252 research outputs found

    A 32 Input Multiplexed Channel Analog Front-End with Spatial Delta Encoding Technique and Differential Artifacts Compression

    Get PDF
    This paper describes a low-noise, low-power and high dynamic range analog front-end intended for sensing neural signals. In order to reduce interface area, a 32-channel multiplexer is implemented on circuit input. Furthermore, a spatial delta encoding is proposed to compress the signal range. A differential artifact compression algorithm is implemented to avoid saturation in the signal path, thus enabling reconstruct or suppressing artifacts in digital domain. The proposed design has been implemented using 0.18 ÎŒm TSMC technology. Experimental results shows a power consumption per channel of 1.0 ÎŒW, an input referred noise of 1.1 ÎŒVrms regarding the bandwidth of interest and a dynamic range of 91 dB.Ministerio de EconomĂ­a y Competitividad TEC2016-80923-POffice of Naval Research ONR N00014- 19-1-215

    A 32-Channel Time-Multiplexed Artifact-Aware Neural Recording System

    Get PDF
    This paper presents a low-power, low-noise microsystem for the recording of neural local field potentials or intracranial electroencephalographic signals. It features 32 time-multiplexed channels at the electrode interface and offers the possibility to spatially delta encode data to take advantage of the large correlation of signals captured from nearby channels. The circuit also implements a mixed-signal voltage-triggered auto-ranging algorithm which allows to attenuate large interferers in digital domain while preserving neural information. This effectively increases the system dynamic range and avoids the onset of saturation. A prototype, fabricated in a standard 180 nm CMOS process, has been experimentally verified in-vitro with cellular cultures of primary cortical neurons from mice. The system shows an integrated input-referred noise in the 0.5–200 Hz band of 1.4 ”Vrms for a spot noise of about 85 nV / √Hz. The system draws 1.5 ”W per channel from 1.2 V supply and obtains 71 dB + 26 dB dynamic range when the artifact-aware auto-ranging mechanism is enabled, without penalising other critical specifications such as crosstalk between channels or common-mode and power supply rejection ratios

    A Closed-Loop Deep Brain Stimulation Device With a Logarithmic Pipeline ADC.

    Full text link
    This dissertation is a summary of the research on integrated closed-loop deep brain stimulation for treatment of Parkinson’s disease. Parkinson's disease is a progressive disorder of the central nervous system affecting more than three million people in the United States. Deep Brain Stimulation (DBS) is one of the most effective treatments of Parkinson’s symptoms. DBS excites the Subthalamic Nucleus (STN) with a high frequency electrical signal. The proposed device is a single-chip closed-loop DBS (CDBS) system. Closed-loop feedback of sensed neural activity promises better control and optimization of stimulation parameters than with open-loop devices. Thanks to a novel architecture, the prototype system incorporates more functionality yet consumes less power and area compared to other systems. Eight front-end low-noise neural amplifiers (LNAs) are multiplexed to a single high-dynamic-range logarithmic, pipeline analog-to-digital converter (ADC). To save area and power consumption, a high dynamic-range log ADC is used, making analog automatic gain control unnecessary. The redundant 1.5b architecture relaxes the requirements for the comparator accuracy and comparator reference voltage accuracy. Instead of an analog filter, an on-chip digital filter separates the low frequency neural field potential signal from the neural spike energy. An on-chip controller generates stimulation patterns to control the 64 on-chip current-steering DACs. The 64 DACs are formed as a cascade of a single shared 2-bit coarse current DAC and 64 individual bi-directional 4-bit fine DACs. The coarse/fine configuration saves die area since the MSB devices tend to be large. Real-time neural activity was recorded with the prototype device connected to microprobes that were chronically implanted in two Long Evans rats. The recorded in-vivo signal clearly shows neural spikes of 10.2 dB signal-to-noise ratio (SNR) as well as a periodic artifact from neural stimulation. The recorded neural information has been analyzed with single unit sorting and principal component analysis (PCA). The PCA scattering plots from multi-layers of cortex represent diverse information from either single or multiple neural sources. The single-unit neural sorting analysis along with PCA verifies the feasibility of the implantable CDBS device for to in-vivo neural recording interface applications.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/60733/1/milaca_1.pd

    Manned spacecraft advanced digital television compression study. Volume 1 - Text Final report

    Get PDF
    Manned spacecraft advanced digital television compression stud

    A Closed-Loop Bidirectional Brain-Machine Interface System For Freely Behaving Animals

    Get PDF
    A brain-machine interface (BMI) creates an artificial pathway between the brain and the external world. The research and applications of BMI have received enormous attention among the scientific community as well as the public in the past decade. However, most research of BMI relies on experiments with tethered or sedated animals, using rack-mount equipment, which significantly restricts the experimental methods and paradigms. Moreover, most research to date has focused on neural signal recording or decoding in an open-loop method. Although the use of a closed-loop, wireless BMI is critical to the success of an extensive range of neuroscience research, it is an approach yet to be widely used, with the electronics design being one of the major bottlenecks. The key goal of this research is to address the design challenges of a closed-loop, bidirectional BMI by providing innovative solutions from the neuron-electronics interface up to the system level. Circuit design innovations have been proposed in the neural recording front-end, the neural feature extraction module, and the neural stimulator. Practical design issues of the bidirectional neural interface, the closed-loop controller and the overall system integration have been carefully studied and discussed.To the best of our knowledge, this work presents the first reported portable system to provide all required hardware for a closed-loop sensorimotor neural interface, the first wireless sensory encoding experiment conducted in freely swimming animals, and the first bidirectional study of the hippocampal field potentials in freely behaving animals from sedation to sleep. This thesis gives a comprehensive survey of bidirectional BMI designs, reviews the key design trade-offs in neural recorders and stimulators, and summarizes neural features and mechanisms for a successful closed-loop operation. The circuit and system design details are presented with bench testing and animal experimental results. The methods, circuit techniques, system topology, and experimental paradigms proposed in this work can be used in a wide range of relevant neurophysiology research and neuroprosthetic development, especially in experiments using freely behaving animals

    Telecommunication Systems

    Get PDF
    This book is based on both industrial and academic research efforts in which a number of recent advancements and rare insights into telecommunication systems are well presented. The volume is organized into four parts: "Telecommunication Protocol, Optimization, and Security Frameworks", "Next-Generation Optical Access Technologies", "Convergence of Wireless-Optical Networks" and "Advanced Relay and Antenna Systems for Smart Networks." Chapters within these parts are self-contained and cross-referenced to facilitate further study

    Multifrequency Aperture-Synthesizing Microwave Radiometer System (MFASMR). Volume 1

    Get PDF
    Background material and a systems analysis of a multifrequency aperture - synthesizing microwave radiometer system is presented. It was found that the system does not exhibit high performance because much of the available thermal power is not used in the construction of the image and because the image that can be formed has a resolution of only ten lines. An analysis of image reconstruction is given. The system is compared with conventional aperture synthesis systems

    VLSI Circuits for Bidirectional Neural Interfaces

    Get PDF
    Medical devices that deliver electrical stimulation to neural tissue are important clinical tools that can augment or replace pharmacological therapies. The success of such devices has led to an explosion of interest in the field, termed neuromodulation, with a diverse set of disorders being targeted for device-based treatment. Nevertheless, a large degree of uncertainty surrounds how and why these devices are effective. This uncertainty limits the ability to optimize therapy and gives rise to deleterious side effects. An emerging approach to improve neuromodulation efficacy and to better understand its mechanisms is to record bioelectric activity during stimulation. Understanding how stimulation affects electrophysiology can provide insights into disease, and also provides a feedback signal to autonomously tune stimulation parameters to improve efficacy or decrease side-effects. The aims of this work were taken up to advance the state-of-the-art in neuro-interface technology to enable closed-loop neuromodulation therapies. Long term monitoring of neuronal activity in awake and behaving subjects can provide critical insights into brain dynamics that can inform system-level design of closed-loop neuromodulation systems. Thus, first we designed a system that wirelessly telemetered electrocorticography signals from awake-behaving rats. We hypothesized that such a system could be useful for detecting sporadic but clinically relevant electrophysiological events. In an 18-hour, overnight recording, seizure activity was detected in a pre-clinical rodent model of global ischemic brain injury. We subsequently turned to the design of neurostimulation circuits. Three critical features of neurostimulation devices are safety, programmability, and specificity. We conceived and implemented a neurostimulator architecture that utilizes a compact on-chip circuit for charge balancing (safety), digital-to-analog converter calibration (programmability) and current steering (specificity). Charge balancing accuracy was measured at better than 0.3%, the digital-to-analog converters achieved 8-bit resolution, and physiological effects of current steering stimulation were demonstrated in an anesthetized rat. Lastly, to implement a bidirectional neural interface, both the recording and stimulation circuits were fabricated on a single chip. In doing so, we implemented a low noise, ultra-low power recording front end with a high dynamic range. The recording circuits achieved a signal-to-noise ratio of 58 dB and a spurious-free dynamic range of better than 70 dB, while consuming 5.5 ÎŒW per channel. We demonstrated bidirectional operation of the chip by recording cardiac modulation induced through vagus nerve stimulation, and demonstrated closed-loop control of cardiac rhythm

    Signal processing for improved MPEG-based communication systems

    Get PDF
    • 

    corecore