9 research outputs found

    PHOTOGRAMMETRY AND MEDIEVAL ARCHITECTURE. USING BLACK AND WHITE ANALOGIC PHOTOGRAPHS FOR RECONSTRUCTING THE FOUNDATIONS OF THE LOST ROOD SCREEN AT SANTA CROCE, FLORENCE

    Get PDF
    In this research paper photogrammetric techniques have been successfully applied to historic black and white analogic photographs to convey previously inaccessible architectural and archaeological information. The chosen case study for this paper is the Franciscan Basilica of Santa Croce in Florence, Italy. A photogrammetric algorithm has been implemented over a series of b/w negatives portraying the archaeological excavations carried out in the years 1967–1969, after the traumatic flood of the river Arno in 1966 that severely damaged the city centre of Florence and, particularly, the Santa Croce monumental site. The final aim of this operation is to provide solid evidence for the virtual reconstruction of the lost rood screen of the basilica of Santa Croce, the current subject of the PhD research of one of the Authors (Giovanni Pescarmona) at the University of Florence. The foundations that were uncovered during the archaeological excavation in the ‘60s are one of the most important hints towards a convincing retro-planning of the structure. Using advanced photogrammetric techniques, and combining them with LIDAR scanning, it is possible to uncover new datasets that were previously inaccessible for scholars, opening new paths of research. This interdisciplinary approach, combining traditional art-historical research methods and state-of-the-art computational tools, tries to bridge the gap between areas of research that still do not communicate enough with each other, defining new frameworks in the field of Digital Art History

    improving performance of feature extraction in sfm algorithms for 3d sparse point cloud

    Get PDF
    Abstract. The use of Structure-from-Motion algorithms is a common practice to obtain a rapid photogrammetric reconstruction. However, the performance of these algorithms is limited by the fact that in some conditions the resulting point clouds present low density. This is the case when processing materials from historical archives, such as photographs and videos, which generates only sparse point clouds due to the lack of necessary information in the photogrammetric reconstruction. This paper explores ways to improve the performance of open source SfM algorithms in order to guarantee the presence of strategic feature points in the resulting point cloud, even if sparse. To reach this objective, a photogrammetric workflow is proposed to process historical images. The first part of the workflow presents a method that allows the manual selection of feature points during the photogrammetric process. The second part evaluates the metric quality of the reconstruction on the basis of a comparison with a point cloud that has a different density from the sparse point cloud. The workflow was applied to two different case studies. Transformations of wall paintings of the Karanlık church in Cappadocia were analysed thanks to the comparison of 3D model resulting from archive photographs and a recent survey. Then a comparison was performed between the state of the Komise building in Japan, before and after restoration. The findings show that the method applied allows the metric scale and evaluation of the model also in bad condition and when only low-density point clouds are available. Moreover, this tool should be of great use for both art and architecture historians and geomatics experts, to study the evolution of Cultural Heritage

    HP3D-V2V: High-Precision 3D Object Detection Vehicle-to-Vehicle Cooperative Perception Algorithm

    Get PDF
    Cooperative perception in the field of connected autonomous vehicles (CAVs) aims to overcome the inherent limitations of single-vehicle perception systems, including long-range occlusion, low resolution, and susceptibility to weather interference. In this regard, we propose a high-precision 3D object detection V2V cooperative perception algorithm. The algorithm utilizes a voxel grid-based statistical filter to effectively denoise point cloud data to obtain clean and reliable data. In addition, we design a feature extraction network based on the fusion of voxels and PointPillars and encode it to generate BEV features, which solves the spatial feature interaction problem lacking in the PointPillars approach and enhances the semantic information of the extracted features. A maximum pooling technique is used to reduce the dimensionality and generate pseudoimages, thereby skipping complex 3D convolutional computation. To facilitate effective feature fusion, we design a feature level-based crossvehicle feature fusion module. Experimental validation is conducted using the OPV2V dataset to assess vehicle coperception performance and compare it with existing mainstream coperception algorithms. Ablation experiments are also carried out to confirm the contributions of this approach. Experimental results show that our architecture achieves lightweighting with a higher average precision (AP) than other existing models

    Terrestrial laser scanning for vegetation analyses with a special focus on savannas

    Get PDF
    Savannas are heterogeneous ecosystems, composed of varied spatial combinations and proportions of woody and herbaceous vegetation. Most field-based inventory and remote sensing methods fail to account for the lower stratum vegetation (i.e., shrubs and grasses), and are thus underrepresenting the carbon storage potential of savanna ecosystems. For detailed analyses at the local scale, Terrestrial Laser Scanning (TLS) has proven to be a promising remote sensing technology over the past decade. Accordingly, several review articles already exist on the use of TLS for characterizing 3D vegetation structure. However, a gap exists on the spatial concentrations of TLS studies according to biome for accurate vegetation structure estimation. A comprehensive review was conducted through a meta-analysis of 113 relevant research articles using 18 attributes. The review covered a range of aspects, including the global distribution of TLS studies, parameters retrieved from TLS point clouds and retrieval methods. The review also examined the relationship between the TLS retrieval method and the overall accuracy in parameter extraction. To date, TLS has mainly been used to characterize vegetation in temperate, boreal/taiga and tropical forests, with only little emphasis on savannas. TLS studies in the savanna focused on the extraction of very few vegetation parameters (e.g., DBH and height) and did not consider the shrub contribution to the overall Above Ground Biomass (AGB). Future work should therefore focus on developing new and adjusting existing algorithms for vegetation parameter extraction in the savanna biome, improving predictive AGB models through 3D reconstructions of savanna trees and shrubs as well as quantifying AGB change through the application of multi-temporal TLS. The integration of data from various sources and platforms e.g., TLS with airborne LiDAR is recommended for improved vegetation parameter extraction (including AGB) at larger spatial scales. The review highlights the huge potential of TLS for accurate savanna vegetation extraction by discussing TLS opportunities, challenges and potential future research in the savanna biome

    A 3D Point Cloud Filtering Method for Leaves Based on Manifold Distance and Normal Estimation

    No full text
    Leaves are used extensively as an indicator in research on tree growth. Leaf area, as one of the most important index in leaf morphology, is also a comprehensive growth index for evaluating the effects of environmental factors. When scanning tree surfaces using a 3D laser scanner, the scanned point cloud data usually contain many outliers and noise. These outliers can be clusters or sparse points, whereas the noise is usually non-isolated but exhibits different attributes from valid points. In this study, a 3D point cloud filtering method for leaves based on manifold distance and normal estimation is proposed. First, leaf was extracted from the tree point cloud and initial clustering was performed as the preprocessing step. Second, outlier clusters filtering and outlier points filtering were successively performed using a manifold distance and truncation method. Third, noise points in each cluster were filtered based on the local surface normal estimation. The 3D reconstruction results of leaves after applying the proposed filtering method prove that this method outperforms other classic filtering methods. Comparisons of leaf areas with real values and area assessments of the mean absolute error (MAE) and mean absolute error percent (MAE%) for leaves in different levels were also conducted. The root mean square error (RMSE) for leaf area was 2.49 cm2. The MAE values for small leaves, medium leaves and large leaves were 0.92 cm2, 1.05 cm2 and 3.39 cm2, respectively, with corresponding MAE% values of 10.63, 4.83 and 3.8. These results demonstrate that the method proposed can be used to filter outliers and noise for 3D point clouds of leaves and improve 3D leaf visualization authenticity and leaf area measurement accuracy

    La Détection des changements tridimensionnels à l'aide de nuages de points : Une revue

    Full text link
    peer reviewedChange detection is an important step for the characterization of object dynamics at the earth’s surface. In multi-temporal point clouds, the main challenge is to detect true changes at different granularities in a scene subject to significant noise and occlusion. To better understand new research perspectives in this field, a deep review of recent advances in 3D change detection methods is needed. To this end, we present a comprehensive review of the state of the art of 3D change detection approaches, mainly those using 3D point clouds. We review standard methods and recent advances in the use of machine and deep learning for change detection. In addition, the paper presents a summary of 3D point cloud benchmark datasets from different sensors (aerial, mobile, and static), together with associated information. We also investigate representative evaluation metrics for this task. To finish, we present open questions and research perspectives. By reviewing the relevant papers in the field, we highlight the potential of bi- and multi-temporal point clouds for better monitoring analysis for various applications.11. Sustainable cities and communitie

    Remote Sensing of Savannas and Woodlands

    Get PDF
    Savannas and woodlands are one of the most challenging targets for remote sensing. This book provides a current snapshot of the geographical focus and application of the latest sensors and sensor combinations in savannas and woodlands. It includes feature articles on terrestrial laser scanning and on the application of remote sensing to characterization of vegetation dynamics in the Mato Grosso, Cerrado and Caatinga of Brazil. It also contains studies focussed on savannas in Europe, North America, Africa and Australia. It should be important reading for environmental practitioners and scientists globally who are concerned with the sustainability of the global savanna and woodland biome
    corecore