Gufoni or BBQ roll maneuvers are applied once a horizontal canal perturbation occurs 12. 

Considering that the anterior canal is the least affected, there is no evidence on an effective maneuver, 

however, when it occurs, a reverse Epley maneuver is suggested.  

Regarding the cupulolithiasis, the most common applied technique is an empirical shake of the 

head in order to detach the otoconia. However, there are only a few studies indicating which 

methodology is the most effective in each case. Some doubts remain to be clarified in cupulothitisis 

cases, for example to which side of the cupula are the otoconia attached, since such factor could 

influence the selection of the correct procedure to apply 13. Additionally, medicines could be used, as 

a first clinical approach, in order to decrease the disturbing dizzy symptoms during BPPV episodes. 

In severe cases, surgery could also be required. 

Besides the large success rates in decreasing the dizziness symptoms using vestibular 

rehabilitation, it is still an empirical methodology. The procedure integrated few evolutions since the 

maneuvers creation during the 80’s 14,15. Some rehabilitation protocols include limitations of 

movements, until some days after the procedure, which causes anxiety to several patients 16. 

Furthermore, the vestibular rehabilitation fails in a certain amount of cases. Therefore, one of the 

leading authors in the vestibular rehabilitation field, recently stated that the negative response of some 

patients with the vestibular hypofunction exercises is not fully understood. Finally, there is lower 

evidence sustaining the efficiency of the maneuvers procedures applied in the horizontal and anterior 

canal BPPV, and also in the case of a  multiple-canal BPPV 17. 

The demand for new and more effective therapies to use in all the BPPV cases (that do not have 

yet a stable solution) increase the need to deepen the knowledge on the vertiginous syndrome and 

related physiology.  
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1.2. Biomechanical Background 

Biomechanics could be defined as the study of biological structures, organisms or processes by 

an engineering point of view, essentially using mechanical tools. In the actual digital evolution era, 

the computational methods seem to be, most of the times, an economical way to reach 

approximate/satisfactory solutions in a short time span. Therefore, the methodologies used in this 

research to analyze the biomechanics of the human vestibular system described in the previous 

chapter are the computational numerical methods, mainly the finite element method (FEM). The 

FEM is one of the most common discrete numerical tool used to solve complex problems, such as 

domains with irregular geometries or structures built with materials showing a non-linear behavior, 

which are common features in biological systems. FEM is a mathematical method fully developed in 

the 60’s. Usually the problem domain is divided into small parts called finite elements with the same 

which can be triangular or quadrilateral elements in 2D analyses, or tetrahedral or hexahedral elements 

in 3D analyses. The sum of the volumes of each element is numerically equal to the volume of the 

boundaries of the finite element shape. Neighbor elements share common nodes, naturally enforcing 

the connectivity in FEM. There are some advantages in this kind of discretization, such as an easy 

representation of the complete domain and an accurate representation of the geometry. There are 

some steps that are important to follow in this technique, after defining the mesh it is necessary to 

attribute properties to the materials (in heterogeneous domains, each element can be associated with 

a distinct material). Then, after calculating the stiffness matrix of each element and establishing the 

global system of equations, the displacement field is obtained (the solution). With the displacement 

properties 18. The behavior of these elements can be described using variational methods (a particular 

19.

4

In order to discretize the problem domain, the FEM divides the problem domain into finite elements, 

discretized domain. The elements are composed by nodes, generally placed at the corners and 

application of differential equations) in order to minimize the system total energy and obtain the  

approximated solution. This method is widely used in some scientific fields, including several biological  

researches to reproduce human systems, due to its great flexibility and efficiency. Combined with  

a constitutive equation, FEM allows the analysis of displacements, stresses and strains, among other 

measurements
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field, it is possible to calculate the associated strain and stress field. The difference between the final 

deformation and the initial state of the model and the material properties define the strain/stress 

distribution. Other important parameters to define are the boundary conditions of the full model and 

the applied forces. After all the conditions are defined, it is possible obtain several mechanical results 

related to the model. 

Although the FEM is often used with solids, it has some applications with fluids and the 

present study requires a Fluid–Structure interaction (FSI) approach, due the physiology of the 

vestibular system 19. FSI attempts to predict the interaction of a deformable structure with an internal 

or surrounding fluid flow 20. This technique plays an important role in many scientific and engineering 

fields, and it has been a challenge mainly for problems related with human body research, due to the 

strong nonlinearity and multidisciplinary nature 21. The simulation of FSI can have two main 

approaches: the monolithic approach and the partitioned approach. If the equations governing the 

fluid flow and the displacement of the structure are solved simultaneously, it is called monolithic 

approach, which is the method applied in the present work. This approach leads to better 

approximation for a multidisciplinary problem, but it may require more computational resources 21,22.  

One of the main challenges of the present work was the decision about the fluid simulation 

methodology. The alternatives considered to simulate the vestibular fluid were the Coupled-Eulerian 

Lagrangian (CEL) Method, the Computational Fluid Dynamics (CFD) and the Smoothed Particle 

Hydrodynamics (SPH) method. SPH was the selected option, mainly due to some software 

limitations regarding the other methods and also their computational cost.  

Briefly, the SPH is a meshless numerical method used for simulating fluid flows. It is based in the 

Lagrangian formulation, in which the domain is divided in particles possessing a constant mass (mass 

conservation principle), the mesh is attached to the material and the particles deform as the material 

starts to deform. The resolution of the method can easily be adjusted with respect to variables, such 

as the density 23–25. A comprehensive description of the SPH formulation will be shown in the 

developed work, mainly in Contribution I, presented in Chapter II.  

5
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The main software packages used in the present research for the vestibular model development and 

simulation, using FEM and SPH approaches, were ABAQUS and FEMAP.  The work developed 

with these software is presented mostly in Contributions II and III in Chapter II.  

Other meshless methods applied during the developed work, mainly in the research focused 

on the cupula, were the RPIM (Radial Point Interpolation Method) and NNRPIM (Natural Neighbor 

RPIM), using the academic software FEMAS (cmech.webs.com). Both meshless methods discretize 

the problem’s domain with a cloud of nodes 26–30, instead of the rigid element concept used in FEM. 

In the early years, the solution of partial differential equations was the main focus of interest 27. 

However, today, meshless methods are applied to a wide-range of applications 29. In the present 

thesis, a free vibration analysis of the cupula was performed, using the RPIM and NNRPIM 

formulations. The corresponding results and conclusions obtained are demonstrated in the 

Contributions IV and V in the Chapter II.  

 

1.3. Motivation and Aim 

The literature shows that 85% of balance dysfunctions could be related with inner ear 

disorders 31. Furthermore, complains described as dizziness or vertigo, usually unbalance symptoms, 

are the most common medical complains 32,33. Additionally, blurred vision, nausea, and complications 

in standing and walking could, also, occur as a consequence in a BPPV episode 34. These 

incapacitating symptoms result from conflicting information received by the brain and the vestibular 

system concerning the body’s position and movement 31. Among the vestibular disorders, the BPPV 

is the most common cause of vertigo 35,36, affecting females twice as often as males 4,36. Dizziness is 

present in all age ranges, although its prevalence increases with ageing, being the most frequent illness 

among elders. In Europe, the dizziness prevalence for ages between 50 and 80 years old is 12.4%, 

while in Portugal dizziness related hearing problems affect 28.7% of the same age group 37. Thus, 

dizzy symptoms are the main focus of the Contribution VI, presented in Chapter II. 

People suffering from vertigo and dizziness have a higher risk experiencing falls and 

depression. Furthermore, falls are one of the main causes of accidental deaths and bone fractures in 

6
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older patients 38. The health care related with those fractures involves high costs and higher 

limitations; therefore, in order to avoid such expenses, and, at first instance, avoid the disable dizzy 

symptoms, it is important to decrease the number of people suffering from dizziness 38,39. In light of 

the rising average life expectancy, vertigo should be viewed as a core health concern. 

Based on all the reported facts, besides the biomechanical and vestibular research, it is 

possible to summarize the aims of the present thesis as: 

 Literature review of the biomechanical models of the vestibular system, related structures 

and their analysis; 

 Development of a functional computational geometric model of the vestibular system with 

all the meaningful structures using mechanical engineering tools; 

 Simulation and direct validation of the endolymph fluid including the otoconia movement 

during the rehabilitation maneuvers; 

 Validate the application of numerical tools as FEM, SPH, RPIM and NNRPIM to mimic the 

behavior of biological structures; 

 Consider new application methodologies in the vestibular disorders field in order to 

numerically analyze the system response; 

 Contribute to a better knowledge related with the vestibular rehabilitation process and 

physiology; 

 Analyze the impact of physical activity in the dizziness symptoms in order to promote 

accurate and reliable clinical indications to the patients; 

 Production and publication of the research outputs in international journals. 
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Chapter II 
Original Developed Work 
 

 

2.1. Introductory Remarks 

The evolution of the FEM vestibular full model is explained in the first three publications of the 

present work. The first publication (2.2.1. Contribution I) presented the first SCC model, essential 

for the validation of the formulation used to simulate the endolymph. The second publication (2.3.1. 

Contribution II) contributed to the development of a methodology to simulate the real maneuvers 

performed to the patients. Following the previous achievements, the third paper (2.4.1. Contribution 

III) shows a model evolution, including all the vestibular structures, where an experimental validation 

was performed. 

The next step after the global model analysis consisted in a detailed evaluation of the cupula 

behavior. The natural frequency vibrations of the cupula were obtained applying two distinct 

meshless methods; the NNRPIM (2.5.1. Contribution IV) and the RPIM (2.6.1. Contribution V) in 

order to theorize about an improved procedure to manage cupulolithiasis.  

Maintaining the vestibular disorders target, while diverging from the biomechanical simulation 

scope, a statistical research was performed (2.7.1. Contribution VI). The goal was to analyze the 

influence of the physical activity intensity in the vertigo symptoms.  

The present chapter includes the main highlights of all the contributions and publications, 

presented as an extended graphical abstract. Furthermore, the complete contributions can be found 

next.  
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2.2. Highlights of Contribution I 

 

This contribution focused on the numerical simulation of the endolymph, for the first time, using 

the SPH methodology.  

Therefore, the main contents of this publication include: 

I. Literature review on vestibular system mechanical models; 

II. SPH methodology applications and formulation; 

III. One SCC FEM model construction, with the ampullar part: 

Being the main aims of the present paper to validate the SPH method and to simulate the vestibular 

system fluid (as part of a global goal of the thesis of building a FEM vestibular system model), an 

elementary ring shape with an ampullar part seems to be a reliable profile model. Furthermore, 

expectably, such simple geometry would lead to low computational costs. Therefore, the model 

presented in Figure 1.2 was built using ABAQUS, with the membrane built with shell elements, and 

also containing the SPH particles inside, to simulate the fluid. Additionally, three different fluid 

discretization meshes were considered and simulated. The properties used in the model were 

obtained from the literature. 

 

 

Figure 1.2 - Model of the SCC membrane built with FEM, front and top view. 
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IV. Simulation of two angular velocity time steps as boundary condition; 

V. Acquisition of global and sectional fluid velocity; 

VI. Validation of the obtained results by comparison with other solutions available in the 

literature: 

In order to compare the results obtained with other authors with similar models of the SCC, the 

fluid discharge in a similar section of the canal was acquired (pointed as section S1 in Figure 1.2). 

Figure 1.3 shows the results obtained along the simulation time with the two different time steps, 

applied as  shown in Figure 1.2, and compared with the works of Selva, P.  et al. 40 and Caiqin, 

WU., et al. 5. 

 

 

Figure 1.3 – Comparison of the fluid discharge in section S1 using the two different applied velocity profiles; with the 

literature. 

 

VII. Conclusion about the SPH performance as a vestibular fluid: 

As main conclusion of the present contribution, the authors concluded that the SPH methodology 

is a reliable alternative approach of the endolymph simulation. Moreover, the solutions produced 

with this fluid-structure model were close to other authors, with the advantage of using a particle 

method, which allows an easier interaction with other geometrically complex structures, as the case 

of the otoconia in the upcoming SCC model.  

 

 

The complete document can be found in the next sub-chapter.  
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An alternative 3D numerical method
to study the biomechanical behaviour

of the human inner ear semicircular canal
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Purpose: The vestibular system is the part of the inner ear responsible for balance. Vertigo and dizziness are generally caused by
vestibular disorders and are very common symptoms in people over 60 years old. One of the most efficient treatments at the moment is
vestibular rehabilitation, permitting to improve the symptoms. However, this rehabilitation therapy is a highly empirical process, which
needs to be enhanced and better understood. Methods: This work studies the vestibular system using an alternative computational ap-
proach. Thus, part of the vestibular system is simulated with a three dimensional numerical model. Then, for the first time using a com-
bination of two discretization techniques (the finite element method and the smoothed particle hydrodynamics method), it is possible to
simulate the transient behavior of the fluid inside one of the canals of the vestibular system. Results: The obtained numerical results are
presented and compared with the available literature. The fluid/solid interaction in the model occurs as expected with the methods ap-
plied. The results obtained with the semicircular canal model, with the same boundary conditions, are similar to the solutions obtained by
other authors. Conclusions: The numerical technique presented here represents a step forward in the biomechanical study of the vestibu-
lar system, which in the future will allow the existing rehabilitation techniques to be improved.

Key words: vertigo, biomechanics, finite element method, vestibular system, fluid mechanics, inner ear

1. Introduction

1.1. Vestibular system

The manifestation of an organic problem associ-
ated with body balance is usually known as vertigo.
This symptom is one of the most common medical
complaints, affecting approximately 20%–30% of the
world population [29]. Vertigo may be present in pa-
tients of all ages. Nevertheless, its prevalence in-
creases with age, being the most frequent complaint in
people over 70. Vertigo predominance is also associ-
ated with gender, being about two to three times
higher in women than in men [17]. This disorder is an

indicator of conflicting information being received by
the brain. Some studies pointed out that 85% of bal-
ance dysfunctions could be related with inner ear dis-
orders [6], mainly with the vestibular system. The
vestibular system is the sensory system located in the
inner ear that provides the leading contribution for
movement and sense of balance.

Since human movements consist in rotations and
translations, the vestibular system comprises two main
components. One of the main components is the semi-
circular canals (SCC) system. Involving three canals
placed orthogonally, the SCC is responsible for the
detection of the rotational movements. The other main
component is the set of otoliths located inside the
utricle and the saccule. With the movement, these
particles induce mechanical stimuli in the utricle and
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the saccule cilium and linear accelerations are identi-
fied by the brain through electrical signals [10]. The
main vestibular structures are represented in Fig. 1.

Fig. 1. Scheme of the human inner ear and the vestibular system

Each canal (Fig. 2) is comprised of a circular path
filled with fluid, interrupted at the ampulla, which
contains the sensory epithelium. The hair cells of the
ampulla rest on a tuft of blood vessels, nerve fibers,
and supporting tissue called the cupula [10]. The
endolymph, inner ear fluid, is a complex component
of the vestibular system. The correct computational
simulation of the endolymph is a challenging and
important task, since the endolymph influences sig-
nificantly the maintenance of balance.

Fig. 2. Scheme of the human vestibular system – SCC

The sensory cells exhibit constant discharge of
neurotransmitters, which are modified by the direction
of the cupula deflection. This output signal is induced
by the head rotation. Generally, these cells are called
“sensors” in engineering terms.

Disorders in the vestibular system play a critical
role in the quality of life of the older population. Fre-
quently, in order to decrease the symptoms, drugs are
used to suppress the activity of the inner ear. Addi-
tionally in some cases, combined with or without drug
administration, physical head manoeuvres are per-
formed within the scope of the vestibular rehabilita-
tion program [11]. However, these manoeuvres are
based on a set of empirical moves made by an audi-
ologist, which has an associated high variability and
could lead to inaccurate moves. The rehabilitation
process, and even the vestibular system behaviour,
can be analysed from the biomechanical point of
view, taking into consideration its movements and
component interactions during balance.

1.2. Biomechanical models
of the vestibular system

In 1933, when the first investigations of the ves-
tibular system were performed, Steinhausen formu-
lated a mathematical description of the SCC which
considered the dynamics of the cupula endolymph
system as a highly damped torsion pendulum for the
sensation of the angular motion [25].

The simulation of the fluid structure interaction
between the endolymph and cupula during head rota-
tion allows the measurement of the fluid interactions
between the three ducts and the displacement of the
cupula during the movement. This model could be
considered useful to understand the physiological and
mechanical aspects of SCC. Additionally, this model
can be described as a band-pass filter relating the dis-
placement of the cupula to the angular velocity of the
head [30].

Van Buskirk and co-workers performed the first
work focused on the fluid dynamics of the SCC.
These researchers assumed that the endolymph has
the properties of an incompressible Newtonian fluid
[14], [27].

Some mathematical models have been made through
the years to represent some parts of the vestibular
system.

Table 1 describes the main studies related with the
vestibular system and summarizes the studies with
finite element models described below. Most of the
research performed for vestibular system focuses
only on one element of the system, usually the en-
dolymph or the otolithic membrane. The vestibular
system, however, is an integrated and complex struc-
ture, making it important to understand its function as
a whole.

16



An alternative 3D numerical method to study the biomechanical behaviour of the human inner ear semicircular canal 5

The models used in these studies are mostly based
on previous geometries and only two of them were
built from original images [4], [12].

Each study uses a different methodology mainly
due to the different kind of goals of each research. The
material properties vary according to the components
being studied: Newtonian compressible fluid for endo-
lymph studies and viscoelastic and isotropic properties
for otolithic membrane studies.

The complexity of the vestibular system leads some-
times to model simplifications; for example, Suhrud
Rajguru and co-workers [20] studied just one SCC in-
stead of the whole system [20]. The 3D geometrical
model was built from temporal bone histological sec-
tions and it was considered as a rigid structure. The study
permitted to estimate the dynamic cupular and endo-
lymph displacements during maneuvers [20].

Kondrachuk [15] developed a model of the otoco-
nia membrane structure based on the Finite Element
Method (FEM). This study allowed the mechanical
parameters of the structure to be assessed. This model
was also used to study the effect of the endolympha-
tic pressure on the otolithic membrane deformation.
This research work concluded that the perception of
inertial acceleration can be changed by the fluid re-
distribution due to the endolymphatic pressure [15].
In the literature it is possible to find another FEM
model of the otolithic membrane [4]. This model
showed the importance of 3D models in the global
comprehension of the structural response. The geo-
metrical variables studied were: the curvature of the
surface, thicknesses of the three layers and the shape
of the perimeter. The simulations permitted to analyze
the static mechanical gain in each variable and the
results showed that the three variables affected the
magnitude and directional properties of the otoconia
membrane [4].

An SCC model using virtual reality, to simulate
the surrounding physical environment, was devel-
oped by Selva et al. [21]. The aim was to represent
the vestibular sensors and simulate several rotation
movements of the head occurring during a diagno-
sis of the vestibular system disorder. It can be used
as a learning and demonstrating tool to understand
the behavior of the sensors during any kind of mo-
tion [21].

A recent paper from Shen et al. [23] showed a ca-
loric response of a complete vestibular system ob-
tained by FEM analysis. The results of the caloric test
on the model developed show the efficiency of the
analysis on the evaluation of the functionality of the
horizontal canal [23].

Another FEM simulation was presented by Jaeger
et al. in 2002 [13]. The results show that the curvature
of the maculae surface has no effect on the mechani-
cal response, since the elastic coupling in the otolith
membrane is insufficient [13].

Duncan and Grant [5] presented a study focusing
on just one part of the vestibular system mechanics:
the hair cells in the cupula. The FEM model repre-
senting the hair cells was used to better understand the
mechanotransduction phenomenon [5].

Dominik Obrist et al. [18] proposed a simple nu-
merical model to study the canalithiasis phenomenon,
which is a condition that leads to a vestibular disorder
called Benign Paroxysmal Positional Vertigo (BPPV).
The work demonstrated that variations in the cross
sectional area of the SCC are not necessary conditions
for a positional nystagmus [18].

In the vestibular field, a new mathematical tool has
been developed by Bradshaw et al. [2] for modeling
the three dimensional geometry of SCC in humans.
The main goal of the methodology is to understand
the physiology of these canals. The technique devel-

Table 1. Summary of numerical models related to vestibular system

Kassemi et al. [14] Kondrachuk [15] Davis et al. [4] Shuang Shen et al. [23] Jaeger et al. [13] Duncan
and Grant [5]

Grieser
and Obrist[7]

Main focus Endolymph
interaction

otolhotic membrane
behaviour

otolhotic membrane
behaviour

cupular deflection
during caloric test

otolhotic membrane
behaviour cillium behaviour Endolymph

behaviour

Methodological
approach

Arbitrary Lagrangian
Eulerian (ALE),
fluid–structural
interaction (FSI)

Static analysis Linear
interpolation

caloric test, Arbitrary
Lagrangian Eulerian
(ALE), Comprehensive
grid convergence tests

Cauchy’s equation
of motion NA

quasi-steady
Stokes
flow regime

Material
properties

Newtonian weakly
compressible fluid

isotropic elastic
parameters,

anisotropic and
viscoelastic
material properties,
linear elastic,
Kondrachuk’s
modeling efforts

slightly compressible
Newtonian fluid

visco-elastic properties,
Kelvin–Voight fluid,
homogeneous isotropic
materials

isotropic, linear
elastic materials
with circular
cross-sections

NA

Boundary
constraints

Non-slip
stationary

one side of plate
was fixed and other
side is free from
stresses

the neuroepithelium
was fixed and the force
was acting in the
macular plane

Nonslip boundary
conditions

the nodes at the
gel-skull boundary
was fixed

The stereocilium
was fixed
to the base

standard head
maneuver,
no-slip
condition.
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oped allows the SCC geometry to be automatically
reconstructed based on computed tomography images.
After this step, the geometrical model is mathemati-
cally modeled using Fourier equations. The aim of
this model is to help the diagnosis and clinical treat-
ment of BPPV in each patient [2].

In the literature, there are other research studies
focusing on the determination of coefficients that are
a non-linear function of the morphological parameters
of the SCC system. Thus, a mathematical model of the
SCC mechanics was constructed for this purpose [28].
The work performed by Vega et al. [28] is based on
Steinhausen’s work, which uses a linear model of the
torsion pendulum to study the dynamics of the cupula-
endolymph system. The proposed model focuses on
the mechanical coupling of angular accelerations with
the movement of the sensory hair cells. The mechani-
cal coupling largely determines the type of mechani-
cal stimuli that is responsible for activation of hair
cells [28].

There are already some studies on the fluid me-
chanics of the SCC that show that endolymph is
a transducer for angular velocity of the head [27].

Grieser and Obrist [7] studied the endolymph mo-
tion of one SSC using FEM. The simulations per-
formed consisted of a head rotation from a relative
angle of 0 to 120 (a standard head maneuver). The
rotation axis is oriented perpendicularly to the plane
of the horizontal SCC. During the acceleration of the
head, the walls of the SCC displace the adjacent fluid
layer along their path. The work confirms the validity
of all assumptions that were made in previous studies
of the endolymph motion [7].

A fluid dynamic model of the vestibular system
was proposed to understand the fluid/solid interaction
phenomenon occurring between the thin membrane,
separating the SCC from the cupula, and the endo-
lymph flow [3]. Using real mechanical and anatomical
parameters, a realistic vestibular model was also built
using a 3D printer in order to study the best way to
mimic the vestibular system [3].

In the field of mathematical models, another study
was performed to examine two mechanisms proposed
for BPPV [24]. The research concluded that a larger
volume displacement on the cupula could be origi-
nated from larger or multiple otoconia [24].

Beyond the computational simulation, there are
some research studies using in vitro models of the SCC.
Valli et al. [26] performed some simulations using
animal isolated posterior SCC to investigate if otoco-
nia can produce transcupular pressures able to stimu-
late ampullar receptors. Obrist et al. [19] published an
in vitro research work regarding the study of canalithia-

sis, which confirmed the fundamental mechanism of
BPPV [19].

Within the same topic, Selva et al. [22] developed
a 2D finite element model of a single SCC, for which
the displacements and velocities of the cupula were
analyzed.

The aim of the present work is to study the me-
chanical behavior of the vestibular system in order to
develop new and more efficient techniques to assist
the vestibular rehabilitation, helping to avoid in the
near future the high costs and problems associated
with these symptoms.

Under these assumptions the use of engineering
tools, such as the computational analysis, is an op-
portunity to create virtual simulations close to the real
scenarios [8]. Thus, to achieve this goal, a 3D SCC
model similar to the real system was constructed. The
SCC is discretized with the FEM and the endolymph
is simulated with the smoothed particle hydrodynam-
ics method.

2. Smoothed Particle
Hydrodynamics

The fluid/solid interaction is a highly demanding
topic in computational mechanics. Nowadays, the
Smoothed Particle Hydrodynamics (SPH) is one of the
most popular numerical methods to study such phe-
nomenon. The SPH can be used to simulate body fluids
with low velocities, such as hemodynamics [16].

The SPH method works by dividing a continuous
field into a set of discrete sample points, called parti-
cles. These particles have a spatial distance, over
which their properties are “smoothed” by a kernel
function. The kernel function helps to ensure the sta-
bility of the numerical solution [16]. The particles are
identified with some characteristics such as mass,
position and velocity. Additionally, particles can also
carry estimated physical properties depending of the
problem, such as mass-density, temperature and pres-
sure.

The SPH approximation is based on two steps, the
first one is the kernel approximation and the second is
the particle approximation [16]. The result of the first
step is the following quantity function

xdhxxWxfxf
N

  ),()()( (1)

where x is any point in N, the support domain, and
W(x – x, h) is a smoothing kernel function. The
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smoothing length, h, defines the influence area of the
smoothing function W(x – x, h) [16]. This parameter
can be fixed in space and time, however, this procedure
does not take advantage of the full power of SPH.
Thus, assigning to each particle its own smoothing
length and allowing it to vary with time can lead to an
automatic adaptation of the simulation resolution de-
pending on the local conditions [16].

There are two main functions leading to equa-
tion (1), f (x) and W(x) as demonstrated below. The
basis of integral representation of a function used in
SPH is the function that represents the three dimen-
sional position vector x,

xdxxxfxf
N

  )()()(  (2)

where (x – x) represents the Dirac delta function
given by










.0
,1

)(
xx
xx

xx (3)

If the delta function of equation (3) is replaced in
equation (2) by the smoothing function W(x – x, h), it
is possible to obtain equation (1). The particle ap-
proximation plays an important role within the SPH
method. Consider Fig. 3, in which a set of particles
possessing individual mass are scattered in space.

Fig. 3. Particle approximation. W function of particle i

The mass of a particle is defined by the relation
between the density and the volume by the following
expression

Vm  . (4)

Thus, the function approximation for a particle i
can be represented by equation (5), with the infini-
tesimal volume dx in the above equations being re-
placed by the finite volume of the particle j.

),()()()(
1

hxxWxXxf
m

xf jiij

N

j j

j
i 

 
(5)

where j is the density of each particle in the domain
N and mj is the mass of each particle.

The SPH was first developed to simulate astro-
physical phenomena. Afterwards, it has been success-
fully applied to a vast range of problems, such as ex-
plicit fluid flow analysis. It was developed by Gingold
and Monaghan (1977) and Lucy (1977) and it can be
combined with the governing equations of the classi-
cal Newtonian hydrodynamics [16].

Within the SPH, the computational domain is rep-
resented by a set of computational points – particles
– completely discretizing the problem domain.

This method has some advantages over grid-based
techniques because its concept is simple and it is rela-
tively easy to incorporate complicated physical effects
into the SPH formalism [16].

Liu et al. [16], after some tests with SPH condi-
tions, proposed a reproducing kernel particle method,
which improves the accuracy of the SPH approxima-
tion.

The SPH method was initially developed as a prob-
abilistic meshfree particle method and was later modi-
fied to a deterministic meshfree method [16].

There are several applications for the SPH method
[1], [16]. One advantage of this method is the adapt-
ability of the particles to many fields and subjects. For
instance, the SPH was already used in astrophysical
studies to study galaxies, the star formation process
and even to simulate cosmological impacts [16].

Additionally, the SPH is capable of solving effi-
ciently high velocity impact problems. Benz and
Asphaug used the SPH method to simulate the
fracture of brittle solids. In 2000, this method was
also applied in the metal forming processes [1].

The SPH presents several advantages when com-
pared with other numerical methods. The SPH deals
efficiently with large local distortions of the discre-
tized domain, it permits the mass conservation of the
particles. It allows calculating the pressure by neigh-
boring particles and not by solving linear equations
and it is suitable to simulate the fluid free surface and
the fluid/solid interactions.

Furthermore, SPH is well-known in the computa-
tional mechanics research community by its effi-
ciency in the simulation of fluids motion. The first
fluid flow application of the SPH was performed by
Swegle with elastic flow. Later, Morris applied the
SPH to solve magneto-hydrodynamics and Morris
and Monhagan solved multi-phase, quasi-incompres-
sible flows, gravity currents, flow through porous
media, heat conduction and shock simulations. In
1995, Cleary applied SPH in heat transfer and mass
flow [16].
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Over the years, the method has been optimized in
order to increase the solution accuracy and to enlarge
the application field.

3. Methods

This work used the commercial software ABAQUS®

to build and analyze the 3D model of the SCC. The
analysis combined both the FEM and SPH methods.

3.1. Numerical model of the SCC

The 3D model developed was composed of two
main parts: a small shell ring, representing one SCC
with the cupula, as shown in Fig. 4, and the particles
representing the endofluid.

The measures of the SCC represented in Fig. 4
were obtained from a 3D model of the complete
vestibular system that can be found in the work of
Henson et al. [9], which was constructed based on
magnetic resonance imaging with fine resolution. In
Fig. 4, it is only possible to visualize the outer FEM
shell, which represents the vestibular membrane of the
SCC. This shell was defined as a rigid body, because
it does not present significant deformations. The parti-
cles defining the endofluid are inside the shell. The
particle distribution is regular and the sum of the par-
ticles volume is equal to the volume of the SCC with
the cupula.

Table 2 shows the material properties for the en-
dolymph and the outer membrane. These values were
obtained in the literature for the components of the
vestibular system.

Additionally, in order to validate the model, three
distinct particle discretizations were considered and
analyzed: mesh M1 (1790 particles), mesh M2 (7410
particles), and mesh M3 (13637 particles).

Table 2. Material properties of the model [39]

Component
Young’s
modulus

[Pa]

Poisson’s
ratio

Density
[Kg/m3]

Viscosity
[Pa.s]

Endolymph – – 1.0  10–3 4.8  10–3

Membrane 5.0 0.48 – –

The model shown in Fig. 5a represents the outer
membrane of the SCC. In Fig. 5b–d, it is possible to
visualize the particles discretizing the endolymph, which
were used by the Smoothed Particle Hydrodynamic
(SPH) method to simulate the fluid flow.

Fig. 4. Model of one SCC built with finite elements,
front and top view

3.2. Boundary conditions

Regarding the essential boundary conditions, to
each node of the elements belonging to the membrane
a prescribed angular velocity (ω = π/2 rad/s) is en-
forced, accordingly with Fig. 4. The angular velocity,
with respect to point O, is a time dependent function.

In order to analyze the biomechanics of the SCC
model, two distinct angular velocity functions were
considered: profile ω1 and profile ω2. Both functions
are shown in Fig. 6. Both angular functions were en-
forced to the three discretized models presented in
Fig. 5b–d. The functions considered were previously
used by Selva et al. [22] and Wu Cai-qin et al. [30].

Additionally, in the present model, the density and
volume of each particle were assumed, as Table 2
indicates. Thus, this model considers the gravity ac-
celeration along the zz axis, following the referential
indicated in Fig. 4.

Regarding the contact between the distinct discrete
elements of the model, the SPH formulation rules the
contact between the particles. The general contact
between the membrane elements and the fluid parti-
cles is performed explicitly by ABAQUS.

In order to compare the results from the several
models considered in Fig. 5, the instantaneous and
local discharge variable was used. The discharge is the
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volume rate of fluid flow transported through a given
cross-sectional area. The discharge is calculated by
the following equation

AvQ  (6)

with v being the fluid average normal velocity at
a given cross-section and A the area of that cross-sec-
tion. The section analyzed in this work is indicated
in Fig. 4 with the line segment S1. Furthermore, the
results from works [22], [30] were processed in
order to present the discharge values of those and
permit a valid comparison with the results obtained
here.

Fig. 6. Representation of the two angular velocity functions
imposed in the model

4. Results

After the simulation of the rotational motion of the
SCC 3D model presented in Fig. 4, the obtained re-
sults were processed and compared with other similar
works in the literature [22], [30].

A comparison of the discharge variable for distinct
time steps of the full analyses is presented in Fig. 7.

Figure 8 shows the comparison between the dis-
charge obtained with each of the three meshes pre-
sented previously and the works of Selva et al. [22]
and Wu Caiqin et al. [30].

In order to perceive the model behavior during the
imposed angular velocity, the velocity of the fluid
over time was analyzed.

The fluid velocity, at some instants of the simu-
lation, is presented in Fig. 9. As it is perceptible,
the inner fluid velocity increases with time, as ex-
pected.

After the general analysis of the global domain,
a section of the SCC was analyzed in detail. The re-
sults were obtained for the section marked as S1 in
Fig. 4. Figures 10 and 11 correspond to profile ω1 and
profile ω2, respectively, and show the 2D sectional
view on the left side and the velocity 3D distribution
on the right side.

Fig. 5. Model of the SCC FEM mesh (a). Examples of the particle discretization:
(b) 1790 particles, (c) 7410 particles, (d) 13637 particles

Fig. 7. Discharge of the fluid in the chosen section with the three meshes and comparison
with (a) M1, (b) M2, (c) M3
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Fig. 8. Discharge in the three meshes from both time steps:
(a) profile ω1, (b) profile ω2

Fig. 9. Fluid velocity (m/s) with M2 along time
from both profile ω1 (left column) and ω2 (right column)
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Fig. 10. 3D velocity field along time obtained with profile ω1

t = 0.005 s

t = 0.04 s

t = 0.08 s

t = 0.11 s
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Fig. 11. 3D velocity field along time obtained with profile ω2

t = 0.005 s

t = 0.045 s

t = 0.075 s

t = 0.105 s
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5. Discussion

The aim of the study presented in this paper is to
improve the knowledge of the vestibular system. For
this purpose the research is based on the simulation of
the rehabilitation process, which need to be more en-
hanced, and to describe the pathway leading to good
rehabilitation results for the patient.

A new model of the vestibular system was devel-
oped including a representation of the sections of the
SCC, which are the focus of this study. The physio-
logical behavior of the SSC represents the more chal-
lenging phase of the complex rehabilitation process.

Thus, it is necessary to construct an accurate model
representing such structure of the vestibular system.
The three-dimensional model constructed permits a more
precise geometric representation of the SSC and al-
lows the trajectory of the fluid inside the canal to be
visualized.

The FEM demonstrates once again that this nu-
merical method is a robust technique to obtain fast
and reliable results even in the biomechanical field.
Additionally, the use of SPH allows a more realistic
representation of the fluid behavior. The methodology
used permitted us to obtain promising results, consid-
ering the biomechanical properties of the components
available in the literature.

The results obtained with the three different particle
meshes were compared with the works of Selva et al.
[22] and Wu Caiqin et al. [30]. The results obtained in
this work are very close the solution obtained by
Selva et al. [22] and Wu Caiqin et al. [30] when
a similar angular velocity is applied to the SCC model,
regardless of the particle mesh considered. Addition-
ally, the convergence of the analysis was confirmed.

As Fig. 8 shows, the present analysis produces re-
sults closer to Selva et al. solution. The slight differ-
ences between the solutions can be explained with the
dimensional dissimilarity between the model pre-
sented here (a 3D model) and the models of both
Selva et al. [22] and Wu Caiqin et al. [30], which are
2D models. The range of results obtained for the dis-
charge are equal in all the simulations (Fig. 8a, b), but
in terms of evolution of the fluid flow, our results show
more similarity with the work by Selva et al. [22].

Figure 9 shows a lateral section of the model dur-
ing the simulation. The velocity of the fluid was
higher in the cupula, similar to the work of Selva et al.
[22], and in the external part of the canal, because of
the centrifugal force. When the two velocity profiles
are stabilized (after a 0.5 s period) both models present
a similar average velocity, as can be seen in Fig. 9.

The velocity 3D distribution is almost fully de-
veloped in the last frame of Figs. 10 and 11. The 3D
velocity field obtained in both simulations is in-
creasing, as expected. The velocity obtained in the
3D velocity field at instant 0.1 s is three times
higher in profile ω1, the result being in accordance
with the velocity applied to the models for that time
step, as shown in Fig. 6.

The velocity maps, representing the fluid flow
of the entire canal, permitted us to observe the cen-
trifugal force and the consequent higher velocity in
the cupula, due to the shape of the SCC. The use of
a three dimensional model allowed the visual evi-
dence of a 3D velocity field in a section of the canal
at some instants of the simulation. The analysis of
the fluid in the section analyzed showed, as ex-
pected, that the velocity is higher in the center of
the canal.

The encouraging results obtained with this 3D
model of just one SCC make it possible to develop
and build with confidence the entire model, containing
all the main structures of the vestibular system.

The simulation model allows the study of the re-
habilitation process in a new perspective without the
suffering of the patient. The possibility of modifica-
tion of all the variables that could influence the
symptoms is also an important step in the study of the
vestibular diseases.

6. Conclusion

This paper presents an alternative reliable nu-
merical approach to study the biomechanical be-
havior of the vestibular system. In general terms, the
results obtained with the 3D numerical model were
very similar with the results from literature. How-
ever, the 3D velocity distribution which can be ob-
tained in any section of interest is a significant im-
provement of the present work allowing the velocity
field to be analysed point by point, which will allow
the otoconia movement to be predicted accurately in
future developments of the research. The finite ele-
ment method combined with SPH for the fluid
simulation seems suited to simulate the biomechani-
cal behavior of the SCC.

From the obtained results, it is possible to con-
clude that the numerical approach presented is con-
vergent and robust, indicating that the increasing par-
ticle discretization leads to accurate results.

Additionally, it was found that the SPH approach
is able to produce solutions very close to the results
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obtained in the work of Selva et al. [22], which uses
a Lagrangian–Eulerian approach combined with the
FEM formulation.

The development of scientific knowledge of the
vestibular system biomechanics is an important step
to create new and more precise tools, which can be
helpful in the daily routine of people with vestibular
disorders. In this field, a better comprehension of
the biomechanical behavior of the vestibular system
is vital, in order to enhance the computational
simulations and the numeric models. This work
contributes with an innovating numerical approach
to predict the complex movement of the endolymph
inside the SSC, which will make it possible to ex-
periment in silico new maneuvers for the rehabili-
tation therapy.
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2.3. Highlights of Contribution II 

 

This publication focused on accurately simulate the vestibular maneuvers based on accelerometer 

data. In the author’s best knowledge, this was the first time accelerometer data and computational 

model were combined to simulate the vestibular maneuvers. 

Therefore, the main contents of this publication include: 

I. Literature review on short vestibular rehabilitation evolution; 

II. Accelerometer data acquisition during a patient neck-flexion-extension, as part of a vestibular 

rehabilitation maneuver; 

III. Obtaining the exact displacement from the accelerometer data, to be used as an input in the 

simulation using the SCC model built in the previous paper: 

The main purpose of the present paper was to establish a methodology to simulate the exact 

movements performed by the audiologist expert during the rehabilitation maneuvers, in order to 

monitor what actually occurs inside the vestibular labyrinth during the procedure, specifically in the 

otoconia pathway. Figure 1.4 shows the location where the accelerometer was placed during the 

maneuvers acquisition (point P) to obtain the movement performed. Furthermore, the point O 

represents the instantaneous center of rotation, which is in accordance with one of the degrees of 

freedom of the neck in the Oyz plane, allowing the flexion-extension movement ().  

 

 

Figure 1.4 – Scheme of the position of the model in the human body and the accelerometer position (P). 

 
From the accelerometer data it is possible to obtain the linear acceleration. Thus, using the following 

kinematic equation (Eq. (1)), it is possible to obtain the displacement field at any given time in a 

point belonging to the head represented in Figure 1.4. 
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𝑢⃗ (𝑡) = {

0
𝑅sin⁡(𝜔(𝑡))

𝑅cos⁡(𝜔(𝑡))
} (1) 

Where R is the Euclidian distance between O and an interest point in the head, defined as 0.2 m in 

the present work, since it represents an approximated measured distance from the neck to the inner 

ear.  

IV. Comparison of the velocity obtained in the canal and in the defined section as a consequence 

of the applied displacement obtained in the previous task, used as input in the simulation;  

V. Fluid particle pathway analysis inside the canal along the simulation, starting in different 

locations: 

A representation of the fluid path inside the duct in one of the chosen locations is illustrated as an 

example, in the Figure 1.5. The point I marks the initial location of this specific fluid particle, while 

the point II and III seems to be nearly the time instants 1.2s and 3.2s, respectively; which 

correspond to the moments where a direction change occurs during the flexion-extension 

movement performed. 

 

 
Figure 1.5 – Particle path inside the canal along the simulation, in seconds. 

 
VI. Conclusions regarding the realistic vestibular rehabilitation procedure simulation achieved 

from accelerometer data. 

 

The complete document can be found in the next sub-chapter.  
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ABSTRACT
Vertiginous symptoms are one of the most common symptoms in the world, therefore investing
in new ways and therapies to avoid the sense of insecurity during the vertigo episodes is of
great interest. The classical maneuvers used during vestibular rehabilitation consist in moving
the head in specific ways, but it is not fully understood why those steps solve the problem. To
better understand this mechanism, a three-dimensional computational model of the semicircular
ducts of the inner ear was built using the finite element method, with the simulation of the
fluid flow being obtained using particle methods. To simulate the exact movements performed
during rehabilitation, data from an accelerometer were used as input for the boundary condi-
tions in the model. It is shown that the developed model responds to the input data as
expected, and the results successfully show the fluid flow of the endolymph behaving coher-
ently as a function of accelerometer data. Numerical results at specific time steps are compared
with the corresponding head movement, and both particle velocity and position follow the pat-
tern that would be expected, confirming that the model is working as expected. The vestibular
model built is an important starting point to simulate the classical maneuvers of the vestibular
rehabilitation allowing to understand what happens in the endolymph during the rehabilitation
process, which ultimately may be used to improve the maneuvers and the quality of life of
patients suffering from vertigo.
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1. Introduction

Vertigo is a type of dizziness that normally occurs due
to a dysfunction in the vestibular system, which is
located in the inner ear. The patient has the percep-
tion of a spinning motion, a feeling of displacement of
the environment relative to the individual or an inten-
sive sensation of rotation inside the head (Taylor and
Goodkin 2011). In these situations, it is important to
avoid falls. Such symptoms are often associated with
nausea and vomiting, and it can cause difficulties in
standing or walking if it is related with central lesions
(Karatas 2008). Other debilitating symptoms such as
blurred vision and hearing loss may also occur
(Strupp et al. 2011). Vertigo can be classified as either
peripheral or central, depending on the location of the
dysfunction in the vestibular pathway, and its most
common cause is benign paroxysmal positional vertigo
(BPPV) (Karatas 2008), although it can be caused by
other factors (Wippold and Turski 2009).

1.1. Vestibular system

The vestibular system is the sensory system that pro-
vides the leading contribution about movement and
sense of balance. As our movements consist of rotations
and translations, the vestibular system comprises two
connected main components; the three semicircular
canals (SCCs), which are placed orthogonally to measure
rotational movements, and the utricle and the saccule,
which contain the otoliths to measure linear accelera-
tions. Each SCC is comprised of a circular section of
continuous fluid, connected with the ampulla and the
vestibule (which contains the sensory epithelium).

The SCCs comprise the bony labyrinth, which
enclose a membranous labyrinth with the same struc-
ture called semicircular ducts (SCD) containing the
endolymph; between both labyrinths, another fluid
called perilymph is present.

The hair cells of the ampulla rest on a tuft of blood
vessels, nerve fibers, and supporting tissue called
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cupula. The sensory-cells exhibit a constant discharge
of neurotransmitters, which are modified by the dir-
ection of the cupula deflection, and this output signal
has its origin in the velocity of head rotation. Thus,
these cells placed in the cupula on the SCD, are
known, in the engineering field, as “rate-sensor”
(Herdman 2007).

1.2. Physical therapy evolution

The original treatment for vestibular disorders was
developed in the 1950s and included a set of progres-
sive exercises, called Cawthorne-Cooksey exercises
(Cooksey 1946), designed to manage dizziness and
improve balance following damage to the inner ear.
More recently, techniques have been developed to
address specific problems with gaze and postural
instability, motion sensitivity, and vertigo in patients
with a variety of vestibular disorders such as BPPV,
M�eni�ere’s disease and others (Zhou and Cox 2004).
Some studies (Deveze et al. 2014; Herdman 2013)
have analyzed the use of advanced technologies, such
as a “balance vest” providing patients with vibrotactile
feedback to help them regain balance control. Other
methodologies include computerized techniques to
help restore steady vision during head movements
(gaze stability) and to document improvements in the
ability to focus on tasks in the presence of distractions
(perceptual and motor inhibition). A device similar to
a mirrored “disco ball” has been used to provide
optokinetic stimulation for patients with vestibular
disorders (Pavlou 2010). Another study (Cox &
Jeffery 2010) shows that gaze stability exercises can
reduce the risk of falling in older adults with vestibu-
lar disorders. Further works (Honaker et al. 2012)
show the effectiveness of vestibular rehabilitation on
vestibular-visual-cognitive function following blast-
induced head trauma sustained by soldiers in war,
while in another study (Alsalaheen et al. 2010) an
improvement in dizziness, walking and balance was
reported after a customized vestibular physical ther-
apy program in children and adults with concussion
was developed. All these studies are crucial to docu-
ment the effectiveness of specific rehabilitation techni-
ques for specific groups of patients with different
vestibular dysfunctions.

1.3. Vestibular Rehabilitation

Vestibular rehabilitation is becoming an interesting
treatment option for a patient with dizziness and bal-
ance problems, because such therapy can improve

symptoms, functioning, and compliance (Boyer et al.
2008). The vestibular rehabilitation exercises stimulate
the brain to use visual clues and proprioceptive alter-
natives to maintain balance and gait, and there is evi-
dence that it improves nystagmus, control postural
dizziness and all other vertigo symptoms, making it
the definitive treatment for most patients (Swartz &
Longwell 2005). Specific methods include maneuvres
to repositioning otoliths, adaptation or substitution
exercises that can be vestibular-ocular, vestibular-
cervical, or vestibular-spinal, spatial-orientation. Non-
specific methods consist generally in rehabilitating
overall endurance and strengthening specific muscle
groups to sustain posture or balance. The fact that
good results can be obtained without drug side effects
and that the treatment is both convenient and tar-
geted leads to a gain in confidence by the patient in
carrying out its daily activities (Herdman 2013). The
first empirical vestibular rehabilitation programs were
developed for subjects presenting brain injuries, and
later on, the hypothesis of canalithiasis (when the oto-
conia are loose within the fluid pathways of the inner
ear) in the SCD was validated by the success of dis-
lodging maneuvers (Boyer et al. 2008). Physical thera-
pists play a central role in vestibular rehabilitation,
not only as care providers but also in helping advance
new research in the field. The next wave of vestibular
rehabilitation approaches could include virtual reality
feedback and training, vestibular implants, and even
stem cell techniques (Pavlou 2010; Herdman 2013).
With the ultimate goal of improving the quality of
life of persons with vestibular disorders, it is import-
ant to study the problem from a multi-disciplinary
point of view, such that physical therapists, engineers,
and physicians all contribute to better understand
how the vestibular system works to improve rehabili-
tation techniques.

1.4. Motivation

Although various treatments exist, none can be confi-
dently labeled as the best option because not enough
scientific evidence exists, both due to the questionable
efficacy of controlled studies and also the difficulty in
obtaining data from randomized clinical trials (Boyer
et al. 2008). As stated by Herdman (Herdman &
Clendaniel 2014), the phenomena that occur during
treatment should be correctly identified in order to
develop better rehabilitation procedures, and compu-
tational models can greatly help study the vestibular
system. The present study aims to computationally
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model the exact movements performed in
that procedure.

2. Methods

Studying the movements made during the vestibular
maneuvers is the most important step in the rehabili-
tation process. To this end, such movements were
performed by a qualified physical therapist (audiology
expert) on a patient and were registered by an accel-
erometer, which is used to measure acceleration

(and consequently velocity and displacement by
integration).

2.1. Accelerometer data collection

The accelerometer used in the present work (available
in Porto Biomechanics Laboratory) is a BIOPAC#
device. The accelerometer was placed in a specific pos-
ition in the forehead of the patient (point P shown in
Figure 1(a)) while the audiologist performed the
maneuvers, and data were collected using a sampling
rate of 200 Hz. The accelerometer location was chosen
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Figure 1. (a) Movement performed with the accelerometer, flexion-extension. (b) Acceleration for the movement of the neck.
(c) Displacement in the sagittal plane.
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to capture the movement in the sagittal plane, which is
the main plane of the flexion-extension movement.

To test the proposed method, a movement of flex-
ion-extension of the neck was measured, starting by
move the head backward and followed by a move-
ment forward until the maximum possible angle
(Figure 1(a)). The data obtained from the accelerom-
eter was in volts, which were then converted to g-
units and then to the SI units (m/s2) in the three
principal axes. Figure 1(b,c) shows the displacement
obtained from the accelerometer data (since that the
movements performed during the flexion-extension of
the neck happened mainly in the sagittal plane as
shown in Figure 1(b)). The data were also normalized
to zero mean. This movement was the one related
with the anterior canal of the vestibular system, which
is the most affected by vertigo symptoms in the case
of dehiscence syndrome.

Since this is a preliminary study, a simple subset of
the full Semont maneuver (Califano et al. 2014) was
selected to allows the validation of the proposed
numerical approach. The displacement shown in
Figure 1(c), obtained by double integration and pos-
terior trigonometric relations due to the angular
movement, was applied to the finite element model of
the SCD described in the next section in order to
simulate the real flexion-extension movement.

2.2. Finite element model characterization

The software used to build the model of the vestibular
system with finite elements is ABAQUSVR (Hibbit &
Karlsson 2004). This software is one of the most well-
known and robust computational frameworks devel-
oped for finite element analysis, mainly used for solid

Figure 2. Model of one SCC built in finite element method, (a) dimensions of the model, (b) particles inside the canal and
Section S1, and (c) Scheme of the position of the model in the human body and the accelerometer.
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models but also successfully used to study biological
models (Gentil et al. 2011).

The developed 3D model was composed of two
main parts: a shell ring that represents one SCD, as
shown in Figure 2(a), and inside the ring are particles
that represent the endolymph fluid. The model repre-
sents the vestibular membrane of the SCD and it is
defined as a rigid body, which is a model simplification
in order to reduce the computational cost and simula-
tion complexity. The kind of elements used for the shell
are linear 4-node shell (S4R). Section S1 (Figure 2(b)) is
coincident with the section of the YZ plane where the
fluid will be analyzed. The properties of the endolymph
used in the model follow those described in the litera-
ture (Wu et al. 2011): a density of 1.0 � 10�3 kg/m3

and a viscosity of 4.8 � 10�3 Pa.s.
The boundary conditions imposed in the model

include the general contact between the membrane and
the fluid, the gravitational force and finally the angular
movement. The model shown in the Figure 2(b) illus-
trates the SCD filled with fluid with the section ana-
lyzed. The dots inside the duct represent the discrete
particles related to the endolymph. The simulation of
the particles movement is performed considering the

Smoothed Particle Hydrodynamics (SPH) method,
which is a meshless method, widely used in bio-fluid
simulations (Liu and Liu 2003; Ye et al. 2016). The
dimensions of the model were obtained from a CT-
scan of the SCC, with more detailed information about
that procedure available in a previous work (Santos
et al. 2017). An updated survey concerning geometric
models and SPH applications to biomechanics (Santos
et al. 2017), shows the reduced number of research
works simulating this important pathology. In the
scheme represented in Figure 2(c), point O represents
the instantaneous center of rotation, which is in
accordance with one of the degrees of freedom of the
neck in the yOz plane, allowing the flexion-extension
movement. Therefore, in the represented movement,
only rotations around the Oz axis are allowed.

Notice that Figure 2(c) does not represent a real
scale canal, as the dimensions are enlarged for easier
understanding. As already mentioned, from the accel-
erometer it is possible to obtain the linear acceler-
ation. Thus, using the following kinematic equation, it
is possible to obtain the displacement field at any
given time in a point belonging to the head repre-
sented in Figure 2(c),

Figure 3. Velocity(m/s) of the fluid along the movement.
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~u tð Þ ¼
0

R sin x tð Þð Þ
R cos x tð Þð Þ

8><
>: (1)

Being R the Euclidian distance between O & an
interest point in the head. With the displacement field
fully defined, in Cartesian coordinates, it is possible
to define the velocity,

d~u tð Þ
dt

¼~v tð Þ ¼

0

R
dx tð Þ
dt

cos x tð Þð Þ

�R
dx tð Þ
dt

sin x tð Þð Þ

8>>>><
>>>>:

(2)

and then the acceleration field,

d~v tð Þ
dt

¼~a tð Þ ¼

0

R
d2x tð Þ
dt2

cos x tð Þð Þ�R
dx tð Þ
dt

� �2

sin x tð Þð Þ

�R
d2x tð Þ
dt2

sin x tð Þð Þ�R
dx tð Þ
dt

� �2

cos x tð Þð Þ

8>>>>>>><
>>>>>>>:

(3)

Knowing the exact position of point P & point O,
it is possible to obtain R. In this work, R ¼ 0:2m was
used, since it represents an approximated measured
distance from the neck to the inner ear. Then, match-
ing Equation (3) to the acceleration coming from the
accelerometer, it was possible to obtain the instantan-
eous angular velocity x tð Þ. Knowing the approximate
location of the vestibular system, point Q, it was pos-
sible to determine a new R ¼ k ~OQk, which is inserted
in Equation (1) to obtain the displacement field of
the vestibular system in Cartesian coordinates.

After the simulation performed the results were
obtained & analyzed.

3. Results

Simulations were carried out using the parameters
defined in the previous section, & the results regarding
fluid velocity along the duct are shown in Figure 3,
where various frames ranging from A to G cover the
totality of the experimentally measured head movement.

The A, D & G frames correspond to location 1 in
Figure 1(a) but to different instants of the simulation,
while frames C & E correspond to the instants when
there is a change in the direction of movement, visible
due to the lower velocities, & refer to position 2 & 3 in
Figure 1(a) respectively. Finally, frames B, D, & F are
the ones with higher velocity, coinciding with the mid-
way moments between each change in direction. After
this preliminary analysis, one section of the duct (S1
showed in Figure 2(b)) was analyzed. Figure 4 shows
the averaged x-velocity component of the fluid par-
ticles in section S1 along the simulation, compared
with the x-velocity component of the duct. The letters
correspond to the same moments as in Figure 3.

A representation of the fluid path inside the duct is
illustrated in Figure 5, which shows five different paths
with different initial locations (point I), to simulate the
start of the simulation at different quadrants of the
duct apart from the locations anterior & posterior to
the cupula. Figure 5 shows the real movement of the
fluid inside the duct. Thus, the path of five different
fluid particles was shown inside the duct. At the begin-
ning of the analysis, five particles (representing distinct
finite volumes of fluid, at distinct spatial positions)
were selected: particle a, b, c, d, & e, respectively repre-
sented in Figures 5(a–e). The five different locations
were selected in relevant positions, such as posterior &
anterior to the cupula (particles a & b respectively), in
the opposite position to the cupula (particle c) & in
the halfway distance between the cupula & particle c

Figure 4. Smoothed average x-velocity component in section S1 and the canal.
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(particles d & e, respectively). Such analysis intends to
understand the influence of the initial position of the
particle in its trajectory.

Therefore, the motion of these particles was tracked.
Allowing to capture a global position with respect to
time. In the figure, it is possible to see the trajectory of
the particle along time. Furthermore, to enhance the
comprehension of the trajectory, in Figure 5, a color
bar is included indicating the time step of the analysis
(in seconds). Thus, the blue color represents the par-
ticle at the initial time & the yellow color represents
the position of the same particle at the final time.

Notice that the particle alters its movement direction
(see point II & point III) at the same instant as the head
movement change (frames C & E in Figure 3).

4. Discussion

The representation of fluid velocity along the SCD,
shown in Figure 3, seems to follow what would be

expected: the beginning & end of the simulation
(frames A & G, respectively) present velocities very
close to zero, as do the points of the simulation where
change of direction occurs (frames C & E). This is
expected because near the beginning of the simulation
the fluid is still gaining traction (after being com-
pletely still at t ¼ 0 s), while in both changes of direc-
tion (frames C & E) the value is naturally low due to
the fact that the head is stopped in a specific instant
(therefore only the residual fluid velocity from the
immediately previous instant affects the distribution
of velocities), & the same reason justifies the velocity
profile of the end frame G (the head stops moving at
that point). The remaining frames (B, D & F) all pre-
sent considerable velocity values, which is in accord-
ance with the fact that such frames refer to instances
where the head is moving in a certain direction,
which induces movement in the fluid. Regarding the
relative magnitude of the fluid velocity for those
frames, frame B presents the lowest values due to it

0.5       1          1.5      2      2.5        3        3.5      4       4.5
Time(s)

(a)

(d) (e)

(b) (c)

Figure 5. Particle path along the simulation, in seconds, starting in five different locations: (a) posterior to the cupula, (b) anterior
to the cupula, (c) opposite position to the cupula, (d) halfway distance between the cupula and particle c in left side, and (e) half-
way distance between the cupula and particle c in right side.
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occurring shortly after the start of the simulation &
also that the angle between frames A & C is 40�

(Figure 1(a)), while frame D corresponds to a time
step specifically in the middle of C to E which spans
92� of movement, thus a higher magnitude of the
movement is expected as the fluid has more time to
reach a higher velocity. Finally, frame F is in the mid-
dle of a 52� movement, which explains why the vel-
ocity magnitude is higher than frame B but slightly
lower than frame D.

The range of movement obtained in the sagittal
plane are in agreement with the average angle for the
flexion-extension of the neck found in the literature
(Dunleavy and Goldberg 2013). The amplitude of the
neck movement is higher in the anterior part of the
body like the results shows. The 0.20 m used as refer-
ence in Figure 1(c) is the average distance from the
neck to the inner ear.

Figure 4, which shows the average fluid velocity
across section S1 as a function of simulation time, fol-
lows a similar trend: instants C and E, where the vel-
ocity is zero, correspondi to the instants around
seconds 1 and 3 in Figure 1(b), where the x-compo-
nent of the acceleration changes its direction. Such
change in direction corresponds to the derivative
being zero, which confirms the results presented in
Figure 4 and the velocity magnitudes in Figure 3.
Comparing both curves in Figure 4, both velocities
present similar results, indicating the reliable behavior
of the model towards the imposed displacement,
which is what was expected. The average velocity of
all particles in section S1 is also an indicator of result
reliability, as higher velocities correspond, as expected,
to the longer part of the movement without direction
changes, between point 2 and 3 (see Figure 1(a)).

As for Figure 5, it is visible that the starting point of
the analysis influences the results, which is expected
due to the varying geometry of the duct, which affects
the dynamics of the fluid in different ways and is what
happens in the real situation due to this model geom-
etry being similar to the geometry of the inner ear.
The pathway between point I and II is the shortest, as
expected, compared with the one between point II and
III. This output, obtained in Figure 5, reveals the possi-
bility to track/analyse any particle fluid or otoconia
path inside the SCD during the simulation.

Comparing the results obtained with the chosen
particles it is possible to observe that particles a and
b (posterior and anterior to the cupula) are the ones
with the best-defined path along the duct. This behav-
ior could be a helpful guide in the common BPPV
cases where the otoconia rest near the cupula. Also,

the distance between two color points allows us to
conclude if the analyzed particle is slower or faster in
each specific part. Particles c and e, which start their
path in the superior part of the duct, appear to show
slower movements, as the points looks closer between
each other. All the selected particles showed a final
position (the yellowest spot) at a similar distance
from the initial position in the five paths.

These results show the effectiveness of the model
and prove that it is possible to infer about the inner
movement of the endolymph and, consequently, the
movement of otoconia. Nevertheless, the authors
would like to clarify that the model has some limita-
tions that should be considered, as the structure of
the ducts and the canals. In future works, the model
of the vestibular system should be enhanced to
include the vestibules and the crus commune in order
to obtain simulation outcomes closer to the anatom-
ical system. Additionally, despite the limitations, the
current model showed similar results with other
authors (Santos et al. 2017).

Since all the maneuvers performed in the vestibular
rehabilitation are based in angular movements, it
appears that the used method, based in trigonometric
relationships, is a valid numerical technique to deduce
the displacement of the head, allowing for successful
simulations based in the accelerometer data.

5. Conclusion

The main aim of this work is to improve the know-
ledge on the vestibular rehabilitation process. Since the
vestibular rehabilitation performed nowadays consist
in a set of movements which lack accuracy and con-
sistent reproducibility, the method presented in this
paper intends to be a step to improve this procedure.
An overall analysis of the results shows that such main
aim was achieved. Data obtained using an accelerom-
eter from a patient treated by a qualified physical ther-
apist was combined with a finite element model to
simulate the flexion-extension movement of the SCC,
and the results allow us to validate this method as a
starting point of the rehabilitation maneuvers simula-
tion, as the fluid velocity distribution as a function of
analysis time is coherent and follows the head move-
ment. This work is an important first step both
because it validates the model and also because it is
focused on the less studied canal associated with
BPPV, which opens the way for further studies into
the diseases occurring in this canal, as emphasized by
Herdman (Herdman 2013).
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The study of vestibular rehabilitation is also very
important as it is a treatment for vestibular disorders
which does not administers drugs (Rosengren et al.
2010), making it a natural alternative free of pharma-
ceuticals. As for future work, this model should be tested
using the same method under different conditions –
such as the three more common maneuvers used in the
vestibular rehabilitation.

In conclusion, the use of computational simulation
is an exceptional opportunity to create realistic simu-
lations in biomedicine, as proved in this research
work where the movements involved in vestibular
rehabilitation was numerically reproduced.
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2.4. Highlights of Contribution III 

 

This contribution focused on the experimental validation of the SCC model and, for the first time, 

on the numerical simulation of the vestibular system using human shaped cupulas. 

Therefore, the main contents of this publication include: 

I. A brief review of the vestibular system physiology, with a focus on the BPPV condition; 

II. Numerical description on the discrete geometrical models built as an enhanced process from 

the previous models: 

The methodology approach regarding the numerical models followed the previous manuscripts, 

applying the FEM and SPH as simulation methods. Therefore, the enhanced model includes the 

SCC with the cupula and otoconia as integral structures; which naturally evolved to the total 

vestibular system model with the three SCCs and the corresponding structures, as it can be observed 

in Figure 1.6. The properties used in this model were the same used in the preceding models.  

a)

 

b)

 

Figure 1.6 – Numerical model of the vestibular system with and without fluid: a) one SCC, b) total model.  

 

III. Characterization of the experimental setup of the manufactured SCC silicone model used to 

validate the numerical results; 

IV. Validation of the SCC numerical model, including the cupula and otoconia structures 

interaction: 

The angle between the otoconia and the cupula, during the otoconia’s movement until it reached 

the cupula, was compared between the experimental and numerical models. Three simulations were 

performed, with the otoconia’s initial position set in three distinct locations inside the canal. Figure 

43



44 
 
 

1.7 shows the results obtained for one of those simulated situations, corresponding to the one 

where the initial otoconia position is closer to the cupula. 

 

 

Figure 1.7 – Angle () between the otoconia and the cupula as a function of time.  

 

V. Analysis of the cupula displacement behavior in the model with one SCC, along time, 

imposing the same smooth step and testing three different situations: without otoconia, one 

otoconia and two otoconia; 

VI. Evaluation and discussion of the results obtained with the simulation of the full model of 

the vestibular system, after imposing Epley vestibular maneuver segments of a realistic condition 

of BPPV, using an otoconia; 

VII. Discussion of the main validation and simulation challenges, and conclusion on the 

achievements to the vestibular research field: 

Despite the excessive computational time required to reach the simulation results, they allowed to 

increase the comprehension about the inner ear biomechanical behavior and increase the knowledge 

in this research field, which will help the worldwide population that daily experience incapacitating 

dizziness symptoms and suffer from vestibular disorders. 

 

 

The complete document can be found in the next sub-chapter.  
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Simulation of Epley Maneuver using an Enhanced Vestibular 
System Computational Model developed using a Realistic 

Anatomical Human Shape 
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Abstract  

 
The main role of the vestibular system, which is part of the inner ear, is maintaining the sense of 

balance and spatial orientation. The consequent disorders commonly lead to dizziness, which daily 

affects the insecurity of many people worldwide. Increase the knowledge in order to improve or avoid 

the vestibular therapy methodologies is the main goal of the present work. 

Developing a complete and functional numerical model of such a sensory structure, such is the 

human vestibular system, includes several steps, being the model validation one of the most 

significant in the all process. The geometrical model was created combining the finite element method 

with a particle meshless method, the Smoothed-Particle Hydrodynamics method to simulate the 

endolymph. 

First, in order to validate the computational approach, a physical semicircular canal silicone model 

was built and submitted to a known movement law. A particle was introduced inside the semicircular 

canal model and its position along time was documented. Afterwards, a computational simulation 

was performed, allowing to compare the numerical solution with the experimental data. 

Next, the complete vestibular system was simulated, including the three semicircular canals with the 

respective cupulas. Thus, a Benign Paroxysmal Positional Vertigo condition with an otoconia lost in 

the posterior canal was simulated applying the Epley maneuver, including a pioneering cupula shape. 

The numerical simulation showed that the movement imposed by Epley maneuver replaces the 

otoconia back to the vestibule in an unexpected way, explaining the high success rates of the 

vestibular rehabilitation repositioning maneuvers. 
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1.Introduction 

 
Human postural control demands an active contribution from several body sensors, such as the 

visual, vestibular and proprioceptive. Postural imbalance is often the main consequence of 

vestibular dysfunctions [1]. The role of the vestibular system is maintaining the body balance by 

continuously providing accurate information, related to the position of the head and body, to the 

brain. The main structure of this system is the group of the three semicircular canals (SCCs), 

placed orthogonally and linked to each other [2]. Each ear has its own canals; therefore, each 

individual has six semicircular canals, which work in a coordinated manner to maintain balance. 

The structure of the canal comprises a membranous labyrinth, embraced by a bony labyrinth 

with the same shape. The membranous labyrinth is filled with a fluid called endolymph. 

Moreover, a fluid called perilymph takes place between both labyrinths [3]. The complex and 

detailed structure of the vestibular system is not completed without mentioning the cupula and 

the macula. These structures contain the sensory hair cells, responsible for sending signals to the 

brain, signaling the physical movement. The sensory cells exhibit a constant discharge of 

neurotransmitters that are modified by the direction of the cupula deflection [4] during angular 

acceleration. The macula, placed in the saccule and the utricle, which are the adjacent structures 

of the semicircular canals, is a membranous structure composed by a gel layer containing calcium 

carbonate crystals, known as otoconia. The mass of the otolithic membrane allows the macula 

to be sensitive to gravity and linear acceleration.  

There are several reasons that could lead to a mismatch of information between the systems in 

control of the balance function. When it occurs, all the process fail, leading to equilibrium loss 

[5], [6]. Benign Paroxysmal Positional Vertigo (BPPV) is the most common cause of vertigo, and 

it is described as a brief, intense sensation of spinning that occurs when there are changes in the 

head orientation with respect to gravity [7]. BPPV occurs when the otoconia remains in the SCC, 

which are normally located in the macula of the otolith organs, as explained before. If they 

dislodge from the utricle and become loose in the SCC, it will induce a false spinning sensation 

when no head rotational motion is actually occurring, generated by the distinct information sent 

to the brain by the two different systems, visual and vestibular [7], [8]. 

Moreover, one of the main consequences of any BPPV episode is the risk of falls, which is an 

important factor when considering the ageing population worldwide. The World Health 

Organization (WHO) states that falls are the second leading cause of accidental or unintentional 

deaths worldwide. Thus, WHO proposes and prioritizes the implementation of prevention 

strategies and fall-related research [9]. It is therefore of high interest to develop improved 

solutions that contribute to prevent these kinds of vestibular related complications. 
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The main effective therapy applied in the reported condition is vestibular rehabilitation, 

comprised by particle repositioning maneuvers and habituation therapy. Nevertheless, such 

procedures have some drawbacks, mainly considering their empirical nature, premise endorsed 

by Herdman whom encourage new research on the subject [10]. Moreover, it requires an active 

and regular home routine exercises to prevent new episodes [11], which is hard to successfully 

achieve without help, taking into account that the most affected group is the elderly population. 

The proposal of this work is to develop and validate a finite element model of a semicircular 

duct, to simulate the real otoconia behavior during vestibular rehabilitation. In order to improve 

the process, the subsequent step include the otoconia pathway simulation in a complete 

computational vestibular system model. Furthermore, the groundbreaking factor in this present 

research is the pioneer shape of the cupula (and corresponding discrete virtual model) used in 

the computational analysis, modeled based in histological data, which will be detailed in the next 

section.  

 

2.Methods  

 
Advanced discretized techniques, such as the finite element method (FEM) and meshless 

methods, are widely used to simulate and study several biological effects in computational 

biomechanics [12]. Such advanced discretization techniques have shown that they are useful and 

reliable tools to perform biomechanical simulations [13], [14], mainly in the medical field where 

it is challenging and hard to obtain anatomical and physiological results. The validation process 

of a computational model is an essential step to add solid scientific value to the results obtained. 

The present work proposes an experimental validation of the SCC biomechanical model to 

validate the proposed numerical approach, which was also addressed in previous publications 

[15] . 

 

2.1. 3D Discrete model 

 
The 3D SCC numerical model was built using the commercial software ABAQUS® [16]. The 

analysis combined the FEM with a particle meshless method – the smoothed particle 

hydrodynamics (SPH) - to simulate the endolymph. SPH is a computational technique widely 

used for fluid flow simulation due its efficiency [17]. One advantage of this method is the 

adaptability of the particles to many fields and subjects [17], [18], such as astrophysical studies 

[17]. Regarding the biological fluids field, it has already been used by various authors with reliable 

simulation results [15], [17], [19]. Therefore, it was used in the present work to simulate the 

endolymph, represented in Figure 1 by the blue particles. 
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Regarding FEM, the method was applied to the remaining structures of the model: membranous 

duct, cupula and otoconia. The membranous duct was modeled using a shell ring with an 

ampullar part, and it was defined as a rigid body. This model simplification was sustained by the 

rigid bony labyrinth surrounding the vestibular system. It allowed to reduce the computational 

cost and simulation complexity maintaining the essential interactions inside the duct (the 

perilymph effect was disregard). The cupula was placed in the ampullar part of the membranous 

duct, as shown in Figure 1. The otoconia is the small structure shown in the superior part of the 

canal, used to simulate a BPPV episode, Figure 1a). The number and type of elements used in 

each structure of the one SCC model are presented in Table 1. 

a)  

b)  

Figure 1 – Vestibular system model with and without fluid, a) one SCC, b) total model. 

 

Concerning the dimensions of the model, they were obtained from the literature [20], [21] ; the 

dimensions of the different parts of the canal were obtained by proportionally ratios. Since the 

human otoconia is known to range in size from 3 to 30 µm [22], and exhibits an irregular shape 

[23], it was modeled with 0.1 mm diameter and with an asymmetrical and sparse mesh.  

The properties used in the one SCC model (Figure 1a)) follow those described in the literature 

for the structures of the vestibular system, and are presented in Table 1  [24], [25]. 

 

50



Table 1 – Material properties and elements used in the model [24], [25]. 

 
Young’s 

Modulus (MPa) 
Poisson’s ratio 

Density 

(ton/mm3) 

Viscosity 

(MPa.s) 

Elements 

(Number / Type) 

Endolymph - - 1 x 10-9 8.52 x10-10 4450 / PC3D 

Membrane 13700 0.49 1.85 x 10-8 - 2496 / S4R 

Cupula 5 x 10-6 0.48 1 x 10-9 - 1461 / C3D4 

Otoconia 6.6 0.45 3 x 10-9 - 14 / C3D4 

 

The boundary conditions imposed in the model include the general contact between all the 

simulated components, the gravitational force and the angular velocity imposed in the canal, 

which was obtained from the experimental procedure described in Section 2.3. After the model 

validation with the one SCC model, the same properties and boundary conditions were adapted 

to perform the simulations with the global vestibular system model shown in Figure 1b). The 

Epley maneuver in a BPPV condition was simulated with the global model. 

 

2.2. Cupular Structure 

 
Since 1933, when Steinhausen described the dynamics of the cupula-endolymph relation as a 

highly damped torsion pendulum [26], that several modelling configurations have been 

developed for the cupular structure and corresponding interactions. Additional discussions by 

some authors inquire, for example, about the permeability of the cupula [27]. However, the most 

common computational models of the cupula base their geometry in animal anatomical 

experiments, such as fishes or birds [28]. It is possible to observe in those works that the cupula 

reaches the apex of the ampullar part of the canal. Nevertheless, several histological works have 

shown that the human cupula does not interact with the apex of the ampulla [29], as shown in 

Figure 2b). 

a)  

b)  

Figure 2 –Cupula; a) FEM model, b) histological picture.  
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Instead of the previously mentioned research works, which models the cupula as a compact 

obstacle to otoconia migration based on animal morphology, the present work proposes a 

modelling of the cupula that mimics a human cupula structure (Figure 2a). The authors believe 

that a cupula with a higher flexibility could influence the endolymph flow and consequently the 

otoconia movement. 

 

2.3. Experimental model 

 

a)  
b)  

c)  
d)  

Figure 3 – SCC experimental model. a) Numerical model, b) Experimental model, c) Experimental model during the 

experiment d) Angle obtained.  

 

The silicone used was translucent, since it was necessary to analyze the motion inside the 

experimental model during the experiment, Figure 3c). Furthermore, the used material allows for 

a color pigmentation to be applied, a useful feature to distinguish different structures, thus a blue 

pigment was applied to the cupula to easy its recognition during image analysis. Also, the cupula 

structure was built using a material with a lower hardness, in order to simulate the structure 

softness.  The real microscopic dimension of the SCC is one of the main obstacles to 

experimental studies on the subject, hence the silicone model was manufactured using a scale 

ratio of 1:20 in order to promote improved visual measurement conditions.  The endolymph was 

simulated as water, since it has similar mechanical properties and an analogous behavior. To 
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Regarding the experimental model, a silicone physical structure was manufactured using the 

computational model geometry of the one SCC described in Section 2.1, Figure 3a). Silicone 

experimental models have been developed, in several fields, to evaluate biological structures [30]. 

In the present work, a platinum-based silicone rubber (Ecoflex 0050) with a hardness of 50 shore 

was used to build the SCC model shown in Figure 3 b), where l=18.5 cm and h=6.2 cm. 



simulate the otoconia, chalk spheres with a diameter of 0.3 mm were used, due to the calcium 

carbonate composition, similar to the composition of the real structure. 

In the set of performed experiments, the silicone SCC model was positioned in a rotating 

support, filled with water, and finally an angular movement was applied. The experiment was 

recorded in video. The digital image processing analysis allowed to obtain the actual angular 

velocity, which was later applied as an input boundary condition in the computational simulation. 

Three different otoconia starting locations were defined, as shown in Figure 3d), pointed as I, II 

and III. The same configuration was established in the experimental and numerical models. The 

angle (), as a function of time, between the otoconia position and the cupula was measured 

(using the cross product between both vectors), which is compared in the next section. 

 

 

3.Results 

 
Analyze the output video of the experimental data with the three distinct initial otoconia locations 

allowed to obtain the movement law of each experiment. Then, the corresponding discrete 

movement law was applied as an input in the numerical simulations, respecting the same otoconia 

positions and boundary conditions. The angle () obtained between the otoconia position and 

the reference axis (𝑂𝑥) fixed to the cupula (as a function of time), due to the imposed movement 

law, is shown in the Figure 4 for both experimental and numerical models. 

a)  
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b)  

c)  

Figure 4 – Angle () between the otoconia and reference axis (Ox) fixed to the cupula, experimental and numerical 

comparison in three different situations. a)I; b)II, c)III. 

 

 

The results presented in Figure 4a) corresponds to the situation where the otoconia had assume 

the initial position I, shown in Figure 3d), presenting an initial angle 𝜃 = 5.2 𝑟𝑎𝑑 between its 

position and the reference axis (Ox) fixed to the cupula, measured on the movement direction. 

Figure 4b) corresponds to situation II, where the otoconia’s initial position registered 𝜃 =

 3 𝑟𝑎𝑑 to the reference axis (Ox) fixed to the cupula. In the last defined case, corresponding to 

situation III, where the otoconia was closer to the cupula, the initial angle was approximately 

𝜃 =  1.8 𝑟𝑎𝑑. 

Figure 5 represents the real spatial otoconia position, for selected instants, comparing the 

experimental data with the numerical simulation for the three situations. This visualization allows 

a clearer perception of the otoconia path towards the cupula in the three simulated situations. 
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Figure 5 – Otoconia position along time in the experimental (A) and numerical (B) models in the three simulated 

siutations.  

 

It is perceptible that the numerical results (B) are generally close with the experimental data (A), 

validating the numerical approach. 

After the model validation, it was analyzed the mechanical behavior of the cupula in the 

computational model. The influence of the otoconia presence in the cupula behavior was 

numerically investigated. The results obtained are presented in the Figure 6, representing the 

transverse displacement of the cupula apex measured in the Oy direction (Figure 3d). Three 

simulations with the same movement law were performed. The differences between the 

simulations was the number of otoconia included in the analysis: zero, one or two. In the cases 

in which otoconia are included, the initial position is the one shown in Figure 1a). 
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Figure 6 – Cupula’s transverse displacement in three different situations.  

 

The simulation with the vestibular system model were carried out based on the previous 

validations. An Epley maneuver was applied with an otoconia placed near the cupula in the 

posterior canal. Considering that some fast movements are applied in this maneuver, the cupula’s 

Young’s modulus was slightly adjusted (increased by a factor of 10) to allow a non-deformable 

simulation without compromising the computational time. The obtained results from the 

otoconia position inside the vestibular system along time in the rehabilitation maneuver are 

represented in Figure 7, marked with a red arrow, at specific time instants. The simulation 

comprises 19 seconds of total time.   

 

Figure 7 – Otoconia pathway inside the vestibular system model during Epley maneuver.  
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The time instants between 5.4s and 11.5s regards to the Epley maneuver step when the patient 

is in the supine position and rotates the head 90 degrees in the opposite direction; which explains 

the otoconia fall in the vestibule. 

 

 

4.Discussion  

 
Regarding the experimental validation, the results of the computational simulations and 

experimental tests show a satisfactory similarity. The data comparison is presented in Figure 4. 

It is possible to observe that in all the situations, the otoconia moves faster along the pathway in 

the numerical simulation. This can be explained by the friction contact present in the 

experimental model, conferred by the small irregularities of the silicone surface, mainly due to 

the mold mesh. Also, the chalk spheres used to simulate the otoconia possess, actually, a 

rhomboid shape close to the real otoconia particles [23]. All these conditions increase the friction 

between the structures, which lead to a slower movement of the otoconia, in the experimental 

simulations.  

In experimental cases I and II, the otoconia did not reach the cupula region; actually, the longer 

the otoconia path to reach the cupula, the farther it stayed in the end of the experiment. This 

could be explained by materials friction and the same time step imposed. Despite the different 

velocities of the otoconia in the experimental and numerical data, the otoconia behavior is quite 

similar. For example, in situation I, in both numerical and experimental tests, the otoconia slightly 

changes its movement direction at the final segment. This behavior could also be observed in 

Figure 5. In situation III, which is the shorter path, the otoconia reaches the cupula in both 

numerical and experimental tests, behaving as expected.  

Figure 5 shows the otoconia location at six different time instants, complementing the results of 

Figure 4. A spatial visualization of the relative position of the otoconia pathway inside the SCC 

provides a clearer interpretation of the results. Furthermore, the otoconia faster migration 

noticed in the numerical simulation, is also demonstrated in Figure 5. However, considering the 

non-linearity of the human tissues, the otoconia pathway of the experimental result is probably 

closer to the one occurring inside the human ear.  

Efforts to normalize the parameters of the experimental tests have been employed, which are 

evidently conducted in less controlled environments than the numerical simulations. Factors 

such as friction between materials, manufacturing imperfections, angular velocity application at 

the initial instant and image aquisition resolution all can influence the accuracy of the results in 

ways that the numerical simulation does not, leading to some differences between both 

approaches. Nevertheless, comparing the experimental and numerical results yields a very good 
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agreement between them. Thus, it can be said that the silicone experimental model allowed the 

validation of the numerical model, which will be used to support the following simulations using 

this SCC numerical model. 

Considering the results obtained with the simulation of the SCC with and without otoconia, 

presented in Figure 6, where the cupula transverse displacement was measured in its apex, it can 

be observed that in the first simulation segment, until 0.5 s, the cupula behavior is similar in the 

three simulations. This could be explained by the initial position of the otoconia, since it is far 

from the cupula (as Figure 1a indicate) it will influence less its displacement. During the rest of 

the simulation, the otoconia is getting closer to the cupula, which influences more the cupula’s 

movement. 

Despite the perceived differences in cupula displacement between the three situations along time, 

the larger displacement was achieved for the case with two otoconia. However, comparing with 

the one otoconia situation, the displacement is not twice higher, as could be expected. This could 

be justified because in the two otoconia simulation, one of them slowed the migration half-way 

from the cupula, probably due to a turbulent flow situation, which is characterized by chaotic 

changes in flow velocity. 

Since the cupula displacement result obtained from the situation without otoconia had some 

similarities to the one otoconia situation, this may bring an additional question. This result may 

lead to the hypothesis that maybe there are people with detached otoconia from the macula, lost 

in the SCC, who have not possessed dizziness symptoms because influence of detached otoconia 

in the cupula’s displacement is not high enough to be distinguished from a healthy situation. 

In order to support this argument, a conversion from mechanical energy to electrical energy, as 

an electrical impulse, should be performed, with the purpose of accurately evaluate the difference 

between both cases, since it is the brain’s input signal regarding the body balance position that 

triggers dizziness symptoms. 

Regarding the global model results presented in Figure 7, it can be observed that the maneuver 

was able to replace the otoconia to the expected place (the vestibule). However, it did not occur 

as the theoretical model propose or expects, at which the otoconia goes all the way through the 

posterior canal. The results shown that the human shaped cupula possesses an important role in 

the high efficiency rates on such empirical rehabilitation process, since it allows a less restricted 

otoconia flow inside the labyrinth. The visual representation of such a vestibular rehabilitation 

procedure could be unclear, therefore, the specific time instants chosen to represent the 

rehabilitation simulation was defined in crucial steps to understand the otoconia position.  
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5.Conclusion 

 
The SCC numerical model validation shown in the present work opened a new branch in 

vestibular research. The cupula displacement results have shown the differences between a 

healthy SCC and a pathological one in a case of detached otoconia, which lead to the dizziness 

symptoms. However, further work is required to accurately distinguish the influence of otoconia 

in the cupula behavior. The global vestibular model simulation of a regular rehabilitation 

maneuver, commonly performed in BPPV situations, has shown that a human shaped cupula 

increases the possibility of obtaining a desirable therapy result. 

Concluding, the computational simulation of such structures and procedures is an essential step 

in the biological tissues research, mainly for the following considerations: the confirmed accurate 

results obtained in several fields, the possibility to analyze in controlled environments those 

fragile and small anatomical configurations, and the advantage of eliminating (almost) all ethical 

barriers. 
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2.5. Highlights of Contribution IV 

 

The present contribution aimed to obtain the natural frequencies of vibration of the cupula in distinct 

situations testing a new meshless formulation.  

Therefore, the main contents of this publication include: 

I. A succinct comparison between FEM and meshless approaches; 

II. Detailed description of the meshless formulation (NNRPIM), including integration scheme, 

nodal connectivity and shape functions 41; 

III. Free vibration analysis of the cupula using FEM and NNRPIM, with two models (2D and 

3D), and also using four different types of mesh discretization for each model; 

IV. Acquisition of the natural frequencies of the cupula with both methodologies: 

Regarding the results, Figure 1.8 shows the three first vibration modes of the two dimensional 

cupula using the FEM and NNPRIM (using a low order nodal connectivity) and the corresponding 

natural frequencies. The mesh discretization presented correspond to the most (M4 with 3221 

elements) and less (M1 with 131 elements) refined meshes. The full manuscript presents the 

obtained results with the four meshes, plus the results using a higher order nodal connectivity in 

the NNRPIM. Furthermore, the three dimensional cupula results are shown as well. 

 FEM NNRPIM 

 M1 M4 M1 M4 

1 

 

57.17 Hz 

 

53.13 Hz 

 

53.43 Hz 

 

52.60 Hz 

2 

 

127.08 Hz 

 

117.88 Hz 

 

122.89 Hz 

 

117.68 Hz 
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3 

 

135.86 Hz 

 

128.90 Hz 

 

129.69 Hz 

 

128.05 Hz 

Figure 1.8 – Three first modes and natural frequencies of the two-dimensional cupula with FEM and NNRPIM using 

two different meshes. 

 

This vibration modes visualization option corresponds to a fictitious displacement field, where the 

red color corresponds of the potential maximum displacement value and the blue color to potential 

lower displacement values. In the manuscript its shown that NNRPIM formulation possesses a 

faster convergence than FEM. However, the final converged results are all very close in the three 

first natural frequencies, regardless of the used numerical formulation.  

 

V. Evaluation of the influence of fluid surrounding the cupula in the natural frequencies values, 

resembling a situation close to the cupula environment in the vestibular system; 

VI. Analysis of the natural frequencies in a pathological cupula scenario: 

Cupulolithiasis occurs when the otoconia get attached to the cupula, inducing vertigo. Figure 1.9 

presents the models built to simulate this pathology, in three distinct situations, with a different 

number of otoconia debris placed in different locations. All border nodes of the model are 

constrained in all its degrees of freedom. 

   

Figure 1.9 – Two dimensional cupula model surrounded with endolymph and otoconia placed in different location. 

 
The vibration modes obtained in the pathological models are very close to each other. Furthermore, 

the values of the natural frequencies of the cupula obtained in the pathological and fluid cases are 

very close to the ones observed in Figure 1.8, indicating that the otoconia debris and the endoymph 

has a reduced influence in the magnitude of the cupula’s natural frequency. 
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VII. A cross-comparison on both methods was performed using the average differences between 

the results obtained; 

VIII. Conclusions about the efficiency of the used numerical methodologies and the obtained 

natural frequency values: 

The FEM and NNRPIM are capable of achieving similar results regarding the dynamic response of 

the cupula. Since the obtained natural frequencies of the cupula are in the human auditory range, 

theoretically, the resonance phenomena could be induced with some melody in order to reduce the 

vertigo symptoms, by detaching the otoconia from the cupula.  

 

 

The complete document can be found in the next sub-chapter.  
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2.5.1. Contribution IV 

 

 

 

 

The free vibrations analysis of the cupula in the inner ear 
using a natural neighbor meshless method 
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a b s t r a c t 

The cupula is a part of the inner ear semi-circular canals that plays an important role in the maintenance of 

the human balance. In order to understand the dynamic response of the cupula, first it is necessary to obtain its 

vibration frequencies. A two-dimensional and three-dimensional geometrical model of the cupula was built. Then, 

a free vibration analysis was performed using two distinct numerical techniques, the finite element method (FEM) 

and the natural neighbor radial point interpolation method (NNRPIM). Besides the fundamental analysis, other 

scenarios were studied, aiming to analyze the environment of the cupula (in healthy and pathologic scenarios). 

The results obtained with the geometrical models show that NNRPIM is capable to deliver results very close with 

the FEM. Additionally, the NNRPIM formulation possesses a high convergence and acceptable computational 

costs. 

This work presents for the first time a computational study on the free vibration analysis of the cupula and 

shows an alternative numerical technique to calculate with precision the natural frequency of the cupula. The 

outcomes of this work will allow the development of alternative therapies for cupulolithiasis, which causes severe 

dizziness. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The vestibular system of the inner ear is the least studied part of the 

human ear; however, this is the main responsible for the balance func- 

tion of the human body. When this system fails, the symptoms lead to 

intense dizziness most of the times. Several mathematical models have 

been made through the years to represent some parts of the vestibular 

system [1–5] . The computational simulation of such distinct structures 

is performed using numerical methods. Today, the preferential numer- 

ical method used is the FEM [6] and the most commonly used finite 

elements are the linear formulation elements, which assume triangle or 

quadrilaterals shapes for 2D analyses and tetrahedron or hexahedron 

shapes for 3D analyses [6] . 

Nowadays, using the computed axial tomography (CAT) imaging 

technique, it is virtually possible to construct the geometric model of any 

bio-structure of the human body. Afterward, in order to create a finite 

element mesh, this geometrical model can be discretized using triangles 

or quadrilateral elements (2D analyses) or using tetrahedrons or hexa- 

hedrons elements (3D analyses). However, this discretization technique 

could represent a heavy pre-processing cost, especially if a uniform mesh 

∗ Corresponding author. 
∗∗ Corresponding author at: INEGI, Institute of Mechanical Engineering and Industrial Management, Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal. 

E-mail address: jorge.belinha@fe.up.pt (J. Belinha). 

is intended. Additionally, the model’s mesh quality strongly affects the 

FEM performance, and any mesh refinement during the analysis repre- 

sents an additional computational cost. 

Fortunately, in the last decades, meshless methods [7] have been 

under strong development and are continuously extending their appli- 

cation field. Today, these more flexible discretization techniques are 

a competitive and alternative numerical method in computational me- 

chanical analysis, due to the efficiency and accuracy of their discretiza- 

tion formulation [8] . 

The meshless methods discretize the domain based in a cloud of 

nodes [7–11] , instead of the rigid element concept used in FEM. In the 

early years, the solution of partial differential equations was the main 

focus of interest [8] . However, today, meshless methods are applied to 

a wide-range of applications [10] . 

Meshless methods can be divided into many classes or even sub- 

classes; one of the most common classification used is the “not-truly 

meshless methods ” or “truly meshless methods ” classification [10] . 

A meshless method is labeled “not-truly ” when a background mesh is 

required to perform the numerical integration of the integro-differential 

equations ruling the studied physical phenomenon. 

https://doi.org/10.1016/j.enganabound.2018.01.002 
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On the other hand, “truly ” meshless methods only require an un- 

structured cloud of nodes to discretize the problem domain. Because the 

influence domain, integration points, shape functions and other neces- 

sary mathematical constructions are obtained directly from the spatial 

coordinates of the nodes. 

Thus, truly meshless methods [10,12–16] are capable to obtain the 

cloud of nodes using just CAT scan or the MRI images by considering 

the pixels (or voxels) position. Afterward, using only the nodal spatial 

information, these truly meshless methods are able to obtain directly the 

nodal connectivity, the integration points and the shape functions [10] . 

Furthermore, using the gray range of medical images, truly meshless 

methods are even capable of recognizing distinct biological structures 

and then attribute to each node the corresponding material properties 

[10] . 

The meshless methods already proved to possess clear advantages 

over other numerical techniques and to be a reliable option in biome- 

chanics computational applications [17] , particularly when combined 

with medical imaging techniques (CAT scan and MRI) [18,19] . 

In the literature it is possible to find several research works showing 

the efficiency of meshless methods in several demanding fields, such as 

the prediction of crack propagation [20] , the analysis of plates assum- 

ing functionally graded materials [21] or piezoelectric materials [22] or 

plate materials damaged by cracks [23] . Regarding the solution requir- 

ing the determination of eigen-values and eigen-vectors, meshless meth- 

ods were efficiently extended to buckling studies [24,25,26] and free 

vibrations analysis [27,28,29] . Additionally, the literature shows that 

the structural dynamic analysis assuming truly meshless methods was 

successfully performed [30] . 

One of the advantage of meshless methods over FEM are the remesh- 

ing efficiency, which in biomechanics structures could be crucial to the 

final result [31,32] . 

Thus, due to their formulation, meshless methods allow to introduce 

or remove nodes from the problem domain without disturbing signifi- 

cantly the final solution. In biomechanics this feature reveals itself to be 

an advantage because soft tissues (such as muscles, tendons, extra cellu- 

lar matrix, etc.) and bio-fluids present very large deformations. There- 

fore, external actions applied to the solid will lead to highly distorted 

final configurations. If the problem domain is discretized with elements, 

possibly the final geometry of the elements will be incompatible, leading 

to the loss of accuracy. In this case, the solution is to create a new ele- 

ment mesh discretizing the geometry of the final configuration. This is 

an inefficient and time consuming step. Alternatively, in meshless meth- 

ods there is no pre-established nodal connectivity. Thus, using the con- 

cept of influence-domain and the final nodal distribution configuration 

(naturally adapted to the geometry of the final configuration) a new 

nodal connectivity will be established, without requiring a new domain 

remeshing. Additionally, if the nodal discretization is highly distorted, 

new nodes can be added to the domain to improve the discretization 

and then the influence-domain concept will allow to enforce the nodal 

connectivity [10] . 

Meshless methods have been used to simulate body fluids with 

low velocities, such as the vestibular system [33,34] . These works 

apply the smoothed particle hydrodynamics (SPH) technique to cap- 

ture the fluid/solid interaction occurring between the endolymph and 

the cupula and otoconia (a highly demanding topic in computational 

mechanics). 

Nevertheless, the main topic of this work is not the study of those 

fluid/solid interactions but the pioneer analysis of the free vibration of 

the cupula – a fundamental part of the vestibular system. 

At the author’s best knowledge, this is the first research work study- 

ing the free vibration analysis of the cupula. The main objective of this 

manuscript is to obtain the natural frequencies of the cupula (both in 2D 

and 3D) with and without attached otoconia particles. The obtained re- 

sults will allow to understand the magnitude of the natural frequency of 

the cupula, allowing to design in the future new therapies to minimize 

the effects of vertigo. 

The numerical analysis is performed using an improved meshless 

method [12,35] , —the NNRPIM —and the FEM (for comparison pur- 

poses). Notice that the FEM formulations is well described in the lit- 

erature, in which several handbooks can be found [6] . The NNRPIM is a 

truly meshless method [10] , which means that it is capable to fully and 

accurately discretize the problem domain using as information only a 

micro-CT scan. This is an advantage, since NNRPIM allows to discretize 

the problem domain using only the nodal cloud coming from the voxel 

position of the micro-CT scan (no other information is required). Then, 

using the natural neighbor concept, the Voronoï diagram discretizing 

the problem domain can be constructed. From the Voronoï diagram it 

is possible to establish directly the nodal connectivity and define the 

position and weight of background integration points. The NNRPIM for- 

mulation and its extension to free vibration analysis will be described 

with detailed in the next sections. Afterward, the results obtained from 

the cupula model will be presented and discussed. 

2. Nodal connectivity and shape function of natural neighbors 

The natural neighbors concept was used for the first time by Sibson 

for data fitting and smoothing [36,37] . There are two dual mathematical 

tools used in the determination of the natural neighbors: the Voronoï

diagrams [38] and the Delaunay triangulation [39] . 

Generally, in meshless methods, the nodal connectivity is enforced 

by the influence-domain concept, in which nodes are searched within 

a fixed area (in the case of a 2D problem) or a fixed volume (in the 

3D problems). Due to its simplicity, several meshless methods use this 

concept [40–43] . 

Alternatively, the connectivity between nodes in the NNRPIM is im- 

posed by the “influence-cells ” created by the Voronoï diagram [12] . The 

influence domain formed by n nodes, contribute to the interpolation of 

the interest point x I ( Fig. 1 a) belonging to the problem domain, Ω ∈ ℝ 

3 . 

There are two types of influence domains, the “First degree influence- 

cell ” and the “Second degree influence-cell ”. In the first case, an interest 

point x I ∈Ω searches for its natural neighbor nodes following the natural 

neighbors from the Voronoï construction, the second one goes further 

and add to the cell also the natural neighbor nodes of the first ones. 

More details can be found in [10] . 

Regarding the distribution of the background integration points, the 

NNRPIM uses the Voronoï diagram to define the background distribu- 

tion of integration points required to integrate the integro-differential 

equations governing the physical phenomenon. As Fig. 1 b shows, fol- 

lowing the Delaunay triangulation [10] , each Voronoï cell can be di- 

vided into quadrilaterals. Then, each quadrilateral sub-cell ( Fig. 1 c) can 

be filled with integration points using the Gauss–Legendre quadrature 

scheme. Previous studies showed that the NNRPIM integration scheme 

allows to obtain better results than other integration schemes [44] . 

Notice that the NNRPIM integration scheme is in fact a nodal integra- 

tion scheme. In the literature it is possible to find several other efficient 

nodal integration schemes, such as the one combined with the boundary 

element method [45] , or the adaptative integration scheme presented in 

[46] , or the conforming nodal integration scheme proposed in [47] . 

The NNRPIM uses the radial point interpolators to construct its 

shape functions. Thus, consider a function f ( x I ) defined in the domain 

ΩI , which is discretized by a set of n nodes. Notice that ΩI ⊂Ω and 

represent the physical domain of the influence-cell. The interpolation 

function f ( x I ), using the NNRPIM, passes through all nodes in the do- 

main ΩI , using a radial basis function (RBF) and a polynomial basis 

function. Assuming that f ( x I ) is just affected by the n nodes within the 

influence-cell of the point of interest x I = { x I , y I } 
T . The value of function 

f ( x I ) at the point of interest x I is obtained by, 

𝑓 
(
𝒙 𝐼 

)
= 

𝑛 ∑
𝑖 =I 

𝑅 𝑖 

(
𝒙 𝐼 

)
𝑎 𝑖 
(
𝒙 𝐼 

)
+ 

𝑚 ∑
𝑗=I 

𝑝 𝑗 
(
𝒙 I 
)
𝑏 𝑗 
(
𝒙 I 
)
, = 

{
𝐑 

𝑇 
(
𝒙 𝐼 

)
, 𝒑 𝑇 

(
𝒙 I 
)}{ 

𝑎 

𝑏 

} 

, 

(1) 
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a b c

First degree influence-cell  
Second degree influence-cell

Sij

Fig. 1. (a) Influence-cells representation; (b) Voronoï cells; (c) generated quadrilateral. 

where R i ( x I ) is the RBF, n is the number of nodes in the influence- 

cell of x I . The coefficients a i ( x I ) and b j ( x I ) are the non-constant coef- 

ficients of R i ( x I ) and p j ( x I ), respectively. The monomials of the polyno- 

mial basis are defined by p j ( x I ) and m is the basis monomial number. The 

variable r ij is the distance between the relevant node x i = { x i , y i } 
T and 

the neighbor node x j = { x j , y j } 
T , 𝑟 𝑖𝑗 = 

√ 

( 𝑥 𝑗 − 𝑥 𝑖 ) 2 + ( 𝑦 𝑗 − 𝑦 𝑖 ) 2 . Several 

known RBFs are well studied and developed in [48,49] . This work uses 

the Multiquadric (MQ) function 𝑅 ( 𝑟 𝑖𝑗 ) = ( 𝑟 2 
𝑖𝑗 
+ 𝑐 2 ) 𝑝 , proposed initially by 

Hardy [50] , where c and p are two parameters that need to be optimized, 

since they affect the performance of the RBFs. 

Notice that each integration weight should possesses its own c pa- 

rameter. Thus, for integration point I with an integration weight 𝜔̂ 𝐼 , the 

shape parameter c is obtained with: 𝑐 𝐼 ≅ 𝛾𝜔̂ 𝐼 . This spatial dependence of 

the RBF’s shape parameter is demonstrated in research works available 

in the literature [10,12] . Previous works on the NNRPIM found that pa- 

rameter 𝛾 should be close to zero, 𝛾≅0, and p should be close to one, p ≅1 

[10] . However, these values cannot be 𝛾 = 0 and p = 1. The use of the ex- 

act integer value for p leads to a singular moment matrix and assuming 

a null 𝛾 leads to singular moment matrix [10] . Furthermore, previous 

works [10,12] have shown that values of p very close to the unit allow 

to obtain the most accurate solutions (regardless the analyzed problem). 

Thus, the authors have decided to use p = 1.0001 or p = 0.9999. Addi- 

tionally, as shown in [10] , the parameter 𝛾 should be very close to zero, 

because as its value grows, the RPI shape functions lose its interpola- 

tion properties. Thus, the authors have selected 𝛾 = 0.0001 in order to 

“maximize ” the RPI interpolation properties. Nevertheless, optimizing 

the RBF shape parameters is a never-ending research topic [10] . 

Commonly, the polynomial basis has to possess a low degree to guar- 

antee that the interpolation matrix of RBF is invertible [10] . Thus, in this 

work the constant polynomial basis is used. Nevertheless, it is possible to 

include in the formulation several distinct (complete) polynomial basis, 

Absence of Basis 𝐱 T = { 𝑥, 𝑦 } ; 𝒑 𝑇 ( 𝒙 ) = { 0 } ; 𝑚 = 0 , (2) 

Constant Basis 𝒙 T = { 𝑥, 𝑦 } ; 𝒑 𝑇 ( 𝒙 ) = { 1 } ; 𝑚 = 1 , (3) 

Linear Basis 𝒙 T = { 𝑥, 𝑦 } ; 𝒑 𝑻 ( 𝒙 ) = { 1 , 𝑥, 𝑦 } ; 𝑚 = 3 , (4) 

Quadratic Basis 𝒙 T = { 𝑥, 𝑦 } ; 𝒑 𝑻 ( 𝒙 ) = 

{
1 , 𝑥, 𝑦, 𝑥 2 , 𝑥𝑦, 𝑦 2 

}
; 𝑚 = 6 , (5) 

The polynomial basis has to satisfy an extra requirement in order to 

obtain an unique solution [51] : 

𝑛 ∑
𝑖 =I 

𝑝 𝑗 
(
𝒙 𝑖 
)
𝑎 𝑖 
(
𝒙 𝑖 
)
= 0 , 𝑗 = 1 , 2 , … , 𝑚. (6) 

in which n represents the number of nodes inside the influence-cell of 

interest point x I . Therefore, applying Eqs. (1) and (6) to every node 

forming the influence-cell of interest point x I , a new equation system 

can be written, { 

𝒖 𝑠 

𝟎 

} 

= 

[ 

𝑹 𝑄 𝑷 𝑚 

𝑷 𝑇 
𝑚 
𝟎 

] { 

𝒂 

𝒃 

} 

= 𝑮 

{ 

𝒂 

𝒃 

} 

(7) 

where u s are the variable values at the nodes inside the influence-cell 

of interest point x I . It must be noted that the geometric matrix G is a 

symmetric matrix because the distance is directional independent, i.e., 

R ( r ij ) = R ( r ji ). By solving Eq. (7) and substituting its solution into Eq. (1) , 

the shape function 𝝓( x I ) is obtained, {
𝝋 

(
𝒙 𝐼 

)
, 𝝍 

(
𝒙 𝐼 

)}
= 

{
𝑹 

𝑇 
(
𝒙 𝐼 

)
, 𝒑 𝑇 

(
𝒙 𝐼 

)}
𝑮 

−1 = 

{{
𝜑 1 

(
𝒙 1 

)
, 𝜑 2 

(
𝒙 2 

)
, … , 

𝜑 𝑛 

(
𝒙 1 

)}
, 
{
𝜓 1 

(
𝒙 1 

)
, 𝜓 2 

(
𝒙 2 

)
, … , 𝜓 𝑚 

(
𝒙 1 

)}}
(8) 

Notice, that the shape function 𝝓( x I ) is only formed by the first n 

terms, { 𝜙1 ( x 1 ), 𝜙2 ( x 2 ),…, 𝜙n ( x 1 )}. The last m terms { 𝜓 1 ( x 1 ), 𝜓 2 ( x 2 ),…, 

𝜓 m 

( x 1 )} are not included in the shape function vector because they are 

a by-product of Eq. (8) , with no relevant physical meaning associated 

[10] . 

Previous works on the RPI [48,49] ensured that the unity partition is 

verified and, moreover, that these shape functions possess the delta Kro- 

necker property, which simplify the imposition of the essential and nat- 

ural boundary conditions. The NNRPIM formulation is described with 

detail in [10] . 

In this work, both the NNRPIM formulation considering first degree 

influence cells (NNRPIMv1) and second degree influence cells (NNR- 

PIMv2) were used to solve the numerical examples. 

3. Free vibration analysis and matrix formulation 

Consider a solid with a domain Ω bounded by Г. In the absence damp- 

ing effects, the dynamic equilibrium based on the principle of virtual 

work can be written as 

∫Ω 𝛿𝛆 T 𝝈𝑑Ω + ∫Ω 𝛿𝒖 T 𝜌𝒖̈ 𝑑Ω + ∫Ω 𝛿𝒖 T 𝒃 𝑑Ω − ∫Γ𝑡 𝛿𝒖 
T 𝒕 𝑑Γ = 0 (9) 

where u and 𝒖̈ are, respectively, the displacement and the acceleration 

field, b is the body force vector and t the traction on the natural bound- 

ary, Г𝑡 . The strain vector 𝜺 is defined as 

𝜺 = 𝑳 𝒖 (10) 

where L is the differential operator defined in Eq. (11) : 
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Fig. 2. Scheme of one SCC of the inner ear with the cupula. 

𝑳 = 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝜕 

𝜕𝑥 
0 0 𝜕 

𝜕𝑦 
0 𝜕 

𝜕𝑧 

0 𝜕 

𝜕𝑦 
0 𝜕 

𝜕𝑥 

𝜕 

𝜕𝑧 
0 

0 0 𝜕 

𝜕𝑧 
0 𝜕 

𝜕𝑦 

𝜕 

𝜕𝑥 

⎤ ⎥ ⎥ ⎥ ⎦ 
𝑇 

(11) 

The linear constitutive relations can be given by 

𝝈 = 𝒄 𝜺 (12) 

Being 𝝈 the stress tensor and c the material matrix defined as 

𝒄 = 𝜇1 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 𝜈 𝜈 0 0 0 
𝜈 1 𝜈 0 0 0 
𝜈 𝜈 1 0 0 0 
0 0 0 𝜇2 0 0 
0 0 0 0 𝜇2 0 
0 0 0 0 0 𝜇2 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(13) 

being 𝜇1 = E /(1 − 𝜈2 ) and 𝜇2 = E /(2 + 2 𝜈), where E is the Young’s mod- 

ulus and 𝜈 is the Poisson’s ratio. In general, the first term of Eq. (9) can 

be presented as 

∫Ω 𝛿𝛆 T 𝝈𝑑Ω = 𝛿𝒖 

[ 
∫Ω 𝑩 

𝑇 𝒄 𝑩 𝑑Ω
] 
𝒖 (14) 

The second term of Eq. (9) can be developed as 

∫Ω 𝛿𝐮 T 𝜌 𝒖̈ 𝑑Ω = ∫Ω 𝛿( 𝑯 𝒖 ) 𝑇 𝝆( 𝑯 ̈𝒖 ) 𝑑Ω = 𝛿𝒖 

[ 
∫Ω𝑯 

𝑇 𝝆𝑯 𝑑Ω
] 
𝒖̈ (15) 

where B is the deformation matrix, defined in Eq. (16) , H is the inter- 

polation function diagonal matrix, H I = 𝝓( x I ) I , and 𝝆 is defined with 

𝝆= 𝜌I , being 𝜌 the mass density of the material and I the identity 

matrix with size 3 × 3. Thus, the stiffness matrix can be defined as: 

𝑲 = ∫Ω 𝑩 

𝑇 𝒄 𝑩 𝑑Ω, and the mass matrix as: 𝑴 = ∫Ω𝑯 

𝑇 𝝆𝑯 𝑑Ω. 

𝑩 

(
𝒙 𝐼 

)𝑇 
𝑖 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝜕 𝜑 𝑖 

𝜕𝑥 
0 0 

𝜕 𝜑 𝑖 

𝜕𝑦 
0 

𝜕 𝜑 𝑖 

𝜕𝑧 

0 
𝜕 𝜑 𝑖 

𝜕𝑦 
0 

𝜕 𝜑 𝑖 

𝜕𝑥 

𝜕 𝜑 𝑖 

𝜕𝑧 
0 

0 0 
𝜕 𝜑 𝑖 

𝜕𝑧 
0 

𝜕 𝜑 𝑖 

𝜕𝑦 

𝜕 𝜑 𝑖 

𝜕𝑥 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(16) 

The force vectors are defined by developing the third and fourth 

terms of Eq. (9) , 

𝑭 𝑡 = ∫Г𝑡 𝑯 

𝑇 𝒕 𝑑 Г𝑡 𝑎𝑛𝑑 𝑭 𝑏 = ∫Ω𝑯 

𝑇 𝒃 𝑑Ω (17) 

Both vectors can be combined, F = F t + F b . The essential boundary 

conditions can be directly imposed in the mass matrix and in the stiff- 

ness matrix as in the FEM, since the NNRPIM interpolation function 

possesses the delta Kronecker property. Thus, the equilibrium equations 

governing the linear dynamic response, neglecting the damping effect, 

can be represented in the matrix form 

𝑴 𝑼̈ + 𝑲 𝑼 = 𝑭 (18) 

where U = u and 𝑼̈ = 𝒖̈ . The fundamental mathematical method used to 

solve Eq. (18) is the separation of variables. This approach [52] assumes 

that the solution can be expressed in the following form: 

𝑼 ( 𝑡 ) = Ф 𝑿 ( 𝑡 ) (19) 

where Ф is an n 3 D × n 3 D square matrix containing m spatial vectors in- 

dependent of the time variable t, X ( t ) is a time dependent vector, and 

n 3 D = 3 N for the 3D formulation, being N the total number of nodes in 

the problem domain. The components of X ( t ) are called generalized dis- 

placements. From Eq. (19) it follows that 𝑈̈ ( 𝒕 ) = Ф ̈𝑿 ( 𝒕 ) . It is required 

that the space functions satisfy the following stiffness and mass orthog- 

onality conditions: 

Ф 

𝑻 𝑲 Ф = Ω and Ф 

𝑻 𝑴 Ф = 𝑰 (20) 

where Ω is the diagonal matrix which contains the free vibration fre- 

quencies, 𝜔 

2 
𝑖 
. After substituting Eq. (20) and its derivatives in order to 

time into Eq. (18) and pre-multiplying it by Ф 

𝑻 , the equilibrium equa- 

tion that corresponds to the modal generalized displacement is obtained. 

The solution can be presented in the form, 

𝒖 ( 𝑡 ) = 𝜙sin 
(
𝜔 

(
𝑡 − 𝑡 0 

))
(21) 

being 𝝓 the vector of order n 3 D , t the time variable, the constant initial 

time is defined by t 0 and 𝜔 is the vibration frequency vector. Substituting 

the former solution into Eq. (22) the generalized eigenproblem is obtain, 

from which 𝝓 and 𝜔 must be determined, 

𝑲 𝜙 = 𝜔 

2 𝑴 𝜙 (22) 

Eq. (22) yields the n 3 D eigensolutions: 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑲 𝜙1 = 𝜔 1 
2 𝑴 𝜙1 

𝑲 𝜙2 = 𝜔 2 
2 𝑴 𝜙2 

⋮ 

𝑲 𝜙𝑛 3 𝐷 
= 𝜔 𝑛 3 𝐷 

2 𝑴 𝜙𝑛 3 𝐷 

(23) 

Fig. 3. Two dimensional model; (a) Cupula; (b) Cupula with endolymph; (c) Cupula with endolymph and otoconia placed in different location. 
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Fig. 4. Three-dimensional finite element model of the cupula, front, lateral and three-dimensional views. 
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Fig. 5. Computational cost for the three methodologies used. 

The vector 𝜙i is called the i th mode shape vector and 𝜔 i is the corre- 

sponding vibration frequency. Defining a matrix 𝚽 whose columns are 

the eigenvectors 𝜙i , 

𝚽 = 

[
𝜙1 𝜙2 … 𝜙𝑛 3 𝐷 

]
(24) 

and a diagonal matrix W which stores the eigenvalues 𝜔 i , 

𝐖 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝜔 1 

2 0 ⋯ 0 
0 𝜔 2 

2 ⋯ 0 
⋮ ⋮ ⋱ ⋮ 
0 0 ⋯ 𝜔 𝑛 3 𝐷 

2 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(25) 

the n 3 D solutions can be written as: 

𝑲 𝚽 = 𝐌 𝚽 𝐖 (26) 

It is required that the space functions satisfy the following stiffness 

and mass orthogonality conditions: 

𝚽𝑇 𝑲 𝚽 = 𝐖 (27) 

and 

𝚽𝑇 𝑴 𝚽 = 𝑰 (28) 

After substituting Eq. (19) and its time derivatives into Eq. (18) and 

pre-multiplying by 𝚽T , the equilibrium equation that corresponds to the 

modal generalized displacement is obtained. 

4. Numerical application 

There are two sensory parts of the vestibular system of the inner ear 

that promote the body balance: the sacs, where particles called otoconia 

originally located, and the three semicircular canals (SCC), containing 

the cupula ( Fig. 2 ). 

The cupula is a gelatinous hydromechanical sensor that transforms 

mechanical movement into electrical signals, which are then sent to the 

brain. The movement of the cupula is induced by the endolymph during 

the body motion [53,54] . There are many diseases affecting the vestibu- 

lar system, most of them lead to vertigo, which is the most common 

symptom in older people. Since vertigo episodes lead to a false sense of 

rotation (which can cause nausea and vomiting), it is important to avoid 

that kind of symptoms, which in a severe case could cause a fall [55] . 

Benign paroxysmal positional vertigo (BPPV) is one of the most com- 

mon diseases causing vertigo [56] . One particular case of BPPV is cupu- 

lolithiasis, which occurs when the otoconia get lost in the SCC and at- 

tach to the cupula, inducing a false sensation of movement and leading 

to vertigo [57] . In this work, the modal generalized displacements of the 

cupula will be calculated in order to obtain the natural frequency of the 

cupula and understand the mechanical implications of the attachment 

otoconia to the cupula. 

In order to obtain numerically the free vibration modes of the cupula, 

2D and 3D discrete models were built using the standard dimensions and 

the approximated mechanical properties found in the literature [58] . 
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Fig. 6. Ten first modes of the two-dimensional cupula with FEM, four meshes. (For interpretation of the references to colour in the text, the reader is referred to the web version of this 

article.) 

4.1. Numerical model 

First it is presented the 2D model of the cupula ( Fig. 3 a) that was 

constructed using quadratic elements. Four different meshes were built: 

M1 (153 nodes, 131 elements), M2 (417 nodes, 382 elements), M3 (897 

nodes, 846 elements) and M4 (3320 nodes, 3221 elements). The en- 

dolymph around the cupula was also simulated ( Fig. 3 b). Regarding the 

cupulolithiasis, three different simulations were performed with otoco- 

nia placed in different location around the cupula ( Fig. 3 c). 

Moreover, a 3D model of the cupula was built using tetrahedral ele- 

ments ( Fig. 4 ). Thus, four different meshes were built: M1 (350 nodes, 

1461 elements), M2 (692 nodes, 3156 elements), M3 (1151 nodes, 5453 

elements) and M4 (2128 nodes, 10,704 elements). 

Regarding the material properties for the cupula, it was 

considered the following: E = 5 × 10 − 6 MPa, 𝜐 = 0 . 49 and 

𝜌= 1 ×10 − 9 ton/mm 

3 for all simulations. In the case of the oto- 

conia material (calcium carbonate crystals), the properties used are 

E = 6.6 MPa, 𝜐 = 0 . 45 and 𝜌= 2.4 ×10 − 9 ton/mm 

3 [58] . To simulate 

the endolymph, the properties considered are 𝜌= 1 ×10 − 9 ton/mm 

3 

𝜐 = 0 . 49 and E = 1.27 × 10 − 7 MPa. Notice that the endolymph is 

an incompressible highly viscous fluid, with a dynamic viscosity, 

𝜇= 0.000852 Pa s. It was verified (in this work) that the natural 

frequency of the cupula is around 50 Hz, which means that its period 

of vibration is T = 1/50 s. Thus, knowing that 𝜏̇ = 𝜇𝛾̇ and 𝜏 = G 𝛾, it 

is possible to instantaneously approximate the distortion modulus G 

with G ≅𝜇/ T ≅0.0426 Pa (valid for the first vibration mode). Thus, since 

G = E /(2 + 2 𝜈), then E = 0.127 Pa. 

Regarding the essential boundary conditions, in the 2D and 3D mod- 

els of the cupula without surrounding fluid, the nodes at the cupula’s 

base are constrained in all its degrees of freedom (no movement is al- 

lowed on those nodes). For the 2D models considering the surrounding 

endolymph, all the boundaries of the model are fully constrained. 

5. Results 

In this section, the results obtained with the simulations performed 

with FEM and NNRPIM formulations are presented. The results include 

the vibration modes and frequencies of the cupula (2D and 3D), the 

cupula surrounded by the endolymph and also with attached otoconias. 

The 2D analysis was performed considering the plane strain assump- 

tions and the 3D analysis was performed assuming the formulation pre- 

sented in Section 3 . In this work, the 2D finite element analyses are 

performed using the standard 2D four nodes quadrilateral element, and 

the 3D finite element studies are executed considering the standard 3D 

four nodes constant strain tetrahedron elements [6] . 

5.1. Computational cost 

In order to understand the computational efficiency of the NNRPIM, 

the 2D four nodal meshes previously mentioned (M1, M2, M3 and M4) 

were analyzed using the FEM and the first degree influence cell NNRPIM 

formulation (NNRPIMv1) and the second degree influence-cell NNRPIM 

formulation (NNRPIMv2). It is important to mention that the authors 

have programed their own NNRPIM and FEM codes, and that all theirs 

routines were written and analyzed within Matlab© environment. Addi- 

tionally, the computer used to analyze the problem is an Intel i7 Quad- 

Core processor, running at 3.6 GHz with 16 GB RAM. 

The computational cost of each analysis is plotted in Fig. 5 . It is 

possible to visualize that although the three numerical methods show 

a similar computational cost, the FEM shows slightly lower computa- 

tional cost when compared with the NNRPIMv1 and NNRPIMv2. This 

result was expected, since the FEM obtains the shape-functions using 

less nodes than the NNRPIM formulation leading, as a consequence, to 

narrower banded stiffness matrices. Notice that constructing shape func- 

tions with a lower number of nodes reduces the computational cost (but 

decreases also the accuracy of the approximation) and inverting nar- 

rower banded stiffness matrices is less time consuming that inverting 

sparse or broader banded stiffness matrices [10] . 

5.2. Cupula (2D) 

The first ten vibration modes of the cupula obtained with the FEM 

using the four different meshes (M1 to M4) are presented in Fig. 6 . In or- 

der to visualize automatically both the shape of the vibration mode and 
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Fig. 7. Ten first modes of the two-dimensional cupula with NNRPIM, four meshes. 

the vibration frequency, the results of the figures correspond to a ficti- 

tious displacement field obtained with: U i = 𝜔 i 𝜑 i . With this visualization 

technique, it is possible to visualize in each figure the corresponding 

magnitude of the vibration frequency by observing the maximum value 

of the displacement, designated by the red color; since the blue color 

corresponds to the lower displacement values. 

Concerning the NNRPIMv1 and NNRPIMv2 analyses, the results of 

the four different meshes of the cupula are shown in Fig. 7 . Additionally, 

in Table 1 the magnitudes of the first ten vibration frequencies of the 

analyzed model of the cupula are presented. 

In the first and fifth lines of the Fig. 7 , corresponding to mesh M1, it 

is possible to observe that the solution obtained has not yet stabilized. 

This effect is confirmed analyzing the vibration frequencies of the same 

modes in Table 1 , which are the lower values compared with the natural 

frequencies of the other meshes. This result is expected, since at this 

stage (for mesh M1) the solution has not yet converged. All the other 

meshes (M2, M3 and M4) and modes (1–10) in the NNRPIM analyses 

show similar values compared with the equivalent results obtained with 

FEM ( Fig. 6 ). 

As Table 1 shows, the FEM and NNRPIMv1 formulations possess a 

monotonic convergence path. Notice that the values obtained for the 

less discretized meshes are monotonically evolving to the ones obtained 

with the most discretized meshes. In opposition, the NNRPIMv2 for- 

mulation appears to achieve the convergence very fast. Although the 

NNRPIMv2 results obtained with M1 are always very different from the 

ones obtain with M4, it is possible to visualize that the solution obtained 

with M2 has already converged, being the results obtained with M2, M3 

and M4 almost identical. Furthermore, the final converged results are 

all very close, regardless the used numerical formulation. The results in- 

dicate that first vibration frequency is between 51.71 Hz and 53.43 Hz. 
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Resembling Mode 1 Resembling Mode 2

FEM

59.47 Hz                75.62 Hz 103.76 Hz 104.77 Hz              121.32 Hz

NNRPIMv1

61.43 Hz 78.23 Hz 111.99 Hz             120.23 Hz            122.24 Hz

NNRPIMv2

60.15 Hz                 63.50 Hz              75.81 Hz 115.86 Hz               120.03 Hz

Fig. 8. Two first modes of the two-dimensional cupula with endolymph using FEM and NNRPIMv1 and NNRPIMv2. 

Table 1 

Natural frequency of ten first modes of the two-dimensional cupula with FEM and NNRPIM (four meshes). 

Natural Frequency (Hz) 

FEM NNRPIMv1 NNRPIMv2 

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 

1 57.17 54.70 54.84 53.13 53.43 54.31 53.00 52.60 23.39 51.48 51.87 51.71 

2 127.08 121.32 119.84 117.88 122.89 119.47 117.19 117.68 103.06 117.36 116.21 117.16 

3 135.86 131.62 131.39 128.90 129.69 130.33 128.50 128.05 111.82 126.35 126.80 126.68 

4 239.55 226.17 222.55 217.48 223.77 219.22 216.13 215.97 187.38 213.64 213.61 214.17 

5 277.15 259.80 254.56 248.80 262.23 254.47 249.71 247.98 234.57 249.12 247.89 247.21 

6 283.32 265.13 259.03 253.34 265.31 257.03 254.11 251.25 252.32 251.08 251.63 249.60 

7 369.27 345.26 337.34 328.04 336.22 331.44 329.11 325.23 301.68 321.02 323.82 322.11 

8 382.59 350.33 340.87 331.17 343.12 336.73 331.48 327.71 316.98 330.41 329.03 324.83 

9 404.24 362.51 350.08 340.07 373.02 346.85 340.13 337.80 344.12 338.08 337.23 336.35 

10 428.11 386.60 372.53 360.07 390.57 371.30 360.63 357.57 367.15 361.29 357.06 356.37 

Additionally, notice that the following vibration frequencies are much 

higher, which allow to identify with enough precision the magnitude of 

frequency of the first mode. 

All the natural frequencies obtained are contained in the human 

hearing range, since it goes from 20 Hz to 20,000 Hz. In general, the 

natural frequencies obtained with NNRPIM are lower than the ones ob- 

tained with FEM. 

5.3. Cupula with endolymph (2D) 

In this subsection, the endolymph is included in the model ( Fig. 3 b). 

The objective is to understand the influence of the endolymph in the 

natural frequency (the first vibration frequency) of the cupula. 

Since in the previous section it was verified that the mesh density of 

mesh M2 is sufficient to obtain accurate results, in this section a similar 

mesh density is used to discretize the problem domain. 

Thus, in order to observe the effect of the endolymph around the 

cupula, the first five vibration modes of the cupula are presented in the 

Fig. 8 , for the FEM and both NNRPIM analyses, respectively. 

Notice that the first two vibration modes obtained with the FEM 

resemble the first vibration mode obtained in Section 5.2 . Furthermore, 

the third, fourth and fifth vibration modes obtained now are very similar 

with the second vibration mode obtained in the analysis of the cupula 

without surrounding fluid ( Section 5.2 ). 

The same effect is verified for the NNRPIM, the first three vibration 

modes of the present analysis resemble the first vibration mode obtained 

in Section 5.2 and the fourth and fifth vibration modes of the present 

analysis are very similar with the second vibration mode obtained in 

Section 5.2 . 

Regarding the first vibration modes (resembling the natural fre- 

quency of the isolated cupula), in this study the following vibration 

frequencies were obtained: 59 Hz and 75 Hz in FEM, 61 Hz and 78 Hz 
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Fig. 9. Two first modes of the two-dimensional cupula with endolymph and otoconia using FEM and NNRPIM. 

for the NNRPIMv1 analysis and 60 Hz, 63 Hz, and 76 Hz in NNRPIMv2 

analysis. Notice that these values are very close with the ones observed 

in Section 5.2 , indicating that the fluid has a reduced influence in the 

magnitude of the cupula’s natural frequency. 

5.4. Cupula with endolymph and otoconia (2D) 

Next, the 2D problem shown in Fig. 3 c is analyzed with both FEM 

and NNRPIM formulations. Here, groups of otoconia are attached to 

the cupula in different locations (the three locations shown in Fig. 3 c), 

simulating a possible cause for vertigo. With this study it is intended 

to understand if the inclusion of the otoconia changes significantly the 

natural frequency of the cupula. In this study, in addition to the otoco- 

nia, the surrounding fluid is also considered. Again, the density of the 

discretization used in this study follows the mesh density of mesh M2 

presented in Section 4 . 

The relevant vibration modes obtained, and the corresponding vi- 

bration frequencies are presented in Fig. 9 . 

Fig. 9 shows that the FEM and the NNRPIM produce always very 

similar vibration modes. It is possible to visualize that vibration modes 

resembling the first vibration mode found in Section 5.2 present a vi- 

bration frequency very close with the one found in Section 5.2 . 

When one otoconia (or one otoconia group) is considered, the fre- 

quencies of the cupula resembling its natural frequency (observed in 

Section 5.2 ) are 63.90 Hz in the FEM, 61.42 Hz for the NNRPIMv1, and 

60.32 Hz or 68.63 Hz in the NNRPIMv2. 
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Fig. 10. Five first modes of the three-dimensional cupula with FEM, NNRPIMv1 and NNRPIMv2. 

Alternatively, if two otoconia (or two otoconia groups) are consid- 

ered, the frequencies of the cupula resembling its natural frequency 

( Section 5.2 ) are 63.07 Hz or 63.97 Hz for the FEM. 61.72 Hz for the 

NNRPIMv1, and 61.45 Hz or 63.86 Hz for the NNRPIMv2. 

If three otoconia (or three otoconia groups) are attached to the 

cupula, the frequencies resembling its natural frequency, documented 

in Section 5.2 , are 63.14 Hz or 63.85 Hz for the FEM, 61.80 Hz for the 

NNRPIMv1, and 61.80 Hz or 64.38 Hz for the NNRPIMv2. 

Regarding the apparent second vibration mode obtained with the 

models with one and two otoconia, from both methods (FEM and NNR- 

PIM), is it possible to observe a small fictitious displacement of the 

cupula to the right side comparing with the model with three otoconia, 

resembling more with the model without otoconia. This trend behavior 

could be justified with the placement of the otoconia in the right side of 

the cupula in the two first examples. This result is more evident in the 

NNRPIM. 

On the other hand, the first vibration frequencies obtained from 

the models with the different number of otoconia are very close be- 

tween each other. This may indicate that the size of the otoconia par- 

ticles is not enough to change significantly the vibration frequency of 

the cupula. Although the FEM and NNRPIM formulations show simi- 

lar results, the natural frequencies obtained with FEM continue to be 

higher than the ones obtained with the NNRPIMv1 and NNRPIMv2 

formulations. 

5.5. Cupula (3D) 

Expectably, the analysis of the free vibration modes of the 3D cupula 

will allow to understand in a more realistic way the behavior of the 

cupula. The free vibration analysis of the 3D cupula is performed with 

the four meshes shown in Section 4 . Nevertheless, in the Fig. 10 are pre- 

sented only the results obtained with mesh M4 for the first five vibration 

modes of the cupula with FEM and NNRPIM. The first and fourth modes 

are represented with the lateral view, the other ones with the front view. 

Since the second mode of vibration in the three-dimensional analysis 

shows a fictitious displacement aligned with the tangent direction of 

the canal, this second mode of vibration should be the most suitable to 

induce the necessary movement to restore the otoconia back to the right 

place. 

Table 2 shows the first vibration frequencies obtained for the cupula 

using the distinct four meshes and the FEM and NNRPIM analysis. It is 

possible to visualize that both the NNRPIM formulations present high 

convergence rates. Notice that the solution obtained for meshes M2, M3 

and M4 is almost identical. On the other hand, the FEM presents a lower 

convergence rate. This was expected, since the literature shows that the 

tetrahedral element possesses lower convergence rates [6] . 

As already mentioned, the 3D second vibration mode corresponds 

to the vibration configuration aligned with the tangent direction of the 

canal. Thus, the 3D second vibration mode corresponds to the 2D first 
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Fig. 11. Distribution maps 𝜉( 𝒙 ) 𝑎 ∕ 𝑏 
𝑖 

and corresponding average differences 𝜉
𝑎 ∕ 𝑏 
𝑖 

. 

Table 2 

Natural frequency of five first modes of the three-dimensional cupula with FEM and NNRPIM (four meshes). 

Natural Frequency (Hz) 

FEM NNRPIMv1 NNRPIMv2 

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 

1 52.33 47.04 46.23 43.97 43.69 41.07 40.91 39.94 35.48 40.17 40.02 39.21 

2 62.75 58.62 57.40 56.14 56.29 54.11 54.06 53.09 41.97 52.18 52.77 51.91 

3 108.99 99.83 95.30 90.77 87.86 85.07 84.29 82.98 86.30 84.04 83.32 82.11 

4 144.55 133.47 130.67 124.58 122.64 117.02 116.52 114.49 111.42 114.78 114.55 112.07 

5 146.43 136.42 134.26 130.85 129.19 126.18 126.37 124.99 118.75 124.55 125.09 123.41 
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vibration mode. From Table 2 it is possible to visualize that for the 

densest mesh (M4), the FEM predicts a second vibration frequency of 

56.14 Hz, the NNRPIMv1 predicts 53.09 Hz and the NNRPIMv2 indi- 

cates 51.91 Hz. These values are in accordance with the one obtained in 

the 2D analysis. 

5.6. Cross-comparison 

In order to compare the several formulations, a cross-comparison was 

performed. Thus, for the 2D analysis, the first three vibration modes ob- 

tained in Section 5.2 with the FEM and NNRPIM formulations, using 

mesh M4, were compared with each other. The cross-comparison was 

performed with the following described procedure. In the end of each 

analysis the first three vibration frequencies and corresponding vibra- 

tion modes are obtained. The vibration mode of a solid represents the 

typical final configuration charactering how the solid vibrates when ex- 

cited with the corresponding vibration frequency. Therefore, as already 

mentioned in Section 3 , the vector representing the i th vibration mode 

is defined as 𝜑 i . Notice that 𝜑 i is the [2 N × 1] array defining the typical 

final configuration characterizing how the solid vibrates when excited 

with the i th vibration frequency (recall that N is the total number of 

nodes discretizing the problem domain). In order to perform a cross- 

comparison, the following expression is applied to each node discretiz- 

ing the problem domain. For instances, for node x j : 

𝜉
(
𝒙 𝑗 
)𝑎 ∕ 𝑏 
𝑖 

= 

𝜙
(
𝒙 𝑗 
)𝑎 
𝑖 
− 𝜙

(
𝒙 𝑗 
)𝑏 
𝑖 

𝜙
(
𝒙 𝑗 
)𝑏 
𝑖 

(29) 

being a a numerical formulation (for example, FEM) and b another nu- 

merical formulation (for example, NNRPIMv1). In the end, a new dis- 

tribution map representing the relative differences between technique a 

and b , will be obtained, 𝜉( 𝒙 ) 𝑎 ∕ 𝑏 
𝑖 

, for each i th vibration frequency. 

In the end, after obtaining all the three 𝜉( 𝒙 ) 𝑎 ∕ 𝑏 1 , 𝜉( 𝒙 ) 𝑎 ∕ 𝑏 2 and 𝜉( 𝒙 ) 𝑎 ∕ 𝑏 3 
distributing maps (corresponding to the first, second and third vibra- 

tion frequencies, respectively), a global average difference between 

techniques a and b was calculated: 

𝜉
𝑎 ∕ 𝑏 
𝑖 

= 

1 
𝑁 

𝑁 ∑
𝑗=1 

𝜉
(
𝒙 𝑗 
)𝑎 ∕ 𝑏 
𝑖 

(30) 

The same technique was applied to the 3D analysis. Thus, once again, 

the first three vibration modes obtained in Section 5.5 with the FEM 

and NNRPIM formulations, using mesh M4, were used to perform the 

comparisons. 

Following this technique, several difference distribution maps 𝜉( 𝒙 ) 𝑎 ∕ 𝑏 
𝑖 

were obtained and several average differences 𝜉
𝑎 ∕ 𝑏 
𝑖 

were calculated. 

Fig. 11 shows the difference distribution maps , 𝜉( 𝒙 ) 𝑎 ∕ 𝑏 
𝑖 

, and corre- 

sponding average differences, 𝜉
𝑎 ∕ 𝑏 
𝑖 

, obtained for the three first vibration 

modes of the 2D and 3D cupula with the FEM and NNRPIM analysis 

using the mesh M4. In Fig. 11 only differences below 10% are shown. 

This will allow to understand clearly the extent of domain in which the 

differences are higher than 10%. 

In the 2D analysis, it is possible to visualize that the FEM and the 

NNRPIMv1 formulation allow to obtain close results. Alternatively, the 

NNRPIMv2 solution presents higher differences when compared with 

the FEM solutions. However, the NNRPIMv1 and the NNRPIMv2 pro- 

duce very close results. 

Notice that the NNRPIMv1 formulation only uses first degree influ- 

ence cells. Therefore, commonly, each influence cell is formed with 3–9 

nodes. On the other hand, the NNRPIMv2 uses the second degree in- 

fluence cells, which means that each influence cell could be formed 

with 9–27 nodes (commonly). Regarding the FEM, the quadratic ele- 

ment used in the 2D analysis possesses 4 nodes in each element. As it 

is possible to understand, the quadratic element formulation is much 

closer to the NNRPIMv1 formulation than to the NNRPIMv2 formula- 

tion. Thus, it is natural that the difference between the FEM solution 

and the NNRPIMv1 solution is smaller than the difference between the 

FEM and the NNRPIMv2. These results do not conclude about the best 

numerical formulation, they only permit to understand the magnitude 

of their differences. 

The same observations can be found for the 3D analysis. Neverthe- 

less, in the 3D analysis the difference between the formulations are much 

higher. For the 3D analyses, only the comparison between the NNR- 

PIMv2 and NNRPIMv1 allows to obtain global average differences be- 

low 10%. Once again, the differences between the NNRPIMv1 and the 

FEM solutions are smaller than the ones found between the NNRPIMv2 

and the FEM results. 

Another relevant observation from Fig. 11 is the fact that differences 

for the first vibration mode are higher in almost cases comparing with 

the differences found for the second and third vibration modes. 

6. Conclusion 

In this work, the FEM and the NNRPIM were used to analyze numer- 

ically the dynamic response of the cupula. The results show that both 

techniques are capable to achieve similar results. However, most im- 

portantly, this work opens a new research branch in the computational 

analysis of the vestibular system. 

As Table 1 shows, for the 2D analysis, the FEM and NNRPIMv1 for- 

mulations possess a solid convergence. The values obtained for the less 

discretized mesh (M1) are monotonically evolving to the ones obtained 

with the most discretized mesh (M4). On the other hand, the NNRPIMv2 

formulation appears to achieve the convergence extremely soon. Notice 

that for M2 the solution has already converged, being the results ob- 

tained with M2, M3 and M4 almost identical. 

Concerning the results of the 3D analysis, both the NNRPIM formu- 

lations present high convergence rates ( Table 2 ). The solution obtained 

for meshes M2, M3 and M4 is almost identical. In opposition, the FEM 

appears to present lower convergence rates. This can be explained with 

the kind of element used in the finite element analysis —tetrahedral el- 

ement, which possesses a low convergence rate. 

Furthermore, the final converged results are all very close, regard- 

less the used numerical formulation. The 2D results indicate that first 

vibration frequency is between 51.71 Hz and 53.43 Hz for the 2D anal- 

ysis. Additionally, the 3D results for the same vibration mode (which in 

3D is the second vibration mode) indicate a similar vibration frequency 

between 51.91 Hz and 56.14 Hz. Furthermore, if only the NNRPIMv2 

results are considered, the resemblance is much closer: 51.71 Hz (2D) 

and 51.91 Hz (3D). 

The results from Tables 1 and 2 show that the target vibration fre- 

quency of the cupula (corresponding the first vibration mode in 2D and 

the second vibration mode in 3D) present a very distinct value (around 

52–56 Hz) when compared with the vibration frequencies of other vi- 

bration modes. This is an advantage, it means that it will be possible to 

easily identify the target vibration frequency of the cupula. 

The dynamic response of a structure strongly depends on its geo- 

metric shape, material properties and environment, as confirmed by the 

results obtained in this work. The response of the cupula when it is 

surrounded by endolymph (and also with attached otoconia particles) 

present different natural frequencies, as Fig. 8 shows. Nevertheless, the 

first vibration frequencies are between 59.47 Hz and 61.43 Hz. These 

magnitudes are close to the ones obtained without the surrounding en- 

dolymph (51.71 Hz and 53.43 Hz). 

This result is relevant. It means that a simulation in which the sur- 

rounding endolymph is disregard will allow to obtain a satisfactory ap- 

proximated solution. 

Another very important conclusion concerns the inclusion (or not) 

of otoconia in the model. As Fig. 9 shows, it was found that the inclu- 

sion of otoconia do not modify (significantly) the vibration frequency of 

the cupula. Notice that the first vibration frequency of the cupula with 

surrounding endolymph and without otoconia is between 59.47 Hz and 

61.43 Hz ( Fig. 8 ) and the same first vibration frequency of the cupula 
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with surrounding endolymph and with otoconia is between 60.32 Hz 

and 63.90 Hz ( Fig. 9 -1 otoconia); 61.45 Hz and 63.07 Hz ( Fig. 9 -2 oto- 

conia); and 61.80 Hz and 63.85 Hz ( Fig. 9 -3 otoconia). 

In this work, the distinct formulations are directly compared by 

means of a computational cost study and a cross-comparison study. It 

was found that the FEM formulation presents a slightly lower compu- 

tational cost when compared with the NNRPIM formulations. However, 

notice that the NNRPIMv2 formulation converges very fast. Actually, 

in 2D, for mesh M2, the NNRPIMv2 formulation is already capable to 

produce results very close with its final converged solution (M4). On 

the other hand, the FEM presents a more slow convergence rate. Thus, 

comparing the computational cost of a 2D analysis using NNRPIMv2 

and mesh M2 and the computational cost of a 2D analysis using FEM 

and mesh M4, it is visible that FEM will present a higher computational 

cost. 

Regarding the cross-comparison study, it was possible to observe that 

both NNRPIM formulations allow to obtain very similar results, regard- 

less the spatial dimension of the analysis (2D or 3D). Additionally, it 

was found that the FEM solution is closer with the NNRPIMv1 solutions 

rather the NNRPIMv2 solution. This observation (more evident in the 2D 

analysis) can be explained with the number of nodes used to construct 

the shape functions. 

Since one particular case of BPPV is cupulolithiasis, (the attachment 

of otoconia to the cupula), this research work will allow in the future 

some new therapeutic solutions based on the induction of the cupula 

vibration by means of a sound source. With this work, it was possible 

to understand that the natural frequency of the cupula ranges between 

51 Hz or 61 Hz and all the other vibration frequencies possess very dis- 

tinct values. Since theoretically, the resonance phenomena will force the 

cupula to vibrate, the induced vibration will allow to detach the otoco- 

nia particles from the cupula, reducing the vertigo symptoms. This could 

be achieve with non-invasive way, such as listening to music with a pre- 

dominant set of bass sounds. 
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2.6. Highlights of Contribution V 

 

This contribution focused on evaluating the free vibration analysis of the cupula extending for the 

first time one of the most popular meshless methods (RPIM) to the biomechanical analysis of a 

vestibular disorder.  

Therefore, the main contents of this publication include: 

I. Brief description of meshless methods with a detailed formulation for the RPIM; 

II. Free vibration analysis of the cupula using RPIM including FEM comparison, with two 

models (2D and 3D), and also using four different meshes discretization for each model; 

III. Acquisition of the natural frequencies of the cupula using FEM and RPIM methodologies: 

The three first vibration modes and natural frequencies of the three dimensional cupula using the 

FEM and RPIM, using the constant polynomial basis formulation, are presented in Figure 1.10 

using the mesh M2, with 3156 tetrahedral elements.  

FEM RPIM 

1 2 3 1 2 3 

 

47.04 Hz 

 

58.62 Hz 

 

99.83 Hz 

 

40.58 Hz 

 

52.37 Hz 

 

84.14 Hz 

Figure 1.10 – Three first modes and natural frequencies of the three-dimensional cupula with FEM and RPIM using the 

mesh M2; front and side view. 

 

The three dimensional dynamic response analysis of the cupula allows for a more realistically 

understanding of the overall behavior of the cupula. Moreover, the results shown that the natural 

frequencies of the second vibration mode in the 3D model are very close to the natural frequencies 

obtained with the first vibration mode in the 2D model with both formulations. 

 

IV. A convergence study with both methodologies was performed: 

The results of the 3D convergence study of the isolated cupula are shown in Figure 1.11. These 

values are obtained for the natural frequency 2 for FEM and the three RPIM formulations using 
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distinct polynomial basis: the constant polynomial basis is the ‘RPIM 1’, the linear polynomial basis 

is the ‘RPIM 2’, and the quadratic polynomial basis is the ‘RPIM 3’. 

 

Figure 1.11 – Convergence FEM and RPIM different polynomial basis for 3D model - natural frequency 2. 

 

The results show that solutions from both methodologies are close and the results converged, as 

expected, as the mesh density increased. A similar behavior occurs for the two-dimensional cupula 

model and, also, the natural frequency 1.  

 

V. Simulate the cupula environment in the vestibular system with the endolymph in order to 

evaluate their influence in the natural frequencies values of cupula; 

VI. Consider the influence of the otoconia attached to the cupula, in order to obtain the natural 

frequencies of the pathological scenario of cupulolithiasis: 

The cupulolithiasis cases considered in the present manuscript were three different sizes of otoconia 

particles, placed above and laterally to the cupula, as shown in Figure 1.12. 

   

   

Figure 1.12 – Two dimensional cupula model surrounded with endolymph and otoconia. 

 
The results presented for the cupulolithiasis cases show, mainly in the study with the medium and 

large otoconia and with the RPIM formulation, that higher potential displacements occur in the 

side of the cupula side where the otoconia are placed. This indicates that RPIM is capable of 
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accurately capture the vibration mode of the structure and that the size of the otoconia influences 

the vibration mode of the cupula. 

VII. Closing remarks about the effectiveness of the used numerical methodologies and obtained 

natural frequency values. 

 

The complete document can be found in the next sub-chapter.  
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Abstract 

 

The inner ear is one of the most important sensorial structures in the human body, allowing to 

maintain the balance by sensing movements and accelerations. One of the micro-structures 

responsible for such subtle task is the cupula, a gelatinous structure surrounded by endolymph and 

localized inside the semicircular canals. 

The main focus of this work is to understand how the cupula vibrates. Thus, a free vibration analysis 

of this micro-structure is performed using an advanced discretization meshless technique. Hence, 

two-dimensional and three-dimensional geometric models of the cupula were built and then 

discretized. The models were analysed using the Radial Point Interpolation Method (RPIM) - a 

popular and accurate meshless method – and all the obtained results are compared with the Finite 

Element Method (FEM) solutions. Several scenarios were studied, aiming to analyze the environment 

of the cupula in healthy and pathologic states. 

The results show that the RPIM is a reliable, efficient and robust numerical technique, delivering 

results very close with the ones obtained with the FEM and showing a higher convergence rate. 

Regardless the dimensional analysis (2D or 3D) or the discretization technique used (RPIM or FEM), 

it was found the natural frequency of the cupula is always between 51.75 Hz and 56.14 Hz. These 

narrow that it is possible to induce the resonance of the cupula by a sound source, which will allow 

to solve cupulolithiasis – a disorder causing severe dizziness. 
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1.Introduction 

 

Vestibular system is a microscopic part of the inner ear in charge of the balance function 

of the human body. Commonly, dizziness is a symptom revealing its failure. The most common 

disorder associated with this kind of symptoms is benign paroxysmal positional vertigo (BPPV), 

which occurs mainly in elders. It affects about 1.6% of the population each year [1]. Additionally, 

a study reported a cost of 2.000 US dollars per individual in BPPV inappropriate diagnostic 

procedures and ineffective therapies [2]. Cupulolithiasis is a particular case of BPPV that will be 

analysed in the present work. 

Mathematical models have been developed through the years to study parts of the 

vestibular system [3]–[7].  

It is possible to study the biomechanics of such biological structure with discrete numerical 

methods. Nowadays, the most popular numerical method is the finite element method (FEM)[8], 

mainly its linear formulation, which assume the triangle and quadrilaterals shapes for 2D analyses 

and tetrahedron and hexahedron shapes for 3D.  

Presently, using the computed axial tomography (CAT) imaging technique, it is possible to 

construct realistic and accurate discrete geometrical models.  

However, there are some disadvantages in the finite element technique. Being a mesh dependent 

numerical method, the FEM requires well balanced meshes. For instances, it is computational 

challenging to efficiently discretize highly irregular domains (as the biological structures) with 

uniform and high quality meshes. This process represents a high computational cost. 

Additionally, the mesh refinement requirement in large deformation problems is also 

computationally heavy.  

In the last decades, the computational mechanics community has been developing other discrete 

numerical techniques, such as meshless methods [9]. These methodologies are competitive and 

alternative advanced discretization techniques capable to obtain efficiently the solution of several 

fundamental problems [10]. 

The discretization step is the main difference between meshless methods and FEM: meshless 

methods discretize the domain using just an unstructured cloud of nodes [9]–[13] and FEM 

discretizes the problem domain with a rigid element mesh. 

In meshless’ seminal works, surface fitting or the solution of the partial differential equations 

(PDE) were the main focus [10]. Today, these techniques are used to solve a wide-range of linear 

and non-linear numerical problems [10] [12]. 

Meshless methods comprise several similar advanced discretization techniques [12]. Thus, several 

categorizations are possible for meshless methods [10] [12]. One of the main labels for meshless 
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methods is the categorization into approximating meshless methods or interpolating meshless 

methods [12]. 

Approximating meshless methods construct their shape functions using approximation 

functions. Their main disadvantage is the lack of the delta Kronecker property, which hinders 

the imposition of essential and natural boundary conditions [12]. Interpolating meshless methods 

are capable to construct shape functions possessing the Kronecker delta property (as the ones 

produced with the FEM). In this case, it is possible to impose the essential and natural boundary 

conditions using the same FEM techniques [12]. In the literature it is possible to find research 

works comparing both meshless approaches [9]–[13]. Generally, approximating meshless 

methods are capable to deliver smoother and accurate results. However, interpolating meshless 

methods allow to easily impose essential and natural boundary conditions, easing the 

computational effort. 

In biomechanics meshless methods are particularly attractive. The complex geometry of the bio-

structure can be obtained directly from a medical imaging (CAT scan or the MRI images), 

associating the nodal position with the voxel position. 

The most attractive feature of meshless methods it their capability to discretize the problem 

domain using directly the pixels (or voxels) spatial information from CAT scans or MRI images 

[12], [14]–[18]. Furthermore, using the grey scale of medical images, meshless methods are 

capable to identify several biological structures and then attribute to each node the corresponding 

material properties [12].  

The literature shows that meshless methods have clear advantages over other numerical 

techniques and are a reliable option in biomechanics computational applications [19], mainly 

using medical imaging techniques (CAT scan and MRI) [20], [21]. Moreover, the remeshing 

efficiency is one of the advantages of meshless methods over FEM, which could be relevant in 

the structural analysis biological models [22], [23], as the recent Smoothed Particle 

Hydrodynamics (SPH) applications have demonstrated [24], [25]. 

In this work, for the first time, the 2D/3D structural analysis of the cupula of the vestibular 

system is performed. Thus, the free-vibration analysis of the cupula is performed assuming both 

the FEM and an interpolating meshless method – the Radial Point Interpolation Method  (RPIM) 

[12], [26].  

This manuscript is organized as follows. In section 2 the RPIM formulation is described with 

detail. Then, in section 3, the system of equations and the corresponding matrix formulation are 

presented. In section 4, the 2D/3D numerical models of the cupula are presented and in section 

5 the obtained results are shown and discussed. The manuscript ends with section 6 in which the 

main conclusions and final remarks are presented. 
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2. Meshless Method 

 

The meshless method applied in this work is the RPIM [12], [27], [28]. The RPIM is an 

interpolator meshless method which enforces nodal connectivity using the influence-domain 

concept. To solve the integro-differential equations governing the physical phenomenon, the 

RPIM uses a background cloud of integration points, constructed using integration cells and the 

Gauss-Legendre quadrature rule. 

 

 2.1. Nodal Connectivity and Numerical Integration  

Several meshless methods use the concept of influence domain due to its simplicity. As FEM, 

meshless methods are discrete numerical methods. However, instead of discretizing the problem 

domain in elements and nodes, meshless methods discretize the problem domain using just 

nodes. The nodal connectivity in FEM is predefined by a finite element mesh defined in the pre-

processing phase. Thus, the nodes of each element interact directly with each other and the nodes 

belonging to the element boundary interact with the nodes of neighbour finite elements. 

In meshless methods, after the nodal discretization, the nodal connectivity is established with the 

“influence-domain” concept. The nodal connectivity in meshless methods is not a pre-

established information (as in FEM) and it is assured by the overlap of the influence-domains 

[12]. Since this technique is very simple to implement, it has been used to support the 

development of several meshless techniques [9], [12], [27], [29]–[31]. Generally, the influence-

domains are obtained by searching radially enough nodes inside a defined area (2D problems) or 

a defined volume (3D problems). Nevertheless, it has been observed that the size or shape 

variation of these influence-domains affects the performance of the meshless method along the 

problem domain [12]. Thus, regardless the used meshless technique, the literature proposes that 

each 2D influence-domain should possess approximately n = [9, 16] nodes [9], [12], [27], [29]–

[31]. In Figure 1(a) is presented an example of an influence domain of an interest point 𝒙𝐼 (which 

could be a node or an integration point). In this work, for the 2D analysis each influence domain 

contains 16 nodes. For all 3D analyses, each influence domain contains 27 nodes.  

In order to solve the integro-differential equations governing the discrete numerical methods - 

the Galerkin weak formulation - a background integration mesh is required. This numerical 

integration process represents a significant percentage of the total computational cost of the 

analysis.  

In the FEM, the construction of the integration mesh is simplified by the existence of the element 

mesh, since each element is geometrically coincident with each integration cell. Additionally, the 
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FEM shape functions are known polynomial functions. Therefore, accurate well-known relations 

[32], [33] can be used to predefine the number of integration points per each integration cell. 

 In the case of meshless methods, the accurate definition of the background integration mesh is 

a more challenging task. In meshless methods it is not possible to accurately define a priori the 

background integration mesh because the shape function degree is generally unknown. In this 

work it is used the numerical integration scheme suggested in previous RPIM works [27], [28]. 

Generally, in the RPIM formulation, as Figure 1 (b) represents,  the entire domain is divided in 

a regular grid creating quadrilateral integration cells and then, respecting the Gauss-Legendre 

quadrature rule [12] (Figure 1), each cell is filled with integration points. 

In this work, since every analysis is performed using the FEM and the RPIM, for the 2D analyses, 

the background integration cell lattice is assumed coincident with the FEM mesh. Then, inside 

each quadrilateral 3x3 Gauss points are inserted, as Figure 1 (b) shows. For the 3D analyses, 

since the 3D FEM meshes are built with tetrahedrons, inside each tetrahedron is considered one 

integration point, whose spatial position is coincident with the volume centre of the tetrahedron 

and whose integration weight is coincident with the tetrahedron volume. The literature shows 

that both these integration schemes allow to integrate accurately the Galerkin weak form [12]. 

 

  

(a) (b) 

Figure 1. (a) Influence domain generic representation. (b) background integration cells and corresponding Gauss-
Legendre integration scheme. 

 

2.2. Radial Point Interpolators  

Radial Point Interpolators (RPI) are used to obtain the RPIM shape functions, combining radial 

and polynomial basis functions. Thus, consider a function space 𝑇 defined in the domain Ω. The 
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finite dimensional space 𝑇ℎ ⊂ 𝑇  discretises the domain Ω and it is defined by: 𝑇ℎ ≔

〈𝑟(𝒙 − 𝒙𝑖): 𝑖 ∈ ℕ ∧ 𝑖 ≤ 𝑁〉 + 𝑝𝑚(𝒙), where 𝑟: ℝ𝑑 ⟼ ℝ is at least a 𝐶−1 function and 

𝑝𝑚: ℝ𝑑 ⟼ ℝ  is defined in the space of polynomials of degree less than 𝑚. In this section only 

simplified two-dimensional domains Ω ⊂ ℝ2 are shown. Therefore, it is consider an 

interpolation function 𝑢ℎ(𝒙) defined in an influence-domain Ω𝐼 ⊂ Ω  of an interest point 𝒙𝐼 ∈

ℝ2 and discretized by a set of nodes: 𝑿𝐼 = { 𝒙1, 𝒙2, … , 𝒙𝑛} ⋀  𝒙𝑖 ∈ ℝ2, being 𝑛 the number of 

nodes inside the influence-domain of 𝒙𝐼 . Notice that the domain Ω ⊂ ℝ2 is discretised by a 

nodal set defined by 𝑿 = { 𝒙1, 𝒙2, … , 𝒙𝑁} ⋀  𝒙𝑖 ∈ ℝ2. The density of 𝑿  is identified by ℎ, 

ℎ = 𝑚𝑖𝑛‖𝒙𝑗 − 𝒙𝑖‖, ∀{𝑖, 𝑗} ∈ ℕ: {𝑖, 𝑗} ≤ 𝑁 ∧ 𝑖 ≠ 𝑗 (1) 

Being ‖ . ‖  the Euclidean norm. 

The RPI constructs an interpolation function 𝑢ℎ(𝒙) ∈ 𝑇 capable to pass through all nodes 

within the influence-domain, meaning that since the nodal function value is assumed to be 𝑢𝑖  at 

the node 𝒙𝑖 , 𝑢𝑖 = 𝑢(𝒙𝑖), consequently, 𝑢ℎ(𝒙𝑖) =  𝑢(𝒙𝑖). Using a radial basis function 𝑟(𝒙) and 

a polynomial basis function 𝑝(𝒙), the interpolation function 𝑢ℎ(𝒙) ∈ 𝑇  can be defined at the 

interest point 𝒙𝐼 ∈ ℝ𝑑 (not necessarily coincident with any 𝒙𝑖 ∈ 𝑿) by,  

𝑢ℎ(𝒙𝐼) = ∑𝑟𝑖(𝒙𝐼)𝑎𝑖 + ∑𝑝𝑗(𝒙𝐼)𝑏𝑗 = 𝒓(𝒙𝐼)
𝑇𝒂 + 𝒑(𝒙𝐼)

𝑇

𝑚

𝑗=1

𝒃 = 𝑢(𝒙𝑰)

𝑛

𝑖=1

 
(2) 

where 𝑎𝑖 and  𝑏𝑗 are the non-constant coefficient of 𝑟𝑖(𝒙𝐼) and 𝑝𝑗(𝒙𝐼) respectively. The integer 

𝑛 is the number of nodes inside the influence-domain of the interest point 𝒙𝐼. The vectors are 

defined as,  

𝒂T = {𝑎1, 𝑎2, … , 𝑎𝑛} (3) 

𝒃T = {𝑏1, 𝑏2, … , 𝑏𝑚} (4) 

𝒓(𝒙)T = {𝑟1(𝒙), 𝑟2(𝒙),… , 𝑟𝑛(𝒙)} (5) 

𝒑(𝒙)T = {𝑝1(𝒙), 𝑝2(𝒙),… , 𝑝𝑚(𝒙)} (6) 

Being 𝒙𝑖 = {𝑥𝑖 , 𝑦𝑖}. This work uses the Multiquadrics Radial Basis Function (MQ-RBF) [12], 

[27], [28], which can be defined as 𝒓𝑖(𝒙𝐼) = 𝒔(𝑑𝑖𝐼) = (𝑑𝑖𝐼
2 + 𝑐2)𝑝 , where 𝑑𝑖𝐼 is the distance 

between the interest point 𝒙𝐼 = {𝑥𝐼 , 𝑦𝐼}  and the node 𝒙𝑖 = {𝑥𝑖 , 𝑦𝑖}, being 𝑑𝑖𝐼 =

√(𝑥i − 𝑥𝐼)
2 + (𝑦i − 𝑦𝐼)

2. The 𝑐 and 𝑝 variables are the MQ-RBF shape parameters, which are 

fixed values determined in previous works [27], [28]. The variation of these parameters can affect 

the performance of the MQ-RBFs. In the work of Wang and Liu [27] [28] it was shown that the 

optimal values are 𝑐 = 1.42 and 𝑝 = 1.03, which are the values used in this work. The original 
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RPI formulation requires a complete polynomial basis function. For the two-dimensional space 

the following constant, linear and quadratic polynomial basis can be defined, respectively, as, 

𝒑(𝒙𝑖)
𝑻 = {1}, 𝑚 = 1 

𝒑(𝒙𝑖)
𝑻 = {1, 𝑥𝑖 , 𝑦𝑖},  𝑚 = 3 

𝒑(𝒙𝑖)
𝑻 = {1, 𝑥𝑖 , 𝑦𝑖 , 𝑥𝑖

2, 𝑥𝑖𝑦𝑖, 𝑦𝑖
2},  𝑚 = 6 

(7) 

Nevertheless, it was shown in previous RPI research works [12], [14], [34] that using a constant 

basis increases the RPI formulation efficiency.  

The coefficients  𝑎𝑖 and  𝑏𝑗  in equation (1) are determined by enforcing the interpolation to pass 

through all 𝑛 nodes within the influence-domain [12]. The interpolation at the 𝑘𝑡ℎ node is 

defined by,  

𝑢ℎ(𝑥𝑘 , 𝑦𝑘) = ∑𝑟𝑖(𝑥𝑘 , 𝑦𝑘)𝑎𝑖

𝑛

𝑖=1

+ ∑𝑝𝑗(𝑥𝑘 , 𝑦𝑘)𝑏𝑗 = 𝑢𝑘 ,    𝑘 = 1,2,… , 𝑛

𝑚

𝑖=1

 (8) 

The inclusion of the following polynomial term is an extra-requirement that guarantees unique 

approximation [12], [34],  

∑𝑝𝑗(𝑥𝑖 , 𝑦𝑖)𝑎𝑖 = 0,    𝑗 = 1,2,… ,𝑚

𝑛

𝑖=1

 (9) 

The computation of the shape functions is written in a matrix form as 

[
𝑹      𝑷
𝑷𝑇    𝒁  

] {
𝒂
𝒃
} = {

𝒖
𝒛
}  ⇔ 𝑮{

𝒂
𝒃
} = {

𝒖
𝒛
} (10) 

where 𝑮 is the complete moment matrix, 𝒁  is a null matrix defined by 𝑍𝑖𝑗 = 0, ∀{{𝑖, 𝑗} ∈

ℕ: {𝑖, 𝑗} ≤ 𝑚} and the null vector 𝒛 can be represented by 𝑧𝑖 = 0, ∀{𝑖 ∈ ℕ: 𝑖 ≤ 𝑚}. The vector 

for function values is defined as 𝑢𝑖 = 𝑢(𝒙𝑖), ∀{𝑖 ∈ ℕ: 𝑖 ≤ 𝑛}. The radial moment matrix 𝑹 is 

represented as,  

𝑹
[𝑛𝑥𝑛]

= [

𝑟1(𝑥1, 𝑦1) 𝑟1(𝑥2, 𝑦2) ⋯ 𝑟1(𝑥𝑛, 𝑦𝑛)
𝑟2(𝑥1, 𝑦1) 𝑟2(𝑥2, 𝑦2) ⋯ 𝑟2(𝑥𝑛, 𝑦𝑛)

⋮ ⋮ ⋱ ⋮
𝑟𝑛(𝑥1, 𝑦1) 𝑟𝑛(𝑥2, 𝑦2) ⋯ 𝑟𝑛(𝑥𝑛, 𝑦𝑛)

] (11) 

and polynomial moment matrix 𝑷 is defined as,  

𝑷
[𝑛𝑥𝑚]

= [

𝑝1(𝑥1, 𝑦1) 𝑝2(𝑥1, 𝑦1) ⋯ 𝑝𝑚(𝑥1, 𝑦1)
𝑝1(𝑥2, 𝑦2) 𝑝2(𝑥2, 𝑦2) ⋯ 𝑝𝑚(𝑥2, 𝑦2)

⋮ ⋮ ⋱ ⋮
𝑝1(𝑥𝑛, 𝑦𝑛) 𝑝2(𝑥𝑛, 𝑦𝑛) ⋯ 𝑝𝑚(𝑥𝑛, 𝑦𝑛)

] (12) 

Since the distance is directionless, 𝑟𝑖(𝑥𝑗 , 𝑦𝑗) = 𝑟𝑗(𝑥𝑖, 𝑦𝑖), i.e. 𝑅𝑖𝑗 = 𝑅𝑗𝑖, matrix 𝑹  is symmetric. 

A single solution is obtained if the inverse of the radial moment matrix 𝑹  exists,  
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{
𝒂
𝒃
} = 𝑮−𝟏 {

𝒖
𝒛
} (13) 

The solvability of this system is usually guaranteed by the requirements 𝑟𝑎𝑛𝑘(𝑝) = 𝑚 ≤ 𝑛  [35]. 

In this work, the influence-domain will always possess enough nodes to largely satisfy the 

previously mentioned condition. It is possible to obtain the interpolation with 

𝑢ℎ(𝒙𝐼) = {𝒓(𝒙𝐼)
𝑇; 𝒑(𝒙𝐼)

𝑇}𝑮−𝟏 {
𝒖
𝒛
} = {Φ(𝒙𝐼)

𝑇; Ψ(𝒙𝐼)
𝑇} {

𝒖
𝒛
} (14) 

where the interpolation function vector Φ(𝒙𝐼) is defined by 

Φ(𝒙𝐼) = {𝜑1(𝒙𝐼)       𝜑2(𝒙𝐼)     …      𝜑𝑛(𝒙𝐼)} (15) 

and the residual vector Ψ(𝒙𝐼), with no relevant physical meaning, is expressed as follows,  

Ψ(𝒙𝐼) = {Ψ1(𝒙𝐼)       Ψ2(𝒙𝐼)     …      Ψ𝑚(𝒙𝐼)} (16) 

Since  

𝑢ℎ(𝒙𝐼) = Φ(𝒙𝐼)
𝑇𝒖 = {Φ(𝒙𝐼)

𝑇; Ψ(𝒙𝐼)
𝑇} {

𝒖
𝒛
} , (17) 

it is possible to obtain the partial derivatives of the interpolated field variable, with respect to a 

generic variable 𝜉, which can be 𝜉 = 𝑥  or 𝜉 = 𝑦, with the following expression,  

𝜕𝑢ℎ(𝒙𝐼)

𝜕𝜉
=

𝜕Φ(𝒙𝐼)
𝑇

𝜕𝜉
𝒖 = {

𝜕Φ(𝒙𝐼)
𝑇

𝜕𝜉
;
𝜕Ψ(𝒙𝐼)

𝑇

𝜕𝜉
} {

𝒖
𝒛
} (18) 

From equation (14) it is possible to write  

{
𝜕Φ(𝒙𝐼)

𝑇

𝜕𝜉
;
𝜕Ψ(𝒙𝐼)

𝑇

𝜕𝜉
} =

𝜕({𝒓(𝒙𝐼)
𝑇; 𝒑(𝒙𝐼)

𝑇}𝑮−𝟏)

𝜕𝜉
 (19) 

Since the moment matrix 𝑮  does not depend on the variable 𝒙𝐼, equation (19) can be rewritten 

as,  

{
𝜕Φ(𝒙𝐼)

𝑇

𝜕𝜉
;
𝜕Ψ(𝒙𝐼)

𝑇

𝜕𝜉
} = {

𝜕𝒓(𝒙𝐼)
𝑇

𝜕𝜉
;
𝜕𝒑(𝒙𝐼)

𝑇

𝜕𝜉
}𝑮−𝟏 (20) 

The partial derivatives of the MQ-RBF vector 𝒓(𝒙𝐼), with respect to a generic variable 𝜉, can be 

obtained for each component 𝜕𝑟𝑖(𝒙𝐼)/𝜕𝜉 with the expression,  

𝜕𝑟𝑖(𝒙𝐼)

𝜕𝜉
= 2𝑝(𝜉𝑖 − 𝜉𝐼)(𝑑𝑖𝐼

2 + 𝑐2)𝑝−1 (21) 

The RPI test functions Φ(𝒙𝐼) depend exclusively on the distribution of scattered nodes [12]. 

Previous works [12], [14], [27] show that RPI test functions possess the Kronecker delta property, 

facilitating the imposition of essential and natural boundary conditions. Since the obtained RPI 

test functions have a local compact support, it is possible to construct and assemble well-
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conditioned and banded stiffness matrix. If a polynomial basis is included, the RPI test functions 

have reproducing properties and possess the partition of unity property [12]. 

 

3. Free vibration analysis and matrix formulation 

 

Considering the solid with a domain Ω ⊂ ℝ3 bounded by Г. The dynamic equilibrium based on 

the principle of virtual work can be written as the following, in absence of damping effects 

∫ 𝛿𝛆𝛵𝝈
Ω

𝑑Ω + ∫ 𝛿𝒖𝛵𝜌 𝒖̈
Ω

𝑑Ω∫ 𝛿𝒖𝛵𝒃
Ω

𝑑Ω − ∫ 𝛿𝒖𝛵𝒕
Г𝑡

𝑑Г = 0 (22) 

being 𝒖 and 𝒖̈, respectively, the displacement and the acceleration field, 𝒃 is the body force 

vector and 𝒕 the traction on the natural boundary Г𝑡. The strain vector 𝛆 is defined as  

𝜺 = 𝑳 𝒖 (23) 

where L is the differential operator in the following matrix, Eq. (24):  

𝑳 =

[
 
 
 
 
 
 
𝜕

𝜕𝑥
   0    0   

𝜕

𝜕𝑦
     0   

𝜕

𝜕𝑧
 

0  
𝜕

𝜕𝑦
   0   

𝜕

𝜕𝑥
    

𝜕

𝜕𝑧
   0

0    0   
𝜕

𝜕𝑧
  0   

𝜕

 𝜕𝑦
   

𝜕

𝜕𝑥 ]
 
 
 
 
 
 
𝑇

 (24) 

The linear constitutive relations can be given by  

𝝈 = 𝒄𝜺 (25) 

Where 𝝈 is the stress tensor and 𝒄 is the material matrix defined as  

𝒄 = 𝜇1

[
 
 
 
 
 
1   ν   ν    0    0    0
ν   1   ν    0    0    0
ν   ν   1    0    0    0
0   0   0    μ2   0    0
0   0   0    0    μ2   0
0   0   0    0    0    μ2]

 
 
 
 
 

 (26) 

where  𝜇1 = 𝐸/(1 − 𝜈2) and 𝜇2 = 𝐸/(2 + 2𝜈), where 𝐸 is the Young’s modulus and 𝜈 is the 

Poisson’s ratio. In conclusion, the first term of Eq. (22) can be presented as  

∫ 𝛿𝛆𝛵𝝈
Ω

𝑑Ω = 𝛿𝒖 [∫ 𝑩𝑇𝒄𝑩𝑑Ω
Ω

] 𝒖 (27) 
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The second term of Eq. (22) can be written as 

∫ 𝛿𝐮𝛵𝜌 𝒖̈
Ω

𝑑Ω = ∫ 𝛿(𝑯𝒖)𝑇𝝆(𝑯𝒖̈)𝑑Ω
Ω

= 𝛿𝒖 [∫ 𝑯𝑇𝝆𝑯𝑑Ω
Ω

] 𝒖̈ (28) 

where 𝑩 is the deformation matrix, defined in Eq. (29), 𝑯 is the interpolation function (defined 

for each integration point 𝒙𝐼 as: 𝑯𝐼= 𝝋(𝒙𝐼)𝑰) and 𝝆 =𝜌𝑰, being 𝜌 the mass density of the 

material and 𝑰 the identity matrix with size 3 × 3. Thus, the stiffness matrix can be defined as: 

𝑲 = ∫ 𝑩𝑇𝒄𝑩𝑑Ω
Ω

, and the mass matrix as: 𝑴 = ∫ 𝑯𝑇𝝆𝑯𝑑Ω
Ω

.  

𝑩(𝒙𝐼)𝑖
𝑇 =

[
 
 
 
 
 
 

𝜕𝜑𝑖

𝜕𝑥
    0      0    

𝜕𝜑𝑖

𝜕𝑦
    0     

𝜕𝜑𝑖

𝜕𝑧

0     
𝜕𝜑𝑖

𝜕𝑦
    0    

𝜕𝜑𝑖

𝜕𝑥
    

𝜕𝜑𝑖

𝜕𝑧
    0

0        0     
𝜕𝜑𝑖

𝜕𝑧
    0      

𝜕𝜑𝑖

𝜕𝑦
    

𝜕𝜑𝑖

𝜕𝑥
 ]

 
 
 
 
 
 

 (29) 

The force vectors are defined by the third and fourth terms of Eq. (22),  

𝑭𝑡 = ∫ 𝑯𝑇

Г𝑡

𝒕𝑑Г𝑡         𝑎𝑛𝑑            𝑭𝑏 = ∫ 𝑯𝑇

Ω

𝒃𝑑Ω (30) 

Both vectors can be summed in order to obtain, 𝑭 = 𝑭𝑡 + 𝑭𝑏. Since the RPIM interpolation 

function possesses the delta Kronecker property, the essential boundary conditions can be 

directly imposed in the mass matrix and in the stiffness matrix using the same impositions 

techniques used in FEM. In this work, the direct imposition method is applied [12]. 

Thus, the equilibrium equations governing the linear dynamic response, neglecting the damping 

effect, can be represented in the following matrix form, Eq. (31)  

𝑴𝑼̈ + 𝑲𝑼 = 𝑭 (31) 

where 𝑼 = 𝒖 and 𝑼̈ = 𝒖̈. The fundamental mathematical method used to solve Eq. (31) is the 

separation of variables. This approach [36] assumes that the solution can be expressed in the 

following form:  

𝑼(𝑡) = Ф𝑿(𝑡) (32) 

where Ф is an 𝑛3𝐷 × 𝑛3𝐷 square matrix containing 𝑚 spatial vectors independent of the time 

variable 𝑡, 𝑿(𝑡) is a time dependent vector, and 𝑛3𝐷 = 3𝑁 for the 3D formulation, being 𝑁 the 

total number of nodes in the problem domain. The components of 𝑿(𝑡) are called generalized 

displacements. From Eq. (32) it follows that 𝑈̈(𝒕) = Ф𝑿̈(𝒕)  . It is required that the space 

functions satisfy the following stiffness and mass orthogonality conditions:  
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Ф𝑻𝑲Ф = 𝑾    and     Ф𝑻𝑴Ф = 𝑰 (33) 

where 𝑾 is the diagonal matrix which contains the free vibration frequencies, represented as 𝜔𝑖
2 

. After substituting Eq. (33) and its derivatives in order to time into Eq. (31) and pre-multiplying 

it by Ф𝑻 , the equilibrium equation that corresponds to the modal generalized displacement is 

obtained. The solution can be presented in the following form,  

𝒖(𝑡) = 𝝓sin (𝜔(𝑡 − 𝑡0)) (34) 

where 𝛟 is the vector or order 𝑛3𝐷, 𝑡 is the time variable, 𝑡0 is the constant initial time and 𝜔 is 

the vibration frequency vector. Substituting the former solution into Eq. (35) the generalized 

eigenproblem is obtain, from which 𝛟 and 𝜔 must be determined,  

𝑲𝝓 = 𝜔2𝑴𝝓 (35) 

Eq. (35) yields the 𝑛3𝐷 eigensolutions:  

[
 
 
 

𝑲𝝓1 = 𝜔1
2𝑴𝝓𝟏      

𝑲𝝓2 = 𝜔2
2𝑴𝝓𝟐      

⋮
𝑲𝝓𝑛3𝐷

= 𝜔𝑛3𝐷

2𝑴𝝓𝑛3𝐷
      

 (36) 

The vector 𝝓𝑖 is called the ith mode shape vector and 𝜔𝑖 is the corresponding vibration 

frequency. Defining a matrix 𝚽 whose columns are the eigenvectors 𝝓𝑖  ,  

𝚽 =  [𝝓1 𝝓2  … 𝝓𝑛3𝐷
] (37) 

and a diagonal matrix 𝑾 which stores the eigenvalues 𝜔𝑖 ,  

𝑾 =

[
 
 
 

𝜔1
2    0   ⋯    0

0    𝜔2
2    ⋯    0 

⋮         ⋮      ⋱      ⋮
0       0    ⋯   𝜔𝑛3𝐷

2
]
 
 
 

 (38) 

the 𝑛3𝐷 solutions can be written as:  

𝑲𝚽 = 𝑴 𝚽 𝑾 (39) 

After substituting Eq. (32) and its time derivatives into Eq. (31) and pre-multiplying by 𝚽𝑇, the 

equilibrium equation that corresponds to the modal generalized displacement is obtained. 

 

4. Numerical applications 

 

The vestibular system has two main components to promote the body balance: the semicircular 

canals (SCC) containing a sensory section called cupula (Figure 2) and two adjacent places with 
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otoconia crystals. This system is fulfilled with endolymph which through cupula interaction turn 

the mechanical movement into electric signals sent to the brain stating the body movement [37], 

[38]. 

 

Figure 2- Vestibular system and cupula scheme. 

 

Benign paroxysmal positional vertigo (BPPV) is one of the most common diseases affecting 

the vestibular system that causes vertigo [39]. Since vertigo episodes leads to sense of rotation 

that can cause nausea and vomiting, it is important to avoid that kind of symptoms which in a 

severe case could lead to falls, mainly in elders [40]. 

The main treatment implemented nowadays to avoid these symptoms is a set of some 

empirical maneuvers, knows as repositioning maneuvers, which shows high recurrence rates. 

Cupulolithiasis is a particular case of BPPV, that happens when the otoconia get lost in the 

SCC and attached to the cupula inducing a false sensation of movement leading to vertigo [41]. 

The attachment of otoconia to the cupula will change material and mass distribution on the 

cupula and its shape and stiffness. The variation of these variables will have a relevant effect in 

the natural frequency of the cupula. One of the objectives of the present work is to understand 

the main structural differences between a healthy cupula and one with attached otoconia. The 

output of this study will allow to comprehend in what extent the attached otoconia amplify the 

cupula movement, inducing the previously mentioned false sensation of movement. Thus, in this 

work, for each studied model, the modal generalized displacements of the cupula will be obtained 

and analysed.  

In order to numerically obtain the free vibration modes of the cupula, several 2D and 3D 

discrete models of the cupula (with and without attached otoconia) were built and analysed using 

the real dimensions and properties found in the literature [42]. 
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4.1. Numerical model 

First, four 2D discrete models of the cupula, without surrounding media, were constructed. 

The models respect the discretization pattern shown in Figure 3a). Since in this first stage the 

objective is to study (and compare) the convergence of the numerical approach, four 2D discrete 

models possess increasing number of nodes and quadrilateral elements. Thus, the first mesh (M1) 

possesses 153 nodes and 131 elements, the second mesh (M2) possesses 417 nodes and 382 

elements, the third mesh (M3) possesses 897 nodes and 846 elements and the fourth mesh (M4) 

possesses 3320 nodes and 3221 elements. 

In a second phase, the endolymph around the cupula was also included in the discretization, 

Figure 3b). To analyse its effect one mesh comprising 1417 nodes and 1350 elements was 

constructed using quadrilateral elements. 

Regarding the cupulolithiasis simulation, six different models were constructed. The models 

consider the existent of otoconia particles (large individual otoconia or clusters) randomly placed 

above (Figure 3c)) and laterally (Figure 3d)) to the cupula. The objective of this last 2D study is 

to analyse the structural influence of the location and size of the otoconia in the complete system. 

In the end, a final 3D study was performed. Thus, four 3D discrete models of the cupula were 

built using tetrahedral elements (Figure 4). Regarding the level of the discretization, the four 

tetrahedral meshes possess the following discretization: M1 (350 nodes, 1461 elements), M2 (692 

nodes, 3156 elements), M3 (1151 nodes, 5453 elements) and M4 (2128 nodes, 10704 elements). 

 

a)  b)  

c)    

d)    

Figure 3- Two dimensional model; (a)Cupula; (b)Cupula with endolymph; (c)Cupula with endolymph and otoconia 
placed above with different sizes; (d) Cupula with endolymph and otoconia placed laterally with different size. 
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Regarding the material properties for the cupula, the following material properties are considered: 

E = 5 x 10−6MPa, υ = 0.49 and ρ = 1 × 10−9ton/mm3  for all simulations. In the case of 

the otoconia material, which are considered calcium carbonate crystals, the properties used are:  

E = 6.6MPa, υ = 0.45 and ρ = 2.4 × 10−9ton/mm3 [42]. To simulate the endolymph, the 

properties assumed are ρ = 1 × 10−9ton/mm3 , υ = 0.49 and 𝐸 = 1.27 x 10−7MPa. Notice 

that the endolymph is an incompressible highly viscous fluid, with a dynamic viscosity, 𝜇 =

0.000852 𝑃𝑎 ∙ 𝑠. It was verified (in this work) that the natural frequency of the cupula is around 

50Hz, corresponding to a period of vibration of 𝑇 = 1/50 s. Thus, knowing that 𝜏̇ = 𝜇𝛾̇ and 

𝜏 = 𝐺𝛾, it is possible to instantaneously approximate the distortion modulus 𝐺 with 𝐺 ≅ 𝜇/𝑇 ≅

0.0426𝑃𝑎 (valid for the first vibration mode). Thus, since 𝐺 = 𝐸/(2 + 2𝜈), then 𝐸 =

0.127 Pa. 

   

Figure 4-Three-dimensional finite element model of the cupula, front, lateral and three-dimensional views. 

 

Regarding the essential boundary conditions, in the 2D and 3D models of the cupula without 

surrounding fluid, the nodes of the cupula’s base are constrained in its degrees of freedom (no 

movement is allowed on those nodes). For the 2D models considering the surrounding 

endolymph, all the boundaries of the model are fully constrained. 

 

5. Results 

 

In this section are shown the results obtained from the several 2D and 3D analysis 

performed. Thus, the results regarding the convergence study are shown in Figure 5 respectively 

for FEM and three RPIM formulation varying the polynomial basis used to construct the shape 

function. “RPIM 1” represents the constant polynomial basis, “RPIM 2” signifies the linear 

polynomial basis and “RPIM 3” indicates the quadratic polynomial basis. The results show that 

the RPIM and the FEM solutions are very close for the two first natural frequencies and the 

results converged as the mesh density increased. 
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a)  

b)  

Figure 5- Convergence FEM and RPIM different polynomial basis for 2D model - natural frequency 1 (a) and 2 (b). 

 

For meshes M1 and M4, the first ten vibration modes of the 2D cupula (Figure 3a) obtained with 

the FEM and RPIM are presented in Figure 6. Since from Figure 5 it is possible to visualize that 

the “RPIM 1” formulation is the one showing the best performance, only the results obtained 

with the RPIM formulation using the constant polynomial basis are shown in Figure 6. 

In order to visualize automatically both the shape of the vibration mode and the vibration 

frequency, the results of the figures correspond to a fictitious displacement field obtained with: 

𝑼𝑖 = 𝜔𝑖𝛟𝑖 . This visualization method allows to observe in each figure the corresponding 

magnitude of the vibration frequency by observing to the maximum value of the displacement, 

designated by the red color; since the blue color corresponds to the lower displacement values. 

The table 1 shows the natural frequencies obtained to the four meshes (M1 to M4) and it is 

possible to observe that both formulations (FEM and RPIM) possess a monotonic convergence 

path. Notice that, the RPIM formulation appears to achieve the convergence very fast. Although 

the solutions obtained with M1 are always very different from the ones obtain with M4 

(regardless the numerical method used), it is possible to visualize that the solution obtained with 

M2 has already converged, being the results obtained with M2, M3 and M4 very similar, especially 

the ones obtained with the RPIM. The results indicate that first vibration frequency is between 

51.91Hz and 53.13Hz. The first vibration frequency is easier to identify with precision due to the 

higher values of the following natural frequencies. 
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As table 1 shows, it is possible to visualize that the natural frequencies obtained with RPIM 

are lower than the ones obtained with FEM. 

 

 1 2 3 4 5 6 7 8 9 10 

F
E

M
 

M1 

          

M4 

          

R
P

IM
 

M1 

          

M4 

           
Figure 6-Ten first modes of the two-dimensional cupula with FEM and RPIM. 

 

Next, the endolymph is included in the model (Figure 3b). The objective is to understand 

the influence of the endolymph in the natural frequency of the cupula. Since it was verified in 

the convergence study that the mesh density of mesh M2 is suitable to obtain a solution very 

close with the final converged solution, in this section a similar mesh density is used to discretize 

the problem domain. Thus, in order to observe the effect of the endolymph around the cupula, 

the first two vibration modes of the cupula are presented in the Figure 7 for the FEM and RPIM 

analysis. 

 

Table 1- Natural frequency of ten first modes of the two-dimensional cupula with FEM and RPIM. 

 

 Natural Frequency (Hz) 

  1 2 3 4 5 6 7 8 9 10 

F
E

M
 

M1 57.17 127.08 135.86 239.55 277.15 283.32 369.27 382.59 404.24 428.11 

M2 54.70 121.32 131.62 226.17 259.80 265.13 345.26 350.33 362.51 386.60 

M3 54.84 119.84 131.39 222.55 254.56 259.03 337.34 340.87 350.08 372.53 

M4 53.13 117.88 128.90 217.48 248.80 253.34 328.04 331.17 340.07 360.07 

R
P

IM
 

M1 50.60 118.78 125.33 215.37 251.65 253.20 324.64 329.57 346.23 368.22 

M2 51.78 117.27 126.98 216.15 249.26 251.89 324.66 329.32 340.28 359.79 

M3 52.51 117.47 127.72 215.46 249.01 251.44 324.12 328.55 338.89 358.90 

M4 51.91 116.79 127.01 214.75 246.32 249.71 321.81 326.11 336.47 356.47 
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Since now the surrounding endolymph is being considered, the obtained vibration modes 

are the vibration modes of the complete system (endolymph-cupula). However, since the cupula 

is much more rigid than the endolymph (and both possess a similar mass density), the first 

vibration modes of the system correspond to a direct excitation of the cupula structure. Notice 

that the first two vibration modes obtained with the FEM resemble the first vibration mode 

presented in the first column in Figure 6. Furthermore, the next three vibration modes obtained 

in this analysis are very similar with the second vibration mode obtained in the analysis of the 

cupula without surrounding fluid, as shown in the second column in Figure 6. 

The same effect is verified for the RPIM formulation, since the first vibration mode of the 

present analysis resemble the first vibration mode obtained in the previous analysis, and the 

second and third vibration modes are very similar with the second vibration mode also obtained 

in the analysis of the cupula without surrounding elements. 

 

 Resembling Mode 1 Resembling Mode 2 

FEM 

 

59.47 Hz                75.62 Hz 

 

   103.76 Hz            104.77 Hz              121.32 Hz 

RPIM 

 

61.70 Hz 

          

116.83 Hz                       124.37 Hz 

Figure 7- Two first modes of the two-dimensional cupula with endolymph using FEM and RPIM (M2). 
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FEM 

 

63.79 Hz 

118.27 Hz 

124.24 Hz 

 

65.78 Hz 

 

114.73 Hz

119.86 Hz 

71.15 Hz 

 

 
121.69 Hz 

 

RPIM 

 

61.53 Hz 

 

95.19 Hz 

63.86 Hz 

66.52 Hz 

96.03 Hz

 

120.74 Hz 

68.78 Hz

74.78 Hz 

108.13 Hz 
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FEM 
63.42 Hz

82.18 Hz 

100.27 Hz

121.72 Hz 

56.68 Hz

82.67 Hz 

129.42 Hz

131.71 Hz 

57.47 Hz 

130.43 Hz

142.08 Hz 

RPIM 

61.93 Hz 97.93 Hz 

55.15 Hz

77.10 Hz 

111.11 Hz

112.29 Hz 

56.29 Hz 

115.85 Hz

121.71 Hz 

Figure 8- Two first modes of the two-dimensional cupula with endolymph and otoconia using FEM and RPIM. 
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The natural frequencies obtained for the cupula with endolymph to the first resembling mode 

are 59.47 Hz and 75.62 Hz using FEM and 61.70 Hz using RPIM analysis, which are close to 

values obtained with the isolated cupula, indicating that the endolymph fluid has a reduced 

influence in the magnitude of the cupula’s natural frequency. The same observation was made 

analysing the results obtained to the natural frequencies corresponding to the second resembling 

mode: 103.76 Hz, 104.77 Hz and 121.32 Hz corresponding to FEM results and 116.83 Hz and 

124.37 Hz obtained with RPIM.  

After understanding the effects of including endolymph in the model, it was studied how 

the inclusion of attached otoconia affects the first natural frequencies of the system. As in the 

previous example, the results here presented only show the cupula because the complete 

representation of the complete model (cupula-endolymph-otoconia) difficult the 

identification/observation of the vibration mode of the cupula. 

Thus, in Figure 8 are presented vibration modes resembling mode 1 of the cupula and 

the obtained vibration modes resembling mode 2 or mode 3 of the cupula. 

The results in Figure 8 show the vibration modes obtained with the conditions 

represented in the Figure 3(c) and (d), corresponding, respectively, to the otoconia placed above 

and laterally to the cupula. 

Comparing with the natural frequency obtained using the model with otoconia placed in 

the top of the cupula, it was expected a lower natural frequency than the one found when the 

otoconia is placed laterally to the cupula. This effect was not consistently observed in Figure 8 

for all vibration frequencies, indicating that the inclusion of otoconia in the model does not 

significantly influences the natural frequency of the system cupula/otoconia. Notice that in these 

examples the otoconia particles/cluster have a very reduced dimension (in comparison with the 

cupula), which explains the observed lack of influence.  

Regarding the vibration modes of the cupula is it possible to observe, mainly in the study 

with the medium and large otoconia using the RPIM formulation, that there are higher fictional 

displacements of the cupula’s side where the otoconia are placed. This indicates that RPIM is 

capable to capture accurately the vibration mode of the structure and that the size of the otoconia 

influence the vibration mode of the cupula. 

Regarding the 3D study, the results of the 3D convergence study of the isolated cupula 

are shown in Figure 9 respectively natural frequency 1 and 2 for FEM and the three RPIM 

formulations using distinct polynomial basis: the constant polynomial basis is the ‘RPIM 1’; the 

linear polynomial basis is the ‘RPIM 2’; and the quadratic polynomial basis is the ‘RPIM 3’. The 

results show that the RPIM and the FEM solutions are close for both natural frequencies and 

the results converged, as expected, as the mesh density increased (similarly with the 2D model). 
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a)  

b)  

Figure 9- Convergence FEM and RPIM different polynomial basis for 3D model - natural frequency 1 (a) and 2 (b). 

 

The analysis of the free vibration modes of the 3D cupula will allow to understand more 

realistically the overall behaviour of the cupula. The first five vibration modes of the 3D cupula 

obtained with FEM (using the four meshes mentioned before) are shown in Figure 10.  

The vibration modes obtained with the 3D cupula using RPIM formulation using a 

constant polynomial basis, with the same four meshes, are presented in Figure 11. In both figures, 

the first and fifth modes are represented with the lateral view, the other ones with the front view. 

Notice that the second vibration mode shows a fictitious displacement aligned with the tangent 

direction of the canal. If this vibration mode is induced by resonance, expectably, it would be 

capable to detach the otoconia particles/clusters. 
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 Vibration Mode 1 Vibration Mode 2 Vibration Mode 3 Vibration Mode 4 Vibration Mode 5 

M1 

     

M2 

     

M3 

     

M4 

     
Figure 10- Five first modes of the three-dimensional cupula with FEM, four meshes. 

 

Table 2 shows the first five vibration frequencies obtained for the cupula using the four meshes 

with FEM and RPIM analysis. It is possible to visualize that the RPIM formulations present high 

convergence rates. Notice that the solution obtained for meshes M2, M3 and M4 is almost 

identical. On the other hand, the FEM presents a lower convergence rate.  

The 3D second vibration mode corresponds to the vibration configuration aligned with the 

tangent direction of the canal (Figure 10 and Figure 11). Thus, this vibration mode corresponds 

to the observed 2D first vibration mode. In the 3D RPIM solution, the natural frequencies of 

the second mode vibration (51.75 Hz) is also similar to the natural frequencies obtained to the 

first vibration mode in the 2D cupula (51.91 Hz) with mesh M4. This similarity is observed in 

the four meshes. 
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 Vibration Mode 1 Vibration Mode 2 Vibration Mode 3 Vibration Mode 4 Vibration Mode 5 

M1 

     

M2 

     

M3 

     

M4 

     
Figure 11- Five first modes of the three-dimensional cupula with RPIM, four meshes. 

 

In table 2 is possible to visualize that for the densest mesh (M4), the FEM predicts a second 

vibration frequency of 56.14 Hz, and the RPIM indicates 51.71 Hz, which are very close. 

 

Table 2- Natural frequency of five first modes of the three-dimensional cupula with FEM and RPIM (four meshes). 

 

 

 

 

 

 

 Natural Frequency (Hz) 

  FEM RPIM 

 M1 M2 M3 M4 M1 M2 M3 M4 

1 52.33 47.04 46.23 43.97 42.14 40.58 40.26 39.34 

2 62.75 58.62 57.40 56.14 50.57 52.37 53.11 51.75 

3 108.99 99.83 95.30 90.77 87.00 84.14 83.42 82.17 

4 144.55 133.47 130.67 124.58 117.00 114.88 114.51 111.58 

5 146.43 136.42 134.26 130.85 123.00 124.17 124.76 122.76 
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6.Conclusion 

 

In this work, the FEM and the RPIM formulations were used to numerically analyse the 

dynamic response of the cupular structure of the inner ear. The results show that both methods 

lead to similar results. However, the most important achievement with this study, is the new 

research branch in the computational analysis of the vestibular system.  

Regarding the results of the convergence obtained from the 2D analysis is it possible to 

conclude about the solid convergence of both formulations, RPIM and FEM, respectively 

indicating 51.91 Hz and 53.31 Hz as the natural frequency of the 2D model of the cupula. In the 

results of the 3D analysis is it possible to observe that the RPIM formulation present high 

convergence rates (table 2). Nevertheless, when compared with the RPIM, the FEM appears to 

have a lower convergence rate. This can be justified with the tetrahedral elements used in FEM, 

which generally lead to a low convergence rate. Notice that the natural frequency of the cupula 

obtained with the 3D model (in tangent direction) is very close with the natural frequency from 

the 2D analysis, regardless the numerical method used. 

The dynamic response of a structure strongly depends on its geometric shape, material 

properties and essential boundaries, as confirmed by the results obtained in this work. The 

response of the cupula when it is surrounded by endolymph (and also with attached otoconia 

particles) present different natural frequencies, as the results show. Nevertheless, the natural 

frequencies obtained in the 2D analysis are between 50.60Hz and 57.17Hz, meaning that it is 

possible to clearly identify the target resonance frequency of the cupula. These magnitudes are 

slightly lower compared to the ones obtained without the surrounding endolymph (59.47 Hz and 

75.62 Hz for FEM and 61.70 Hz for RPIM).  This result is relevant because it means that a 

simulation in which the surrounding endolymph is disregard will permit to obtain a satisfactory 

approximated solution. This observation will allow to perform sufficiently accurate analyses 

considering simplified models (analysing only the cupula), reducing the overall computational cost 

of the analysis. 

The results obtained with the particular case of BPPV (cupulolithiasis) studied in this research 

work show the possibility to develop, in the future, new therapeutics to solve this pathology; based 

on the induction of the resonance vibration of the cupula by a sound source.  

With this work, it was possible to understand that the natural frequency of the cupula with 

otoconia attached ranges between 56Hz or 82Hz and all the other vibration frequencies possess 

distinct values. Theoretically, the induction of resonance will force the cupula to vibrate, leading 

to the detachment of the otoconia from the cupula, even with different sizes and positions (above 
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and laterally). This procedure aims to reduce the vertigo symptoms and it could be achieved in a 

non-invasive way, such as listening to music with a predominant set of bass sounds. 
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2.7. Highlights of Contribution VI 

 

The aim of this contribution was analyze how the intensity of physical activity (PA) influence the 

dizziness symptoms. This evaluation was, for the first time, performed using accurate accelerometer 

data.  

Therefore, the main contents of this publication include: 

I. Review evidencing BPPV physiology and associated symptoms; 

II. Epidemiologic report on the BPPV incidence in Portugal and worldwide; 

III. Literature review on the impact of sports activity in dizziness symptoms: 

Dizziness is one of the major complaints among athletes, mainly due to the sharp movements 

performed during PA 42, even in young population. The unexpected otoconia detachment from the 

macula could induce BPPV, which could occur as a consequence of intense PA sports, such as 

swimming, aerobics, jogging and fencing 43,44, as some authors report. 

 

IV. Physical activity measurement and classification in different intensity levels using an 

accelerometer: 

A sample of 52 females aged between 19 to 34 years-old were randomly selected from the student 

population of University of Porto. For the present study, women used the accelerometer (from 

Actigraph45,46) over the right hip on an elasticized belt for seven consecutive days to measure the 

PA. The activity levels were based in mean count/min; and each minute of wear time during the 

monitoring period was classified into the following categories: sedentary (0–99 counts); light (100–

2019 counts); moderate (2020-5998 counts); vigorous (≥5999); or moderate-to-vigorous (MVPA) 

(≥ 2020) PA, according to cut points reported in a previous validation study 47. 

 
V. Dizziness data collection by using a validated questionnaire, the Dizziness Handicap 

Inventory (DHI), which could be find appended; 

VI. Statistic methodology description: 

The performed statistical analysis was the Spearman correlation, to verify the associations between 

the dizziness score and PA levels. The logistic regression model was used to explain the relationship 

between the dizziness occurrence variable (yes vs no) and PA levels.  The Chi-square test was used 
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to determine if there is a significant relationship between the categorical variables (high or low-

impact sports). All statistical analyses were performed using procedures from sample survey data 

with software package Statistical Package for Social Sciences (SPSS). 

 

VII. Analysis and conclusion of the obtained results: 

According to the Spearman correlation, the dizziness score had a negative association with light PA 

(P=0.030, r=-0.301), which means that, in the analyzed sample of young women, those who practice 

light PA had fewer vertigo symptoms; and a positive association with vigorous PA (P=0.000, 

r=0.505), which is in line with some research works 48,49. Furthermore, the logistic regression 

analysis (Table 1.1) shows that every additional minute of vigorous PA per day increases in 1.2 times 

the chance of developing dizziness symptoms. 

 
Table 1.1 - Relationship between PA levels and dizziness incidence. 

Variables β estimate Standard error OR P value 

Sedentary PA 0.001 0.001 1.001 0.266 

Light PA 0.000 0.001 1.000 0.696 

Moderate PA 0.010 0.017 1.010 0.542 

Vigorous PA 0.117 0.047 1.164 0.013* 

PA: Physical activity; OR: odds ratio; * statistically significant 

 

 

The complete document can be found in the next sub-chapter.  
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 Abstract 

Dizziness, a widespread symptom, is commonly associated with vestibular system disorders; 

however, it is not always possible to conclude about its definitive causes. The association between 

physical activity and dizziness is still not fully understood, and it has never been investigated using 

accelerometer quantified data, as this work aims to accomplish.  

To obtain reliable results on how physical activity influences dizziness in young women, a cross-

sectional study was performed with 52 participants. The physical activity intensity level was assessed 

using an accelerometer, and a validated questionnaire acquired the dizziness information.  

A negative association between dizziness and light physical activity (P=0.030, r=-0.301), and a 

positive association with vigorous physical activity (P=0.000, r=0.505) were found. Furthermore, 

each minute of vigorous physical activity increases the chance to develop dizziness. Physical activity 

intensity levels seem to influence dizziness symptoms, both by reducing their occurrence due to 

light physical activity and by increasing their occurrence due to vigorous physical activity.  
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1.Introduction 

The vestibular system of the inner ear is the main decoder of body locomotion signs to the 

brain [1], and many diseases are affecting the vestibular apparatus, which can lead to dizziness 

symptoms. Dizziness is one of the most common medical complaints, affecting roughly 20%-

30% of the world population [2]. It may be present in all age ranges, although its prevalence 

increases with ageing and, as such, it is the most frequent illness for subjects older than 70 

years. In Europe, the dizziness prevalence for ages between 50 and 80 years old is 12.4%, while 

in Portugal dizziness related hearing problems affect 28.7% of the same age group [3]. Among 

all dizziness symptoms, vertigo refers to the sensation of rotation inside the head [4], most of 

the times called dizziness. Nevertheless, other incapacitating signs such as blurred vision, 

nausea, and difficulties in standing and walking can occur [5]. These symptoms are the result of 

conflicting information received by the brain concerning the body’s position and movement 

[6].  

By considering the fact that the average life expectancy is rising, vertigo should be viewed as a 

core health concern. It increases the risk of falls, leading to higher healthcare costs, and it 

affects the mortality in elders related to this risk factor [7]. Benign paroxysmal positional 

vertigo (BPPV) is the most common cause of vertigo [8] and, as the literature shows, 30% of 

the worldwide population has experienced it at least once in the lifetime [9]. Even in the young 

population, BPPV affects females twice as often as males [9]. A study regarding the prevalence 

of BPPV shows a 0.7% prevalence in women against 0.3% in men, between 18 and 39 years 

old [10]. BPPV also has an estimated lifetime prevalence of 2.4% in the adult population [11]. 

The main syndrome-related symptoms appear when specific calcium carbonate particles (also 

known as otoconia), which should be positioned in the sacs of the inner ear, dislodge from 

their correct location, inducing a false sensation of movement when the head slightly moves. 

One of the possible causes of such symptoms could be sharp movements performed during 

physical activity (PA) practice, with dizziness being one of the main complaints among athletes 

[12]. The accidental leak of the otoconia, potentially inducing BPPV, could occur as a result of 

intense PA sports, such as swimming, aerobics, fencing and jogging (even in young people) 

[13]. Moreover, 61.2% of occurrences associated with sports-related concussions report 

dizziness [14]. On the other hand, some authors advocate for the importance of practising 

regular moderate PA to avoid BPPV in women [15,16]. The fact that no consensus regarding 

this discussion has been reached is the primary motivation for this investigation, which aims to 

contribute to the scarce existent literature on the subject. To validate the influence of different 
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levels of PA with BPPV, the present study proposes, for the first time, assessing PA levels with 

an accelerometer and associate it with the dizziness symptoms among young women. 

 

2.Materials and methods 

This is a cross-sectional study approved by the ethical committee of Centro Hospital de São 

João-EPE (code: CES-120-13), which was conducted in accordance with the Declaration of 

Helsinki and has followed the international standards [17]. Random 52 female individuals aged 

19 to 34 years old were selected between September 2013 and May 2014 from the student 

population of local Universities from the region of Porto, Portugal. All participants gave 

informed consent to all the performed surveys. Two distinct questionnaires were applied to the 

participants. The first one enquires about demographic characteristics, containing 

anthropometric information (age, mass and height) and practised sports. Considering that some 

head impact sports could dislodge the otoconia from their correct location and promote 

dizziness, football, handball and volleyball were classified as high-impact sports in this study. 

Pilates, dance, cycling and gym practice were considered low-impact sports. The second 

questionnaire had the objective of establishing the presence of dizziness symptoms using the 

Portuguese validated version of the Dizziness Handicap Inventory (DHI), and it was applied 

only if the participants affirmatively answered to have experienced, at least once, a dizziness 

sensation.  

The DHI is a self-assessment questionnaire determining the daily life impact of dizziness and 

unbalance. A total of 25 questions integrate the survey, being the possible answers: 0-“Never”, 

1–“Rarely”; 2–“Sometimes”; 3–“Often”; 4–“Yes, permanently”. The highest possible score is 

100, and the questions are conceived to evaluate the functional, physical, and emotional 

impacts on dizziness disability. The handicap score classification is obtained according the 

following cut-off: light (1-15), mild (16-35), moderate (36-53) and severe (>54). 

2.1. Physical Activity Measurement  

The level of PA was assessed by using an accelerometer (model GT1M) from Actigraph 

(Actigraph®, LLC; Ft.Walton Beach, FL). Previous studies show that model GT1M from 

Actigraph is a technically reliable instrument, both within and across monitors [18], and it is 

also validated to quantifying activity levels in laboratory and field settings [19]. For the present 

study, women were asked to use the accelerometer over the right hip on an elasticised belt for 
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seven consecutive days. Participants were instructed to maintain their usual routine of activities 

and remove the device when swimming, bathing and sleeping, while a log diary was provided to 

register relevant information. 

Accelerometer data was recorded in 5-s sampling periods (epochs) and then assembled in 60-s 

epochs for analysis. The requirement to accept the daily PA data as valid to the study is 

handling the accelerometer at least five days with 8 hours recorded per day for each participant. 

Assuming that the monitor was not worn, non-wear time was defined as at least 60 consecutive 

minutes of zero activity intensity counts. Activity levels were based in mean count/min. Each 

minute of wear time during the monitoring period was classified into the following categories: 

sedentary (0–99 counts); light (100–2019 counts); moderate (2020-5998 counts); vigorous 

(≥5999); or moderate-to-vigorous (MVPA) (≥ 2020) PA, according to cut points reported in a 

previous validation study [20]. All data were processed with the Actilife software version 

v6.10.2. The outcome variable was calculated by dividing the sum of activity counts for a valid 

day by the number of minutes of wear time in that day across all valid days [20]. 

2.2. Statistics 

All statistical analyses were performed using procedures from sample survey data with software 

Statistical Package for Social Sciences (SPSS) version 24.0 (SPSS Inc., Chicago, Illinois, USA). 

Absolute frequency, relative frequency, mean and standard deviation were used for the 

description of continuous variables, while proportions were calculated for categorical variables. 

Spearman correlation was used to verify the associations between the dizziness score and PA 

levels. To explain the relationship between the dizziness occurrence variable (yes vs no) and PA 

levels, a logistic regression model was performed.  The Hosmer-Lemeshow statistic indicates 

that the model adequately fits the data (p > 0.05). Chi-square test was used to determine if 

there is a significant relationship between the categorical variables (presence or not of dizziness 

with women practising high or low-impact sports).  

 

3.Results 

The sample of the present study consisted of a total of 52 young women with 24.9±4.2 years 

old and with a normal body index mass of 21.3±1.9 Kg/m2. Half of the women performed 

high-impact sports and the remaining half performed low-impact sports. Among them, 67.3% 

(n=35) self-reported dizziness symptoms. According to the DHI defined score, the outcomes 
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show that 26 (74.3%) women had a light handicap; 7 (20%) had a mild handicap, and 2 (5.7%) 

had a moderate handicap. Regarding the dimensions proposed by DHI, the physical dimension 

was the most affected, followed by the functional dimension and the emotional dimension.  

According to Spearman correlation, dizziness score had a negative association with light PA 

(P=0.030, r=-0.301), and a positive association with vigorous PA (P=0.000, r=0.505), see 

Figure 1. Practising high or low-impact sports is not related to dizziness (P=0.375). The data in 

Figure 1 shows the amount of light and vigorous PA practised in minutes, compared with the 

dizziness score obtained in DHI. The logistic regression analysis (Table 1) shows that every 

additional minute of vigorous PA per day increases in 1.2 times the chance of developing 

dizziness symptoms.    

A B

 

Figure 1- Association between Dizziness score with light (A) and vigorous (B) PA assessed by an accelerometer. 

Table 1- Relationship between PA levels and dizziness incidence. 

Variables β estimate Standard error OR P value 

Sedentary PA 0.001 0.001 1.001 0.266 

Light PA 0.000 0.001 1.000 0.696 

Moderate PA 0.010 0.017 1.010 0.542 

Vigorous PA 0.117 0.047 1.164 0.013* 

PA: Physical activity; OR: odds ratio; * statistically significant 
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4.Discussion 

By using accelerometer data, the present study is the first to distinguish between different levels 

of PA to analyse the potential association with the occurrence of dizziness in young women. 

While several studies report the harmful effects of sports in dizziness [12], [21], [22], others 

verify the functional vertigo benefits induced by regular moderate PA [15], [16]. The present 

study found a negative association between dizziness score and light PA, which means that, in 

the analysed sample of young women, those who practice light PA had fewer vertigo 

symptoms. This result is in agreement with other authors, which have found that practising 

regular PA [15] or performing more activity during leisure, household, and occupational 

activities [16], could potentially decrease the risk of vertigo and BPPV symptoms. Since the 

accelerometer data is more accurate than the data obtained with a questionnaire [15], the 

present study can establish in a more reliable way the PA amount that improves dizziness 

symptomatology.   

Since light PA is measured differently in the accelerometer than sedentary activity, it is also 

possible to conclude that an active person (who practices light sports activities) is healthier 

considering dizziness manifestation. Another finding of this work is the positive association 

between dizziness score and the practice of vigorous PA, which is in line with some research 

works [21], [23]. This occurs because dizziness symptoms, as a consequence of BPPV, can 

appear after intense effort, which possibly detaches the otoconia from the sacs, inducing a false 

sensation of movement. This result confirms the findings of Sennaroglu [22], who theorises 

that rapid head movements during swimming are one of the causes of BPPV. Another study 

[21], also adverts about the possibility of repeated acceleration-deceleration events during 

intensive workout induces vertigo symptoms of BPPV. 

Regarding the hypothesis that high and low-impact sports influence the dizziness symptoms, 

no relationship was found in the analysed data. Despite this result, such factor should not be 

ignored as there are other studies [12] with athletes reporting dizziness, for example, as a 

consequence of a concussion during sports practice, even when swimming [22]. In the present 

study, this observation was not found, suggesting that future works reconsider this aspect, 

possibly enlarging the sample size.  

This study also found that, in young women, every additional minute of vigorous PA per day 

increases in 1.2 times the chance of developing dizziness symptoms. Despite this significant 

result, women who do not practice PA at all seem to have a higher risk to develop BPPV 

according to Bazoni’s study [15], who found a 2.62 higher risk of developing BPPV in 
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sedentary women. The present study has the advantage of using validated and objective 

measurement of the amount of PA, which is then compared to dizziness. 

Some of the strengths of this study include the PA assessed by accelerometer and the fact that 

the data of the dizziness symptoms was obtained by a validated dizziness questionnaire adapted 

to the Portuguese language.  

Limitations of the present study include the cross-sectional study design, which captures the 

data in a single point in time and hinders the possibility to establish a real cause and effect 

relationship. Another component that may be noted is the lack of severe dizziness handicap in 

the sample studied. Possibly, this observation could also be related to the age range studied, 

since the BPPV is most common in elders. Also, the inability to examine the relationship 

between PA and dizziness across all age ranges and the small sample size could increase the 

likelihood of a type II error. 

 

5.Conclusion 

This work has successfully studied the effect of PA on the severity of dizziness symptoms in 

young women. This was accomplished by employing accelerometers that measure continuous 

PA data, which was then cross-referenced with validated dizziness questionnaires applied to the 

same subjects. It was found that vigorous PA practice increases the severity of dizziness among 

young women. At the same time, this work also shows the benefits of practising light PA to 

avoid dizziness symptoms. Regarding the type of PA, no statistical relationship was found 

between high and low-impact sports with dizziness symptoms. Therefore, concerning dizziness 

symptoms and physical activity, possibly the balance is the secret.  
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Chapter III  
Thesis Considerations 
 
 
3.1. General Discussion 

Patients suffering from vertigo, still have to go through a long and exhausting set of tests to be 

able to be diagnosed. Furthermore, most of the patients complain about the insecurity and discomfort 

during all the rehabilitation process, mainly due to long sessions and slow results. The work developed 

during this thesis aims to improve the current knowledge and open simulation possibilities in the 

vestibular rehabilitation field, and ultimately improve the quality of life of all those affected. 

The first step consisted in building the geometrical model of the vestibular system through an 

evolutionary process of constant validation, detailed mainly in Contributions I and III. The first main 

task of this process was the validation of the applied fluid methodology, presented in Contribution I. 

The selected FSI simulation option was the monolithic approach, due to its better accuracy in a 

multidisciplinary problem, such as the detailed vestibular system components. However, since the 

equations that govern the fluid flow and the displacement of the structure are solved simultaneously, 

such approach requires more computational resources, which translates to a larger simulation time. 

The reduced dimensions of the otoconia particles and all the vestibular structures led to choosing 

accuracy over computational time. Since the SPH is a particle method, it could also interfere in the 

indirect validation of the model, when comparing with other authors who do not use particle methods 

to simulate the endolymph. Consequently, the fluid simulation became one of the most challenging 

parts of the whole work. Nevertheless, the obtained results were quite similar to other authors, a 

comparison is shown in Contribution I. These reliable results were an important first step, allowing 

the method validation and encouraging further progression of the model. The evolution of the built 

vestibular model was present in Contribution III, where a simple experimental validation was 

performed. The SCC computational model was validated using a silicone mold, which was close to 
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the real SCC structure since it includes the cupula. The angle measured between the otoconia pathway 

and the cupula in three different situations in both models (numerical and experimental) allowed the 

model validation, which supported the following simulations using this SCC numerical model. 

Nevertheless, the silicone experimental model has some limitations as it should be thicker to enable 

sharpened evaluation. 

The SCC simulation with or without otoconia allowed to support the distinct brain’s perception 

between both situations, which endorse the model reliability and open a branch to further cupula 

behavior investigations. Furthermore, the global vestibular model disorder simulation allowed a novel 

perception on the rehabilitation maneuvers, which was the main goal of the present thesis. 

The main disadvantage of the numerical simulation performed was the high computational cost, to 

which contributed the reduced structure and elements dimension, and the common soft tissues 

mechanical properties. Additionally, the application of explicit condition in ABAQUS software, 

mainly used to handle nonlinear behavior, which is the vestibular case, also increased the computation 

cost. 

These two contributions focused on the numerical model validation, with FEM proving once again 

that it is a robust technique that leads to reliable results in the biomechanical field, even when 

specifically analyzing a small structure such as the inner ear. Furthermore, the SPH allows for a more 

realistic representation of the endolymph behavior. Considering the biomechanical properties of the 

vestibular components available in the literature, the FEM allowed to build a robust and reliable 

model, leading to advances of knowledge in the vestibular numerical field and rehabilitation. 

Regarding the aim to accurately simulate the vestibular maneuvers, Contribution II had an 

active role. The use of an accelerometer was the methodology applied to collect the acceleration as a 

function of time during the performed movements, which was afterwards converted into 

displacement, to be used in the FEM simulation of the SCC. Despite some restrictions, the used 

approach allowed to correlate the movements performed outside by the audiologist expert with the 

ones occurring inside the canal at each step.  

Another advantage of using an accelerometer on this study for data acquisition is the fact 

that, currently, most available cell phones feature built-in accelerometers. The health care provider 
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could obtain any accelerometer data in an easy and faster way, and afterwards directly share the output 

needed to perform the simulation. However, the presented methodology has some limitations, as it 

should also be certified to be applicable in cases where the movements happens in different spatial 

planes at the same time. Also, a motion picture of the performed movements could enhance the 

methodology, allowing for accurately extracting the position.   

The main advantage of acquiring and simulate the exact movement of the vestibular system 

during a rehabilitation maneuver is the possibility to track the otoconia particles while moving along 

the pathway, inside the ducts. 

In an attempt to continue developing an improved solution to vertiginous syndromes, the 

analysis of the free vibrations of the cupula was also performed. This analysis had also the concern 

of integrating the comparison of distinct numerical methods. FEM is a widely used numerical method 

in different backgrounds, even in some biological fields, mainly in recent years. However, the 

anatomical structures are commonly considered soft tissue with a non-linear shape, which often 

increases numerical restrictions. These constraints opened a window of opportunity to apply some 

meshless methods to the inner ear simulation under analysis. Therefore, the NNRPIM and RPIM 

approaches were used to analyze the free vibrations of the cupula and both were compared with the 

results from FEM. Such results are presented in Contributions IV and V.  

These contributions include a wide range of numerical analyses, including mesh convergence 

studies of the cupula’s computational model. This mesh convergence analysis was performed for the 

two-dimensional and three-dimensional geometrical models, using the three numerical 

methodologies. Even though the used software (FEMAS) was academic, it allowed to obtain robust 

results, while taking into account the two distinct dimensional cupula models and the particular 

analyzed environments, including fluid materials. 

The first ten vibration modes of the cupula and respective natural frequencies were obtained, 

which constitutes with an important data base to increase the knowledge about the cupula behavior. 

Considering that balance maintenance, which is one of the most important functions of the human 

body, is mainly handled by this small structure, the increase of knowledge in this field is an important 

goal. Additionally, the influence of fluid around the cupula and the cupulolithiasis condition were 
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analyzed. Cupulolithiasis is an incapacitating disorder of the vestibular system, defined by the 

presence of otoconia attached to the cupula, inducing dizziness sensations to the patients. 

One of the most interesting conclusions of this work was that the natural frequencies of the 

cupula are comprised in the human hearing range (20 Hz to 20,000 Hz) 50, in both situations: the case 

of a healthy ear and the case of cupulolithiasis. From this result, the hypothesis of dislodging the 

otoconia from the cupula, by inducing vibrations through a sound source, was considered. This 

theory further gains some strength after discovering that other authors have recently demonstrated 

the use of the mastoid bone vibration mechanism to solve similar cases of otoconia repositioning 51. 

Using a sound source to solve the problem could be a more pleasant option for the patient. In order 

to evaluate this possibility, an accurate analysis of the sound frequency needed to induce cupula 

vibration and detachment of the otoconia, after crossing all the skin and bone layers, would have to 

be performed. 

Additionally, this analysis supports the FEM, RPIM and NNRPIM application in studying 

biological structures, including soft tissues, due to their reliable results and scientific approval. 

Finally, the inclusion of contribution VI in the present thesis fits the scope of the biomedical 

engineering doctoral program. While keeping the focus on the main vestibular symptoms such as 

dizziness, a statistical analysis was carried out to evaluate the influence of different intensity physical 

activity on developing vertiginous syndrome. The main conclusion of this contribution, carried out 

using the DHI and an accelerometer regarding the physical activity data collection, was that every 

additional minute of vigorous PA per day increases in 1.2 times the chance of developing dizziness 

symptoms, in young women. To further improve these results, samples from all age ranges should 

be used. Moreover, a cross-sectional analysis comparing patients with dizziness with a healthy control 

group should also be performed. Such approach could ultimately lead to results that help developing 

methods to prevent dizziness symptoms. 

 

 

 

 

128



129 
 
 

3.2. Conclusion and Future Work 

 

The treatments used today for inner ear diseases are mostly based on classical vestibular 

rehabilitation. However, this is a set of movements, performed without any visual help of what is 

currently happening inside the canals, which could lead to low accuracy and consecutively bad 

experiences to the patients.  

The main advantage of these rehabilitation solutions is the cost effectiveness, since only an 

audiologist expert is needed to perform the maneuvers, without any technology resources. However, 

considering that technological costs have been decreasing, and continue to decrease, the development 

of a technological solution, using computational models that have been proving to be efficient and 

accurate tools, with a lower cost when compared to using human resources, should be considered. 

The vertiginous syndromes analysis, from a biomechanical point of view, is an important 

approach, in order to reduce the patient’s suffering and anxiety associated with this process. The 

development of a computational model, in close relationship with medical professionals, such as 

doctors and healthcare providers, in order to research and put into practice more effective methods 

of diagnosis and treatment, was an achieved aim that should be further studied and refined to obtain 

better solutions.  

In conclusion, all the proposed aims and challenges were successfully achieved, leading to a 

knowledge improvement in the vestibular field, mainly expressed in the presented scientific 

publications. 

As for future work with relevance to this subject that affects the daily insecurity of a significant 

part of the population in an active life phase, the continuous improvement of numerical models is 

suggested, mainly considering finding/researching techniques to decrease the computing time. The 

simulation optimization process, or other improvements made possible by technological advances, 

are important steps mainly if they enable faster results or support the clinician’s live and real-time 

interaction. 
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Additionally, with the vestibular system global model already built and validated, the next steps 

include obtaining the electrical potential produced by the cupula, in order to analyze the electrical 

impulses patterns. 

Furthermore, using the available biomechanical tools, the study of other vestibular related 

conditions could be considered. Another branch that may have potential interest is the development 

of technological solutions, using computer simulation models, in order to assist or stimulate 

unbalance diagnoses such as posturography, videonystagmography and vestibular evoked myogenic 

potential. 
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