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PREFACE

Part L, Sectlons 1 through 10, =znd Part II, Section l, contain a large
body of background and explanatory waterial. Part of this material is
necessary to an understanding of the analysis of the MFASMR system, which is
presented in Paxt IT, Scction 2, in response to Task 1 of the work statement.

The result of the analysis in Part II, Section 3, indicates that the
MFASMR system does not exhibit high performance because much of the available
thermal power Is not uved in the constructlon of the image and because the image
which can be formed has a resolution of only ten lines. Because of this
unfavorable result, Task 2, which called for a éomparison with filled apar-
ture systems in terms of weight, complexity, reliability, deployment, storase,
performance, cost and developmenl rlsk, became unnccessary.  Therefore, the
study effort was redirected to emphasize the analysis of image reconstruction
and an understanding of aperture synthesis.

Task 3, image reconstruction, or, more formally, the image quality com~
puter study, was performed in three ways: 1) two-dimensional inverse Fast
Fourier Transformation, 2) Wiener filtering plus the inverse Fast Fourier
Transformation and 3) maximum entropy reconstruction. The results of these
computer analyses are summarized in Part II, Section 2, and are presented in
detail in Volume II, Appendix. In addition, the computer programs are
delivered as part of the contract effort.

Task 4, comparison with conventional aperture synthesis systems, has been
completed. This effort is reported in Part I, Section 8, and in Volume IIX,
Appendices. The appendices in Volume II also contain discussions in more
detail of the theory of radiometry by correlation and aperture synthesis.

Because referencing is implicit in the nature of this material, a bibliog-
raphy for Part I is in Section 11, Part I, and a bibliography for Part II is
in Section 6, Part Il1. In the appendices in Volume 11, the references are
footnoted within each appendix:
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1. INTRODUCTION

1.1 RECAP OF THE STUDY OF THE MFASMR SYSTEM

This report describes a study of a device for high resolution radiometric
mapping. This Multifrequency Aperture-Synthesizing Microwave Radiometer Sys-
tem (MFASMR) is an example of a class of imaging systems which form images by
& two-step process. They offer an alternative imaging method which competes
with more familiar imagers such as lenses and pencil-beam scanning antennas.

Dircect imagers sense¢ the Individual resolvable elements in the imaged
scene (object space) and build up the image by recording the intensity of each
resolvable element (pixel). Lenses display all the pixel intensities simul-
tancously on o surface called the hmage plane. Ln photography all intcensities
are recorded simultaneously on light-sensitive film. In the microtvave region
the most successful direct imaging method has been the use i scanning,
pencil=heam antenna. The antenna beam looks at the scene pi ..is, onc-at-a-—
time. The antenna output power is measured by a microwave receiver. Then a
display device, such as a CRT, forms image pixels with brightness proportional

to the receiver output. They are ordered’ to match the corresponding pixels
in the original scene.

Such image-making processes are familiar due to long usage. The MFASMR
and related devices form images in a manner which is not so familiar. 1In
addition to the image plane, there i@s a scecond surface in optical systoems
called the frequency plane or Fourier plane. A set of measurements in this
plane can be used as the input to a Fourier transform operation. The trans-
form output is the image. MFASMR and similar systems make such measurements
in the Fourier planc in order to form images.

In a little while it will be shown that the electromagnetic flux in the
frequency plane is the two-dimensional spectrum of the image-plane field.
This spectrum is a spatial frequency spectrum. Each spectrums are no%t as
well known as more familiar temporal frequeacy spectrums. However both
spectrum types possess many analogous properties.

I-1-1
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There are several methods of making the frequency plane measurements.
The most common method involves movement of an antenna over the Fourier plane
antenna. This process is used by many radio telescopes. It is called aper-
turc synthesis. Alternately the antenna pair can remain stationary and the
operating frequency varied in order to obtain the requiréed samples. MFASMR
uses this a;\proach.

In the casce of aperture syanthesls, the collection of samples Ls usually,
divided into two steps. The first step consists of movement of the roving
antenna along a track. The fixed and roving antennas are at the ends of a
variable bascline. The result can be thought of as an interferometer with
variable antenna spacing. After the roving antenna reaches a maximum dis-
tance from the fized antenna, the baseline is rotated to a new orientation.
The roving antenna repeats its excursion along the new baseline. Eventually,
the baseline rotates 180°. If then coincides with its original orientation,
but with baseline ends interchanged. Since the antennas are identical, the
interchange of baseline ends does not affect measurement. Therefore, the
measurements during the first 180° rotation can be used for the measurement
values over the next 180° rotation. Thus, samples over a circular disk in
the Fourier plane are obtained. In common parlance, only the measurement
process which occurs as the roving antenna moves along the baseline is called
aperture synthesis. The second step, consisting of rotation of the baseline,
is called rotation synthesis or supersynthesis.

Now MFASMR does not use rotation synthesis. Instead, it uses antennas
at the ends of two fixed baselines at right angles to each other. Also,
MFASMR cannot operate at a sct of frequencies dense enough to meet the
Nyquist criterion. Only frequencies where there are no transmitters can be
used. Thermal radiation is very weak compared to man-made sources. .Such
sources easily destroy the radiometer accuracy. Only bands reserved for
radiometers, or bands wherc transmitters are not operating for other reasons,
can be used. The MFASMR design ideatifics five such spectrum windows at 2.4,
4.75, 9.5, 19.0 and 38.0 GHz. Both the undersampling and poor distribution
of samples damage the data collected.

Some of the damage done to the data can be repaircd, if we are willing
to use more general methods of forming the image from the spectrum samples
than merely using the Fourier transform. These processes of forming images
from mcasurcment data are called imuge reconstruction.

Compensation for undersampling the spectrum depends on the fact that the
image signal is redundant. Because of this redundancy, missing data can be
replaced with values predicted from knowledge of sample values around the
missing value. The average difference between this predicted value and the
true value can be made much less than the average difference to be expected
when redundancy is lacking.

- I=1-2
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1f the restoration process is linear, there are analytic methods called
rate distortion theory for computing the rms image distortion as a function
of the amount of data lost in the process of sampling and coding the image
data, This rate distortion theory has been used in this study to compute the
percentage of image distortion to be expected in MFASMR systems with plausible
parameters, It is found that about 302 image distortion iz to be expected.
This distortilon is too great to render this approach attractive.

However, this result does not settle the question as to whether MFASMR
is a viable system or not. A significant restriction was placed on the image
reconstruction processes when rate distortion theory was used to determine
system perforuance. Namely it was postulated that image reconstruction was a
linear process. In fact, reconstruction need not be linear.

During the last decade, a group of nonlinear data processing techniques
have been developing which are called by names such as "maximum entropy
method" or "maximum likelihood method."

These methods are recursive. Multiple cycles around the recursion loop
maximize the output data entropy or other closely allied parameters. Signal
ntatisties do not need Lo be known a prilorl, as in Lingar reconstructlon
methods. Data statistics are taken into account by their influence on the
recursion process.

An excellent roview ol these methods is provided by an LEEE Proess Reprint
Volume, Modern Spectrum Analysis, edited by Donald Childers, Spectrum estima-
tion, image reconstruction and adaptive arrays are treated as aspects of the
maximum entropy method (MFM) and its relatives.

MEM processing has been controversial, in spite of the excellent results
often obtained. Although it often outperforms linear methods, the MEM recur-~
sion cycle has turned out to he unstable in many cases. The causcs of insta-
bility have not been well understood.  In addition, the maximization of
entropy, or its twin, information, has appeared to be a very abstract objec-
tive compared to such down-to-earth objectives as minimization of rms data
distortion.

However, Stephen Warncke (References 1, 2, 3, 4) has developed a MEM
algorithm for image reconstruction from frequency plane samples which has con-
straints built into the rccursion lcop which cnsure stability. It has yilelded
excellent results compared to lincar reconstruction methods. Dr. Wernecke has
kindly given us a FORTRAN program using his MEM algorithm. The results

-obtained using this MEM algorithm to reconstruct images from simulated MFASMR

data are given in Volume II of this study report.

I-1-3
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The simulated MFASMR data is produced by use of microwave radiometer
image signals provided by Robert Moore, Head of the Microwave Radiometer Group
aL NOTS, Inyokern. ‘hesce lwmages were gencrated by a Ka-Band pencil-beam, scan-
ning radiometer. A Fourier-transform operation turns these images into spatial
frequency spectrums. These spectrums can now be sampled in the same manner as
MFASMR samples the actual spectrum. These sample scts, as well as sample scts
corresponding to other frequency-plane imagers, provide the data output for the
computer study of MEM image reconstruction reported in Volume II. )

1.2 STUDY EXTENSION TO THE PROPERTIES OF FOURIER-PLANE IMAGERS

There are scveral themes which will be developed in this study which
show why frequericy~-plane imagers are suparior to direct imagers for orbital
mapping. At this point, these major themes will be sketched in broad out-

line, permitting the reader to see the goals of the detailed system analysis
as it develops.

The first and most important theme is a direct extension of the MFASMR
approach, namely, the conviction that frequency-planc imagers will be the
dominant type of radiometric orbital mapper in the future. Thie conviction
stems from this study of frequency-plane imagers.

Later in this report, the nature of the frequency plane will be sharpencd
up. llowever, the most dmportant property of the frequency plane needs no
further analysis. The frequency plarne is the electromagnetic field, generated
by the scene being viewed, at the surface of imaging lens or reflector, which
acts as a decoder of this frequency=plane data. Decodi: teansforms the data
into a form we can understand. This form is an image <i the scene.

Bullding better hardware for the purpose of decoding the frequency-plane
data lmpinging on optlical systems has preoccupled people since the time of
Newton.

+

In the last few decades a new idea has grown up. This new strategy for
forming images involves the two-step process mentioned in Section 1.1.
Instead of transforming the frequency plane data into an image by means of
optical hardware, the frequency plane data is measured by means of small
probes moving over this plane. Once this data has been recorded, the function
of the imaging lens or reflector is carried out by a computer program.

Neither the probes which measure the frequency-plane nor the computer
are anywhere near as large as the hardware they supplant. This is especially
true when the hardware supplanted is a very large scanning antenna constructed
to do high resolution radiometric mapping from orbit. The replacement of the
imaging antenna by a computer algorithm has many other advantages besides
small size., The computer program is highly flexible. The hardware is not.

I-1-4
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We can construct programs for transformation from frequency-plane data
to image with many different properties. We can transform in such a way as
to make the image the most faithful replica of the scene. Or we can trans-
form so as to obtain the best visual appearance.

If we please, we can measure the properties of the image obtained and
then change the transform computation so as to make the image more and more
like ;ome standard defining a "best" image. This is comparable to adaptive
arrays. However, we do not need to make physical changes in a hardware
imager, such as the setbing of phase shifters. Our adaptive process is only
a recursive loop in a computer program.

Tndeed, we can transform the same data Ln wany different ways in parallel
computatlions in order to oucput images of the same scene optimized in many
different ways simultaneously.

This approach [ocusces attention on the transform processes which have
replaced the imaging antenna. As a result, our theme of replacing hardware
imagers by software imagers causes heavy emphasis to be placed on these
transform processes. These processes are coming to be known as "image
reconstruction,"”

The second theme is the observation that although frequency-plane
imagers use small antcnnas compared to dircct imagers of comparable rcsolu-
Lion, thelr scasitivity and ablllty to resolve temperature variations in the
mapped region is just as good as the direct imagers.

Roughly specaking, the antennas of Fourdcr imagers arc sized to sce the
eutire fleld of view subtended by the region being mapped. This selection
of antenna beamwidth is dictated by the consideration that these antennas
measure periodicities in the brightness of the scene which extend throughout
the cntbee mappod ceglon.  The mugnitude and phase of all possible perlodicil-
ties comprise the spatial frequency spectrum of the scene. It is this spec-
trum which is Fourier-transformed to form the final image. Thaz scanning .
antenna of the competing direct imager will be sized to resolve a single pixel
in the scene.  IC the Final bwage has M by M resclvable Lines, the scanner
will have an area M¢ greater than the area of the Fourier imager antennas.

Now, it is an interesting fact that the large scanner antenna and the
little frequency-plane antennas have the same total capture cross section.
That is, their capture cross sections integrated over spheres surrounding the
antennas are the same. A fundamental antenna theorem states that if the
antenna is matched to its transmission line feeder, this total cross section
is always A when the operating wavelength is A (Reference 5). It is easy to
see that, as a consequence of the above theorem, the average power received
by the scanner antenna and the frequency sampling antenna is the same.

T=1=5
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In order to prgve this assertion, let the thermal flux density from the
scene be p (watts/m“-steradian); let the solid angle subtended by the field-
of-vicw be §. If there are M2 pixels in the scene, the solid angle subtended
by the scanning beam of the direct imager, AR, is equal to /M2, The fre-
quency plane antenna is sized to reduce its cross section outside of its field-
of-view (FOV) to zero. Therefore, its average cross section must satisfy the
rclation

. .
Apppt = A of  Ampp " g (1-1-1)

The thermal power received by the frequency plane antenna is

CIN (flux denslty) (FOV solid angle) (average cross section)

2
= DQ(%) = p)\z watts

1n the case of the scamner, ldeally the antenna cross section:outside
the beam is reduced to zero. Therefore

2
- - 2 n— -— - A .
Apeay 48 = A o Agpy "t AW (1-1-2)
so the power received by the beam is
AR (7‘_2) « o) (I-1i-3)
PBEAM P an e 1=

Therefore, the power received by the two antennas is the same, namely pkz.

If we concentrate our attention on a single pixel, we see that it
delivers a power of p)‘zlu"' to the frequency-plane antenna. The same pixel
delivers power to the scanner in pulses. When the scanner bg.am falls on the
pixel, it delivers power to the scanner equal to PBgAM or pi“. However, the
antenna must scan all of the other M% pixels, so it spends only (1/M2) of the

I-1-6
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total time looking at a single pixel. So the average power delivered by the
pixel to the antenna is the duty factor times the power level during the
pulse. This is (1/M2) (pA2) = pA%/M2. So the average power delivered by a
pixel to the sensor is the same in both cases.

Since aperture synthesis uses two antennas, the fixed reference and the
roving antenna, which see the entire FOV, the frequency-plane imager actually
receives twice the power received by the equivalent direct imager. However,
the number of frequency plane samples required for input to the Fourier trans-
form operation ls twice the number of pixels produced. Usually, the sample
doubling occurs because M2 frequency plane samples are taken which are complex
numbers. The noise power of the real and imaginary parts of the sample add
to double the noise in the M2 pixel=-bin outputs from the transform. Since
both noise power and signal power are doubled, the signal-to-noise ratio (SNR)
of the frequency-plane imager is the same as the SNR of the direct imager.

Another source of confusion lurks in the radio-telescope literature.
Hewish (Reference 6) asserts that an aperture-synthesis device has a sensi-
tivity whi7h is reduced by the factor, (number of positions of the movable
element)™1 , as compared with a conventional antenna of the same resolving
power. For proof he refers to an earlier paper by himself and Ryle
(Reference 7).

Without attempting to find the earlier obscure reference; it is easy to
see that the factor arises because llewlsh is considering a point source. In
that case, the lourier plane samples add incoherently (power-wise)'while the
scanner antenna adds the point source signal inputs to the array coherently
(amplitude=wise). This is true if the scene is only one poilnt source, such
as a radio star. However, if the scene is a surface which radiates non-
coherently, the thermal radiation from all the surface elements will add
power-wise in both the aperture-synthesis device and the direct imaging .
antenna. This is true even when the scene is a set of point sources which
are not coherent with respect to each other. For this case, Hewish's factor
disappears. 'This observation is proven by the detalled derivations of the
performance of various imager types given as appendices to this report. Thus
Hewish's observation is true, but applies only to the trivial case of a scene
consisting of a single point source.

Scanning the literature will show that the correct treatment of coherency
conditions for frequency-plane imagers caused much trouble before these condi-~
tions were rigorously defined. Hence, it is not surprising to find observa-
tions like the one by Hewish in the early papers on Fourier imagers. This
theme will be worked out by detailed sensitivity calculations.

A third theme, which will be of importance in this paper, is the observa-
tion that retation synthesis is a technique which will be used independently
from aperture synthesis. Usually rotation synthesis is thought of as only
part of the total aperture-synthesis process, rotation of the interferometer
baseline being needed in order to make measurements over an area. However,
rotation synthesis iz a technique which stands alone and is very useful even
when aperture synthesis is not used.

l-1-7
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As Kraus demonstrates (Refcreﬁce 8), she mulciplying interferometer
measures the visibility function, Vy(Sj;) ¢, as the baseline length in
wavelengths, S), is varied trom zero to some maxinun value D. This function

will be identified as the spatial frequency function of the scene at a later
time.

Let this function be measured over a set of baseline orientations, 6,
extending over 180° in angular displacement, Let the set of orientations be
dense enough to make the measurements of V, meet the Nyquist condition. Then
it can be shown that the two-dimensional Fourier transform of Vo is an image
of the scene in the region selected by the interferometer antennas.

In order to have a compact notation, we will indicate a Fourier-
transform pair of functions like this:

G(f) ==P(x) OR THIS G(f) = T{P(x)} (I-1-4)

where G(f) is a spectrum of some kind and P(x) is a function of a linear or
angular displacement. Then the ussertion in the last paragraph that the
image is the Fourier transform of the two-dimensional visibility function
can be written im the form

2-d ' -
v(s,, 8) ===B(¢, 0) (1-1-5)

where ¢ is the nadir angle and B(¢, ) is the radiometric brightness of scene.

A valuable featurc of this process is the fact that all the baseline
orientations can be measured in time succession yet no sensitivity is lost,
if the interferometer antennas are correctly sized to receive power from a
ficeld-of-view defining the scene which is to be mapped. This is in strong
contrast to systems where B(¢, 8) is mapped by a pencil-beam scanner.

The scanning array or reflector covers an.aperture area as shown in

Figure l1-1l. The comparable frequency-plane probes are shown to the right of
the scanner aperture.

The total array or reflector must be present all the time. TIf the aper-
ture is "thinned," flux from the scene streams through the gaps created by
thinning. Lf the aperture 18 thinned cnough to produce a significant welght
saving, sensitivity is also significantly reduced. The thinned array is of
course just as big as the original antenna. Therefore, thinn-ng is of no help
in stowage and deployment.

I-1-8
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FIGURE 1-1. PENCIL-BEAM SCANNER CONTRASTED WITH ROTATION
SYNTHESIS IMAGER HAVING THE SAME SENSITIVITY

Up to now we have described the measurement of V(SA, 8) by aperture
synthesis,

However, Kraus (Reference 8) in his Eq. (6-83) gives the relation

V(S,) ==21(¢) ' (1-1-6)

where B(¢) 1s the projectlon of the source brightness on the axis defined by
the baseline oriented at angle 6. That is B(¢) is the scene brightness as a
function of the semiapex angle of the conical antenna patterns of the linear

array. Thesoe pattoras define byperbolas on the sucface dcflnlm, the scenc.
For small FOV, Eq. (I-1-6) is obvious.

Now B(¢) can be measured by any line-source antenna.' Then V(S ) can be
computed in a data processor and stored. This can be done for a set of line
source orientations identical to the baseline orientations used in the
aperture~-synthesis case. This is the same V(S,, 6) generated by aperture

synthesis. The two-dimensional transform indicated in Eq. (1-1-5) again pro-
-duces the image.

Thus we have the option of using a line source, instead of aperture
synthesis, to measure V(S), 6) and then form an image from'this function.

This can be a valuable option. Aperture synthesiﬁ involves the move-
‘ment of one interferometer antenna over an area in the 'Fourier plane. This
involves quite a bit of mechanical complexity.

I-1-9
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In addition, uperture-synthesis is limited in bandwidth by the requirement
that the outputs of the two interferometer anterinas must correlate. Some line
sources do not have this restriction. This can be of great importance when
high resolution and good sensitivity are desired at the same time,

A [inal theme 1s emphasis on coherency. IFrequency plane measurcments
are coherency measurements. Therefore, a correlating radiometer is needed to
make these measurements. A correlating radiometer is not a radiometer mode
but one of two possible radiometer types. The other radiometer type measures
power, cather than coberency.  Elther radlometer can operate in one of many
possible modes, such as Dicke, total-power, phase-switching, etc. So the
division of radiometers into coherent and noncoherent (power-measuring) types
is comparable to the classification of radars as cither coherent or noncoherent.

As in the radar case, the theory of coherent radiometers is more subtle.
However, the capzbilities of correlating radiometers are much greater than
the capabilitlies of radlonzters which only measure power. It should not be
thought that because the theory is more complicated, the equipment is also
more complicated. It is often mentioned in the literature that the correlator
is more complicated because it requires two receiver channels. However, in
most romote scusing applications data about both signal polarizations are
required. Two noncohereat radiometers (two receiver channels) are needed to
measure both polarizations. Now both polarizations can pass through a single
correlating radiometer by injecting them into the correlator in phase quadra-
ture.  So agiing two polarization measurements cequlire two chunnclg.

I-1-10
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2. BASIC CORRELATING RADIOMETER CONFIGURATIONS

2.1 COHERENCE MEASUREMENT

Before looking at frequency-plane imagers in detail, it is necessary to
review the characteristics of correlating radiometers. They differ from
ordinary radiometers in that they measure coherence or correlation between
two channels., The ordinary radiometer measures power in a single channel.

In many ways, these radiometer types mirror the classification’of radars into
noncoherent (power-measuring) and coherent radars.

Correlating radiometers operate in many of thc same modes as noncoherent
_ radiometers. For instance in both cases the simplest mode of operation is as
“a total power wadiometer. The corrclating version is shown in Fipure 2-1

TOTAL POWER e
‘ 8.
{3
~

CHANNEL | . CHANNEL §I

Lo x

f

CORRELATOR
, |
ouT

. FIGURE 2-1. TOTAL POWER CORRELATING
RADIOMETER
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The input to this radiometer configuration is shown as two antennas.
This is the way the antenna is used is aperture synthesis. One antenna is
fixed at the end of the interferometer baseline, The other antenna is the
roving antenna which moves along the baseline. Of course, when the maximum
baseline length is long, the two channels are not fed directly from the
antennas with transmission line. Instead, the signals are reduced to IF,
amplified, and distributed.

In the case of Fouricr-transform spectrometers, very often there is only
one antenna. This single signal is then divided in a hybrid. The hyhrid
outputs go to the mixers. However, a preferred configuration is still the
two~antenna configuration. In this dual configuration there is no portion of
the signal chansels which Ly common to both channels. ‘therefore, none of the
radiated thermal power associated with the channel losscs appears in the out-
put as part of the signal. Since the radiation comes from different lossy
elements, it does not correlate and is rejected.

This makes radiometer calitration much simpler. The effect of internal
radiation and of reflected radiacion due to channel mismatches is very com-
plicated. A paper by Otoshi (Reference 9) bears out this point.

A similar problem, which is even harder to control, is due to mixer
noise. Due to the passage of bias current through the mixer diodes, they act
as noise sources. The effective source temperature is 1b out 400°K. This
radlacion travels out through the microwave channels. & portion is reflected
at mismatches such as hybrids, circulator, bends, and th. antenna itself.
Although the radiation is noise, it is coherent with itself. Therefore, a
standing wave 98 formed. TF o mismaceh prnducvu total reflectlon, the peak
of the mixer-noilse standing wave will be (1 + 1)2 x 400°K = 1600°K. The mea-
sured mixer-noise error is proportional to a voltage at the radirmetar output.
It can be seen that if 0.16°K is allocted for mixer-noise error, the reflected
mixer noise must be reduced by 104 (~80 db). This assumes that the standing
wave loop can be anywhere in the microwave channel. If its position can be
stabilized in the channel, the errors produced can be calculated out. How-
ever, this can be hard to do, especially in wideband systems.

I’igure 2-2 shows the effect of mixer noise on a National Radio Astronomy
Observatory radio telescope. The long-period fluctuation is due to mismatch
at the antenna input. The short-period fluctuation with about 10°K amplitude
is due to reflection off the ecdge of the Cassegrain subreflector.

The dual antenna setup makes it easier to obtain the required 80 db iso-
lation. Mixer noise reflected back to the mixer making the noise finds
nothing to be correlated with in the other channel and is eliminated by what-
ever means the radiometer uses to eliminate other kinds of receiver noise.
Only mixer noise which couples from one channel to the other will be treated
like a signal and appear in the output. Careful design of the dual antennas
can ensure that the coupling between them is very small. When igsolators are
algo used in the two channels, the required 80 db isolation is obtainable.

I-2-2
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-FIGURE 2-2. EFFECTS OF MIXER NOISE ON MEASURED ANTENNA
TEMPER/\TURE

In the case of a pencil-beam scanning antenna, no increase in thermal
power results from using two antennas. Both antennas must produce heams
which nee the same pixel at the same time. Por instance, In the case of a
reflector, the two antennas would be produced by using a dual feedhorn like
that used for a monopulse feed. However, in the case of aperture synthesis,
each antenna may see the total FOV without robbing power from the other

antenna. Therefore, a two-to-one gain in signal power is obtained for this
case. :

Total power radiometers do not modulate the input signal. As a result,
fluctuation of the receiver gain produces fluctuation in receiver noise which
cannot be distinguished from the signal. For instance, let the system noise
temperature be 2000°K, let the gain stability be one percent (AG/G = 10~ 2y,
then the output receiver nolse fluctuations will be 20°K rms. Lhis is an
order of magnitude greater than typical temperature resolutions.

Engineers lhere at Hughes Space and Communications (roup have achieved
remarkable gain sstabilities. As a consequence, they have been using the total
power mode. However, the conventional attitude has been that it 1is too hard
to get the required stability under field conditions. Therefore, the usual
design approach has been to modulate the thermal noise before it becomes
mixed with receiver noise. The modulation then permits separation of the
signal from the receiver noise in the video portion of the radiometer.

.
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The original radiometer of this type was the Dicke. It had an RF switch
which switched the receiver input bhetwecn the antenna and a load. The tem-
perature difference between load and antenna then appears as a thermal signal
which 18 square wave modulated., After square-law detection, the square wave
becomes a voltage wave, Synchronous demodulation by the RF switch actuation

wavelform then picks the thermal difference signul out of the receiver noise.

The corresponding correlation radiometer is the phase-switched radiometer
shown in Figure 2-3 on the following page. !

Both of the radiometer modes just discussed are not fully coherent. The
‘output of the correlator is at zero frequency. Let the input to Channel 1 be
[ACt) + jB(t)]. The lnput to Channel 2 is [A(t + 7) + JB(t + 7)]. The cor-
relator multiplies these waveforms together and averages the products to give
the correlation function in the form (ACE) ATE F 1) - ECE) BIEF T); +
25 [ATE) B(t + ) + A(t + 1) BE(t)]. It is the modulus of this final expression
which emcerges from the radiometers we have been discussing. We cannot get at
the venl component of the correlation, [ ]3, nor the imaginary component,

[ ]+ In the same manuer, the in-phase and quadrature receiver noise powers
add powver-wise in the output.

PHASE SWITCHED

ropeOLS

A {n
ANA~
z
B
neranence| [ conn
GENEBRATOR

SYNCHRONOUS
DEMODULATOR

FIGURE 2-3. PHASE-SWITCHED.
CORRELATING RADIOMETER
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This same series of operationé on the signal occur in a homodyne radar,
except that one channel is replaced by a sinusoidal reference. Both systems
are degenerate in the quantum mechanical sense. Two separate signal modes,

corresponding to two eigenvalues have assumed the same values and have become
indistinguishable.

In order to avoid this defect, the two radiometar channels can be offset
in frequency by using two local oscillators. These LOs are frequency offset
by means of a servo loop:ror by feeding one LO signal through a phase-shifter.
This shifter keeps Inercasing the phase change at a steady rate in order to:
produce the frequency offset.

The output of the corrcelator conslsts of DC terms such as A“(t), which
are removed and the cross product terms given above. This signal is demodu-
lated by two phase detectors. One phase detector is a switch whose switching
waveform or reference is in-phase with the frequency offset. The other phase
detector reference 1s in quadrature with the offset. The in-phase detector
selects only [ ]i1. The quadrature detector sees only [ 1;.

A block diagram for this frequency-offset mode is shown in TFigure 2-4
below.

Most modern radiotelescopes use this frequency offset technique (Refer-
ences 10, 11). Older instruments usc the phase~-switching method. They recover
the in=phase and quadrature components by shifcing the signal from one end of
the baseline 90° with respect to the signal from the other end of the baseline.

Then they perform a second homodyne detection. These two correlator outputs
arc often called "promp" and "semi~-promp."

Wesseling (Reference 12) is one of the first to point out the substantial
advantages of the fully-coherent radiometer over the earlier circuits.

¥igure 2-5 shows the microwave portion of a correlating radiometer. The
signal enters through the hybrid at the center of the assembly. The two chan-
nels are at the top right and bottom left. At the extreme right a noise diode
mount can be scen. The diode output is injected into both channels in a
servoed bridge arrangement for measuring the unknown signal temperature.

2.2 TEMPERATURE MEASURING KADIOMETERS

The earliest use of radiometers was the measurement of radiant tempera-
ture. These early instruments were noncoherent Dicke radiometers. At first
the voltage out of the phase detector was measured directly. This voltage is

_at least ideally proportionate to the difference between the reference load

and the antenna temparature.
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FIGURE 2-5. 1.5 cm CORRELATING RADIOMETER
RF HEAD (PHOTO 79-82146)

It was soon found that amplifiers were not stable enough to maintain an
accurate ratio between antenna temperature and output voltage. The obvious
answer is a servo. One approach is to servo the gain (Reference 13). The
other possibility is to servo the reference load temperature to the antenna
temperature by adding thermal noise power to the output from the cold load.

The noise is generated by a hot standard and injected through a directional
coupler (Reference 14).

Theservoed attenvator scheme never went anywhere.,  After all, an error
ol 0.1 db corresponds Lo an error of 5°K or so. Radiometers are better at
calibrating attenuators than vice versa. Neither has the servoed gain
approach been too successful for reasons which are obhscure.

The most successful solution has been the Hach servo loop (Reference 15).
In this loop, a calibrated source, square-wave modulated, is injected into
either the antenna channel or cold load channel as the casc may be. Then the
duty factor of the square wave is servoed tc balance antenna and load chan-
nels. 1Initial calibration is carried out by noting the noise source duty

factor using sta-dard temperature loads. This is the system used by the
radiometer in I.gure 2-5.

The unknown temperature is then found by calculations using the duty
factor values. The duty factor measurements are time measurements. Time
measurements can be made with very great precision.

I-2-7
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Typical results for a Hach loop radiometer are reported by Hardy et al
(Reference 16) and by Love and Van Melle (Reference 17). A block diagram of
the Love/Van Melle radiometer ls given im Figure 2-6.

Figure 2-7 shows a measurement of the boiling point of liquid argon. It
agrees to 0.1°K with the tabulated boiling point of 87.3°K given for the
existing air pressure. As a matter of fact, this radiometer maintained an
accuracy of 0.1°K throughout an entire flight test program without recalibra-
tion of any kind.

However, the stability of transistor amplifiers has become good enough to
make temperature measurements with an unservoed radiometer, if accuracy specs
arce not too demanding. The radiometer is calibrated while its feed horn looks
st loud near 290°K, and again while the horn looks at a cold load or the sky
(Reference 18). As the title indicates, the radiometer whose performance was
measured was a total-power radiometer. However, this calibration technique
is applicable to any radiometer including correlators.

The final type of temperature measurement of importance is the thermal-
gradient mode. This is a mapping mode where the antenna scans a pencil bheam
Last cuough Lo cause all the harmonles of the mapped image to occur at fre-~
quencies higher than those where gain fluctuation and 1/f noise is important.

The amplified square-law detector output is passed through a bandpass
filrer. This filter's upper cutoff is set by the usual consliderations when
designing a smoothing filter. The lower cutoff is set to reject the 1/f
noise.

This simple radiometer can make excellent microwave radiometer images.
Removal of the low frequencies improves the image appearance. However, loss
of these frequencies prevents making absolute temperature measurements.

Figure 2~-8 shows a thermal gradient radiometer designed and tested by
Wiley Electronics in 1960. The antenna is a spherical reflector illuminated
by three rotating line source feeds which correct for spherical aberration.
This ls the Clest mapplag microwave rudlometer. Lt made excellent lmages.

2.3 SPECTROMETERS

When spectrum measurement is mentioned, usually the first thought is the
use of filters (Reference 19). If speed is not too important, a single scan-
ning filter will do. In order to get more speed a bank of channelizing micro-
wave filters can be used. 'This is the route taken by the writer in designing
a "frequency scanning" mapping radiometer for JPL. This radiometer's ampli-
fier traveling wave tubes (TWTs) and filter bank are shown in Figure 2-9.

1-2-8
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SYSTEM RESPONSE TIME T = 1.0 sec

HLFERENCE TEMPERATURE To = 303.2x
ANTENNA AVERAGE TEMPERATURE Tp = 16.0°C
VERTICAL SCALE 1k PER INCH

FIGURE 2-7. LIQUID ARGON TEST RECORD, 3-8-72
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FIGURE 2-8. MAPPING MICROWAVE
RADIOMETER MOUNTED IN C-82
AIRCRAFT
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oL »PEOLER

FIGURE 2-9. FIFTY-CHANNEL FILTER
BANK DRIVE BY TWO LOW NOISE TWTS

The channelizing filter banks can be seen at the top of the cabinet.
Some ol the disadvantages ol this approach are obvious [rom the phtograph.
The filters are bulky. They are also lossy; so considerable gain between the
antenna and filter bank is needed. In this case the gain was provided by
two TWTs.

Anot™er flaw appeared too late in the program to rectify. The sensi-
tivity ¢ the individual channels drifted with temperature changes, time,
drive level, and other clauses which could not be identificd.

Although the basic mapping method was proven out, this radiometer made
poor images. The uneven channel reponse causes heavy streaking in the longi-
taudinar (FHight path) directlon.

This radiometer was built over a decade ago. Modern components would
make it possible to build a much better instrument. Feedback loops in each
filter channel could eliminate uneven response. However, there is a more

subtle deficiency which the competing Fourier-transform radiometers do not
have.

This deficiency is the fact that the performance parameters of the spec-
trum estimation process are set by the properties of the filter bank and

associated equipment. This means that these properties are "cast in concrete.

There is no way of changing them short of rebuilding the radiometer.

I-2-11
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The alternate spectrometer design is the Fourier-transform spectrometer.
This device measures the autocorrelation function of the signal. The Fourier-
transform of the autocorrelation is then found. The Wiener-Khintchine theorem

states that this transform is the power-density spectrum of the signal
(Reference 20).

To form the autocorrelation function the signal must be split into two
components. A differential time delay between channels must be introduced.
The delayed signals are then multiplied together and averaged to form ¢(t).
Figure 2-10 shows a correlator which uses a variable ultrasonic delay line.
Figure 2-11 shows a correlation function measured by this radiometer. The
measurement is made at various noise levels in order to measure sensitivity.

1f a variable path length (trombone) is used to produce the differential
delay, we have the equivalent of the scanning microwave filter. Such a device
was designed and tested by Long and Butterworth in 1963 (Reference 21). They
did not transform ¢(t) to get the spectrum. Instead they drove the tromboue

at a steady rate. The trombone output is Doppler-shifted by the trombone
movement.

A little thought will show the Doppler spectrum appearing at baseband in
a replica of the microwave spectrum. Long and Butterworth therefore measured
the RF spectrum by measuring the video spectrum with a low frequency spectrum
analyzer. Figure 2-12 shows a block diagram of such a variable delay spec~

trometer. The spectrum analysis is carried out digitally in accordance with
contemporary design practice. '

Li-ypcOlB

FIGURE 2-10. ELECTRONIC CCRRELATOR WITH VARIABLE
QUARTZ DELAY LINE TO PRODUCE DIFFERENTIAL DELAY
BETWEEN TWO SIGNALS (PHOTO 700-54-3 A)

I-2-12
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Usually the emphasis on performance dictates simultaneous measurement of
all values of ¢(1). Figure 2-13 sghows such a system. The values of ¢(T) are
measured at the intermediate frequency because the correlator is very wideband
(GHz) . The two IF signals are fed to opposite ends of two transmission lines.
At the center of the lines the delay in both channels accumulated from the
point where the signals split in the hybrid, is the same. For taps on one
side of the zenter point T is increasingly positive with increase in distance
from center. Going the other way from center T is more and more negative,

The directional couplers tap power from both lines. The circuitry driven
by each tap psir is similar to that shown in Figure 2-4 starting at points A
and B. The processed tap-pair outputs are then multiplexed, digitized and
fed to a computer where the Tourier transform of 4(v) 18 Found.

" If the phase-ghifter in Figrre 2-13 is correctly indexed, the outputs of
-the square-law detectors can be exactly in phase with the I reference. The
Q=channel cleactronics is then not needed.

The digital values of ¢(t) are fed to a computer where a Fourier trans-
formation is carried out to yield the spectrum estimate.

If the bandwidth of the system is narrow enough, the signal can be con-
verted to base-band, digitized and delayed in shift registers. The register
outputs are then multiplied by the original undelayed digital signal in digi-
tal multiplicrs and integrated in digital accumulators to form the seb of
autocorrelation function values. Weinreb contrasts the analog and'digital
‘approaches in his thesis (Reference 22). His Figure 4, shown here as Fig-
ure 2-14, gives functional block diagrams for the two correlator types.

Weinreb's correlator used one~bit quantization in order to make the
digital circuitry simpler. It should be remembered that, in 1963, LSI had
not arrived yot. A decade Tater Bowers et al repert on multiblt correlator
(Reference 23).

A tutorial paper on autocorrelation spectrometers is given by Cooper
(Reference 24). This paper is completely oriented toward digital correlators.
In Section 3.5.10, Cooper reviews the radio-telescope correlators operating
at that time. This data is summarized in Table 2-1.

2.4 INTERFEROMETERS

The simplest type of interferometer is the adding interferometer. The
output of the antemmnas at the end of the interferometer baseline are added in
a hybrid and passed to the receiver as shown in Figure 2-1l.

The interferometer pattern consists of a series of lobes. They are all
positive as indicated on the pattern diagram in Figure 2-15.
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TABLE 2-1. OPERATIONAL CORRELATION SPECTROMETERS (197f)

Clock Rate
Location (MHz) BW | Channels | Bits Comments
NRAD, Creen Bank 0.039 o 20 413
MII, Lincoln Laboratory 50 Interleaved
Sanpling
U.S. National Radio . 50
Observatory
Jodrell Bank 10 256
Observatory
C.S. IL.R.0. Radio 20 1024
Physics Lab
Univ. of British 16 128 1
Columbia
Univ. of British 4 128 3 x 5 | Dual Mode
Coluambin
25 10 1024
Haystack Observatory
50 20 512 Trimode
100 40 256

\J/

h

MECEIVER

v

FIGURE 2-15. SIMPLE ADDING INTERFEROMETER
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The D.C. component of this pattern gives no information about the scene.
Its presence complicates the use of the data collected. A much better type
ol Interferometer is the mulciplying interferometer. This type can be mecha-
nized hy use of a correlator to carry out the multiplication. The phase-~
switchid interferometer is also a multiplying interferometer. These possi-

bilities are shown in Figure 2-16.

Note that the lobes are alternately positive and negative. There is no
DC component. Figure 2-17, taken from Krause (Reference 8), shows the output
of the adding and of che multiplylng interferometer as a source traverses

their fields of view.

€ @ - \\ /]"—E"ho

T /

LL-¥YEOLE

h

»1 CORRELATOR

@ SWITCH

| WUY

§ s
:
I ARCORDEN

s) CORRELATION FUNCTION b) PHASESWITCHED

FIGURE 2-16, MULTIPLYING INTERFEROMETER

Ee@?

8L-¥YE0LE |

8) SIMPLE (UNSWITCHED) INTERFEROMETER OUTPUT

B3

b) PHASE-SWITCHED INTERFEROMETER QUTPUT

FIGURE 2-17.  RESPONSES OF AN ADDING
-~ INTERFEROMETER _

I-2-19




ORIGINAL PACE 8
OF POOR QUALITY

A Blgnificant restreletion on the use of an Interferometer is caused by
decorrelation of the signals from the two antennas due to their differential
time of arrival at these antennas. Roughly, this differential time must be
less than the bandwidth of the signal.

There arve several ways of casing this restrictiony One popular method
ils used when the instantaneous required FOV is small, but moves through
large angles over long periods of time. For instance, in the case of radio
telescopes the FOV is often determined by fairly large parabolic antennas.
The parabolas sce only u swmall purt ol the sky. However, over periods of
hours, this small FOV moves to another part of the sky, The solution in this
case is to switch in pieces of transmission line in the path back to the cor-
redator. By uning the right 1ine Length the differentlial cime of travel to
the correlator can be made close to zero for a source at the center of the
FOV.

In many casces the spocetrum of .che signal emergling from the interferometer
antennas is desired. If the spectrum is found by passage of the signal through
a bank of channelizing filters or by transform spectroscopy and cross correla-
tion 18 carried out after this process, docorreiation is usually not a problam.
Bach spectrum channel can be wade nurrow enough to ensure correlation in the
presence of the differential time delay between antennas signals axisting as
a result of other design considerations. A sketch of this scheme follows.

Obviously the arcangement la Flgure 2-18 Is needed for atwospheric
sounding. Sounding measurements involve measurement of the spectrums of atmo-
spheric absorption lines. A radiometric version of frequency scanning will
he discunsed later In this reporct. It also uses a multichannel system con-
figuration. The types of correlation functions which can be generated is
discussed in E. Tensor Synthesis.

aw e 2L

e CORRELATOR |@
N:CHANNEL \ | Sababbtbbuinithihald |

S '"-T‘(n : N
e SAN [ 1
BANDWIDTH = At | COARELATOR }@
I .

FIGURE 2-18. MULTICHANM: . MULTIPLYING INTERFEROMETER

-

FILTER
. BANK )

1-2-20



P

ORIGINAL PACE 1S
, OF POOR QUALITY

For the sake of completeness intensity interferometry should be
mentioned. This technique detects the signals in the two channels first.
Then the envelopes of the two video signals are correlated. It can be shown
that the correlation coefficient of the squares of the moduli of the antenna
voltages (detected video) is equal to the square of the correlation of the
incident radiation (Reference 25). As one would suppose, this eliminates the
affects due to the RF structure of the radiation. Therefore, correlation can
be obtained over much greater baseline lengths. Also, no phase information
nced be transmitted to the signal receiver modules at the ends of the baseline.
The detected signals, therefore, can be recorded on tape and correlated at
som2 site remote from the antenna sites.

This technique is very-long baseline interferometry (VLBI).

However, removal of the signal RF structure from the correlation process
exacts a heavy penalty. The sensitivity is considerably worse than RF cor-
relators (Reference 26). Even after reading some review papers, it is not
clear to the writer that VLBI can produce iwmages (Reference 27), rather than

measurements of point sources. Therefore, VLBI will not be considered further
in this study.

2.5 POLARIMETERS
L many cases, the polarization state of recuelved radlation is desired

as well as the quantities already discussed. Polarization can be described

by several methods., One description is the Stokes vector which is favored in
optics.

If a) and aj are the amplitudes of the two linearly polarized orthogonal
components of radiation, then the Stokes vector is

CYRNE VI
& D |

S = - ; ' (I-2-1)

where y is the phase angle batween aj and a;. This assumes that the radiation
is quasi-monochromatic. Then y can be defined and measured even for noise-
like signals.

.
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Consider three pairs of antennhas: let two antennas be lirearly polarized
at 0° and 90°; linearly polarized at 45° and 135°; finally, two antennas right
and left circularly polarized.

The powers available from these antennas are denoted by P , P 90? P
P;35, PR, and Py, respectively. In optics, thesz same quantit es are aeif
measured by dichroic filters, which extract various linear polarization com-
ponents from a beam of light. They are preceded by a retarzdation plate..
Then I(0, c) denotes the intensity of light vibrations in the direction mak-
ing an angle with coordinate axis OX, when the y-compon¢nt is subjected to a
vetardation ¢ with respect to the x~component.

Then the components of the Stokes vector are (Reference 28)

- . ° -
I I1(0°, 0) + I(90°, 0) Po + Py
M = I(0° 0) - I(90°, 0) = Po - P90
(I-2-2)
C = I(45°, 0) - I(135°, 0) = P45 - P135
§ = TI(45°, n/2) - I(135°, n/2) = P_~P

R L

The Stokes parameters have been satisfactory in optics. However, they
produce complications when used in microwave interferom:try. This is due to
the fact that all conceivable feed arrangements for a two-clement interferom-
cter response to a maximum of two out of four Stokes parameters (Reference 29).
(Ko's letter says "minimum" instead of "maximum." This must be a typo. Equa-
tions (I-2-2) show that four antcnnas per haseline ond are needed.)

The coherency matrix is better adapted for use with microwave radiometers.
It needs only two antennas per station for measurement of two orthogonal
polarizations. If these polarizations are linear, the components of the
wmatrix p can be measured by an arrangement such as is shown in Figure 2-19
below (Reference 30). The power output from dipole A is Pxx- The output
from dipole B is p y* The real part of Pxy is obtained by cross correlating
the voltages from X and B. The imaginary part of Pxy is obtained by delaying
the aignal from A by A/4 and then cross correlating.
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FIGURE 2-19, CORRELATION POLARIMETER
WHICH SIMULTANEOUSLY MEASURES THE
INDEPENDENT PARAMETERS OF THE COHERENT
MATRIX (THE FEED CONSISTS OF A PAIR OF
CROSSED DIPOLES)

Wae see then that the coberency macrix has the form

- -

B 100 =¢. N |
> ‘* L N g 2 1 2
Bk, LR <1> <1°2 e >

Joo. J
yx yy

S —

where

E kX E E* <E;.2 e-1(¢1-¢2j> <§§:>
R4 A » ' -

1[¢l(c)-2ﬁ3t]

Ex(c) - nl(c) e

and

1[¢2(t)-2wvt]

E(t) = az(t) e
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The trace of J is Jyy + Jyy = [ExEX] + [ExE§] The nondiagonal elements
are conjugates of each other, czac is Jxy = Jy7. Therefore, J is Hermitian,

The interrelation between the Stokes parameters and coherency matrix ele-
ments are given below.

. o
I o= 3, +J, I, = L2T+m ,
M = -J J = 1/2(I - M
Jox vy , vy /2( )
4 1 (1-2-4)
C = ny + Jyx ny = 1/2(c + is)
LS = i(Jyx - ny) bex = 1/2(c - is) ‘

Often we may wish to measure the polarization state of each image pixel.
If the image is generated by aperture synthesis, the basic interferometer con=-
figuration due to Ko (Reference 30) follows on the next page.

Both Figure 2-19 and Figure 2-20 show homodyne correlating radiometers.
In a practical system it is better to use a fully-coherent radiometer. One
advantage will now become apparent. It was mentioned in the spectrometer
section that the signal whose spectrum is measured could be contained solely
in the in-phase signal channel by proper adjustment. This means that a second
signal can be passed through the quadrature channel of the same instrument.
The natural gipgonal to inject Tnto the two channels are the paic of orthogonal
polarizations. 1In most remote sensing applications the radiant brightness of
both polarizations are required. So dual use of the same radiometer con-
siderably simplifies the sensor.

Passage of the dual signals through mixers is the most subtle operation
required in order to mechanize the dual radiometer. Figure 2-21 shows one
embodiment of such a mixer.

The LO signals in beoth channels (separated in frequency by the off-set
frequency) are injected into the mixer input ports by means of a coupled-
resonator filter as shown. The normal operation of the mixer then delivers
EA to one IF port and EB to the other port.
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[ 242447113 "]

FIGURE 2-20. INTEFEROMETRIC POLARIMETER WHICH
SIMULTANEOUSLY MEASURES THE FOUR POLARIZATION
COHERENCE FUNSTIONS FOR THE FOURIER SYNTHESIS
OF THE POLARIZATION AND BRIGHTNESS DISTRIBUTION

TT-YYEOLS -

‘A"l"l.o (..e

&

a~€Lo

€y €a

FIGURE 2:21. DUAL SIGNAL BALANCED MIXER
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Figure 2-22 shows the total dual-polarization radiometer., Note that Ey
is split into two inputs to the correlator channels by means of an in-phase
hybrid. L, iIs split into its channel input signals by means of a quadrature
hybrid. TKerefore, we have E, and E, in the left channel the right channel
has E, and E,. The sum and difference of these signals are formed in both
channels by ¥he hybrids which drive the mixer diodes. 1In the left channel
Ex + jE¥ goes to one diode and Eyx - jEy goes to the other diode. The output
hybrid then forms E, and jEy at its sum and difference ports after the signals
are reduced tn the intermediate frequency. Likewise Ey and Ey are fogned at
separate IF mixer ports in the right channel.

The correlators are mechanized as shown in Figure 2-23,

* * * *
From Figure 2-22 we see that E,Ey, E Ey. (EyEx)imag» and (EyEx)real are
formed. These are the elements of the coherence matrix.

The servos indicated in the block diagram are Hach servo loops which
have been discussed before. A functional block diagram is given in Figure 2-24.

The square wave noise bursts are injected into correlator arms with cor-
rect phase to act like Ey, Ey and jEy. The VCO seeks a frequency where the
duty cycles of the noise diode outputs balance the correlator outputs to zero.

These are Clapp calibrators. They will be discussed in more detail in a later
section.

v

2.6 TENSOR SYNTHESIS

Ko (References 29, 30) calls the simultaneous measurement of the many
coherence functions associated with the incoming radiation simultaneously

"“tensor synthesis." We will not treat the subject as formally as he does in
Refercence (30).

It should be noted that the most general space-time coherence function,
P(xy1, x2, 1), involves cross correlating signals at locations x3 and x2 with
differential time delay 1. Then I'(xg, x), t) is a temporal (longitudinal)
colhicrence: function. Its l'ourier transform is the radiation power spectrum.
We also have a lateral coherence function I'(x], x2, 0). Its transform is the

brightness distribution of the radiation source according to the van Cittert-~
Zernlike theorem. '

Returning to the general coherence function we see that a generalization
of these transforms implies that T'(x1, X3, T) has associated with it three
other functions. Namely, its_ ''spatial" Fourier tramnsform, I'(ui, M2, T); its
Utemporal" Fourier transform I'(x), x2, v); and its total Fourier transform
T(up, w2, V).
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The question arises then as to how we can generate the cohercent functions

involved and their transforms.
located at two positions.
follows:

i, 3
K,

m, n
Py Q

Y» 2

Polarization components

Time

In order to do this assume that antennas are
Let us label the various variables involved as’

Position (m = y position change, n = z position change)

Frequency

Spatial frequency components in y and z directions
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Let the correlators at positions m and n consist of pairs of transmission
lines, to provide delay, together with output circuitry as shown in Figure 2-25.
Let these correlators have polnrizacion inputs Ly and E;. The cross correla-
tion outputs are P? (tk) and P (t2). The i subscripts indicate which ele-
ment of the polariraLion cohereacy matrix is representaed by the I'y, The super-
scripts indicate the locations of the interferometer baseline. The Tt subscripts
indicate the set of differen:ielmdeleys evnilable. The temporal transforms of
the two correlator outputs are P (v ) and r (v ).

If movement of the interferome:er baseline generates a series of
y=position changes, xy, and a series of z-position changes normal to y dis~
placements, we have a set of correlation measurements at Xp, X,. If correlator
outputs with a delay olf v = 1) = 1, are correlated, we get I'(¥g, n, 7). Its
temporal transform is Pij(gm' Xp). 1Itg spatial’ transform is
Finally we can transform rij(Tk) and Pij(fz) to form P (v ) and r (vg
If a set of displacements x; and x, have been generated an r'® and ; measured
for these displacements, we can set v = v. Then the_ two-dimensional
spatial transform gives rij(xm, Xn, vg Ica transform is Pij(uy, Uz, V).

A block diagram of these manipulations is shown in Figure 2-25.
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FIGURE 2-25. GENERATION OF COHERENCE FUNCTIONS ASSOCIATED WITH (x4, %9, T)
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The correlation formed at the bottom of the diagram is very important.
The bandwidth of any frequency channel is 4B = vp4) = Vp = Vo4y = Vq. This
bandwidth can be made small enough to ensure corralation no matter what how
long the interferometer baseline is. This is important if we wish to build
an aperture-synthesis system capable of atmospheric sounding. The required
system bandwidth may have to include the entire 02 absorption spectrum around
60 GHz. This is a‘bandwidth of 10 GHz or more.

A method of frequency scanning radiometers will be introduced in a later
section, It can provide resolution and mapping normal to an aperture-
synthesis axis. This method requires 10X to 202 bandwidths. As in the
sounding case, this large bandwidth would destroy correlation in the aperture
synthesis process, I spoectrum analysis were not carrlied on first.,

Measurement of the coherency matrix has an important function even when
the polarization data is not needed for remote sensing purposes. Often the
vertleal and horlzontal linear polarization components of the incoming radia-
tion are desired. Frequently conical scan is used in order to ensure that
the beam makes a constant angle with the terrain for all scan angles. Such a
scan can be produced by a rotating reflector as shown in Figure 2-26.

If the reflector assembly rotates but the feed horn does not, the polariza-
tion components receilved by the feed horn change with scan angle. For instance
in Fipgure 2-26 above, the clectric ficld vector is shown ‘in the planc of the
paper Lor the reflector positlon shown. ‘this ls "vertical" polarization.
However, when the reflector rotates 90° and the horn does not, the E vector

will be normal to the ray paths shown on the drawings. It then is horizontally
polarcized.

<> 2
»
ROTATION AX|S = | | %
//FEEOHOHN
SPLASH PLATS
N
\

AEFLECTOR

FIGURE 2-26. CONICAL SCAN, REFLECTOR ANTENNA
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If the system is relatively narrow band, a rotary joint can be used
between the horn and the rest of the microwave plumbing. Then it can rotate
while the rest of the radiometer is stotionary. However, in many systems the
fesd horn is a scalar horn, operating in many frequency bands, spread over a
very great frequency range. There are no rotary joints which can pass such a
sat of operating bands.

¥However, if the radiometers monitoring these bands are designed to measure
the’ coherency matrix, conversion of polarization components to correct coordi-
nate system can be carried out by the data processing computer in the 'process
of image restoration. This is done by multiplying the original Stokes vector
[IMCS] by a rotator matrix T(C, to produce the required polarization compo-
nents. This relation is .

+

1'] 1 0 0 ol [
M' 0 cos 26 sin 26 O | M
- ' (I-2-5)
c’ 0 -gin 2§ cos 2§ ol]c
'
!S, _9 0 0 %J _SJ
Thas we are able o hive the slmplicliy offered by valy rotating the

reflector by computing the required components in the radiometer data
processing section.

I-2-31
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' 3. CORRELATING RADIOMETER TEMPERATURE SENSITIVITY

3.1 RADIOMEYTER FIGURL OF MURIT

The subject of radiometer temperature sensitivity will be touched on
very lightly. For some reason sensitivity has attracted more than its share

of the attention in microwave radiometer studies (References 26, 31, 32, 33, 34).

In reality, statistical bjas errors are more numerous, harder to coentrol and
usually larger than the temperature resolution error. Absolute temperature
calibration errors arc also liable to be greater than the resolution error.
The temperature resolution of a radiometer is given in the two forms below:

KT
) SYS b .
AT = v -/i'x'rSYSJB v (I-3-1)

where Tgys = system noise temperature, B is bandwidth before detecticn, b is
the final bandwidth after detection, t is the integration or smoothing time
after detection, and K is the radiometric f[lgurc-of-merit. The system noisc
temperatuce 1s usually cast in the Lform

T = T

sYs rec * Tanr (I-3-2)

Trge 1s the effective noise temperature at the end of the feedline from the
receiver which connects to the antenna. Tpnr is the antenna background tem-
perature. This temperature is the scene radiant brightness, weighted by the
anterna cross section, integrated over a sphere surrounding the antenna and
dividad by 4n. The result of the averaging operation is then corrected to
account for antenna ohmic losses. So

Lywr
TANT - (LANT -1) To +--z;- o(0, ¢) B0, ¢) dQ (1-3-=3)
i sphere

I-3-1
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where Lyyr is the ohmic loss in the antenna, T, is ambient temperature, B(6, ¢)
is scene radiant brightness and ¢(6, ¢) is antenna cross-~section in meter
squarcd per steradian.

The receiver temparature is

LTy :
TREC - (LF -1) To + LFTRF +-E:R;' \ (I=3=4)

where Ly = feed-line loss, Tpp ™ noise temperature of preamplifier, GRF = pre-
amp gain, Ty = mixer-and-IF noise temperature. With sufficient preamp gain
the third term becomes negligible.

When there is no preamp, the mixer and IF noise temperature dominate. So
TREC = TM = (Fn -1) To . (1-3-5)

where F_ is the noise figure of the mixer/IF-amplifier.

1L there s wo mixer, we have a tuned-radio-frequency (L4F) receilver.
Then Ty and Fp in (I-3-5) refer to the main amplifier. In superhet radiom-
eters without image rejection both RF sidehands are received and folded on
top of each other in the RF amplificr. Then the double sideband noise fig-
ure, Fpsp, should be used instead of the single sideband noise figure, Fggp.

It is often stated that Fpgp = Fggp/2. However, the correct relaction is
(Reference 35)

Fssp

Fpse = —2 *1 (1-3-6)

When Fggp ®» 1, the approximation is usable. However, when modern low-noise
receivers are used, the approximation penalizes single-sideband receivers.

The low-frequency bandwidth, b, in (I-3-1) is the noise bandwidth of the
filter/integrator. A rectangular filter which gives the same noise output
power as the actual filter, and has a2 gain equal to the peak gain of the fil-
ter, Gmax’ has the noise bandwidth, Bn' That is

/ G(f) df
0

B = w Area Undét Filter Gain Curve ‘ (1-3-7)
n : GMAX Maximum Power Gain of Filter .

I-3-2
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Table 3-1 relates the 3 dB bandwidths to noise bandwidths for output low pass
filters.

Often one sees the noise bandwidth given as the bandwidth to use for the
high-frequency receiver bandwidth. This is not correct. The correct band-
width to use is called by Evans and McLeish the radiomcter reception bandwidth
(Reference 31). This bandwidth is defined as

’

2

[ ]

/ G(f) df
0

Bege ™ : (I-3-8)

/ c2(£) df
0

TABLE 3-1. PROPERTIES OF LOW-PASS FILTERS

Bnozss
Tilter Type B3 m BNOISE B3 di - T
Ideal Low-Pass B B A
2B
RC Filters with Time
Constant of T,¢
1 4 ”
Single RC 37RC e 1.57 | 27,¢
0.643 1
Dual RC 27RC 8RC 1.22 | QTRC
' 0.510 1 :
Triple RC Z7RC 32R6 1.16 Stee
Gaussian (= RC) 1.07 T —
2.12 B3 dB
Box Car Filter 0.443 1 1.13
(Ideal Integrator) T 27 * .
S5~Pole Butterworth . , 1.01
5=Pole Bessel 1.04
i *

I-3-3
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Bendat and Piersol (Reference 36) call the same quantity the equivalent
statistical b andwidth. The most sophisticated treatment is given by
Bracewcll (Reference 37), who uses the autocorrelation bandwidth. Table 3-2
lists reception bandwidths defined by Evans and McLeish.

The most detailed treatment of the sensitivities of correlating radiom-
eters is given by Faris (Reference 38). For the homodyne type of correlator,
where the correlation output appears at DC, we find K to be Y2. This is.given
in his Eq (Reference 22). This result is reasonable. K for a single-channel,
total-power radiometer is unity. The correlator has two channels. Therefore,
the noise power in the output is doubled. The measured temperature is propor-
tional to the square root of the power after the signal passes through a square-

law detector or multiplice in a autocorrelator. Therefore, the corrclator K
will be V2.

It is unfortunate that Faris did not go on to find the value of K for a
fully coherent corrcelating radlowmceter. ‘Lhe reader will recall that this
radiometer type first heterodynes the incoming signal down to an intermediate
frequency. The IF signals are then summed in a power combiner and detected
by a square-law detector. The DC terms out of the detector are rejected by a
bandpass filter. Due to a frequency offset introduced between the IF channels,
the signal appears on a carrier and is passed by the bandpass filter. The fil-
ter output is then synchronously demodulated in two phase detectors. The
phase references are in-phasc and in quadrature with the IF frequency offset.

oo (]

TABLE 3-2. RECEPTION BANDWIDTHS OF BANDPASS FILTERS

Filter Type BpecePTION' B3 dB Byozse/®3 s
Cascaded SYN tuned CKIS 3.14 1.57
Number of Stages

1 3.14 1.57

2 1.96 1.22

3 1.76 1.15

4 1.62 1.13

(» Gaussian) 1.50 1.07
Rectangular 1.00 1.00

I-3=4
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It should be obvious that synchronous detection rejects the system noise
in quadrature with the reference signal. Furthermore, when the noise origi-
nates in two receivers it is evident that the noise power in phase and in
quadrature with the reference will be equal. Therefore, the in-phase and
quadrature baseband signals resulting from phase detection will have half the
noise power which emerges from the bandpass filter. The corresponding value
of K, is unity.

However, thosc who want a morc rigorous proof of these facts will find
them given by Lindsey (Reference 39).

This reduction of the noise in each of the two output chamnnels has long
been known by radio astronomers (References 40, 41). Lt 1s a mystery to the
writer why this case continues to be ignored in the general literature.

The value K = 1, just given for the fully-coherent radiometer case,
assumes that there is one input signal that is divided in a hybrid in order
to drive the two signal channels. However, often we can use two antennas.
For instance, in the case of aperture synthesis there are two antennas at the
ends of an interferometer baseline. In general, when probe antennas arc used
to measure the ficld in a Fourier plane, these antennas receive power from the
entire field of view. In such a case two antennas mounted very close together
can both receive power from the entire field-of-view. The two antennas are
similar to a monopulse pair such as is used in amplitude monopulse. Use of
two antennas doubles signal power. Therefore, K becomes 1/vY2. The treatment
of the temperature sensitivity calculation is entirely different, if there is
not amplification ahead of the square-law detector. This is the usual state
of affairs in infra-red radiometers. This arrangement is also appealing in
the microwave region in application where a very simple radiometer is desired,
even at the expense of loss of performance. It also can become attractive
when a great number of channels must be monitored simultaneously.

In the usual microwave case, where there is amplification ahead of the
square-law-detector/multiplier, the performance of a spectrometer using fil-
ters, and a Fourier-transform spectrometer, using autocorrelation, is the
same.  lHowever, when there is no REP amplifilcation, the transforwm gpeclrometer
temperature resolution is

2
ATrRansFORM J; STprTER (1-3-9)

where N is the number of frequency bins. The factor Y2/N is called Fellgett's
Advantage.

The sensitivity of transform radiometers without RF amplification is
treated in Appendix A.

I-3-5
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We will now summarize the values of K for various types of correlating
radiometers in Table 3-3. For comparison purposes the values of K for the
common types of power measuridng radiometers will be given in a parallel
column. Correlating radiometers with separate antenna inputs to the two sig-
nal channels will be identified by an asterisk. Transform spectrometers can
reduce K by a factor of 1/VZ by measuring ¢(t) over a range of delays which
extends from -t; to +13. The values of ¢(t4) are added in the in-phase chan-
nel outputs, whilst the value of ¢(-ty) is multiplied by minus one and added
to the value of ¢(t4) in the quadrature channel outputs. In both cases the
signal add amplitude-wise and noisc 'in the two outputs adds power-wisc. The
cesult Ls the L/V2 luprovement in K already referred to.

In Table 3-3, FTS will stand for Fourier-transform spectrometer.

TABLE 3-3. VALUES OF THE RADIOMETER FIGURE-OF-MERIT, X

Correlating Types K Power~Measuring Types K
Phase-Switched, Square-Wave 2 Dicke, Squarewave 2
Modulation and Demodulation Modulation and

Demodulation
Phase~Switched, Square-Wave V2 Dicke, Squarewave Mod Sinc W/ V2
Modulation and Demodulation® Wave Demod '
Homodyne (Faris' case), V2 Dicke, Sine Wave Mod and 2/2
Total Power Dumod
Thernmal-Gradient /2 Dicke, Push-Pull (Graham's) | v2
Squarcwave Modulation and
Demodulation
FTS (Positive Delay Oaly) V2
FTS (Positive Delay Only)* 1 Thermal Gradient 1
FTS (Symmetric .Delay) 1 Total Power 1
Fully-Coherent 1
Fully-Coherent* 1/v/2
FTS (Symmetric Delay)* 1/v2

*Star indicates each correlator channel is fed by a sepnrice antenna.

I-3-6
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3.2 RECEIVER SENSITIVITY

In order to calculate the performance nf point designs some data on
contemporary receiver noise temperatures are needed. Two graphs are given.
One by Weinreb (Reference 42) emphasizes FET amplifiers (Figure 3-1). The
other, due to Cardiasmenos (Reference 43), shows the performance of super-
heterodyne receivers (Figure 3-2). This second paragraph has been redrawn,
since the original did not reproduce well.

]

3.3 GAIN FLUCTUATION NOISE

Power vulputl variations due to roceiver gain fluctuation are fully as
important as receiver noise in determining the system temperature resolution.
To include fluctuation noise in the temperature resolution calculation,
observe that for a total power radiouweter

P = Tg oG (I-3-10)

where P is the RF power input to the correlator or square-law detector, as the
case may be. The total differential of (I-3-10) is

AP = GGTSYS + TSYS e] (1-3-11)

G may be considered to bec a system calibration factor. So if we divide
(1-3-11) by G, we get the correct answer Tsys = AT when G is zero. However,
if G is not zero, division by G gives

AP §G
T o= AT+ T () (1-3-12)

The second term is error due to gain fluctuation.. Since receiver noise and

gain fluctuation are both noise-like quantities, their variances add to pro-
duce the total error. So

2 2 [é6
oI, = [A'l’ + TSYS( G) ] (I-3-13)

I-3-7
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In a Dicke radiometer the unknown and reference temperatures are both
subject to the same gain fluctuation. Therefore the gain fluctuation error
is 1TSIG - TREF" If the difference between Tgyg and Tppp is servoed to zero,
the gain fluctuation error also goes to zero.

In the correlating radiometer case receiver noise in the two receiver
channels does not correlate when the correlation function is generated. The
autocorrelation functions of the receiver noises appear at DC and are
rejected by the bandpass filter between the square law detector and the I&Q
phase detectors. ’

0f course, if the radiometer is operated in a total-power mode, the
noise from both channels will not be rejected and will appear in the radiom-
cter output as a pedestal upon which the signal rides. ‘Then gain fluctuation
will produce just as large errors as in the noncoherent, total-power radiom-
eter case.

In the frequency offset mode the correlating radiometer will still
experience gain fluctuation errors due to variable amplification of the sig-
nal itself. However the signal is usually smaller than the receiver noise
(e.g., 20C°K vs. 1000°K). So the gain fluctuation noise is reduced
accordingly.

However, it will be found when calibration is discussed, that a refer-
ence signal can be injocted Into the two correlator channpels ln a manner
that causes the correlator output to be proportional to (TSIG - TREF)-
Therefore if this difference is driven to zero, gain fluctuation noise will
go to zero. This bchavior s very similar to the casce of a Dicke with a
servoed reference temperature.

I-3-9
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4. CALIBRATION .

4.1 CLAPP CALLBRATOR

Almost all of the calibration methods used by noncoherent radiators can
he adapted for use in a correlating radiometer. lowever, a calibration method
proposed by Clapp (Reference 44) is clearly superior to other ways of calibrat-
ing coherent radiometers. This method can only be used this radiometer type.
A functional block diagram of this calibration method, taken from Clapp and
Maxwell's paper is shown in Figure 4-1.

Following Clapp, the inputs to amplifiers G1 and G2 are

S, = A

1‘-i-(Bpr-ﬁ-B +B _ +8B

nr pi ni)
(I-4-1)

-(B_~-B 3314-33

2 pr nr P ni)

4
»
g
4
N\
oc-yye0L8

ERRON SIGNAL «

. (REAL PART)
: o]

PRODUCT @

OlLa

ERRON SIGNAL
(IMAGINARY PART)

FIGURE 4-1. SYSTEM CONCEPT, COMPLEX
" CORRELATION RADIOMETER
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A, = A r + jA

1 1 1i
(I-4=2)
Ay = Ay * 34y .
The cross-correlation function F can be defined by
u’-‘ *- Q ) ' -lie
oo AA; F+ 3T, (1-4-3)
Its real and imaginary parts are given by
Foom (Agphge + 40340
(I-4-4)

Foom Ay =ALA)

A complex error signal will be developed by the pair of product detectors
shown in Figurc 4-1. 1This error signal has the form

E = (Glsl)‘czsé)* - (Glcg)(Ft ~H) + j(clcp(Fi - H) (I~4-5)

H is the contribution of the complex noise source whose real and imaginary
parts are

B Bperr BarBar
(1-4~6)

. - *  _ *
di Bpiapi Bninni

Cross product terms which average to zero have been dropped.
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The real part of the error signal actuates a servo loop which controls
noise sources Bpr and Bpyr. Likewise the imaginary part of E controls Bpy and

Bpi. When these servo loops have been brought to equilibrium the noise sources

will be held at levels which can be seen to be

e . 2 2
F, = B, 'Bprl - ‘Bnr'

' , (T=4=7)

2 2
F,o= B o= B |7 - |B ]

In a correlator which measures only a single temperature only the noise
sources Bpr and Bnr are needed.

4.2 HACH SERVO LOOP

Hubbasd and Erickson (Reference 45) used thermionic noise diodes as
noise sources when they mechanized the radiometer analyzed by Clapp and
Maxwell. However, the Hach servo loop discussed in Section 2, which uses
semiconductor noise diodzs, is better for orbital use. The phase tracking
between the two channels may be quite poor without preventing the servo loops
from rcaching equilibrium. Let ¢ and ¢2 be the cumulative phase ‘shifts
through the two channels from the input antennas or inpu’ power-dividing
hybrid. Then (4; - ¢) 1s the relative phase shift between channels. It is
a measure of phase tracking.

Clapp and Maxwell computed the convergence of the servo loops and
plotted their results on the complex plane. Their plots, showing servo con-
vergence for relative phase shifts of +45° and -84°, are reproduced here as
Figure 4~2. 1In actuality the relative phase shift will not exceed 10° to 20°,
for a well designed radiometer, under the worst of conditions.

Figure 4-3 shows experimental results of Hubbard and Erickson's (Refer~
ence 45) loop stability tests. Part (a) shows the radiometer response with
various relative phase shifts. At +84° one can see an increase in servo
noise. At +90° the servo brecaks into oscillation as onc would expect.

Part (b) shows the result of varying servo gain +5 db around a reference gain
of 0°. Again the system input is 1200°K. Only slight variations in system
response can be seen. Figure 4-4 shows veceiver response vs correlatad sig-
nal input.

I~4-3
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4.3 REFERENCE NOISE-SOURCE STANDARDS

In the past noise diodes ard gas-discharge tubes have been popular
standard noisc sources (Figure 4<5). The thermionic nolse diode will not be
consliderced further. A complete treatment of temperature-limited vacuum tube
slot noise is in the Rad Lab Series (Reference 46).

Guy-dlscharge sources have been widely used. ‘Ihey operate at frequencies
up to tens of gigahertz. The effective temperature is very close to the kinetic
temperature of the plasma electrons in the discharge. This is of the order
of 10,000°K. The most common gas used is argon, although neon has been used
at times. Again these tubes belong mainly in the past.

9.17 x 10% °x 2
a6 =) .- » g
! 4.80 x 10° °x; X 8
a2
. D 4
28 - + g7 10K =i 5.70 x 10* % !
3 ! I ]
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FIGURE 4-5. SYSTEM NOISE SOURCES — TYPICAL NOISE QUTPUT
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At the present time the most popular standard noise source is ths
scmlconductor noise diode. Microwave Semiconductor Corp. is a supplier of
these devices. sSome pertinent data follows abstracted from their literature.

General operating characteristics:

! Operating temperrture -55° to 100°C
Temperature scensitlvity 0.01 db/°C )
Voltage sensitivity 0.1 db/2
Current seusitivity 0.03 db/%
Switching speed 1.0 usecond

The highest [requency diode 1s quite flat in response. It appeurs that it
can be used out to 100 GHz or so.

With proper temperaturc control and good stabilization of applicd power
the semiconductor noise diode can hold calibration for long periods of time.
However, calibration against an absolute standard is easier to provide than
for a noncocherent radiocmeter. The reason lies in the fact that a correlating
radiometer, using a bybrid power splitter at its input, measurcs the differ-~
ence between the sum and difference ports of the hybrid shown in Figure 4+6.

When calibration is required the switch-pair are thrown to "calibrate"
position. The servo loop then produces a frequency which sets the diode
noise output waveform to a value such that the 200°C temperature difference
between the 100°C and 300°C loads is balanced out by the diode noise injected
into the mixers in the calibration system by directional rcuplers 3 and 4,

When the switch-pair returns to "measure' position, the servo loop
balances out the unknown temperature difference between the input and the 50°C
load on the hybrid difference channel. It may be seen that the ratio of the
unknown diffcerence, present In the measure mode, and the known dlifference,
present in the calibrate mode, is the same as the ratio between noise wave-
form duty factors present in two modes. So the unknown temperature differ-
ence is this ratio times the temperature difference between the calibration
loads. Adding the temperature of input hybrid delta to the calculated differ-
ence gives the unknown temperature.

I~4-6
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!

4.4 DISCUSSION OF THE CALIBRATION CHARACTERISTICS OF FREQ-DOMAIN IMAGERS

If the radiometer mcasures the autocorrelation of the signal, the use
of a servo loop of type just described remedies a fault of autocorrelators,
the large dynamic range they require. This results because the zero differ-
ential delay bin of the autocorrelator measures the total signal power. When
the signal has a wide bandwidth, as most radiometric signals do, the autocor-
relation function may drop 10 or 20 db in the first coupl. of delay bims
adjacentr to the T = 0 bin. As a result & large portion of the system
dynamic range is used up just to accommodate the T = 0 bin.

The servo reduces the output of the v = 0 bin to zero. This greatly
reduces the required dynamic range. The source spectrum autocorrelation
function is subtracted from the signal autocorrelation function not only in
the T = 0 bin but also in all the other bins holding the autocorrelator
output.

I-4-7
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If the noise-source spectrum is flat, the autocorrelator output will have
the form shown in (b) of Figure 4-7. To left of (b) diagram the original
autocorrelation is shown before subtraction of the noise-source autocorrela-

tion. The spectrum of the unknown signal is shown above the two correlation
functions.

‘After (b) is Fourier~transformed the known noise-source spectrum is
added in to recover the signal spectrum. .
Very often the average shape of the unknown spectrum is known. The

fluctuations of actual spectrum around the average may be smal compared to
the average spectrum power, This is true in the case of temperature sounding.
The spectrum caleulated Lrom the standard atmospheric temperature profile is
the average spectrum. Its power density expressed as a temperature, is in
the range of several hundred degrees Kelvin. The rms fluctuation of actual
spectrums about the average spectrum never exceeds 5°K. Assume that the sys-
tem can accommodate 3¢ variations in the spectrum. We find that the ratio of
average spectrum to spectrum fluctuations is about 210°K/30° = 7°, 17 db.

In cases of this sort we can achieve considerable improvement in system
pecformance by shaping the noise source spectrum before its output is injected
into the radiometer. If itL is shaped to resemble the average spectrum and
subtracted from the signal spectrum, the residual will be much smaller than
the total spectrum. This is shown in Tipgurc 4-8 where the total and residual
spectrums are sketched together wich their correlation spectrums.

L}

POWER DENSITY SPECTRUM OF SIGNAL

A M

1 SUBTACT NOISE SOURCHK

LEYPEOLS

[ POWER DENSITY SPECTAUM OF SERAVOED NOISE SOURCE |

FOURIER TRANSFORM ;
l FOURIER TRANSFORM

a) 'AUTOCORRELATION OF THE . b) AUTOCORRELATION OF SIGNAL
SIGNAL SPECTRUM :gg;:w MINUS REFERENCE

"FIGURE 4-7. MODIFICATION OF OUTPUT AUTOCORRELATION BY REFERENCE NOISE SPECTRUM
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FIGURE 4-8. TOTAL AND RESIDUAL SPECTRUMS AND THEIR AUTOCORRELATION FUNCTIONS

It may be scen that since the resldual spectrum hias much less power in it
than the total spectrum, lts correlation function will reach the noise level
of the radiometer for a smaller differential delay than the value where ¢(T)
of the total spectrum reaches zero. It is obvious that correlation measure-
ments should be truncated for a value of t© where ¢(t) subsides into the noise.
Beyond that point more noise would be introduced into the transform computa-
tion than signal data.

Elimination of the delay bins in the T3 to T2 regions makes the auto-
correlator smaller and simpler.

Elimination of the bins in the T] to 17 region also reduces the noise
introduced into the output spectrum. This reduction can be an order of mag-
nitude or so, since the reduction in spectrum power is an order of magnitude
or more. The net result is that the noise variance of the system tends to be
proportional to the real unknown spectrum, namely the residual spectrum.
Nothing is lost. We can get the total spectrum by adding the average spec-
trum back into the residual spectrum. We have used our a prior knowledge
about the spectrum to reduce noise variance.

I-4-9
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Even in mapping, where absolute temperature values are not important,

removal of the average temperature can improve performance.
of a servo loop to accomplish this is shown in Figure 4-9.

A block diagram

The loop is bilased so that increase in error signal reduces the injected
reference. The composite signal formed by injecting the noise source into
the signal channel with negative polarity will adjust itself so that a few
negative going excursions wili hold the loop in equilibrium as shown in

Figurc 4-~10.

This arrangement permits display of the signal with maximum dynamic
range. Dynamic range is always in short supply in display systems. Signal
control which produces better image dynamic range always causes dramatic
Improvements in limage quality.

When precision measurements are required the elimination of the sky-horn
or cryogenic load as the low temperature refarence is important. Elimination
of the sky-horn makes it possible to design better radiometer installations
When power-measuring radiometers are used, the sky-horn

aboard spacecraft.
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FIGURE 4-10. STABILIZED MAPPING VIDEO
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must see the sky well above the horizon in order to produce a predictable
temperature. This often drives the designer to put the radiometer antenna

on top of the spacecraft. Now the scanning beam must look down outboard from
the craft — peering over the edge as it were.

This causes restrictiocns on field-of-view, since the beam cannot look
through the spacecraft.

What is worse, the top mount causes undesired interactions between
antenna and spacecraft structure. If one visualizas the beam as simply emerg-
ing from the antenna and continuing to the ground, it is hard to see why the
interaction occurs.

However, the beam forms out of a haze of partially reactive electromag-
netic field extending out to about d2/A. It is this haze which couples to
the antenna surroundings. Rapid changes in the antenna pattern can make it
very hard to correct for antenna pattern bias by deconvolution.

It is also possible to get beam dropouts in directions where there is
tight antcnna/structurc coupling. As a result, most aircraft antcnna installa-
tions are checked out on model ranges in order to eliminate unpleasant
surprises.

The Clapp calibrator makes the sky-horn unneeded. Referring to Figure 4-1
we see that all that is required to get a zero or negative temperature is the
reduction of Bpr and increase in B__ until sufficient negative temperature has
been injected into the system to produce the desired condition. Since there
is no sky-horn, the scanning antenna can be mounted on the bottom of the space-
craft where field-of-view problems are reduced. Coupling of the antenna field
to the spacecraft is also much reduced.

There Is one other characteristlce ol the correlating radiometer which is
important enough to warrant discussion. In correlating radiometer designs
where correlation functions are formed, this function will be Fourier trans-
formed to obtain a spectrum. If the function is a cross correlation formed
by aperture synthesis, the transform will be an image, not a spectrum.

In cither case, the transform calculation produces noise in the spectrum
bins or in the image pixels which originates in all the delay bins of the cor-
relator. The transform process consists of multiplications of the values by
phase shifting exponentials of the form, exp(-j2m¢). The phase shifted terms,
when summed, form the sequence of value output by the transform algorithm.

The noise in the input bins comes along and also is multiplied by the exponen-
tials. However, being noise, this has no effect. The summing scops in the
transform then adds all the noise samplca power-wise.

I-4-11
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As a result the transform algorithms acts like a food blender. All output
resolvable elements have the same noise mix from the correlator delay bins.
Each signal element output by the transform algorithm is a mixture of all ¢(t)
values. This process ties the whole instrument together giving it one response.
Variations in response or noise level in the autocorrelator bins do not appear
in the spectrum or pixel bins. One calibration operation calibrates the total
output. This ensuras smooth spectrums and images devoid of streaking and
uneven response., .

This property of the transform is so valuable it is purposely built into
some image transmission systems. The image is transformed to the frequency
domain before transmission and converted back on reception. If interference
or channel drop-outs produce glitches in the spectrum during transmission,
the result after inverse transformation on reception #s a slight drop in the
image signal-to-noise ratio distributed throughout the image. This is much
more desirable than the defects in the image itself, if it were transmitted
without transformation.

I-4-12



ORIGINAL PAGE IS
OF POOR QUALITY,

- 5. SPATIAL FREQUENCY CONCEPT

5.1 LNTRODUCTLON

Almost from the beginning of electronic technology amplifiers, transmission
lines and other devices have heen analyzed by calculating their behavior in
the frequency domain. ‘This involves finding the spectrum of the applied sig-
nal. Modification of the spectrum by passage through the device is then cal-~
culated. The properties of the device regarded as a filter are the character-
istic of interest in doing this analysis.

When thinking about antennas, the concept of the antenna as a filter is
equally useful. In the case of the electrical filter, mentioned first, the
signal is a function of time. It is expanded into a spectrum of temporal
frequencies. In the case of antennas and lenses the signal is a two-dimensional
function whose independent variables are two angles. This function can be trans-
formed into a two=-dimensional spectrum whose independent variables are two
spatlal Lrequencles.

5.2 HEURISTIC DISCUSSTON OF SPATIAL TFREQUENCY

The spatial frequency spectrum describes the distribution of some property
over the field-of-view of the antenna/lens. For instance, let the property be
radiant brightness. Figure 5-1(a) shows a one-dimensional version of brightness
distribution. Let us treat this distribution just as if it were a function of
time, not angle. Let its Fourier transform be found. The new independent vari-
able is a spatial frequency in cycles per radian or cycles per degree and the
new function is a spatial frequency spectrum. Figure 5-1(b) shows a sinusoidal
component of the brightness distribution present in 5-1(a). It corresponds to
a sm&ll portion of the total spatial frequency spectrum which falls within a
small frequency increment. At zero angle it may be seen that the sinusoidal wave
representing this component is neither at zero nor at a maximum. This means
the waveform is neither a pure sine wave nor a pure cosine wave. However, it
can be represented as the sum of a sine wave and a cosine wave, each of proper
amplitude. The cosine component is a part «f the real spectrum. The sine
component is part of the imaginary spectrum. If the spectrum is observed with
a fully coherent radiometer, the real spectrum is the portion of signal which
passes through the in-phase synchronous demodulator (phase~detector). The
imaginary component is recovered from the total signal by the phase detector
in quadratqrc with the reference.

I-5=-1
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Note that (c¢) is an amplitude distribution. The radiant brightness in °x
is proportional to rf power density (watts/Hz/steradian). However, a cor-
relator, like a square law detector, outputs a voltage proportional fo rf
power level. So the video amplitude is proportional radiant brightness and the

‘video variance has the dimensions of degrees Kelvin squared (°K2). This point

is important because the amplitude spectrum is just another form of the image
signal. An inverse transform will recover the brightness distribution. The
power density spectrun, S(F)S*(F), has lost the phase information. So the
scene brightness distribution cannot be recovered. In short, the power density
spactrum is a piece of statistical information about many scenes, while the

amplitude spectrum of a given scene is that scene in a coded form resulting
from Fourier transformation.

5.3 DETERMINATION OF THE POWER-DENSITY 'SPECTRUM OF THE SCENE

The statistical data stored in the video power density spectrum is of
first importance in designing radiometers and predicting their performance.
This will become apparent when we consider frequency-domain imagers in detail.

At present, data about radiometric-scene statistics is very sparse. In

order to have a reasonable spectrum for use in this study, estimates of the
video power density spectrum were made by three different methods. The details
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of the process of making these estimates are given in Appendix C, '"Microwave
Radiometer Image Statistics."

The first spectrum estimate is based on the work of Mandelbrot (Refer-
ence 48). His spectrums have the form P(F) = Const. F-2H~l, These spectrums
are associated with scenes whose statistics are independent of gcale. This is
a property of many natural scenes, Let these scenes be observed cver a range
of magnifications. The resulting scenes are said to be self-similar with
respect to a set of ratios ri; when the statistics of all the scencs are the
same.

A spectacular example of this behavior was the series of images of Jupiter
sent back by Voyager as it closed to a shorter and shorter range. As range
decrcased Jovian weather patterns will become too big to be seen as separate
entities in the image, However, little pattern details which were not resolved
before now could easily be seen. The new patterns had the same overall appear-
ance as the old patterns. ’

Mandelbrot's final choice for H was arrived at by comparing the properties
of statistically-generated landscapes with actual landscapes. These computer
generated landscapes are shown on pp 210-215 of reference 48. His final choice
for the value of H is 3/4.

Another means of detcrmining I is based on the fact that the spectrum
shape Is a measure ol redundancy in the scene. If the spatial frequency spec-
trum were flat, each new pixel value would be completely unpredictable from
Inowledge of past pixel values. Let the high frequencies in the spectrum be
reduced.  As this reductlon locreases and the gpectrum drops off more and more
steeply redundancy increases.

There are ways of coding the image which decrease the bandwidth required
to tranumit fmapges at o plven rate by removing the Image redundancy. ‘The
amount of image compression obtainable depends on the redundancy of the original
:l.nnge2 )This in turn depends on the value of H in the general spectrum given
for P(F).

In Appendix C.2 it was estimated that satisfactory image compression
codes can reduce images with a dynamic range of 1,000 to formats with an
information density of one bit per pixel. The value of H which agrees with
these facts was then found to be 0.70.

A third approach used experimental microwave radiometer spectrum data
supplied by Mr. Charles Hawthorne of the Navy Ordnance Test Station, Inyokern.
A regression algorithm was used to fit the experimental data to the power-law
spectrum form. The value of H obtained in this manner was 0.60. Figure 5-2
shows the raw spectrum data. ’

Extension to the actual two-dimensional scene spectrum is made by

expressing the spectrum in polar coordinates. The one-dimensional spectrum
is then used as the spectrum function along coordinate radials. No variation
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in spectrum value occurs in angle. A value of H = 3/4 was adopted for this
study.

5.4 ALTERNATE STATISTICAL DESCRIPTIONS
Other power-density spectrums, as well as alternate statistical formats,
have been used to describe scene statistics. They are reviewed in this sectionm.
Viterbi and Omara (Reference 50) treat the case where the scene is iso-

tropic and has a space correlation function which depends only on the total
distance between two points in the two-dimensional space. That is

BT = ﬂﬁ:+%)- $(x) (1-5-1)

Changing to polar coordinates, let
" rcosar, ry L rsiner
and

wx - mcosew, wy - wsinew
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Then the polar spectrum is

m
°

0(u,6,) = j o, x, yoT0 (1,000 4 1yta) e g

r
y
-l -0
el 3
- / [ m(r)e-iwr(conarcosem + 'iner‘inem)rdrdo
-0 '0

Since there is no Om dependence,

® 2n

d(w) = f $(x) f e-iwrcos(ew-or) rdr
0 0 :

(I-5-2)

[ d
= Zﬁ/- r$(r)Jo(mr)dr
0

*

Viterbi and Omara also report a spectrum used by Sakrison and Algazi for
television image analysis. It is :

d(w) = 2% (1-5-3)
(D§ +- m2

The corresponding autocorrelation is
#(x) = exp(~|r|d) (1-5-4)

where d is the coherence length of the field.
Berger (Reference 51) uses the spectrum
' 0 \28
°(w) = A 1 + (—) » ns 1, 2, ee s (1-5-5)
n W,
where An is chosen so that (21!’)"1 ¢(w)dw = o2
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Pratt (Reference 52) assumes a Markovian source (memnryless source) whose
elements have equal variance, 02 and which possess adjaceut pixel correlation
factors of pR and pc along rows and columns.

5.5 SPATIAL FREQUENCY VERSUS TEMPORAL FREQUENCY FILTERS

.+ It should be obvious at this point that an antenna acts as a filter of

spatial frequency spectrums in thé¢ same manner as electrical filters operate on

temporal frequency spectrums.

A detailed development of this parallel between temporal and spatial
filters is given by O0'Neill (Reference 53). Their parallel properties are
shown In O'Neill's Table 2-1, which iy reproduced here as Table 5-1.  The
quantities in Table 5-1 are defined in Table 5~2.

TABLE 5~1. SPATIAL FILTERS VERSUS TEMPORAL FILTERS

Time filters Space filters
Superposition - [ TN Y) ‘ - 0 -
el 0 [ =oswya | i) _[‘/ s(x — B)o(8) dE
Poriodie inpt £(8) Z ALl ok, n - Zz: (Duune'® '™
- - '
yit) m Z }"-‘m.‘ (ny) = ZZ Tane'" ™"
y'\ - ll(u.)X. Iua = 7'(“-.I)O-l

- +n N .
Transient input | 2(1) = .-.l; ] + X(w)e™* duw olp) = _(_.L')_: f[()(u)e“'" de

—

1 p+e “ | F _ ,
vty = .2-;.[_. Y(w)e™ du i(r) = o] [[ Hw)e™ " du

Y(w) = I{w)X(w) | [(w) = r{w)O(w)
Rundom input | $usl(r) = ((0)x(t + 1)) $uelp’) = (o(p)olp + p))*
. () = Wyt + 7)) ®i(p") = (i(p)ilp + p'))
o r ,
B(w) = [__ #(7) cos wr dr B(w) = [[ B(r)e=5 " de

Gu(r) = f: Ot — r)pus(t)dl| @ii(r) = ]f‘n(ﬂ - r)Peip) dp

(@) = |H(W)| S pa(w) Pii(w) = |r(w)]*Deslw)

L) e
dunr) = [T M+ 0900 @] gite) = [[ate o+ p)6unto) do
On(w) = yu(w)H (W) Dio(w) = 7(w)Des(w)
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5.6 TREATMENT OF RANDOM WAVEFORMS

For a random nignal existing over an infinite interval, the Fourier
transform does not exist. Therefore, a statistical description is required.
In general, the analytic attack consists of defining che operation of a finite
interval. The statistical functions is then the limiting value of thc output
of the operation as the interval becomes infinitely long. The expressions for
Random Input in Table 5-1 stem from this rationale. For example, we have

+T

¢ (1) = <X(e)X(t+1)> = 11m-Lf X(t)X(e+1)dt
xx" . Tam 2T I
+L L (1-5-6)
¢°°(B') = <0(p)o(pHp')> = lim-l—z- f o(@)o(pFp an’
Tae 4L 1 2L

This is mathematically correct, however, there is a problem. Since we cannot
in actuality average over a record of infinite length, the equation (I-5-6)
really instructs us to calculate the mean values over a finite interval T or L.
Then we obtain an estimate of the spectrum by taking the Fourier transform of
the correlation and letting the interval become indefinitely long, or at least

lonyg enough to ensure that the measured S(w) will meet accuracy requirements.
Thus )

S(w) 5, Sp(w) ';-:—: ¢ (T) . <X()X(t+1)>, (I-5-7)

Unfortunately, the variance of S_(w), in the limit, is very large (Refer~-
ence 54). Swartz cites Jenkins &nd Watts (Referance 55) for proof that

lin Var ;) = s%() (1-5-8)
Toreo

Using the ratio of mean to standard deviation as a measure of signal-to- .
interference ratio, we find that

E[S,(w)]

7—77-7 = 1 (I-5-9)
VAR S.r W T

This says that the true spectrum is only as big as the noise (uncertainty in
S _(w)).
t
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The way out of this difficulty is to chop the signal record up into a
set of segments. The Fourier transform of each segment is calculated individually
to get a set of spectrum estimates, Sp(w). The N estimates, Sp(w) are then
averaged together to get the final estimate of S(uw).

Now in practice the total observation time, T, which is available is
not infinite. The question then arises, "How many segments of duration T/N
should we use?" As N gets larger and larger, the variance in the estimate of
S(w) decreasce due to better averaging. However, the resolution of our esti-
mator becomes poorer, because the length of each observation segment is getiing
shorter. This increases the mean square difference between the true spectrum
and estimated spectrum due to loss of resolution. This error is called bias.

It should be evident that there is an optimum N that produces the minimum
total error. This total error is noise variance plus bias squared. We will
drop this subject for the time heing. However, we will sece as we progress
that preserving a balance between variance and bias is a central theme in
analysis and a design driver in mechanization.

The important point at this time is the observation that each signal
record is a transient. Therefore, the relations for transient inputs in
Table 5-1 can be used. The Random Input relations in the table are no longer
mathematical identities, but approximations. Their continued use is important
because they eliminate all phase information concerning the successive random
signal records. These functions are therefore neecded to analyze apd design
system configurations which must operate in an optimum manner when driven
by various members of a class randcm signals. In contrast to this state of
affairs, functions such as x(t) and X(w) or y(t) and Y(w) are the signals
themselves.

5.7 INTERRELATIONS BLTWEEN FUNCTIONS IN TABLE 5-1

It may be seen that there are three classes of functions involved for
both time and space filters. One class conterns the input signals. A second
function class concerns the output signals. ‘The third class involves the signal
transformation process prcduced by the filters. Stripping away the details of
limits, normalization and the like, Tables 5-3, 5~4 and 5-5 show these rela-
tions. A star stinds for convolution. Dual stars indicate a two-dimensional
convoiution. Likewise, a dot means multiply. 71wo dots mean carry out a
two-diviensional multiplication. The symbols == and é;g indicate one and two
dimensional Fourier transforms, respectively. Likewise, single and dual

pentagons, « and sk signify single or dual autocorrelations or cross corre-
lations as the case may be.

The relation, ¢(t) *=* ¢(w) is an expression of the Weiner-Xhinchin
theorem. This theorem states that the Fourier transform of the signal auto-
correlation function is the power-density spectrum of the signals. Convolutions
in the space/time domain are always paralleled by products in the frequency
domain as a result of the.convolution theorem.

1-5-9
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TABLE 5-3.. FiLTER INPUT RELATIONS
Time FiICQré Space Filters
input correlation object correlation
amplitude function intensity function
a(e) RO (o) o(g,n)  ~SMEamERlEn) _ g (r.,T)
[l | ] 2-a e |
X(w) « X* () 0(&) - 0™ (&) )

X(w) oxx(u) O(NE,wn) ooo(mg,mn)
amplitude pover-density object power-density
spectrum spectrum amplitude spactrum

spectrum
TABLE 5-4. FILTER OUTPUT RELATIONS
Time Filters Space Filters
output correlattlon image correlation
amplitude : function intensity function
t)ny(t » y
y(t) y(Oay(e) ¢yy(t) i(x,y) 1(x,y)dokd (x,y) - oii(rx.ty)
J | |+ = |
¥ (w) *¥* (w) 1() I (@) '

Y (w) - Oyy(m) I(ux,uy) Oii(wx,uy)
amplitude power=density lange power-density
spectrum spectrum amplitude spectrum

spectrum
TABLE 5-5. FILTER INPUT/OUT¥{T RELATIONS
objoct uproead function luage
Input nemory output intensity or antenna intensity
amplitude function amplitude distribution power pattern distribution
x(t) * h(t) = y(t) o(&3n) i S(x,y) - i(x,y)
J[ 2-4 2=4 J[

X(w) H(w) = ¥ (w) O(we.wn) T ) - I(wx.wy)
input transfer output object modulation image
amplitude function @aplitude amplitude transfer amplitude

spectrum spsctrua spectTum function spectrum

I-5-10
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5.8 EYE RESPONSE TO THE SPATIAL FREQUENCY SPECTRUM

Just as in the case of temporal filters, one of the great advantages of
analysis in the frequency domain is the fact that a series of modulation
transfer functions can be multiplied together to obtain the MIF of the total
system. A good introduction to this technique is afforded by examination of
response of the human eye tc the spatial frequency spectrum. This will be
followed by a description of the calculation of eye response to a complete
photographic system (Reference 56).

Unlike almost all other optical elements, the eye MIF is that of a band-
pass filter. Figure 5-3, taken from Price's paper referenced above, shows this
responsie. The Low spatlal=fLrequency spectrum components are removed by the
retinal neural network which processes the output of the light sensitive elements
in the retina (rods and cones). Apparently the reception of the low-frequency
components of the scene viewed by the eye had little survival value (or evern
an adverse ellfecet). 'These couwponents, therefore, were eliminated by evolu-
tionary processes. :

It has been found that optimum photographic systems have a total MIT,
including the eye MLV, which has the greatest area under the composite response
curve (Reference 56). This condition is subject to various constraints such as
constant available light flux and rules for selection of viewing distance.
Figure 5-4 is taken Ffrom Price's paper. Tt shows how the total MIF can be
found.

The use of this technique in order to generate radiometer images for
photointerpretation will be taken up later in this study.

5.9 CONCLUSIONS

The high degree of parallelism between temporal and spatial filters
would indicate that the concept of spatial frequencies and spatial frequency
spectrums should be very important when designing lcns systems or antenna systems.
Ihis Indeed 1is true iIin optiecs. The modulation transfer functions of lenses
and other optical components has become the standard method of specifying their
performance. Design of lenses by use of frequency-domain concepts have become
the dominant design methods. Recursive algorithms for computer lens design use
very sophisticated descriptions of the response of the human eye to determine .
what changes in the lens design should be made on eachrecursion (Reference 56).

Radio~astronomers have made extensive use of spatial-frequency concepts
in order to design radio telescopes. Unfortunately, most antenna engineers
have not followed suit. Often this has led to designs which appear primitive
compared to those of optical engineers and radio astronomers. This study will
concern itself almost entirely with these frequency-domain design techniques
as a means of designing radiometric mappers. This concluding section seems to
be a good place to mention one other interesting correspondence between spatial
and temporal frequencies. In addition, some differences between space and time
filters will be mentioned which are not apparent from the tables.

I-5-11
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In optical/antenna systems light distributions fall on both sides of the
coordinate axes. Indeed, these distributions often are symmetric around these
axes. This means that the causality condition, which exists when t is the
independent variable, does not exist in the spatial frequency domain. There~
fore, the real and imaginary parts of the transfer function, Tt(w ,m ), are not
a Hilbert transform pair as in the temporal case. 5

Also, in general, in .the temporal case frequency is a complex variable.
That is § = ¢ + iw. Then h(t) and H(w) are related by a generalization of
the Fourier transform called the Laplace transform. Spatial frequencies are
always real, so the Laplace transform is never required.

Neither of these differencés harm the usefulness of the correspondence

between temporal and spatial frequency functions in aiding the analysis and
design of optical and antenna systems.

There is an interesting correspondence between the uncertainty relations
in both domains. We all know that for temporal frequencies the uncertainty
relation is

1 .
oy dwdt > 1 (I-5~-10)
The corresponding relation for spatial frequencies is (Reference 57)

2" spdx > 1 (I-5-11)

where Ax is the size of a pixel resolved by the optical spatial channel and
Ap is the spatial bandwidth in radians per unit distance.
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v 6. ANTENNAS AS SPATIAL FREQUENCY FILTERS

6.1 RELATION OF ANTENNA MT¥ TO APERTURE EXCITATION

In Section 5 the concept of the modulation transfer function (MIF) of a
lens or antenna was introduced. It was shown in Table 5-5 "Input-Output
Relations" as the Fourier transform of the filter memory function in the
temporal case. It also was shown as the Fourier transform of a spread func-
tion in the space-filter case. If the device is an antenna, the spread function
is called the antenna power pattern, P(¢).

It has been shown by Booker and Clemmow (Reference 59) that the antenna

power pattern is proportional to the complex autocorrelation function of the
aperture distribution function. Thus

T, ) E(x, WE* (x,) (I-6-1)

where 1(x),) is Fourier transform of the antenna power pattern, E(x)) equals

the aperture distribution, x) = x/A = distance across the aperture face in
wavelengths.

One would have expected Eq. (I-6-1) to be a convolution, rather than auto-
correlation. Kraus (Reference 59) shows that when Eq. (I-6-1) is used, the
antenna response to a brightness distribution function is

S(s,) = B(H¥E(H) (1-6-2)

where ;(¢) is a mirror image of the power pattern P(9¢). This is equivalent to
the space filter relation in Table 5-5. However, an angular response is found,
instead of a response over an image plane. This mirror image pattern is used
so that the characteristic folding and inversion operation required by con-
volution will not be needed in Eq. (I-6-1). The autocorrelation replacing

the convolution is more difficult. Table 6-1 shows two tableau. The first
shows where Eq. (I-6~1) comes from. The second justifies the corresponding
convolutional form of Eq. (I-6-1). The hat symbol ™ indicates a mirror-image
function formed by inversion; e.g., P(¢ - $) = P(% - ¢0). The variable X)

in Eq. (I-6-1) is a spatial frequency. °It will be replaced by the symbol, ﬁ,

I-6-1
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. TABLE 6-1. CALCULATION OF THE MODULATION TRANSFER FUNCTION

B e

[}
modulat:ion §
aperture transfer
excitation function 5
* *
E(x,) E *E - H(F)
Fraunhofer : Convolution definition
diffraction theorem l
o \
F-F*
F(¢) - P(¢)
electric field power
pattern pattern
modulation
aperture transfer
excitation function
K
E(x,) ‘T" u(r)
Fraunhofer ' correlation
diffraction theorem
Fo (P = Fe¥ 5
r($) P(¢)
electric field power
pattern pattern

The correlation theorem is not as well known as the convolution theorem.
. It is discussed by Brigham (Reference 60). If E is symmetric, the distribution
between autocorrelation and convolution disappears.

6.2 ANTENNA MTF FOR SOME SPECIAL EXCITATION FUNCTIONS

Figure 6-1 shows a graphic method of finding the MIF when the excitation
is given. All autocorrelations slope off to zero in manner shown. The equi-
valent of the general tableau shown in Table 6-1 is given in Figure 6g2 for
uniform weighting.
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FIGURE 6-2. FUNCTIONS ASSOCIATED WITH UNIFORM
APERTURE EXCITATION

Note that TRI(F) reaches zero at +a. This is called the cutoff spatial
frequency. The MTF is zero outside this interval. As noted, the null-to-null
beamwidth of the power patterm, sinc2¢, is 2/a) radians. Since the period
of the cutoff frequency is 1l/a), the cutoff wavelength executes two cycles
per null-to-null beamwidth. The Nyquist criterion then says that if the
antenna beam is scanned, at least four samples of the antenna output must be

taken during the time the beam is scanned through an angle equal to the null-
to-null bemic}t:h of the bean,
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L b It can be seen from Figure 6-1 that the cutoff spatial frequency will
always be equal to the aperture size in wavelengths, a). As an example of a

more complicated excitation function, let E(x)) = TRI(x)). We have found in
Figure 6-2 that:

, TRI(Y) sincz(z).

So the tableau for this case must be as shown in Figure 6-3. Tables of
modulation transfer functions for more complicated types of aperture excitation
weighting have been tabulated and are available (Reference 62).

All filled apertures act like bandpass filters with response which goes
to zero at +aj. It is obvious that in order to pass the spatial frequency
spectrum with no distortion from zero out to the spatial frequency a), the
antenna MIF should be rectangular. If the total spectrum of the scene fell in
this 0 to a, range, there would be no signal distortion. In the more likely
case where the spectrum extends beyond a, the rectangular MIF produces the
least distortion possible without increasing system resolution. Bracewell
calls the resulting image signal the principal solution.

At first blush it would appear that regardless of what aperture weighting
is chosen, the MIF of an aperture with continuous excitation must slope down-
ward until a value of zero is reached at a,. Probably the closest approach

s to a rectangular response that can be obtained is produced by use of Taylor

i weighting with fairly high sidelobes. For instance, the MIF of Taylor weighted

' antenna with -5 dB sidelob®s shown in Figure 6=4 comes as close to a rectangular
response aus Iy posslble (Relerence 62).

/N f
> %)\

. o«
'ﬂl,l(x,\) TRI ¥TRI ’ ‘

l I amc?, sine?’ [ {

— Psm

FIGURE 6-3. FUNCTIONS ASSOCIATED WITH TRIANGULAR
APERTURE EXCITATION

is-vyeOL S8

v
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6.3 MIF OF THE COINCIDENT ARRAY OF UTUKURI AND McPHIE

The trouble lies in the power pattern of an antenna with a rectangular
MTF. This principal power pattern is the Fourier transform of the rectangular
MIF. This power pattern is a sinc ¢ response. It has both positive and
negative sidelobes. However, a radiometer using a square-law detector cannot

be used to obtain the princiapl power pattern because the detector output
cannot be negative.

However Utukuri and McPhie get around this difficulty by the use of two
interleaved array structures. Instead of using a square-law detector, the

two array outputs are multiplied together. This arrangement is shown in
Figure 6=-5 (Reference 63).

It can be seen that Utukuri and McPhie have replaced the power-measuring
radiometer associated with a single antenna with a correlating radiometer.
The two radiometer channels are fed by the pair of interleaved arrays.

Figure 6-6 shows the calculated response of a five-element array. The
sidelobes of alternating polarity may be seen.
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6.4 MIF OF A MULTIPLYING INTERFEROMETER

We are now ready to go on to the graphic calculation of the modulation

transfer function of a multiplying interferometer.

Figure 6-7 showing this

graphic solution is due to Kraus (Reference 59), and is his Figure 6-22,
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Thus we see that the MIT of a multiplying interferometer has the spatial
frequency response of a bandpass filter.

Kraus in his Eq. (6~100), pg 184 gives the interferometer power pattern
function lor the case where the antennn cleowents at the ends of the interferom-
eter are ‘dissimilar. It is

P9 = E(DE,@)ePY + EJ(0)E, ()Y (1-6-3)

This result bo proved o Appendlix 8 "Genorallzed laterferometer Mapplng Behaviors,"

kEq. (L-6=3) of this section is given in Eqs. (B-15) and B-17) of Appendix B in
terms of the gain functions of the two antenna elements with their phase
centers moved to the courdinate origin at the midpoint of the baseline. The
functions Ej(¢) and E2(¢) are the field patterns of the two interferometer
elements and Y = 275,8in¢. .

If the elements are identical, that is Ej(¢) % E;(¢) = E,(4), then the
power pattern becomes

P(¢) = lE°(¢)|2cos(2nSAsin¢) . (I-6-4)

Finally, if the element patterns are symmetrical, so that Ej(¢) = El(¢) and
Ex(¢) = E2(¢), the relative power pattern becomes

P(¢) = E (¢)E (¢)cosy (I-6~5)

The power pattern is seen to be proportional to the product of the field
patterns of the individual elements. i

I1-6-7
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'6.5 METHODS OF VARYING THE EFFECTIVE BASELINE LENGTH

These mapping radiometers must vary the fringe pattern given by Eq. (I-6-4)
in order to carry out their mapping functions. This can be done in a variety
of ways. One method of changing the fringe pattern is by changing the baseline
length, S, by moving the antenna elements. We can also change S; for a fixed
antenna separation by sweeping the frequency. Both of these methods change
the spacing between lobe peaks, as well as lobe position. '

If a phase shifter is inserted in series with one element, ¥ becomes
(2nS)s1ind + ¢g). If ¢S is continually increased by the phase shifter, a source
at fixed position will produce a sinusoidal voltage at the interferometer output.
Alternately we cun put a varlable Lengch transmission line in series with one
of the elements. Then

v = 21|~:- (Ssing + AL/p) (I-6-6)

Where A2 = differential length of the transmission line feeds from the
radiometer, p = transmission line phase velocity = v/c, v = velocity of a signal
along the line.

The last two methods are equivalent if A2 is small. However, they behave
entirely difffercntly when A La Larpe:

If the interferometer elements were points, then the bandpass filter
response would become an impulse. However, if the elements are not points,
then the MIF passband has a finite width as shown in Figure 6~7. This will
produce a bias error when measuring the magnitude of the spatial frequency

spectrum at frequency S,. Correction of this bias error will be considered
in a later section.

1-6-8
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7. FREQUENCY DOMAIN IMAGERS

7.1 TOURIER OPTICAL SYSTEMS

Fourier optics has become an important subject in recent years.
(References 64, 65) These techniques involve conversion of optical images
to spatial Lrequency spectrums, rcecording such spectrums in the form of photo-
graphic reccrds called holograms, and filtering these spectrum records. The
results of these operations are used to reconstruct modified images by trans-
formation back to the space domain.

Usually the cobjects dealt with in optics are recorded as images on photo-
graphic film. Manipulation of the image starts with the photo record. In our
case, the input signal is in the form of mitrowaves radiated by a scene at a
great distance from the radiometer. We want to record data about the radia-

tion over a plane corresponding to one surfuace of an imaging lens as shown in
Figure 7-1.

In the optics case the image on the photo transparency is converted into
a spectrum by use of a lens. Use is made of the fact that lenses in the
corrceet optleal conlipuration coan act as two-dimensional PFourler transfoerm
devices. The transformed image appears as a spectrum in a plane which is
called a frequency plane or Fourier plane. :

TRAVELING

PROBE IMAGE
————— PLANE
y—————— -L

A

EE———— RADIATION L
FROM 1

CORRELATOR pewssmmmndy COMPUTER |
Ep————— SCENE

h

——— T
\ OISPLAY
= 7&
neneutncc”/:::nu¢~cv
PROI3EC PLANE

FIGURE 7-1. DIRECT IMAGING SYSTEM USING A LENS CONTRASTED WITH FREQUENCY-DOMAIN IMAGER
USING TWO RADIATION-FIELD PROBES
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N * In our case the distant scene produces a frequency-domain field at the )
surface of the imaging lens. This surface, shown in Figure 7-1, is a frequency ’
plane. The lens acts as a Fourier transformer which converts the data to the

space domain. This converted signal is the image which appears in the image
plane. .

''We intend to record the frequency-plane data. Then the image can be
generated by carrying out the Fourier transform by data processing in a com=-
puter.  The question then arises as to exactly what format should be used to
record the frequency plane data. SAR radars give some guidanc: on this point.

7.2  SYNTURLTIC=APERTURE RADARS. AS ACTIVE FREQUENCY=-DOMATN IMAGERS

SAR radars are active frequency~domain imagers. The coherent video,
which is recorded as the synthetic aperture is generated, gives us a clue to
required format in the passive case. The SAR antenna receives the radiation
reflected by the scene. The phase change from pulse to pulse of the signal
return is the most important part of the data about the radar return. In order
to tie the data from successive returns into a single unbroken record of the
phase changes there must be a master timer signal. This signal is generated
by very stable crystal oscillators. It is called the reference signal. Its
smooth, predictable phase change is compared with the unknown phase change of
the reoturn by memns of a phasce detector (synchronous demodulator). ‘this is

i shown in l'igure 7-2. ' S

COMERENT ®
STORED KANGE 8IN RECORD " > VIDEO a
RECORD §
* + $ @
' | = |
) | |
AL .
OSCILLATOR | | -1 ' g
- r-to
| erase L__ PHASE ~ | | prage ~ :
| oETECTOR """ DETECTOR ""}D(TICTOH'
L~ J [E—
VEHICLE
T ,__L > VeLociTy
TN 1N~ I
| -1 i
1 1 l n
; T T T e e e e e e o e o e MADAR POSITIONS
; cvwmrrlé APERTURE
: T F—RADAR RETURN n‘aowruon—.T T
m , FIGURE 7-2. SAR MEASUREMENT IN THE FREQUENCY PLANE
i M .
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"\ The coherent video record is Fourier transformed to get the image or

Fresnel transformed when the scene is in the near-field of the synthetic
aperture (the Fresnel transform is a generalization of the Fourier transform).
The radar signal is linear in amplitude, while the radiometer signal is linear
in power, However, this is not important in making this comparison. The
mathematics is the same, :

7.3 THE VAN CITTERT-ZERNIKE THEOREM

The radiometer imager in Figure 7-1 has no internal reference like the
SAR. However, all we nced is a’'reference with a stable phase derived from
the radlation from the scene.

This can be provided by a second probe with a fixed location in the
frequency plane. The fact that the probe receives noisc, rather than a sine
wave, is not important. As long as the noise bandwidth is small compared to
the center frequency of the noise spectrum a phase coimparison can be made.
The generalization of the phase detector, when noise-like signals are used,
is the corrclator. There the outputs of the reference and traveling probes
are multiplied together and averaged.

We readily will recognize the output of the correlator as a laternl
coherence [unction, I'yo (15, rn) Its importance stems from the fact ‘that
it is the TFourier transform of the object intensity distribution shown in
Table 5-3., This relation is the Van Cittert-Zernike Theorem. This theorem
is the basis for the analysis of the propagation of partially coherent vadin=-
tlon. A prool of this theorem, abstracted from Born and Wolf (Reference 66),
is given as Appendix E. '

This theorem says that if the linear dimensions of the source and the
distance between the two frequency-plane probes are small compared to the dis=-
tance between the frequency plane and the source, the degree of coherency between
these probes, T s T ) is equal to the absolute value of the Fourier
transform of the intsnsity function of the source.

In Table 5~1 relations between functions in the object plane, in the
image plane, and relations between these function sets were given. We now
need to prepare a similar tableau for object-plane/frequency-plane relations.
This can be done with the aid of the Van Cittert-Zernike theorem. T7This is
done in Figure 7-3, The symbol + a -+ indicates that thi two functions differ
only by a constant factor.
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FIGURE 7-3. SOURCE/FREQUENCY PLANE RELATIONS

7.4 DUAL INVERPRETATLON OF FREQUENCY-PLANE INTERFEROMETER MEASUREMENTS

Since o (£, n) is the transform of Iy, and ¢ (ug, w,) iz a transform of
o (6, n), ¥ (g, my) must be proportional to I32. The spatlal frequency
spectrum 5 (v, V) 1s not the transform of T 2 because it is not a ‘spectrum
description of the variations of I'j, as Ty and T, are varied. As shown in
Section V, S (v, v) is the angular apectrum of the incoming radiation. 1In
Figure 7-4 & geometric construction shows the ¥ (wg, wp) and S (v, V) are
proportional. Therefore, 1‘12 (‘:E, Tn) and S (v, v) are proportional.

e

CONRELATOR
ARELAT "
BASELINE LENGTH ‘ - EQUALS 2

SSYYEOLS

7

‘0 }»g-:m

FIGURE 7-4. EQUIVALENCE OF 6' AND S FUNCTIONS

: I-7-4



oy

]

)

ORIGINAL PAGE IS
OF POOR QUALITY

' Figure 7-4 shows the two probe antennas separated by a baseline of

length Z. This baseline length produces a set of lobes with angular frequency
of vl (cycles per radian). There will be a component of the scene brightness
vhich fluctuates at a linear frequency of wrl cycles per unit length. For an
interferometer distance from the scene of OF, the interferometer lobes are
synchronous with the brightness_component of frequency wyl. A large output

of magritude S (vl, o) or ¢ (w 1, o) appears at the interferometer output port.
All other components of the object brightness distribution average to zero at
the output port. This occurs because the interferometer lobes are not
synchronous with any of these other spectral components, ’

We see thian that the correlation function measured by the frequency plane
probes has a dual incerpretation. 1t is either the lateral coherence function
of the frequency plane or the spatial frequency spectrum of the scene. In
either case Z must be varied through a range of values in order to measure the
total function. These arguments prove the validity of the bottom and right-
hand proportionalities in Figure 7-3,

It is now obvious that by moving a probe over a region in the frequency
plane, and measuring T';, as we move, we are in a position to find the object
Intensity distreibution, This is done by taking the two-dimensional Fourier
transform of the measured lateral zoherence functiom, I'jz (Tg; Tn). This
process is called aperture synthesis. The probe/correlator Sevicc, plus the
Fourier transformer, constitutes a frequency-domain imager.

7.5 RECIPROCAL RELATION BETWEEN. SPACE-AND FREQUENCY-DOMAIN IMAGERS

Transform pairs always exhibit a reciprocity in width. As one member
of the pair becomes smaller the other member becomes larger and vice versa.
The reciprocal width theorem states th:s property more exactly. It says that
the cquivalent width of a function is equal to the reciprocal of the equiva=-
lent width of its transform (Reference 67). .

If the frequency-domain imager is contrasted with a pencil-beam scanner
(space-domain imager), there are two transform pairs whose comparison is of
interest. One pair is probe travel required to produce the image. The other
pair is antenna size. We will make the comparison using a microwave lens in
the pencil-beam scanner case. This is not a restriction on bthe relations
involved. The lens merely eliminates the folded ray paths produced by
reflector antennas. This makes for a neater diagram. Figure 7-5 shows the
two cases, e .

It is Ko (Reference 68) who gives the relation D = Ae-l, where D is the
diameter of the disk sampled in the Fourier plane in wavelengths and A6 is
angular resolution:. He also states that in order to meet the Nyquist sample
criterion, so there is no aliasing, the sample spacing in wavelengths must be
Fov-1, However, in order for the probe antenna to see the entire scene, it
must have an aperture of no greater than FOV-1 wavelengths. Therefore the
probe moves by its aperture width, between successive samples.

I-7-5
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FIGURE 7-5. COMPARISON OF SPACE AND FREQUENCY-DOMAIN IMAGERS

It may be seen that the principle of transform reciprocity favors the
frequency-domain imager. This device requires a small antenna and large probe
motion. A mapper where only large motions are needed to obtain high resolution
is ideal for space applications. There is a lot of real estate in orbit.

Motion over the frequency plane is limited only by the ingenuity of antenna
engineer and the vehicle designer, _
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7.6 COMPARISON OF THE SENSITIVITY OF SPACE-AND FREQUENCY-DOMAIN IMAGERS

In the Introduction heuristic arguments were given to prove that the
sensitivities of these transform twins were the same. The time has come to
prove this on a more formal basis. Rather than dealing with brightness, as
we have up to now, let us consider the total brightness of the scene when
viewed at the location of the radiometer antenna. Brightness is a spectral
density. Total brightness, B (6, ¢) is the integral of the brightness over
the radiomoter oporating band,  TL has the dimensions of watts m=2rad=2,
Since we are not dealing with a particular scene, we will replace B(O, ¢)
with an average total brightness, B, over the field-of-view of the antennas.

The antenna has o capture cross scctlon A (0, ¢). “The lncremencal power
received from direction (6, ¢) is B (6, ¢) A (6, ¢) dQ, where dQ is a.differ-
ential solid angle. This cross section can be related to the antenna power
pattern by the equation

A (8, ¢) = A Py (8, ¢) | (1-7-1)

This ncrmalized power pattern is dimensionless. Its peak value is unity. A
is the antenna effective aperture for radiation angle-of-arrival in the
direction of peak gain,

A very important property of antennas is the fact that the integral of
A (6, ¢) over a sphere surrounding any antenna is always A< (Reference 69).
This is true regardless of the antenna size,

Let us assume that the beam efficiencies of both the pencil-beam scanning
antenna and the frequency-plane probe are 100 percent. _Then in the first case
the Lategral of A (0, $) over the pencll-beam will be A%, In the sccond case
the integral of A (0, ¢) over the field-of-view seen by the frequency-plane
probe will be A2, The solid angles corresponding to these cases will be
designated Q; and Q.

The brightness of iny emitting surface is given by the relation

B (o, ¢) = 2KLCO, ¢) av
A2

e (6, ¢) (I-7=2) -

1-7=-7
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LIS ‘where T is the surface temperature and ¢ is the emissivity. The average
brightness is given by

T = AV f f T (0, $)edA = -—-""‘Tz““ (1-7-3)
A

scene

whexe T is the average radiant temperature of the scene.

Then for both the pungll—buum antenna and Eruquency-plune probe cases
the thermal power received is

Py or 2 %ffn(o $) A (8, ¢)dn- ffa(e,wdn
R, or 1, or

- —1- (&\-’-) Az - g‘iA\_)
2 AZ

(I-7-4)

The factor 1/2 appears because the antennas can receive only one of two
orthogonal polarization components of the radiation.

t may be seen that the large pencil-beam, scanning antenna and the small
frequency-plane probe receive the same power. In actuality the frequency-
plane Lmager recelves twice the powerifound in Eq. (I-7-4). ‘Tthis occurs
because there are two frequency-plane probes. However, the number of samples
in the Fourier plame is double the number of pixels in the image scanned by
the pencil beam., Call this number N. Then the 2N spectrum samples can be N
complex numbers. The total power distributed between the real and imaginary
parts of the complex number is P, in Eq. (I-7-4). However both real and

. imaginary bins contain the samne naise power as that in a pixel bin. This
reosults because there is the same time available for measurement of the N
samples or N pixels. Therefore the sample noise power is twice the pixel
noise power. But the two Fourier-plane probes receive twice the signal power
~ompared to the power received from a pixel.

The final conclusion is that the space-domain and frequency-domain
imagers have equal sensitivities when all system parameters are the same.
in both cases.

oy,
@ - -

I-7-8

e AR T TR AT AT it s e s e e

e I



i T

ORIGINAL PAGE IS
OF POOR QUALITY

»

*

1
7.7 SAMPLING THE FREQUENCY PLANE

Up to this point the sampling procedure followed by the traveling
frequency~-plane probe has been vague. It has only been specified that the
sample grid be dense enough to meet the Nyquist criterion. Usually the sam- -
pling sequence is divided into two steps. The first step consists of moving
the ‘traveling probe out along a baseline, starting at the reference probe and
terminating at some maximum baseline length. A new baseline orientation is
then selected by stepping the baseline drive mechanism through a small.angular
lncrement. Probe motion along the baseline is then repeated and another step
in baseline orientation is taken. These motions continue until the baseline
has rotated 180°. The final result is the sample grid in the Fourier plane
shown in Figure 7-6. The half-wave spacing indicated ensures that the Nyquist
criterion 1. net,

The ri=%ess of sampling along a baseline is often called "aperture-
synthesi:,” The terms "rotation synthesis" or "supersynthesis' are reserved
for the ¢ npling procedure using the rotating baseline. In the literature
these oj.rations are treated merely as successive portions of the Fourier-
plane imaging process. ’

19-¥PEOLD-

FREQUENCY
PLANE

X's ARE )
SAMPLING POSITIONS
ALONG BASELINE

FIGURE 7-6. STRUCTURE OF FREQUENCY PLANE IMAGER SAMPLE GRID
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ot 8. BASIC APERTURE SYNTHESIS SYSTEMS

8.1 RESPONSE OF AN INTERFEROMETER TO AN EXTENDED, NONCOHERENT SOURCE

This section is not intended to be a mathematical analysis in depth of
aperturc-synthesis, since this has been done many times before (Reference 70,
71). The intent is to make a more heuristic examination backed by appropriate
references. Comment will also be made about the applicability of the technique
to the problem of orbital radiometric mapping.

The response of the aperture-synthesis interferometer to an extended
source is analyzed in Appendix B. There it is shown that only an incoherent
source produces a linear interferometer response. Eq. (B-16) of Appendix B
shows this response, P(X), to the power distribution over the scene, Po(x), is

P(X) = Epo(x)*x(x) _ (1-8-1)

where K(X) is the antenna power pattern of the interferometer. Then Eq. (B-20)
shows the relation between the space=domain and frequency domain [unctions
first introduced in Section 6, Antennas as Spatial-Frequericy Filters. Namely,

»

P(X) = PO(X) * K(X)

! o e

S(¥) = O(F) - MIF(F) : .
where S(F) and O(F) are the complex spatial frequency spectrums of the image
and object.

Let G1(X) and G2(X) be the antenna field patterns of the two interferom-
eter antennas. Let Aj(n) and Aj(n) be the excitation functions of the probe

e T
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égsrcures. Then Eq. (B-21) of Appendix B ghows the relation of K(X} and

MIF(F) to these four functions as

KD = G, - 6

Lo | (1-8-3)

MIE(R) = Aj() *AF¥(M) '

-

As explained earlier, Kraus uses the correlation theorem to replace the
convolution by a correlation to ‘obtain

Kx) = El(x) . Gz* (xX)

I 1} . (1-8-4)

MIE(F) = Aj(n) * A% (n)

Craphic construction of the MIT per Eq. (I-8-4) was shown in Figure 6~7,
and is repeated here for easy reference.,

Now let us vary §) in Figure 8-1 from zero to a maximum value D. From
Eq. (I-8~2) it may be seen that the interferometer acts as spectrum analyzer as
it scans over the spatial frequency spectrum of the scene O(F). 'The output is
the image spectrum, S(F).

Often the interferometer is treated as an inferior antenna which is
ambiguous due to response of its many lobes to the object scene. Methods are
then devised to resolve the ambipulities. The effort to resolve the amblgultles
ls made because the interferometer is much lighter and less costly than a
filled aperture whose main beam equals the interferometer lobe width. Fig-
ure 8-2 shows the variable baseline interferometer as a spatial-frequency
spectrometer,

A -]
: ' MTF SPATIAL FREQD
‘ SPECTAUM ﬁ
——— '
S S\ »

]

® MODULATICIN TRANSFER FUNCTION 1S FOURIER TRANSFORM
OF POWER PATTEAN

® MULTIPLYING RADIOMETER A BANDPASS FILTER OF SPATIAL
FREQUENCY SPECTAUM OF OBJECT SPACE

- - — -

“FIGURE 81, INTERFERCHMETER MTF

‘ 1-8=2
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SPECTRUM OF SCENE 0(F)

c€o-ryeole

/\’ SPATIAL

2 Max - - 2 IEA X i " FREQ
' e IMAGE SPECTRUM GENERATED
/Qs INCREASES .
] .
|

| e -S}\——‘-— lS)\—.—i

@ INTERFORMETER IS SPECTRUM DISSECTOR OR
SPATIAL-FREQUENCY SPECTRUM ANALYSER

@ IN CONTRAST, FILLED APERTURE I8 IMAGE
DISSECTON; ANALYZES SCENE 1 PIXEL AT A TIME
BY ANGLE SCANNING

FIGURE 8-2. THE VARIABLE BASELINE iNTERFEROMETER AS A
SPATIAL-FREQUENCY SPECTROMETER

Tt is obvious from previous diseussion that, when operated in the '
Crequency domaln, the fnterfesometer 1is not ambiguous at all. 1In fact 1t is
the pencil-beam antenna which i ambiguous.

et the filled=nporture width ba D, so that the pencil=beam and Later-
ferometer lobe have the same width. ‘“hen the low-pass MIF of the filled-
aperture has a passband which extends over the entire spectrum out to frequency

D. All the components of the spectrum are passed resulting in complete
ambiguity.

The conclusion is that both the interferometer and the pencil-beam

scanning antenna are both useful, unambiguous mappers when operated in their
proper domains,

8.2 DISCUSSION OF LATERAL DECORRELATION EFFECTS

The above analysis of interferometer operation as a spatial-frequency
spectrum analyzer may be confusing to those who have read radio astronomy
textbooks and papers where the response of the interferometer to small uniform
sources is analyzed, It is stated that when the source gets too blg there is
lictle responsce. A source subtending an angle of 1/8)‘ is too big.

Kraus in his Figure 6-15 on page 175 shows why this is so by plotting
the response of an adding interferometer to sources with three different
angular extents. When the source becomes equal to or larger than the lobe
spacing, the average of the source times the portion of the lobe pattern

.
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falling on the source is nearly constant. There is then no usable output
sipnal. The hehavior for a multiplyinp radiometer is similax, except that DC
term is not present., Kraus' Figure 6~14 is also given, since it shows how the
point source response formed by multiplying the interferometer angular
response by the antenng jattern of the interferometer antennas.

++»From Figure 8-~3 it may be seen that as the baseline length increases and
the lobes become thinner and more closely packed, the response of the inter-
ferometer to a finlite source will decrease. For a uniform circular source of
radius p located on the perpendicular bisector of the baseline at distance R,
the normalized interferometer response is

2J. (v)

whera Y is the phase difference between radiation at the ends of the baseline
and
(Y} - & 3 "y Cl.0]
y = 2’“SA R ..SAAct. (1-8-6)

The angle subtended R by the source is Aa. ) | '

INDIVIOUAL ELEMENT
PATTERN

y9-¥9E0LB

g

ARRAY PATTEAN

(m‘ s S,V

max, 0’0
. ? P/ a< n
0,
4,~gf~1¢*7£*JC\‘ . (o
£ smlﬂ =
INTERFEROMETER
PATTERN g .
{e) S -
/ ON {c)

{a) INDIVIOUAL-ELEMENT PATTERN; (b) ARRAY PATTERN: INTERFEROMETER PATTERN (a) FOR POINT SOURCE: (b) FOR A

AND (c) THE RESULTANT INTERFEROMETER PATTEAN FOR UNIFORM EXTENDED SOURCE OF ANGLE a<1/s\; AND (¢) FOR A -

THE CASE OF POINT SOURCE, UNIFORM EXTENDED SOURCE OF ANGLE G= 1/sA

- . - l
FIGURE 8-3. RESPONSE OF AN INTERFERO‘MET ER TO SOURCES OF VARIOUS SIZES
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. In Figure 8-4 the plot of l“lél’ due to Born and Wolf (Section 10.4.3,
pg 512, Figure 10,7) is shown.

The abscissa is not v, but stems from an illustrative optical experiment.
The first null occurs for v = 3.83. Let us assume that the interferometer
output is decorrelated when Iulzl falls to 3 db below its peak valuve, Since
lul.. is the amplitude of the correlator output, =3 db cccurs when Iulzl -
1/v2, At this point v = 1,6,

¥

Substitucing in Eq. (L~-8=6) and solving for Au, we get

. 1 A0
Aa 252 2 (1-8-7)

Eq. (I-8-7) says that the disk cannot have au angular extent greater
than half a lobe width without suffering significant decorrelation.

It may appear hard to reconcile these results with the earlier explana-
tion of the Lnterferometer performance in terms of a narrow handpass filter
which scans the spatial frequency spectrum of the scene. However these calcu-
lations concerning the decorrelation of a disk source are in truth a help in
understanding the carlier analysis.

’“l'&‘ g
1.0 k= 3.2 8.4 9.8 12.!-’ v E
]
0.8
o.6 ry
0.4 \a
0.2 ‘c "
B~o AN F LB~ o0
l 2 m»
0,16 2 3 4
" FIGURE 84. NORMALIZED LATERAL
COHERENCE FUNCTION OF A
NONCOHZRENT CIRCULAR DISK
SOURCE
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' The key to this puzzle is the fact that the terrain is not a featureless
surface like the disk. It is composed of structures of all sizes ranging

from continental dimensions down to facets only a wavelength or so in size.
The facets can be vegetation, wave facets, ice patternms, soil and rock patterns
and many other things, including emissivity variations over the surface of
man-made objects. Let us model this terrain structure as a surface over which
a multitude of disks are strewn. The disks have random emissivities clustered
around the average terrain radiant brightness. ¢

Let the disk diameters have a uniform probability distribution rahging
from the operating wavelength up to the diameter of the mapped area. Disks
larger or smaller than these limits cannot be seen. Call these limit
diameters dpggn and dpayxe Also let the interferometer be located at
distance R from the surface. The angles subtended by the disks range from
the angular field-of-view downward to A/R. That is

G ax - Fov, - A“max x 1 rad
(1-8-8)
@ n A/R, o, <« 1 rad

Aperture synthesis starts with the travelling probe very near the reference
probe., In order for the largest disks to contribute to the output of the
interferometer correlator, Eq. (I-8-7) requires that

1

A s 2Au
win max

S (1-8-9)

when S) = SA all the disks contribute. As Sy increases the contributions
of the larger ﬁisks drop out.

Let X = sA/skmin; then 1 <X<w, Then the disk size corresponding to X is

. S
1 Amin b
a(x) = , (stun)( 2 ) " x (1~-8-10)

I-8-6
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‘Assume that all disks smaller than a(X) correlate completely am all disks
larger than a(X) do not correlate at all. The contribution to the correla-
tion function of a disk will be proportional to a2(X). Therefore

-] [ ™ 2
| b
o) = f a(y)dy = bzf-% - -p? -;;lx - 2, e (1-8-1D)
y
X X

We will set 9(X) equal to zero in the region it cannot be measured, namely
zero to one. Then from Vol, I, Sec. 1.2, Eq. (3) of the Bateman Tables we
find that the ccsine Fourier transform of (8-11) is [Ci(y)]. Therefore

*

£(X) = 0, 0<X<1
-Ci(y)

Qme—

1 (I-8-12)
f(X) - -}'E. y 1<X<w

J

- Figure 8-5 shows a plot of Ci(y) taken from the Bureau of Standards
Tables (pg 232, Figure 5.6). This is the spectrum associated with the corre-

5. L]
lation function {lateral coherence‘function) that was just derived.

The spectrum does not extend below y = 1 because 9(X) was not measured
for X less than *1. This portion of the correlation function carried the
information about the low frequency portion of the spectrum. - This gap in
9(X) also produces the oscillatory tehavior of the spectrum plot. The oscilla-
tions would not be present in a more realistic model. Such a model would be
more random than the one used here,

[}
. city) | 8
- \ ™~ b Y
e
0 P g e
a— —
+1.0
) 2 r 8 8 10 12
Y
FIGURE 8:5. PLOT OF THE COSINE
INTEGRAL FUNCTION
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'\ However the absolute values of the maximums and minimums of Ci(y) act
as envelope which shows the behavior of the more random model. From pg 244
of the Bureau of Standards Tables we find that

lcicy )| = |cil(n + 1/2)n] = 3 1 - --2——3 (1~8-13)

peak peak ypeak

¢

L3

Remembering that 9(X) is represented as a voltage at the output of the
correlator, it may be seen that the spatial frequency spectrum is of the form

s = F2 (1-8-14)

S(F) = F2 {9(X)} = [c1 (X )=

peak

ypeak

This result is not too far different from the spectrum shape selected in

Appendix 511 on the hasis of other considerations. This spectrum was
SCIK) = p=ee,

8.3 DETERMTNATTON OF MAXTMUM BASELTNE LENGTI

In most of the literature the maximum baseline length is treated as a
specified parameter. A perfect mapping system is considered to be one having’
a MIT which is unity out to the critical frequency of the system. Bracewell
defines the signal emerging from such a system as the principal solution.
Since there is lots of room in orbit, a less fatalistic attitude will be taken.
It will be assumed that the baselire can be as long as we care to make it.

As the baseline lengthens the spatial frequency spectrum of the scene will be

measured with higher and higher resolution. This is illustrated by Figure 8-6
due to Steel. (Reference 72) :

As spectrum resolution increases the rms difference between the signal
representing the true scene and the signal produced by the mapping radiometer
decreases. This rms error is one which does not decrease as the integration
time available increases. In statistiecs an error of this type is called a - =~

blas error. The bias sc¢-ared, b4, is the integral of this video power density
of the scene from D to infinity.

However as the maximum baseline length increases, the number of spectrum
samples increases, Since this maximum length is the radius of the disk over
which samples must be taken, the required number of samples increases as the
square of the maximum baseline length, D. The total observation time avail-
able is fixed by the mapping geometry and the satellite velocity. Therefore
the time available increases as D“ as the maximum baseline length increases.

I-8-8
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FIGURE 8-6. PROGRESSIVE INCREASE IN
SPECTRUM RESOLUTION WITH LENGTHENING
OF THE CORRELATION RECORD

The total mean square error is the sum of AT2 and b2 added power-wise.
It is obvious that this sum goes through a minimum for some value of D, Call

this optimum baseline length D, .- This is a common type of statistical
calculation. Figure 8-7 shows Blch. an error giws for a temporal filter due

to Papoulis. . (Reference 73)

Oppenheim and Shafer {(Reference 74) show plots of a spectrum where the
total signal has been chopped up into records with lengths of 14, 51, 137 and
452 samples. The total number of samples is 3,164. So there are about 226,
62, 23 and 7 records, respectively, having the above lengths. A spectrum

89-PYEOLS

WIENER-
FILTER

ERROR

e ——— rT

FIGURE 87. PLOT OF NOISE VARIANCE, ATZ,
BIAS SQUARED, b, AND TOTAL MEAN SQUARE
ERROR, €2 FOR 2. TEMPORAL FILTER
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estimate is made for each record; then all the records of a given length are

averaged together. The results are shown in Figure 8-8 (Oppenhcim and
Shafer, Figure 11,3).

P

Here the noise 1s the result of the fact that the variance of a spectrum
estimate obtained by Fourier transforming a correlation function approaches
a nbh-zero constant as N + «, The limiting variance of a spectrum estimate
such as this was given in Eq. (I-5-8) of this report. ‘

It may be secen that N = 51 is near to being the optimum record length.

In Appendix G, "Performance of Aperture-Synthesis Imagers," the optimum
disk diameter as well as error expressions are derived. In Appendix XI,
"Recapitulation of Radiometric Mapping Performance,” plots of the rms noise
error (square root of the variance) and the bias error are given for two
aperture-synthesis systems. One system is in geosynchronous orbit. The
other system is in low earth orbit, Plausible parameters are used in both
cases, We have for GEO: AT = 309K = rms terrain fluctuation, Dopt = 1.8 km,
f=1.,2 GHz, ST = %K = temp res, b = 6.25°K = bias, ¢ = 7 °k = total error.
We see that for LEO: Dy, = 1.5M, f = 20 Gliz, 6T = 3°K, b = 8%, c = 9°K.
These temperature resolutlons are poor compared to mapping radiometers being
designed at the present time. This c¢ccurs because many designs ignore bilas
error completely, both bias duc to impirfect spectrum reproduction of spatial

frequencies less than D and the finite-resolution error which is the present
( subject of discussion.

2
Iy (@ Iy (W) §
1 ' ' &
) o
0 n
w
(s Nw 14
()
1
A f\ A
AAVINSNALNIBATY
w
(b) N = 51 . {d) N = 452
FIGURE;,B-B. PERIODOGRAMS FOR A FIXED TOTAL NUMBER OF SAMPLES AND
f RECORDS OF LENGTH N
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Probably the designer knows intuitively that he cannot build an antenna
large enough to reach optimum size, although this does not excuse faillure to
consider bias errors in the frequency range of 0 to D, This portion of the

spectrum is the signal. Distortion of this portion of the spectrum is distor-
tlon of the signal.

+*In many cases the system is used in applications which do not require
resolution of detail smaller than some critical size. Then bias is found
by integration from frequency D out to a frequency corresponding to this size,

rather than out to infinity, This will decrease Dopt and also the correspond-
ing bias and noise errors. .

A second comment about this situation is that once bias error is
acknowledged the system can be designed to reduce the error. Aperture
synthesis does not turn in too good a performance record because bandwidth is
limited by decorrelation effects. Figures 9 and 10 of Appendix show that
true~time~delay antennas do better. But the optimum 12M antenna in LEO is
certainly at the limits of the state ouf the art; the optimum 3KM antenna in
GEO is certainly impossible. However SPINRAD (Figures 5 and 6) and RADSAR
(Figures 7 and 8) can be built with optimum size. They also turn in fair
radlometric performance (8T= 1.5 - 2°K and b= 2.5 - 3°K). Contemporary
design trends in radiometry such as Hadamard transform techniques (Refer-

ence 75) will probably reduce the errore values just quoted considerably in
the futurc,

N
1]

8.4 BIAS DUE TO FINITE RESOLUTION OF THE SPATIAL FREQUENCY SPECTRUM

Up to now we have only been concerned with bias due to finite angular
resolution. There are other bias errors which are present and should be
mentioned. One bias is due to the finite bandwidth of the bandpass MIT of
the interferometer. In igure 8-2 it may be seen that as the MIF scans over
S(F) the result is the convolution of the two functions. The multiplicative
relation, S(F) = 9(F) * MIF(F) holds for a fixed baseline 'length. Let $(F)

be the estimate of S(F) generated by the scanning MIF of the interferometer as
the baseline length is changed. Then

§p) = o(F) * WIT(S,) ’ (1~-8~15)

This result is completely analagous to the situation encountered when a
temporal spectrum is measured by a scanning temporal filter. The bias for
this case is found by Bendat and Piersol (Reference 76). It is

2
B . :
b [8(M)] = —— 5"(F) ‘ (1-8-16)

where B, is the filter'bandwidth.
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g The TFourier transform of the MIF passband shape is the element pattern
of the two probe antennas alone. The interferometer pattern appears only
when the pattern origin is made the center of the baseline and the probe
patterns have phases referred to that origin. The power pattern for the
interferometer is then generated as shown in Figure 8-4. The element pattern
is given by

[

L]

E(X) = G(X) * G*(X) ‘ (1-8-17)

The relations (8~2) for a fixed baseline are therefore replaced by the
relations in (8-18). P(X) is the estimate of the intensity distribution
function for the scene, »

(0 = P00 - E(X)
J . J (1-8-18)
§r) = w(Rmares,)

=>

L0
—

A

Nota that Q(V) is quite a good woproduction of P, (X), if the probe
antennan have an pperture slye which Ly small compared to the maxipum base-
line length, D. Then MTF(SA) is nearly an impulse. Also E(X) is nearly
uniform across the FOV subtended by the scene, except near the edges.

It would appear that P,(X) could be recovered by dividing P(X) by E(X).
However this inverse fiAtering operation will amplify noise greatly near the
edges of the scene where E(X) is small. The solution to this difficulty is
use ol a Wiener [llter, rather than an lnverse fllter. The Wiener filter
weights the degree of inversion carried out by the signal-to-noise ratio.
This will be discussed in more detail in a.later section.:

ILe might be mentioned that the response of the aperture synthesis system
over the spatial frequency band from zero to D is almost rectangular., This is
much closer to perfect rectangular response than the response of a filled
apcerture of size D (shown in Figure 6-1). As a-result the aperture synthesis
system has almost twice the resolution of a filled aperture having the same
size,

8.5 ROTATION SYNTHESIS

As mentioned in Section VII, "Frequency;Domain Imagers," the lateral
coherence function is measured over a disk in the Fourier plane by rotating
the Interferometer buselline while repeating the aperture synthesis procedure.
These repetitions are made often enough to meet the Nyquist criterion. The

I-8-12
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Van Cittert-Zernike theory says that the two-dimensional Fecurier transform of

the lateral coherence function is the source brightness distribution
(Appendix E).

There ic a second relation between TI'j2 and B which is less obvious. Let
I'12 (1) be the lateral coherence function measured over displacement 1, Then
the one-dimensional transform of T'yp (7) is the brightness distribution of .

-

the scene measured a;png a cut through S(v, v) which has the same orientation .

as the displacement Tt in the frequency plane. This is the projection theorem.

This theorem shows that B(x, y) can be built up out of a series of 1l-d
transforms of I'jy measured along a set of diameters of the Fourier disk.

No matter how B is computed from TI'js, the process of measuring I';2 along
a set of disk diameters in the frequency plane followed by computation of
B(x, y) is called rotation synthesis.

8.6 ALTERNATE WAYS OF SCANNING THE INTERFEROMETER MTF IN SPATIAL FREQUENCY

Up to now we have examined aperture synthesis where the length of the
interferometer baseline has been varied. There are two other means of varying
the effective baseline length.

The first alternate method is variation of the operating frequency. This
changes the variable S) = S/) by varying A instead of S. Sheridan (Refer~
ence 78) built a system of this sort for mapping the sun (Reference 78). It
is apparent that the source must have the same emissivity over a very wide
range of frequencies when this technique is used. Also, the radiometer must
be located where it will not receive radiation from man-made source. This is
a very hard condition to mcet.

The MFASR avoids this problem by using a discrete set of frequencies 'l
which fall at places in the radio spectrum where there is little interference.
The question then arises as to whether there are enough samples available to

permit a reasonable reconstruction of the image., This problem is treated in
later sections.

. The othier possible method of varying S; is rotation of the inter-
ferometer end-over-end. This is {llustrated in Figure 8-9.

The axis of rotation is at right angles to the axis oi*rotation for
rotation synthesis. If the ficld of view is centered on the zenith-nadir
line 2N, the effective interferometer baseline length equals D cos 6. This.

varies from a value of D when the baseline is horizontal to zero when it falls
on ZN,.

‘ The field-of-view must be held fixed by rotating the radiators on the '
baseline ends in the opposite direction from the base rotation. This is
indicated in the drawing by the circular arrows marked -6,

*
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9. IMAGE FORMATTING AND OPTIMIZATION

9.1 INTRODUCTION

Frequency domain imagers tend to invite a much larger amount of data
processing than conventional imaging systems. In the case of conventional
systems, the image is formed by hardware. Image-data processing is then an
additional step. If the system designer elects not to take this step, the
system still delivers images to the user,

In the case of frequency-domain images, data processing is mandatory.
Even if nothing else is done; the spectrum data must be Fourier transformed
in order to produce the image. Once data is digitized and fed to a computer
in oeder to elfect the Lrequency=-to-space~domaln transltlon there ls strong
motivation for additional data processing in order to improve image quality.

Image manipulation by computer tends to quantify Image quality to a
degree which never occurs when a lens or pencil-beam scanner forms the image.
This quantification of image properties leads to definition of the operations
on the image data which are needed to produce the best possible images. This
in turn leads to specification of the performance of the rest of the imaging
system required to get the best results out of the image-~data processing,

Although there are grey areas, image processing can be broken down into
three areas. One area I will call formatting. This involves arrangement of
the image data for best display. Examples are image annotation, dynamic range
adjustment to match the capabilities of the display, contour line generation,
and map-projection generation.

A second area is image manipulation in order to improve quality according
to some criterion.

A third area is measurcment of image parameters and comparison between
images in order to quantify image quality.

Fortunately, :here is a software section VICAR which meets most routine
1nage processing needs. The rest of this chapter and Volume II are concerned

- with image processing associated with specific Fourier-plsne imager systems,

t

I-9-1
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9,2 THE SOFTWARE SYSTEM - VICAR

' This software is described by Castleman (Reference 117) in his Chapter 4
and Appendix K, VICAR PROGRAM INDEX. Appendix M includes a library of FORTRAN
language image-processing programs.

» 'The VICAR system, and its documentation, may be obtained from the
following. .

COSMIC -
Computer Center

112 Barrow Hall '

University of Georgla

Athens, GA 30601

(404) 542-3265

The VICAR system is (iled under number NPO-13415, A set of image-
processing programg for the PDP-1l computer are aleo filed there¢ under NPO-
14892 and the name Mini-VICAR.

Appendix K is a reproduction of Castleman's Appendix II where a list of
VICAR programs are given together with brief descriptions. Asterisks indicate
that the program was available from COSMIC at the time Castleman's book was
published.

1

9.3 TIMAGE QUALITY CRITERIONS

The most obvious criterion for image quality is the root-mean-square
difference between the firal image and the original scene. The total rms dif-
ference consilstys of two components.  One component ls system nolsc, Ly mag=

nitude is given by AT, the system temperature resolution. The second component
is called bias.

In statistics bias ic defined as error which does not go to zero as the
averaging time increases without limit, One source of bias, the finite resolu-
tion of the system, has already been discussed in Section 8.4. There a method
of minimizing the sum of the system noise variance and tne square of the finite

. resolation bias was presented. As the linear array length or maximum inter-

ferometer baseline length increases system noise increases. This occurs
because the number of spectrum samples required increases., However, the resolu-
tion bias decreases as the system resolution improves. It was found that there
was an optimum array length where the sum of thec noise variance and bias

squared went through & minimum valué.

Radiometer mapping performance for this optimum configuration was com-
puted for three types of mapping systems in appendices to this report. These
three nmapping types are aperture synthesis, p2ncil-beam scanners using series
fed antennas and true-time-delay antennas.

1-9-2
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There are additional bias errors due to causes other than finite resolution.
They will be discussec later in this chapter. A common type of bias error is
nonuniform response of the system MIF between zero and the cutoff spatial fre-
quency. That is the system does not produce the principal solution. 1In
Bracewell's terminology the principal solution is obtained when the mapping
system cxhibits a rectangular MIF from zero out to the cutcff frequency.

1]
:

Bias error due to motion of the scene is an important error type. It will
be found that such motion produces z nonrectangular MIF which must be multi-
plied into the chain of transfer functions. This idea will be developed in
more detail in a little while. Corrections for motion effects is therefore

carried out as part of the process where deviation of the system MIF from
rectangular is corrected.

The optimum filter for carrying out this cerrection is the Wiener filter.
It will be discussed in the next section. If the image is to be used for visual
inspection, rather than measurement, it will be found that the Wiener filter
emphasizes low frequencies too much. The Wicner restored image appears dull
and flat, rather than crisp. Some of the finer detail appears blurred.

In Scetlon 5.8, the idew was introduced that the optimum image for visual
inspection maximizes \“e area under the system MTF., The MIF of the eye is
included in the chain of MIF's whose product is the system MTF. A filter which
produces this result is the parametric Wiener filter (geometric mean filter).
Thip Fliter, an well ng other Cllieps for liproved dwage appearance, are dlg=
cdussed by Hunt (Reference 118) and by Stockham (Reference 119). Both papers
glve examples of the improvement of image quality compared to Wiener-filtered
images.

, A final c¢riterion of image quality is the entropy of the image. Informa-
tion theory shows that the entropy of a signal record is a measure of the infor-
mation it contalus. Therefore, LE the converslon of the image signal from its
spectrum .form to the final space-domain image can be carxied out so as to
maximize image entropy, it can be argued that the best possible image results.

Presumably, this "best" image can now be processed so as to meet any other
quality criterion since it contains more data about the original scene than any
other possible image.

The importance of these observations lies in the fact that algorithms
exist which can maximize image entropy in the process of reconstructing the
image from spectral data. These algorithms go under the appellation, "maxi-

mum entropy method," or MEM. They are very important when the image must be
reconstructed From undersanpled spectrum data,

Since this is the problem we face in mechanizing the MFASMR system, these
algorithms are treated in detail in Volume II of this report. Image reconstruc-
tions using MEM are presented there. Only a brief introduction to these
methods will be given in this chapter.

»

.
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The last type of optimum filter to bé considered is the matched filter.
This f£ilter exhibits the maximum possible response when driven by the input
waveform it was designed to match. The filter response does not resemble the
input waveform in any way. Instead, the output is a pulse which approaches a
delta function as the time-bandwidth product of the waveform it matches
approaches infinity, This filter maximizes the probability of detecting the
matching waveform in the presence of interfering noise,

9.4 WIENER FILTERS .

If the modulation transfer function of the radiometer system is not
rectangular, it would appear that all that had to be done to make it rectan-
gular would be te add a filter to the MIF chain whose MIF is the reciprocal
of the MIF of the rest of the system., This £ilter is called an inverse filter.

Unfortunately, in regilons where the system MIT is zero the inverse filter
transfer function becomes infinite. Figure 9-1 shows that even when the system
MIF has no internal zero regions, noise becomes dominant at the high frequencies
where the system is tending toward zero. The result is a noisy imape.

R (7T AUTOCORRELATION F"m NOISE FOWERIS

s FUNCTION SPECTRUM (9 !
. £
[ p— gt )
-
T commmm—tpe. (=
AL J, fowen P e SNR

(] SPECTRUM

Py —
Pn\t)

DESONVOLUTION
3{e AMPLITUDE - 1 FHLYER -
SPECTRUM Fio
i §  ——p $ e

FIGURE 9-1. NOISE PROBLEM IN DECONVOLUTION
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i * A correlation filter can be designed where the signal is large and little
inversion where noise dominates. The transfer function of this filter is

F*(u,v)

(1-9-1)
|FCu,v) |* + B_(u,v)/Bg (u,v)

Gw(u,v) -

*

This is the Wiencer [ilter. 1Tt minimizes the rms difference between the original
scene and the final image. Figure 9-2 shows the functions involved in’
Eq. (L-9=1) for the one-dimensional case,

A closely reluted [llier Ls the power spectrum equalization. filter. This
filter restores the power spectrum of the degraded image to what it was before
degradation. Its transfer function is

Ps(u,v) 1/2
GPSE - 3 (I=-9~2)
Il"(u,v)l l’s(u,v) + I'N(u.v)

f PgF) | SIGNAL e
SPECTRUM §
' 5
an
L
NOISE
>F
wx
FE) ANTENNA MTF

G{F)| WIENER FILTER RESPONSE

=~ ..

F.r W,

FIGURE 9-2. DETERMINATION OF THE
WIENER FILTER RESPONSE
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Like the Wiener filter, the PSE filter is phaseless (real and even). Both
filters reduce to straight deconvolution in the absence of noise, and both
cut off completely in the absence of signal.

However, the PSE filter (sometimes called a homomorphic filter) does not
cut off at internal zeroes of the point-spread fumction F(u,v).

The other filter related to the Wiener filter ie the parametric Wiener
filter. It is of the form

F (u,v) ¢ F* (u,v) ] (A=)
Gpw(u’v) - = u Vz : ) U,V (1_9_3)
Ry, | |F(u,v) | “Pg (u,v) + By(u,v)

This is a generalization of the filters already discussed. When o = 1

Eq. (I~9-3) becomes the inverse filter. If « = 0 and Yy = 1 we have the Wiener
filter. When Y is not unity the result is a parametric Wiener filter. The
constant y may be selected for any desired amount of Wiener-type smoothing.
When y = 0 we are back to the straight decanvolution filter. If g = 1/2 and

vy =1, Eq. (I-9-3) defines a filter which is the geometric mean between ordi-
nary deconvolution and Wiener deconcolution. The parametric Wiener filter
with y < 1 and the geometric mean filter with the same constraint define the
range -for vy where the best visual images are obtained.

o=

In the construction of error budgets needed to judge the suitability of
a system for a given application we need to be able to compute the residual
rms cerror after Wiener filtering. Both signal and noise power density spec-
trums enter into the determination of this error. The error expression is

P (u.V)P (u V)
_/-jP (u,v) + P (u,v) dudv ) (I-9-4)

This is a generalization of two dimensions of an expression given by Bendat
(Reference 120) for th: rms error of a Wiener filter.

Now Eq. (3), Aopendix G gives the signal spectrum in polar coordinates
as ’

P_(0,0) = sr” (1-9-5
5 4nVFOV p5/2 ) . : ~9-5)



? i
e
*, -

ORIGINAL PAGE IS
OF POOR QUALITY

where 6T is the rms radiance fluctuation of the object scane, FOV =
field-of-view < 1 vad.

For a uniformly illuminated antenna the normalized transfer function is
(1=p), 0%p<l. Lot the woise spactrum ba Elat with typical rms amplitude of
0.5 to 19K, Sinece &1 varies from 209K for rural areas to 40°K ox so for urban
areas, ice/water or land/water images, (AT/ST)? is much less than one. 30 in
polar coordinates we have

Y

1.2 1-4p

_ f Rg(p)0) (1-p)0T% 2“‘“’7 | odo |
e .
“oYo g0 (=p) 4+ At 0 1+ [4«%%5“/(1-;,) [(AT/ST)a]]

(1~9-6)

As lonp as p ks o Tdetle loss cthan 1 the second tarm of tha danominator
iy small, "Therefore,

»

2 L=Ap
B ~ rAT? (1-9-7)
0

Therafore, the total rms error is approximately ATYr.

It is important to note that Wiener filtecing cannot be used diractly for
image reconstruction when the spectrum is undersampled., This difficulty arises
bacause missing data samples are representad by zeroes. Tha Wiener filter will
cut off in any apectral region with zaro spectral power density. An estimate
of the original spectrum with undersampling eliminated must be generated by
interpolating in the regions whare samples are missing. Some sort of two-
dimensional spline function is needed.

_ If polynominal splines are used, the polynominal coefficients must ba
determined so that the spline gives known values of the speactrum where samples
exist. As an alternate we can use an expansion into a set of orthonormal func=
tions. As in the polynominnl spline case, tho s¢vies coafficients are pleked
to maka the axpansion pive the coxrect valuas at points where samples exist.

If Wiener filtering is carried out after fhe spactrum has been filled in
by interpolation, it is not obvious that we still have a system which minimizes
rms error, The performance of Wiener filteriyig when the input data is under-
sampled is treated in more detail in Volume JI where computer results are
reportad.

1-9-7
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9.5 MAXIMUM ENTROPY RECONSTRUCTION METHOD

It will be found in the next chapter that the amount of distortion
calculated for the MFASMR is probably too great to make the system very useful.
These calculations are based on a discipline called "rate distortion theory."
This theory assumes that the image reconstruction process is linear. However,
there are more general non-linear methods which are more powerful than linear
image construction. ’

As mentioned in the introduction to this chapter, one of the most promi-
nent processes of this type is the maximum entropy method, MEM. This process
is recursive. Rather than requiring a priori statistical data about signal
and noise, MEM effectively collects the required statistical’ data during the
recursion cycles. It goes without saying that MEM is nonlinear.

In order to determine whether MEM or similar techniques can reduce dis-
tortion in MFASTFMR to a tolerable level, computer experimentation was used.
This work is reported in detail in Volume II. Only a few commeats will be
made about MEM at this point in order to paint a complete picture of the image
reconstruction problems = albeit a sketchy one.

An excellent place to start a survey of MEM techniques is the IEEE
Reprint Volume edited by Childers (Reference 121). The promise of MEM is well
il lugtrated by a comparison of gpectrum estimates derdved from the spectrum
autocorrelation function made by Ables (Reference 122). Ables' plots in Fig-
ure 1 to 4 are reproduced here as Figure 9-3. It may be seen that the MEM
spectrum estimate is considerably better than either the weighted or the
unweighted Fourier transform of the -autocorrelation function of the signal.

8 2
-]
TRUE FOURIER TRANSFORM OF f“
SPECTRUM TRUNCATED AND SAMPLEDS
AUTOCORRELATION 3
FUNCTION

i
A AND B BARELY
RESDLVE?

CLOST IN
SIDELOSBES

POWER

COSINE WEIGHTED

TRANSFORM : MEM
SPECTRUM
A AND B NOT RECONSTRUCTION

RESOLVED

POWER

C VISIBLE

FREQUENCY

'FIGURE 9-3. COMPARISON OF FOURIER — TRANSEORM
SPECTRUM ESTIMATE WITH MAXIMUM ENTROPY
SPECTRUM ESTIMATE
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In spite of f£ine results obtesined with MEM, the method has generated
considerable controversy. Some MEM algoxithms have been unstable, As the
number of recursions increase some MEM algorithms produce artifacts., Typically,
these artifacts are sharp spikes which grow on the edges of spectrum lines as
recursion continues. An example of this behavior, taken from a report by
King (Reference 123), is shown in Figure 9-4. The fourth recursion is the best
estimate of the original spectrum. The spikes, which are well developed by
the seventh recursion, obviously increase the entropy of the signal. Apparently,

the MEM estimate increases entropy beyond that of the true signal by producing
artifacts. )

However, Wernecke (References 124, 125, 126, 127) has developed a stable
MEM algorithm for image reconstruction. Stability is ensured by imposing a
constraint on the calculation of the estimated image during the recursion pro-:
cess. This constraint prevents any point in the image estimate, being formed
during a recursion cycle, from taking on a negative value. This condition is
of course consistent with the ndture of image signals, since such signals are
always positive everywhere.

This condition may nobt appear to be o vary suvere constraint. lHowever,
it is sufficlent to ensure stabllity of the MEM reconstruction process. Almost

i 11 [F
RN i,
HENEANVANANY,
T TN
:: NG, IP“.TE? COEPIS -7
%.z i \ AT

NO, FIH.TEH[CQEFS!‘ 4

=30 . .
-100 -80 -80 -40 29 0 20 40 80 80
ANGLE, DEGHEES

‘FIGURE 94. GROWTH OF ARTIFACTS DURING RECURSION BY -
AN UNSTABLE MEM ALGORITHM
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all possible unstable processes involve oscillatory behavior which grows with
time. This oscillatory disturbance drives part of the image estimate negative.
Constraining the image estimate to be always positive damps out this oscilla-
tory behavior. Then recursion cycles of all orders are stable. As recursion

continues the entropy of the images estimates asymptotically approaches a maxi-
mum value.

Volume II will shows results for real radiometer image-data. However, a
"sneak preview" will be given here where the original object scene is two cubes
stacked on top of each other. This is similar to a test object used by Wernecke
in Reference 124. Wernecke's "stacked blocks" object is shown in his Figure 3.7.
In Figure 9-5, which follows, the stacked blocks phantom used by Dr. Ming Chang
is shown. Dr. Chang carriced out the computer study of Image reconstruction for
MPASMR reported in Volume II. The following data comes from this study.

Following Figure 9-5, Figure 9-6 shows the amplitude spectrum of the
stacked blocks object. Figure 9-7 shows the residual spectrum after samples
are taken over the spectrum plane as shown in the upper right hand corner of
the figure. We now have an undersampled spectrum.

Figure 9-8 shows the reconstructed image obtained by taking the two-

dimensional inverse Fourier transform. As one can see, the resulting image is
quite poor.

Figures 9-9, 9-10, and 9-11 show the MEM image reconstruction process
taking place. The results of 2, 4, 6, 10, 18, 22, and 25 iterations are shown.

SLvvEOLle

FIGURE 9. STACKED BLOCKS PHANTOM OBJECT
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FIGURE 96. AMPLITUDE SPECTRUM OF STACKED
BLOCKS OBJECT

FIGURE 9-7. STACKED BLOCKS RESIDUAL OBJECT
SPECTRUM AFTER UNDERSAMPLING
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8L YPEDLE

FIGURE 9-8. IMAGE OF STACKED BLOCKS OBTAINED BY
INVERSE FOURIER TRANSFORM OF UNDERSAMPLED
SPECTRUM
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FIGURE 9-8. MEM RECONSTRUCTION
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Although the image is far from perfect, after six to tem iteratioms, it is
considerably better than the direct inverse Fourier transform. The thin ridges
extending out from the cube corners are similar to the impulses which appear

at function discontinuities when the Fourier transform is taken without under-
sampling. This behavior is called Gibbs' phenomenon, Since this Gibbs arti-
fact occurs in both reconstruction methods, it does not appear reasonable to
fault the MEM algorithm for this generating this imperfection.

Continued iterﬁtion up to 25 recursions shows that the reconstructién is
stable. It does not have spikes which grow indefinitely as was the case for
King's MEM algoritchm (Figure 9-4).

9.6 IMPACT OF MEM RECONSTRUCTION METHODS ON SYSTEM DESIGN

Even when there is no undersampling MEM reconstruction is an attractive
method of forming the image. The MEM method is adaptive in that we do not
have to know a priori statistical data about signal and ncise. The signal
statistics directly controls the MEM recursion as the image is built up.

Ag we have seen, Wiener filters require quite a bit of signal and noise
statistics. This is a severe drawback, since the mapped terrain hardly quali-
fies as a stationary source. The statistics vary as we look at farmland, for-
rest, the sea, ice fields, etz. There are extensions of Wiener filter which
can adapt the filter to a locally stationary signal (Reference 128). However,

these systems are complicated. MEM reconstruction appears to be the better
answer, )

Now it stands to reason that if we are going to maximize the entropy of
the final image by use of MEM reconstruction, we should design the rest of the
system to produce a signal with maximum entropy rate at the input to the MEM
process. Appendix G,."Optimizing Antenna Illumination and Bandwidth for Maxi-

mum Radiometric Information Transfer,'" by Dr. Jack Gustinsic shows how an entire

radiometric mapping system can be designed to maximize signal entropy.

It was hoped that mapping systems, other than the series-fed array system
selected by Gustincic, could be treated in the same manner. However, there is
not time enough to do this at present. Also the size of this report, which is
probably too big already, would increase even more. However, it is possible to.
comment on some general design principles.

First Gustincic found that maximum information rate occurred for approxi-

. mately uniform antenna weighting. This was for a system using a series fed

array. In the other mapping systems considered, which use true-~time delay
antennas or transform arrays, it turns out that exact unifor:. weighting is
optimum. Similarly, the spatial frequency spectrum measured by aperture syn-

thesis should be uniformly weighted in order to obtain maximum information rate.

I-9-15
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The overall transfer function of the radiometer receiver, treated as a
filter, is subject to a similar constraint. Goldman (Reference 129) shows that

the entropy loss through a filter is zero only when the filter has a rectangular

passband. The virtues of rectangular passbands for radiometers has been recog~

nized for quite a while, even though improvement has been given as a decrease in

temperature reésolution rather than increase in information rate (Reference 130).

9.7 MOTION COMPENSATION .

Lf the image data is not undersampled, there is one type of error which
should be removed byWiener filtering before MEM image reconstruction. This
error is due to image motion. Removal of blur due to motion is very important
whien the mapper is In low-earth orbitc.

Let us examine the signal at an image plane, such as a focal plane of a
lens. This image can be decomposed into an assembly of points. Let these
points move at a constant velocity v due to motion smear. Let the time
required to sense the image be t. This can be the exposure time of a camera,
the time required to measure the frequency spectrum of the scene or the time
neceded to complete a raster scan with a pencil beam. The displacement of the
point during the observation time is AX = mvt. The smeared point of bright-
ness I is described by the expression

A Frxest ’ ‘
£Gx) = : (1-9-8)
0, otherwise ¢

where A is proportional to I. Thus each point is converted into a rectangle.
The corresponding Fourier transform is

sin (FAX/2)

AAX (FAX/2) (I-9-9)

CyorION

We can conclude from Eq. (I-9-9) that image motion introduces a sinc transfer
function into the system chain of MIF's., It may be seen that, in conformance
with earlier comments, the motion error cannot be removed by introduction of
the inverse filter A/G(F). 1Its poles at F = 2nw/Ax render it unstable. The
"correct” image will be dominated by noise.

The removal of image blur by digital and electronic filtering has been
treated by Sawchuk (Reference 131, 132, 133). Optical filters for removal of
motion blur by optical processing is treated by YU (Reference 134) and by
Tsujiuchi (Reference 135). In Figure 9-12 the rectangular response to the
moving point is shown in a plot from Tsujiuchi's paper. The restoration of
the point image is accomplished by use of a dual filter. One filter section

I-9-16
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FIGURE 9-12. CALCULATED IRRADIANCE OF A
RESTORED POINT IMAGE BLURRED BY LINEAR .
MOTION '

modifies only amplitude; the other section modifies only phase. The plot
shows the effect of each section separately and their combined effect. The
smeared point is labeled original. The system impulse response to a point
source is labeled "Combination Amplitude and Phase Filter."

In the following discussion it is important to note that the error was
not produced in the sensor. It was the image data itself which is degraded.

Let us examine the response of pencil-beam scanning imager to this degraded
data.

Jarobs (Reference 136)icomputes the degradation of the spatial-frequency
response of a sccanning pencil-beam imager duve-to image motion. He uses the
product of the pencil-beam scan rate . and the radiometer time constant as
a parameter which characterizes the rate of image motion. The scan rate is

tied to image motion by ,the requirement that the scan process wmust be rapid
enough to keep up with the image mo%Zion.

The degraded MIF due to scanning is found to be

MTF'(w) = CMIE(w) (I—9-10)jf
V1l + (va)! .
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where MIF(w) is the transfer function of the antenna and MTF'(w) is the
transfer function degraded by scanning. The degradation factor [1. + (ww)z]"‘l/ 2
was plotted by Jacobs and shown below as Figure 9-13.

We find that pencil-beam scanners also suffer degradation due to image
motion., For some reason, degradation due to image motion is usually not cal-
culated when the system performance of such mappers is estimated, Also pencil-~
bean scanner systems almost never use restoration filters to compensate for
motion, However, these systems are using the same /jotion-degraded images that
frequency-plane imagers use. Degradation due to the motion is just as severe.
Motion correction will be just as beneficial,

Consideration of these cffects when evaluating both imager system types
wlil lead Lo better comparisons of their performances.

9.8 BIAS DUE TO SPECTRUM CURVATURE

In Figure 8-2 the bandpass MTF of an interferometer is shown measuring
the spatial frequency spectrum of the scene, Jn the next chapter Tigure 9-4
shows how measurcment of the spectrum of the signal received by a frequency-
scanning array produces an image of the terrain.

Tn both eases these spectrums are mensurcd by Fllters with Finite pass-
bandg, A Ulliere produclug no error would give the power density of the spectrum
at a frequency equal to the center frequency of the filter passband.

*h dww

>}
8
Tv » 0.20 g
Y poo w— &
.i w
§ 0
2 . o
™ 0.50
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c
g 3 0,76 =
<
'Y
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o
g 5 o 1.80
g T= RADIOMETER TIME
a CONSTANT (SEC)
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6= ARC-MIN/TIME-SEC
? | | ] ] | | | i

° o4 08 .2 1.6 20 24 28 32 3.8 40
W (NUMBER OF PEAKS/ARAC-MIN

'FIGURE 9-13. IMAGE DEGRADATION FACTOR AS A
FUNCTION OF NORMALIZED SCAN RATE
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Due to spectrum curvature and the finite bandwidth of the spectrum
measuring filters they do not find the midband spectrum dersgity. The measure-
ment is perturbed by a bias error. According to Bendat and Piersol (Ref-
erence 137) this bias error is given by

2

B en(p) (I-9-11)

b2[6(e)] = 37 ,

»

where G"(£f) is the second derivative of the spectrum density function and B is
the bandwidth of the measurement filter. There is no point in computing these
biases for the raw spectrums. Their shape and curvature will be altered by
filters used to correct for image errors in the image restoration process.

However, this bias should be computed along with the other system biases
in the process of drawing up a bias budget for the purpose of estimating sys-
tem performance,

oo '
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10. UNDERSAMPLING AND IMAGE RECONSTRUCTION

10.1 INTRODUCTION

At this point, enough background material has been introduced to proceed
with an analytic evaluation of the Multifrequency Aperture Synthesizer Microwave
Rajiometer (MFASMR). This frequency-imaging system varies the baseline length
of its interferometers by stepping the operating frequency through a set of
values scattered over most of the microwave spectrum. The frequencies selected
are: 2,375, 4.75, 9.5, 19.0, and 38.0 GHz.

A typical MFASMR coufiguration is two interferometer baselines at right
angles to each other. Baseline lengths of 10M with 1M dishes is also repre-
sentative. Such a system is shown in Figure 10-1.

i,

In Section 7.5, a paper by Ko, (Reference 68) 'Cohereng¢ce Theory in Radio-
Astronomical Measurements," was referenced. In this paper, Ko shows that the
maximum baseline length in wavelengths is the reciprocal of the system resolu- .
tion in radians. Ko also states that, in order to prevent aliasing, the sample
spacing in wavelengths is the reciprocal of the FOV in radians. Section 7.5
points out that this implies the moving interferometer antenna is stepped
along the baseline in steps equal to the antenna width. When this observation

(fl)
z
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‘ FIGURE 10-1, TYPICAL MFASMR
' CONFIGURATION
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is applied to the configuration in Figure 10-1, we see that it generates a
10-line image (10 x 10 pixels), since the number of pixels in the final image
equals the number of complex spectrum samples.

Since five complex samples along the two baselines can be taken, using
five operating frequencies, we see that 10 samples out of a grid of 100 samples
can be taken. Only 10 percent of the raw image data is retained. The problems
associated with undersampling the spectrum of the ocene dominate the processing
of the MFASMR data. As a result, it was decided to incorporate the analysis of
its peeformance in this chapter on undersampling and image reconstruction when
undersampling is present. Volume II describes a computer study of the same
problem. This study is more detailed than the analytic attack used here.

10.2 COMMENTS ON THE MFASMR ANTENNA CONFIGURATION

Before proceeding to MFASMR performance analysis, it is necessary to take
a look at the MFASMR antenna arrangement. .This system is, of course, a fre-
quency-plane imager, The antenna arrangement, plus the designation of the
operating frequenciles, determines the set of samples of the scene spectrum
available for image reconstruction,

The first comment concerns the use of two baselines at right angles to
cach other, As mentloned in the tughes proposal, thls avrangement conveys
a strong feeling that the spatial frequency spectrum belng sampled ds a
separable function. A separable function is the product of two functions, each
of which %is a function of a single independent variable. Let F(U,V) be the
spectrum functlon, LE it is separable, it is of the form R(U)T(V), where R(U)
and T(V) are known over two boundaries of the region in which F(U,V) exists.
We know from theoretical physics that in order for separation to occur, the
set of ejgenfunctions of R and T must have nodes over their corresponding
boundary surfaces. Thly rarely happens and then only for a restricted set of
coordinate systems. In such cases, specification of R and T over their
corresponding boundaries forces these functlions to assume certain values
throughout the region occupied by the field, namely, vnlues which are the sum
of the elgenfunction set with appropriate weighcing.

It is easy to see that F(U,V) fails this test., Specification of F(U,V)
along the interferometer baselines does not constrain F(U,V) over the rest of
the frequency plane in any way.

A more formal proof that F(U,V) is not separable stems from the projec-
tion theorem. This theorem showed that there is a one«to-one correspondence
between profiles generated by cuts through the space~-domain function, say
g(6,R), and corresponding frequency-domain profiles obtained by a cut through
F(U,V), which has the same orientation as the cut through the object functionm,
f(x,y). These two profiles are a one-dimensional Fourier-transform pair. The
above relation between F(U,V) and f(x,y) implies that we must measure F(U,V)

I-10-2
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profiles over a set of orientations distributed over 180° with Nyquist sampling
density in order to be able to calculate £(x,y) exactly. These measurements

of the spatial frequency over a set of orientations is the process of rotation
synthesis, which by now has become familiar to us,

The minimum number of orientations which can be used with any hope of
image reconstruction are cuts in the U and V directions and along orientations
at *45° yith respect to the principal axes. This is the sort of sample set
used by Werneke (Reference 124) shown in Figure 3.8, page 96 of his doctoral
dissertation. The same sampling scheme has been used by Dr. Chang when
checking out Werneke's MEM program. It is shown in the upper right~hand cor-
ner of Tigure 9-7 in this report.

In order to obtain such a sample set, another antenna must be added to
the original MFASMR configuration as shown in Figure 10-2.

The diagonal baselines AB and AD contribute absolutely egsential additional
samples. Now the samples, although sparse, are indeed distributed over the
entire disk in the frequency plane corresponding to the scene. The potential
baselines DC and DB are not used. Since translation of a baseline without
orlentation change does not affect the value of the mutual coherence function,
these baselines merely repeat the measurements made using baselines AC and AB.
We have added ten more samples to the ten available with the original con~
figuration., So we now have 20 samples out of a possible 100. The undersampled
spectrum 1is 20 percent of the total spectrum. This is also a statement that
the information rate of the undersampled data stream is 20 percent of the infor-
mation rate of the sample stream associated with the Nyquist sampled spectrum.

.

10M

se-yreCLS

c
4
N

0M 1M

VAC 7 9_:__

oM 8

FIGURE 10-2. MODIFIED MFASMR CONFIGURATION
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10.3 RATE DISTORTION THEORY

Once the information rate of the coded image signal is known, we can ask
what error is produced in the recomnstructed image when the informatiocn rate is
less than the information rate for Nyquist sampling. Theoretical techniques
have been devised which find an upper limit on this error. These techniques
8o under the name of "rate distortion theory." (Reference 140)

The mean-square error intrcduced into the sigaal as a function of the rate
of source coding and information transmission through a communications® channel
is best expressed in parameteric form. For thils mean-square-error criterion
and for a Gaussian source this parametric rerpresentation is analytically
tractable, (References 141, 142)

The analysis assumes optimum coding, If the coding is optimum, then the
distortion is an upper bound on the error for all sources with the same spec-
trum, but with other than Gaussian statistiecs.,

The parametric form for the rate of source coding and for information
transmission used the parameter 6. In Figure 10-3 it can be seen that 6 is
a decision level in a 'sorting process.

As indicated by the hatcher code, the portion of the power-density spec-
trum above the level 0 is retained and transmitted. The crosshatched areca,
which ean be Lnterpreted as the frequency distrlbution of the error process,
x(t) -y(t), is often called the error spectral demsity. In ideal mean-square-
error (MSE) encoding, no attempt is made to preserve any of the information con-
talned in those reglons of the frequency axls in which ¢(w) < 0, where
¢(w) > 6, a fraction [¢(w) -8]/¢(u)of the source power generated in an infin-
itesimally narrow band centered at w is retained in the ideal reproduction.

In other words, one should try to reproduce the portion of the sourze output
generated at frequencies such that ¢(w):> 0 ws th a MSE of 6 per unit bandwidth.
For © somewhat higher than illustrated in the figure (hence with distor:ion

- —r e . e e s C e o en - PR — v

##iE PRESERVED SPECTRAL DENSITY 9
XXX ERROR SPECTRAL DENSITY g
@
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FIGURE 10-3. SPECTRAL DENSITIES OF SOURCE, ERROR,
AND REPRODUCTION FOR OPTIMUM CODING
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somewhat larger), the portion of ¢(w) centered at w = 0 is the only one that
an ideal system attempts to reproduce. For such 6 one may put the process
through an ideal low-pass filter prior to encoding. In general, a filter with
several passbands and stopbands is required.

Then in terms of this parameter 6, from Berger, Eqs (4.5.51) and (4.5.52)
the mean-square-error and information rate are

v

o0

a(8) = 2—11‘- min [6,®(w)]du (I-10-1)
oo

R(O) = -2'-1-:;‘_- max [B, ln#-’)-%-”-)-]dw (I-10-2)

The variance of the process, which is used to normalize d(8), is

+

4o
1 Tel0a
" = o= ¢ (w)dw (I-10-3)

-l

If the spectrum is one-sided, the integral limits of t= are replaced by
the limits 0 and -+, )

1n the two dimenslonal case the differential frequency element in the
Fourier plane is of the form (p dp dp). Starting with the Cartesian form of
the two-dimensional integrals from Reference 142, Eqs (8.4.45) and (8.4.46),
we see that in polar form all the integrals are of the form

‘21y © 0
1 = f/ff(pm)p dod¢ = 2«%(0)9 de (I-10-4)
) 00 (]
1-10~5
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Before looking at our case let us examine some typical results from the
literature. As an example, Berger uses a Gaussian source with spectral density
of the form

o \28 ~1 -
(4.5.76) ¢(w) = An[%*+ GF_) , n=12, ... (I-10-5)
o ,

The equation number to the left is Berger's equation number.

Berger chooses An so that
1 2
2m )6' ¢(w) du v (I-10-6)

Letting n + « in Eq (1-10-5) yields an ideal Gaussian source with constant
spectral density

wozlmo s ol 2w,
(4.5.77) ¢(w) = ' (1-10-7)
0, Juj >,

Substitution of this ¢(w) into Eqs (I-10-1) and (I-10-2) and elimination of @
yields the result

R(D) = (2—;’-)111 (952-) : | (I-10-8)

where R(D) is the information rate as a function of the MSE distortiom, D.
Hence, the MSE rate distortion function of a stationary white Gaussian source
of average power 02 limited to frequency band |w|/2ﬂ < B is given by Shannon's
classic formula

2
(4.5.78) R(D) = B In (%—) (I-10-9)

1-10-6
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i ) . Berger observes that the same R(D) curve applies to any stationary

Gaussian process of average power 02 whose spectral density is flat over a set

of positive frequencies of total measure B and vanishes elsewhere. In parti-

cular, it is important to note that the one~dimensional results also apply to

a two-dimensional raster. Since there is no correlation from pixel to pixel

for a white bandlimited Gaussian source, there is no correlation between raster

lines. Therefore the raster lines can be unraveled to form a one~dimensional

process of the type we have just been examining. ,
Berger plots the results of evaluating distortion as a function of rate

and plots the results in his Figure 4.5.4 for the spectrum defined in

Eq (I-10-5). This plot is reproduced below as Figure 10-4.

Note that as the normalized mean-square distortion approaches unity the
information rate approaches zero. The white-noise source drops the most
rapidly since it is the least correlated signal and therefore the most damaged
by bandwidth compression.

Pratt (Reference l43) treats a common source model for image signals, the
separable Markovian source whose elements possess equal variance 02 and possess
adjacent pixel correlation factors pp and p. along rows and columns. He finds
the rate distortion function for the one dimensional case to be

2 2 ,
g R (D) = %1032["_ “; 4 >] (1-10-10)
103 o
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The corresponding function for the two~dimensional case is

2 2 2
1 0" (L = pp) @~
Ry(D) = -z-logz[ s J (I-10-11) .

¥

-

Figure 10-5 reproduces Pratt's Figure 7.7.2. There Pratt plots distortion
functions for particular values of pR and p,.

pH Py~ 0,85
pH o pv - 0.9
pH = 0.95, Pv =0
PH - pv =08
p“ e °~91pv =0
Py =Py =07
pH = 0.8, pv -0

;\/ / 5333'7'

0.1 1 . 10 120
PERCENT NORMALIZED MEAN SQUARE ELROR, ﬂO’z

FIGURE 10-5. RATE DISTORTION FUNCTIONS FOR ONE AND
TWO DIMENSIONAL CODING OF MARKOV IMAGE SOURCE

88 yrEOLB

RATE, BITS/PIXEL

10,4 APPLICATION OF RATE-DISTORTION THEORY TG CALCULATION
OF MFASMR PERFORMANCE

In Appendix I the MSE distortion is calculated for the m-3/2 spectrum
which we have selected as the spectrum of microwave radiometer scenes. Again
both one~ and two-dimensional cases are treated.

The cases treated in Section 10.2 are for signals which are continuous
in amplitude. If the MSE distortion D becomes zero, the information rate
becomes infinite. However, MFASMR will use digitized signals quantitized in
amplitude. This limits information rate even if there is no distortion.

Figure 10-6 shows that good quantizers turn in a performance not much

. worse than the classical Shannon rate-distortion curve.

Not only is the MFASMR image signal not continuous in amplitude, it is also
not spatially continuous. The image is characterized by the number of raster

I-10~-8
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FIGURE 10-6. MAXIMUM INFORMATION RATE VERSUS
NUMBER OF QUANTIZATION BITS
Lines preseat, ‘Phis aloo liwits Lnlormatlon rate. La order to separate rate

limitations due to the finite number of image lines and limitations due to
undersampling, the spectrum used in Appendix I was normalized. The number of
image lines was selected as an image parameter. Then we can write

»

oo = Mw min A (I-10-12)

The maximum information rate versus. number of image .lines was then calculated.
The result is shown here as Figure 10-7.

The information rate was then normalized as a percent of the maximum
possible rate for that number of raster lines. The distortion was normalized
as a percent of the variance., The resulting rate distortion curves are plotted
with the number of raster lines as a parameter. The result is shown as
Figure 10-8.

The general region in which MFASMR systems will operate is indicated omn
Figure 10-8 as an oval centered on an information rate of 20 percent of the
maximum rate obtained with Nyquist sampling. It may be seen that the mean-
square distortion will be about one-third of the total signal power.

I-10-9
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10.5 COMMENT ON MFASMR RATE DISTORTION CALCULATIONS

The reaction to the calculations in Section 10.3 1s one of, "What went
wrong?" In the original Hughes proposal in Figure 2-6 a comparison image
distortion versus image compression ratio. This ratio is the reciprocal of
the fractional undersampling. A compression ratio of 3:1 was estimated at that
time and a distortion of 0,1 percent was read from the graph. This figure is
reproduced here as Figure 10-9, We now know that the compression ratio'is
aboyt 5 or 6 corresponding to the information rate of 20 percent of maximum
rate. The lowar result is due to the fact that we did not .count samples from
baselines which are translated, but not rotated, in this report. We now know
these samples are redundant.

Figure 10-9 shows that for the less esoteric coding schemes and about 5:1
compression we should expect about 1 percent distortion. Now. Figure 10-9 is
data obtained with optical images. Such images usually have 1,000 lines or so.
Figure 10-8 shows that allowable data compression is a strong function of the
aumber of image lines. In Figure 10-8 we see that 20 percent undersampling
gives about 2.5 percent distortion when the image has a thousand lines. This
is in rough agreement with Figure 10-9. If we could increase the number of
linecs in the MPASMR Limage to 1,000 or so, image distortion would be reasonable.

10.0 [ ]
-h
MEASMA WITH g
1000 LINES -
; JFOURIER/DPCM, 2
HAAR/OPCM ———
s 2 HILBERT CLUSTER
< w ' }
3 ‘o — : HADAMARD/DPCM -
5 ) /
“' .
z
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@ oak
5 /”/”
g.’ / .
« 0.01 P
5
w -
2  ooot
1x10™*
1% 1078
| | | L L ! |
o 2 4 s 8 10 12 14 16 18 20

COMPRESSION RATIO

FIGURE 10:9.” DISTORTION VERSUS COMPRESSION RATIO FOR VARIOUS
CODING ALGORITHMS
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Unfortunately there are not enough frequency bands available for use by
radiometers to allow us to shrink the antennas and increase the number of

lines while maintaining an information rate which is a fixed percentage of
maximum rate.

The reluctant conclusion is that other frequency-domain imager designs
will be more satisfactory. .

Hopefully in the process of understanding MFASMR, we have arrived at a
point where our understanding of frequency-domain imagers is complete enough to
produce more successful designs.

We see that the probe antennas must be very small compared to thé base-
line length, This makes the signal record long enough to measure the spatial

frequency spectrum with good accuracy. This in turn leads to a high resolution
image after Tourler transformation of the record.

This is completely analogous to the SAR radar case. The SAR radar is an
active frequency-plane imager. Just as in the passive case, the resolution of
the SAR improves as the anteana slze decreases,

As we have seeu in earlier chapters satisfactory frequency-imaging sys-
tems for orbital use can be designed which do not use undersampling. Perhaps
then we should start out by develeping such systems. This 1s consistent with
the history of radio-telescopes. The early instruments did not undersample,
Then we can decide whether Undersampling is benaficial in orbital mappers after
exhausting the possibilities of systeus mecting the Nyqulst criterlon.

.
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1. INTRODUCTION

Jo b PROBLEMS OFF LMAGE RES'TORATLON

As presented in Part I, digital image restoration is a mandatory element
in designing a frequency domain imaging system. This is especially true if
the systen considered corresponds to sampling below Nyquist rate.

In the conventional imaging system, the spatial/temporal images are
Formed direcetly by hardware. Depending on the application of the Lmages, the
runoval of the modulation transfer function (MIF) of the antenna or the point
spread function (PSF) of the sensor by means of image restoration may or may
not be necessary. In the case of frequency domzin imager, the spectral data
must at loast be Fourfer transformed to produce the spatial/temporal images.

For the time being, assume that the imaging system is linear. Following
the notations in Reference 1, let £(x,y) be the imaging scene, and let
hi(x,y,u,v) the system transfer function, then the sensor output g is obtained
by

B(x,y) = ffh(x,y,u,v)f(u,v) dudv
or,
T{£f} =+ g (II~-1-1)

The problem is to find T~! such that T'l{g} -+ f. TFor a fully samplad
frequency imager, h(x,y,u,v) = exp[-j2n(xut+yv)]. 1In this case, T corresponds
to a two-dimensional Fourier transform, and T"1 is then the inverse transform.

In an undersampled system, a nonlinear sampling function s(*) is applied
to g to produce measurements my, i = 1,2,3, ... M

m, = s(g(x,y)) + n, (I1-1-2)

II-1-1
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when ny is the measurement noise/error. To reproduce f(x,y) from my is no
longer a trivial task. Reference 1 pointed out that the problem of image
restoration is an ill-conditioned problem at best and singular at worst. 1
may not exist as in the case of under sampled system (singular) nor does it
have to be unique. Even if Tl exists and is unique, (as in the case of fully

sempled frequency domain imager), it may be so ill-conditioned that for a small
perturbation £ in the measurement field g,

7" Hete) > £4d , (11-1-3)

where d is not arbitrarily small and is not negligible. Chapter 6 of Refer-
ence 1 gives an excellent discussion of above problems.

1.2 RATE DISTORTION THEORY FOR DATA COMPRESSION

In cases where perfect reconstruction of the image is not required, i.e.,
under certain distortion constraints, rate distortion theory is the mathe-
matical basis for data compression (Reference 2). Tt should he noted that

data compresslon explolts the statistlcal properties of the information source
and remavac redm:iancyi s&k"an" ta a f‘"nfnvﬁ-‘nn measure. Tv thds rvnu’ useful

o ) W WT W A WAV ML WA bt wAiAD WGy

information is not arbitrarily discarded.

Consider a discrete memoryless source X. It is desirable to encode X
such that Y, an estimate of X, can be reconstructed. See Figure 1l~1l1.

Let p(x) be the source probability density and d(x,y) > O be a single-
letter distortion measure. If p(x,y) is the joint ptobability of X and Y, then

R(D) = min I(X;Y)

)1I-1-4)
{p(x.y)=Zp(x.y) = p(x) and zzp(x.y)d(x,y) < D}
y

X

where L(X;Y) is the Shannon average mutual information between the two random
processes X and Y (Reference 2). R(D) represents the minimum information rate

that an encoder-decoder pair cam operate on X such that the average distor:ion
between X and Y, an estimate of X, is no longer than D.

A 4

ENCODER

A 4

DECODER eemmssmnmcmm——l)

£6:¥9E018

- FIGURE 1-1. SOURCE CODING BLOCK DIAGRAM
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. It is casier to understand the mutual information if it is expressed by
I(X;Y) = H(X) - HEX|Y) (TI-1-5)

where H(X) is the entropy of X, H(X) = gp(x)log(p(x)); and H(X|Y) is the
conditional entropy (i.c., the remaining uncertainty of X when Y is completely
given). To encode~-decode X noiselessly, Y is required to supply all the infor=-
mation about X; therefore H(X]Y) = O or given Y there is no more uncertainty

in X. Equation (II-1-5) yields R(0) = H(X), which is the Shannon noiseless
coding theorem; one needs the rate equal to the source entropy to code it
noiselessly. If Y is such that X and ¥ are independent, then H(X[Y) = H(X).

In this case, Y supplies no information about X and thus coding/decoding process
suffers a maximum distortion. This can be illustrated by a simple example.

et X be o coln toss process with a falr coin and Y be an independent coin toss
process. On the average, X and Y are going to have the same outcome (head

or tail) half the time. If d(x,y) = 1 for x ¥ y and d(x,y) = O for x = y
(Hamming distortion), then the aversge distortion is 0.5. Therefore no infor-
mation about the X process has to be encoded. At the decoder end, one only

has to perform an independent experiment which has the same probability distri-
bution as X to achieve the maximum disvortion of 0.5 (R(0.5) = 0.).

For a continuous umpllitude stationary process (analog source), the
entropy rate analogous to the discrete entropy goes to infinity. The extension
of the rate distortion function to such sources is not trivial. It can be
shown that for a zero mean discrete-time stationary Caussian source with mean-
square distortlon measure (d(x,y) = (x-y)2), R(D) can be parameterized by

v
R(D) J,"fluuxlo.lug d"(y')jdw

0
=T
T (I1-1-6)
L = .ilfr./‘ winlV,¢(w) Jdw
-n

where #(w) Is the spectral density of the process; and

T

o* = -2%" S(wdw < @ (II~1-7) ~

Tl

is the variance of the process. Figure 1-2 shows few typical examples of R(D)
curves for such Gaussian sources with various correlation properties (correspond -
to different spectral densities). These curves represent the optimum encoder/
decoder pair that one can operate and achieve the desired distortion. Equa-

tion (II~1-6) can te extended to the time continuous case by taking the limit

of the integrals to infinity. Figure 1-3 gives the graphical interpretation

of Eq. (IT-1-6). In ideal MSE econding of the Gaussian source, it is necessaxy
to reproduce only the portion of the source output at frequencies where ¢(w) > 6.
1f 6 is such that only the centerlobe of ¢(w) iz above 6, then an ideal low

pass filter is the only necessary component in the source encoder.

II-1-3
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Equation (II-1-6) can be extended to two dimensions in order to apply to
Gaussian random f£ields (Reference 3),

«© [
R(D) = l‘-,zf [m:ux[O, Loy q'-(-z;-’y-)*]dudv
8 -0 a0

o (11-1-8)
D = ;lf J/ min(6,¢(u,v) Jdudv -
L

.

where u and v are the spatial frequencies of the two-dimensional Gaussian
random field. Equations (II-1-6) and (II-1-8) which define R(D) for Gaussian
sources, are the upper bounds to all other rate distortion functions of non-
Cassian sources with the sa?% spectral density ¢. Part I uses the above
formula applying ¢(p) = p"5 y P = Yu~+ve, as the spectral density of the

radiometer image. It gives an indication as the achievable distortion if the
data are undersampled.

There are few restrictions when applying the theory. The source statistics
have to be known although work has been done to extend the theory to universal
source coding to apply te sources with completely or partially unknown statistics.
More scverely, the theory provides only the theoretical limitations of expected
performance. Lt does not in any way provide the necessary algorithm to achieve
this theoretical limitation. As suggested by the minimization problem of
Eq. (II-1-4) over probability distributions, the mapping from X to Y is
probabilistic and is governed by p(xly) in achieving the minimum. Often, omne
can apply Eq. (II-1-6) using the estimate of the one dimensional spectral
density of the random process. This estimate may be obtained by average
periodigram or maximum entropy techinlques. Part L dliscussed some of the pros
and cons of these techniques. However, in order to apply Eq. (II-1-8) to two-
dimensional images, the two-dimensional power spectral density has to be
estimated. Roucos and Childers (Reference 4) recently extended the maximum
entropy spectral estimation method to the two-dimensional case but does not
provide a guarantee of the convergence of solutions. Finally, a meaningful
distortion criterion for subjective image quality has yet to be defined mathe-
matically so that one can incorporate it in the minimization of Eq. (II-1-4).

Image data compression techniques have undergone extensive research
(References 5 through 7). 1In every case, the redundancy of the images is care-
fully studied for its particular application. It is emphasized that the objec-
tive of data compression is to produce a wapping (or transformation) T,

(which may not be linear), such that a suitable T~1 can be found to reconstruct
the original images. Image restoration, however, usually deals with only the
second half of the above problem to remove inherent system degradations.

II-1-5
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1.3 FOURIER SYNTHESIS TEST CASES

In simulating a frequency domain imaging system, a spatial frequency
plane is obtained from an image f(x,y) via

F(u,v) = ﬂh(x,y,u,v)f(x,y)dxdy (11-1-9)

1

-

where h(x,y,u,v) = exp[-j2r(xu+yv)] and D is the field of view. Note that
since f(x,y) is real, F(u,v) is conjugated symmetrically. Measurements, mj,
have to be made only on halfl of the frequency planc:

m, = S{F(u,v)} + e

; : i=1,2,3, ... M (II-1-10)

where S is the sampling function and e; is the measurement error. Three
samplinpg stratepies’s are used in studying the reconstruction techniques:

F(u,v) 1if u=v, uw-v, u=0, v=0
Siirfu,v)l = (1~1-11)
LO else )

This is similar to ﬁulti»k system's sampling of frequency axes and diagonals
in Cartesian coordinate. This is an extremely undersampled system. For a

64x64 image, S1{F(u,v)} only retains 249 samples from F(u,v) over the spatial
Frequoncy domain coverape.

F(u,v)  4f |u| < /2w vl < Q/2)v,
S2{F(u,v)} = ' (T1-1-12)
0 else

This is similar to ideal lowpass filtering, only the frequency samples near
zZero spatial frequency are preserved.

F(u,v) 1f |u] < (l/a)umx,lvl < W
S3(f(u,v)} = ' (1I-1-13)
40 ' else

For a 64x64 image, this corresponds to low pass filtering with about same
number of measurements as S1 (256 vs. 249).,

I1-1-6
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Figures 1-4 and 1-5 illustrate the 64x64 stacked cube test patterns
along with their two-dimensional Fourier transforms. Case 1 clearly has its
spatial frequency contents concentrated along axes and diagonals. Case 2 is
rotated slightly with respect to Case 1, in order to disperse its spatial
frequency contents. Both cases are essentially the checker board test patterns.

Two basic reconstruction methods are investiguiw:'- The simplest one is
the direct transform technique which includes inverse :iltering and Wiener
filterinp. TFor sinpular reconstructlons, inverse and Wiener Flltering are not
expected to provide any improvements. They are included in this report because
of their classical role in image restoration. Examples are given to demon-
strate that both methods result in an improvement over direct inverse trans-
Fforming when the system Iy not undersampled.  The second method, due to
Wernecke (References 8 through 1l1l), is iterative in nature and is called
maximum entropy method (MEM). Brief descriptions of each method are described
in their respective chapters. In Section 4, Part II, three radiometer images
iare used to study the reconstructioa algorithms and theilr performances are
compared. '"houghout the report, squared-errors are computed by taking the
sum of the squares of the differences between original and reconstructed
images. The sum is then divided by the total number of pixels to producc
estimated mean=-square=crror.

II-1-7
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2. DIRECT FOURIER TRANSFORM TECHNIQUES

2.1 DIRECT FIT INVERSE

Given a set of frequency domain measurements mjy = F(ui,vy),
i=1,2,3, ... M, the simplest reconstruction would be to perform inverse
Fourier transform on these measurements. This is to assume that in an under-
sampled system, the missing data take on values of zero;

M
f(x.y) = :Z: ui{miexp[j2u(xui + yvi)]} (II-2~1)
im]

wihcre ag are chosen similar to the "lag window" in classical power spectral
density cstimation or the "welghting”" on each data mjy. [I(x,y) so defined is
always real since it is known a priori that F(u,v) is conjugated symmetrically.
Any set of measurements can be augmented with their complex conjugates at
proper negative spatial frequency leocations. Obviously, £(x,y) obtained

from Eq. (II-2-1) will have any kind of resolution only if the measurement
coverage of the (u,v) plane is almost complete. Equation (II-2-~1) is also
lacking in taking into considoration that an adinlssible reconstruction f(x,y)
must be nonnegative.

Figures 2-1 and 2-2 show the reconstructions of test cases 1 and 2 for
each of the three sampling functions S1l, S2, and S3. Sampling functions S2
and S3 represent spatial "brickwall" filters with impulse response of sin(x)/x
nature. The spatial convolution of the original cubes with the sin(x)/x
response is apparent. Note that although sampling function S3 has approxi~
mately the same number of measurcements as S1, it cnables a much better direct
inverse transform reconstruction both subjectively and in squared-error sense..
Since both.of the test cases have their frequency contents concentrated
around zero, S3 perserves much more useful information than S1; and in some
sense, is a better data compression algorithm.

2.2 INTERPOLATION OF MEASUREMENTS
There exist two major problems in direct transform techniques. The obvious

one is that missing data in an undersampled system are assumed to have zero
values. Secondarily, the measurements may not fall on rectangular lattice

II-2-1
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CASE 1
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FIGURE 2-1. DIRECT INVERSE TRANSFORM, TEST
CASE 1

II-2-2

86 vPEOLS



ORIGINAL PACE IS
OF POOR QUALITY

CASE 2
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FIGURE 2-2. DIRECT INVERSE TRANSFORM, TEST
CASE 2
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Q . to facilitate computational efficient Fast Fourier-transform (FFT) technique,
For example, in rotation synthesis interferometry, measurements lic on a polar
cather than rectangular grid. Thompson and Bracewell (Reference 12) studied
the method of partitioning the (u,v) plane and performing "cell summing" on
the measurements in each cell to obtain a set of data on rectangular lattice.
Stark (Reference 13) proved a sampling theorem in polar coordinate where image
can be reconstructed from spatial samples. It requires nonuniformly spaced
samples correspond to scaled zeros of Bessel functions along radial direction.

The problem of transforming these nonuniformly spaced samples onto rectangular
grid still exist.

Very little effort has been placed on searching for an optimum interpolation
stratepy since the multi-d system is significantly undersampled. Any recon-
struction method involving severe interpolation introduces intolerable arti-
facts. A simple method is tested (Reference 14).

Assuming that the frequency data along axes and diagonals are sufficiently
sampled (beyond the Nyquist rate), therefore the entire axes and diagonals are
completely specified, via Myquist sampling theorem. .Measurements can be arranged
in (6,f) plane as illustrated by Figure 2-3. Every point on the rectangular
grid inside the circle with radius L, can be interpolated via a simple

bicubic spline on (9,f) (Reference 15). Computational efficient FFT algorithms
then can be applied on interpolated data. Since frequency measurements are

complex, the real and the lmurlnury parts are luLLrpolaLgd fndependently. [fig-
ure 2-4 shows the resulting reconstruction on Case 1 and sampling function S1.
4" Figure 2~5 has a sampling function such that angular 6 is specified every
3

2 degrees from -180 to 180 as opposcd to cvery 45 deprees for Sl. The two
Ligures clearly Indicate the relationship between artifacts and severity of
interpolations. It is interesting te note that in order to completely specify
every point on the 64x64 rectangular grid without any interpolation, each
frequency quadrant (i.e., 0-90 degree) must contain 651 distinct nonuniformly
spaced angles. It roughly corresponds to an angular resclution of 0.14 degrees.

.
.0 Fmax 8
180 8
. 135 ‘o
=]
%0 ° (Ul. v,)
48 v, v,)
o (U,
Fmax 6 o i
-45
-80
. -136
f -180
a) ORIGINAL RECTANGULAR LATTICE b) (0, F) TRANSFORMATION FOR BICUBIC SPLINE

FIGURE 2-3. BICUBIC SPLINE INTERPOLATION
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FIGURE 24. INTERPOLATION ARTIFACTS, 0 =45° .. FIGURE 2-5. INTERPOLATION ARTIFACTS, 0 = 2°

2.3 INVERSE FILTERING AND WIENER FILTERING

laverse and Wiener flltering technlques are two classical restoration
methods. Their usefulness is mainly to remove linear PSF or MIF distortionm.
Wiener filter is,superior to inverse filter when the data are noisy and it
reduces down Lo inverse Filter o Lhe nolscless cuse.  Extendlog these classical
filtering techniques from one dimension %o two dimensions involves applying
theory of Tceplitz and circulant matrices (Reference 1). Results quoted here
are quite intuitive, however.

Let F(u,v) be the complex two-dimensional Fourier transform of f(x,y)
and let H(u,v) be the system transfer function. Let G(u,v) be the measure-
ments field and

G(u,v) = H(u,v)F(u,v) (I1-2-2)

If H(u,v) is nonsingular everywhere over the (u,v) plane, then F(u,v) can be
estimated from G(u,v) by

/l;(u.v) = G(u,v)/H(u,v)

and

?(x.y) = /f?(u,v)cxp[th(xu'PyV)]dudv (I1I-2-3)

II-2-5
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If all measurement (u,v) pairs on b(u,v) are on rectangular lattices, ?(x,y)
can be computed by inverse FFT algorithm by discretizing Eq. (II-2-3). This
inverse filtering technique 1s also called least-square method.

Apparently, il N(u,v) = S1 as defined in Section 1, H(u,v) is singular
and takes on zero values over most of the (u,v) plane. Although G(u,v) = 0
also whenever H(u,v) = 0, G(u,v)/H(u,v) gives an indetermined ratio, To show

an example where inverse filtering works for nonsingular H(u,v), let S1'.,be
such that '

‘F(u,v) u=v, us-v, u=0, v=0

S1'{¥(u,v)} = ( (II-2-4)
¢ ¥ 0 else, where ¢ small
or,
1 u=v, us-v, u=Q, v=0
H(u,v) = (1I-2-5)
€ else
Obviounly Eq. (11=2=2) and (11=2=3) yleld @(u,v) = F(u,v). The lnyerse Cllter
1/H(u,v) restores £(x,y) perfectly.
There are two nherent shortcomings In chils technlque. There will be

artifacts around the edge of the reconstructed image from the circular con-
volution wrapped around effect in calculating Eq. (II-2-3). Also if the data
are noisy, the noigse componcits alonp with measurcements arve amplificd by
L/Cu,v) when liCu,v) Is smaull. Ilgure 2-6(b) shows the noisy reconstruction
using inverse filter 1/H(u,v) where H(u,v) is defined by Equation (II-2-5).

A
Wiener filter is derived to minimize mean-square-error between f and £

assuming the knowledge of both the image and the noise-statistics. It can
be shown that (Reference 1) '

e(u,v) - H* (u,v)G(u,v)
|1, |2 + 17 (0,0 /2 (0]

and
?(x,y) = J{/;(u,v)exp[jZﬂ(xu+yv)] dudv. (II-2-6)

where Pp(u,v) and Pg(u,v) are the power spectral densities of the noise and
the image respectively; and H* denotes complex conjugate.

II-2-6
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There is no ill=conditioned behavior of singularity problem associated
with Wiener filter. Note that if H(u,v) + 0, F(u,v) + 0 also. This implies
that mlssing data are treated as zeros as in the case of direct inverse trans-
form. If P, + 0, i.e., noiseless, Wienmer filtering of Eq. (II-2-6) reduces to
Eq. (IT-2-3), the inverse filtering approach, Furthermore, if P¢ + 0 (no signal)
F(u,v) = 0. This implies that one can not expect to recover information at
(u,v) where noise is dominant.

Figure 2-6(a) illustrates the improvement on noise problem using Wiener
filtering over inverse filtering technique. P, is assumed to be white Gaussian
noise and P¢ is estimated from the two-dimensional FFT of the origianl test
pattern. It is well known that Wiener filter is a smoothing filter; recon-
structed image appecars flat ard [ine details arc blurred.

II-2-8
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3. MAXIMUM ENTROPY RECONSTRUCTION :

3.0 DISCUSSTON OF MAXIMUM ENTROPY METHOD

In view of inadequate reconstruction techniques when the problem is
singular, Wernocke proposcd and implomented an Lterative algorithm ucllizing
the principle of maximum entrcopy [References 8 through 11]. When the recon-
structior problem is singular, one has to find a solution of image that is
coneistent with the known measurements, Of course, solution neither has to
oxint nor has to be unique. A measure to plek cthe "best™ solution is needed.
In addition, the a priori knowledge that the solution (image) being non-
negative is a very strong constraint and should be comsidered in the recon-
struction process.

Maximum entropy principle has been applied successfully to estimate the
power spectral density S(v) of a stationary random process from measurements
of the correlation function. "There Iu no dircct mapplog between S(v) and
the entropy rate of the random process in the Shannon sense. However, the
random process with spectral density S(v) can be viewed as the output process
of a linear filter with squared magnitude frequency response of S(v) and
driven by a white input process. Bartlett showed that the entropy gain of
the filter (difference of the input and output entropies) can be expressed
by [References 16 and 17]

E = [ log S(v) dv (II-3-1)

It is not required to know the complete statistics of the input except that

it is a white process. The entropy of the output process is maximized if ’
the entropy gain of the filter E is made as large as possible. Naturally it
is necessary to have the constraint that the estimated spectrum S(v) has to

be consistent to the measured data. Maximum entropy method can be viewed as
the "most random"” extension to the known data. In the case of one-dimensional
MEM spectral estimation, the solution is achieved via polynomial spectral
factorization. Part I discusses few pros and cons of this method. Two-
dimensional extensinn only has limited success [Reference 4].

II~-3-1
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gt Wernecke observed that there are great similarities between reconstructing

L radio brightness distribution in Fourier synthesis and spectral estimations.
Both reconstructions are subject to nonnegative constraint and are related to
available measurement data via Fourier-transform relationship. Defining a
similar entropy measure H,

H = // log. £(x, y) dx dy (11;3-2)
D .

- the problem can be formulated as

max//log E(x, y) dx dy
D

such that

e
o .

PPN

//’E‘(x. y) exp[-32 ﬂ(xui + yvi)] dx dy ' = "‘1(“1' v,)
D

and
£(x, y) > 0 for all (x, y) in D ' (11-3-3)

where D is the field of view. If the measurements are not noiseless nor error
free, mj, i =1, 2, .. M become @;, and additional constraint

v
i

, M
; 1 ~ 12 . R

; z -2 lmi = m1| = M (11-3-4)
i=1 % '

II-3-2
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has to be added to Eq. (II~3-3). 0i's represent the variances of the
measurements., This constrained optimization problem may not have an explicit
solution and is hard to solve numerically. Furthermore, given a set of mea-
surements, there may not be a nonnegative solution that optimizes Eq. (II-3-3).
The problem can be turned into an unconstrained optimization of

M .
max fflog £(x, y) dx dy - Az 12|mi - 6,1[2 (II-3-5) T
) im1l 91

where )\ plays the role of Lagrange multiplier and is chosen so Eq, (II-3-4)
is satisfied to a sufficient accuracy. Equation (II-3-5) has a nonnegative
solution f(x, y) for any 2 > 0. A numerical algorithm can be developed by
partitioning £(x, y) into pixels (discretize the integrals) so that

Eq. (II-3-5) can be solved iteratively [Reference 8]. A user's manual and
program listing supplied by Wernecke is attached in, the Volume II, Appendix.

3.2 EXAMPLES
Tigures 3-1 through 3-3 show the reconstructions of the two stacked cube
test cases with sampling Cunctions 8L, 82, and 83. Siwee all three sampling

functions have large number of zero values, the entropy given by Eq. (II-2-3)
is modified slightly to stabilize the computations:

i’ -[flog (L + £(x, y)) dx dy (11-3-6)

Approximations of Shannon entropy assovclated with these images and reconstruc—
tions are given along with the squared-etrors. They are computed by using
relative frequency approximation of the probability densities where

P, = fi/F £, = ith pixel intemsity

F = Zf i is the total intensity
i

II-3-3
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CASE 1

SAMPLE FUNCTION 81
MAXIMUM ENTROPY
20 ITERATIONS

- ERROR = 7.4

a) TEST CASE 1 ORIGINAL H, = 0.7

CASE 2
SAMPLE FUNCTION 81
MAXIMUM ENTROPY
20 ITERATIONS
EAROR = 30.3

b) TEST CASE 2 ORIGINAL H, ~0.7
MEM RECONSTRUCTION, SAMPLING FUNCTION S1
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CASE 1

SAMPLE FUNCTION 82
MAXIMUM ENTROPY
4 ITERATIONS
ERROR = 138

CASE 1

SAMPLE FUNCTION 82
MAXIMUM ENTROPY
20 ITERATIONS
ERROR = 8.4

SOL-vpEOLR

a) TEST CASE 1 ORIGINAL H,=07

CASE 2 CASE 2
SAMPLE FUNCTION S2 SAMPLE FUNCTION §2
MAXIMUM ENTROPY MAXIMUM ENTROPY
4 ITERATIONS " 20 ITERATIONS

ERROR = 15.4 ERROR = 10.2
H,=24

>>>>>

b) TEST CASE 2 ORIGINAL H, = 0.7
FIGURE 3-2. MEM RECONSTRUCTION, SAMPLING FUNCTION S2
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CASE 1
SAMPLE FUNCTION 83
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ot ‘Z bk ~3¢
* ) )

8) TEST CASE 1 ORIGINAL H, = 0.7

CASE 2 ) CASE 2
SAMPLE FUNCTION 83 SAMPLE FUNCTIONS 83
MAXIMUM ENTROPY MAXIMUM ENTROPY

AVTEIATIONS 20 ITERATIONS
ERAROR = 34.2 ERROR = 22,7

(AN
H‘ -25 N n‘ -25

b) TEST CASE 2 ORIGINAL H, = 0.7

FIGURE 3-3. MEM RECONSTRUCTION, SAMPLING FUNCTION S3
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and

H, = -Epi l°g(pi) (I1-3-7)
i

In all the cases, MEM method yields stable solutions that are both good
ir the subjective and squared-error sense. When the data are not severely
undersampled (S2), it converges rather quickly. Table 3-1 summarizes squared-
errors for MEM and direct-transform reconstructions on the two test cases. It
is interesting to note that for Case 2 and S1 (Figure 3-1), the phase rotation
of the original is lost in the reconstruction.

TABLE 3-1. SUMMARY OF SQUARED-ERROR FOR
TEST CASE 1 AND 2

s1 s2 s3
MEM 7.4 8.4 21.8
CASE | 1 .
- FFT 25.5 12.3 19.2
MEM 30.3 10.2 22.7
CASE 2 5
FFT 34.4 12.9 19.3

3.3 ALTERNATIVE SOLUTIONS TO MAXIMUM ENTROPY METHOD

Wernecke also obtained a set parametric expression using Caleulus of
Varlations for various entropy criteria [Reference 8]. Tables 3-2 and 3-3
summarize his results for both error-free measurements and measurements with
errors. Reconstruction can also be done based on numerical solution of these
nonlinear parametric cquations. Tterative methad given in Scction 3.2 and
Appendix L is more preferable since the image, £(x, y), is manipulated )
directly rather than the parameters which has no bearing on the image quality.
Any one of these parametric equations can be incorporated into the MEM algo-
rithm with only minor programming modifications.
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TABLE 3-2. PARAMETRIC EXPRESSIONS FOR ERROR-INTOLERANT MAXTIMUM
ENTROPY IMAGE RECONSTRUCTION

ENTROPY/SMOOTHNESS CRITERION PARAME?ERIZED RECONSTRUCTION
1
/:/;.n f(x, y) dx dy T
D .
i=l
-/ [£(x, y)/F] anlf(x, y)/F] dx dy  exp |-1 - Fz Ay by (x, )
] T known i=],
- //[f(x. yI/F] | f(x, y)/F] dx dy exp | - /l- - LZ A l(x, y)
b F unknown i-1
- M M
- /j;(x, y) fn f(x, y) dx dy exp | -1 - z A (xs ) '
D | iml
, 1l
vE(x, y) dx dy 2
[}) Ez A (x,
i=]

PARAMETER DEFINITION

ffhk(x, y) £(x, y) dx dy k=1,2, ..., M
0 )

_[f,%(x, y) fn £(x, y) dx dy
D
F = /f%(x, y) dx dy

D
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TABLE 3-3. PARAMETRIC EXPRESSIONS FOR ERROR-TOLERANT MAXIMUM ENTROPY
IMAGE RECONSTRUCTIONS

ENTROPY/SMOOTHNESS CRITERION PARAMETERIZED RECONSTRUCTION

/fmf(x, y) dx dy ’ 1
" .

M
Ai
2D Eh e, y)
j=1 93

M
A
- //{f(x, y)/F] an[f(x, y)/F] dx dy exp -Hy/F - m'z —% hi(x, y)
D)

i=1 94

. M
+ Ai
- //I'(x, y) ¥t F(x, y) dx dy exp =l - ?.f\z -3 lul(x, y)
D

i=1 %4

1.
/f/f(x, y) dx dy Mo, 2
o’ 4Aj€

“% hy (x, y)
i=1 %

PARAMETER DEFINITION

Ak- //hk(x, y) £(x, y)clxcly-mk k=1, 2, ..., M

D

Hy = - //f(x, y) &n £ (x, y) dx 'dy
D
F= //%(x, y) dx dy

D ‘
M Af_
M= 2 -5 (if the value of A is not chosen a priori
i=1 91 by the user) .
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4. RADIOMETER IMAGE TEST CASES

Three radiometer lmages are chogen to test the reconstructlion algorithms
and sampling functions. Test Image 1 mainly consists of fields and roads.
Test Image 2 has a mixture of fields and city area. Test Image 3 has a more
detailed city outline. The original images are shown in Tigures 4-4(a),
h=5Ca), aud 4=06Ca). « igures 4=1 through 4-3 are the spatial frequency dis-
tributions of the images obtained by two-dimensional FFT. Frequency-domain

data are simulated by applying sampling function S1, S2, and S3 to these
Touricr~transfarmed imapes.

Figures 4-4 through 4-6 show the reconstruction techniques under investi-
gation for sampling function S1, the simulated multi-) system. Figures &4-7
through 4-9 show the resulis of sampling function S2 and Migures 4-10 through
4=-12 show the effects of sawpling functions S3. Table 4~1 summarizes the
results in terms of squared-error for all the sampling functions and two recon-
structions. The low error values are somewhat deceiving since the original
images have relatively low dynamic range. Figures 4-13 and 4-14 rearrange the
displays of the results of Test Image 1 to contrast the effects between vari-
ous sampling strategies.

As In the case of stucked=cube, 83 1s clearly a better sampling function
than S1 for approximately same number of data. As a matter of fact, under the
assumption 7hat the power spectral density of radiometer images is unimodal
(¢(p) = p~2/2), rate distortion theory discussed in Section 1.2 suggests that
one should try Lo presceeve as much low Lrequency reglon as possible.

Maximum eatropy method dild not provide any improvements in all the cases
tested except for stacked-cube case with S1. Its usefulness should not be dis-
counted, however. The method is iterative and in all cases, it converged
rather quickly. Table 4-2 shows the convergent reconstruction of Image 1
with sampling function S1. In Table 4-3, MEM is given all the spatial fre-
quency samples. It converges to a solution with insignificant error. Since
the MEM has built in measurement error/noise and nonnegative reconstruction
constraints, it may be a more viable restoration technique than direct inverse
transforms even the system is not severely undersampled.
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TES IMAGE 1 TEST IMAGE 1
REAL PART OF IMAGINARY PART OF
FOURIER TRANSFORM FOURIER TRANSFORM

LOL PPEOLS

FIGURE 4-1, FOURIER TRANSFORM OF IMAGE 1

TEST IMAGE 2 TEST IMAGE 2
REAL PART OF

IMAGINAAY PART OF
FOURIER TRANSFORAM FOURIER TRANSFORM

801 rPCOLS

FIGURE 4-2. FOURIER TRANSFORM OF IMAGE 2

TEST IMAGE 3 TEST IMAGE 3
REAL PART OF IMAGINARY PART OF
FOURIER TRANSFORM FOURIER TRANSFORM

60i-vPCOLE

AT ey
'.\'»*:1' o x
< L%

FIGURE 4-3. FOURIER TRANSFORM OF IMAGE 3
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b) INVERSE FFT -
sl ORIGINAL ERRORA = 1408 §
“‘ -44 N‘ -42 *

A
av b S0
"y >
R v
] w‘t‘-—-‘ nh..,nu..-,-q

»
\

ERRORA = 238

ERRORA = 18.7
H =40 H, =43
¢} MAXIMUM ENTROPY d) BICUBIC SPLINE
FIGURE 44, SAMPLING FUNCTION S1 APPLIED ON IMAGE 1
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s) ORIGINAL b) INVERSE FFT «
ERAOR = 9.8 f
N‘ - 42 H‘ -4

ERROR = 15,2 ERRORA = 26.3

H‘ - 4.0 N‘ -4.4
¢} MAXIMUM ENTROPY d) BICUBIC SPLINE

FIGURE 4-5. SAMPLING FUNCTION S1 APPLIED ON IMAGE 2
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FIGURE 4-6. SAMPLING FUNCTION S1 APPLIED ON IMAGE 3
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FIGURE 4-7. SAMPLING FUNCTION S2 APPLIED ON IMAGE 1
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s} ORIGINAL b) INVERSE FFT

ERRORA = 3.9
H, =43

ERROR = 3.7
H1 -43

¢} MAXIMUM ENTROPY
FIGURE 4-8. SAMPLING FUNCTION S2 APPLIED ON IMAGE 2
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a) ORIGINAL b) INVERSE FFT
ERRORA = 4.2
H_ =42 "‘ - 42

ERROA =40

H1-4.2

¢} MAXIMUM ENTROPY

FIGURE 4-8. SAMPLING FUNCTION S2 APPLIED ON IMAGE 3
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a) ORIGINAL b) INVERSE FFT
ERROA = 8
H =44 H, =43

ERROR = 9.2
H‘ - 42

¢} MAXIMUM ENTROPY

FIGURE 4-10. SAMPLING FUNCTION S3 APPLIED ON IMAGE 1
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a) ORIGINAL b) INVERSE FFT

ERROR =685
M. =42 H‘ -4
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‘ ' ’

ERROA =91

H1-4.0

¢} MAXIMUM ENTROPY

FIGURE 4-11. SAMPLING FUNCTION S3 APPLIED ON IMAGE 2
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s) ORIGINAL b) INVERSE FFT

ERRORA =~ 6.9
H =42 H"‘.Z

EARORA -~ 8.4

H‘-Ll

) MAXIMUM ENTROPY

FIGURE 4-12. SAMPLING FUNCTION S3 APPLIED ON IMAGE 3
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sl ORIGINAL b) 82

IMAGE 1

¢« 1 d) 83

FIGURE 4-13. DIRECT FFT INVERSE WITH VARIOUS SAMPLING FUNCTIONS
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FIGURE 4-14. MAXIMUM ENTROPY WITH VARIOUS, SAMPLING FUNCTIONS
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TABLE 4-1. SQUARED-ERROR SUMMARY WITH TEST IMAGES

s1 s2 $3
MEM 16.7 4.2 9.2
IMAGE 1 ) ~
FFT 14.5 4.8 8.1
MEM 15,2 3.7 9.1
“MAGE 2 —
FFT . 9.8 3.9 6’5
MEM 10.9 4.0 8.4
IMAGE 3 —
FFT 9.9 4.2 6.9

TABLE 4-2. CONVERGENCE TEST FOR MEM RECONSTRUCTION,
TEST IMAGE 3 AND TEST CASE 1, SAMPLING FUNCTION S1

Test Image 3 Test Case 1
Squared~Error | ﬁncropy Hl Squarcd~Lrror Entropy Hl
12.13 . 3.09 36.9 . 1.8
11.30 3.55 22.5 2.3
11.10 3.65 15.1 2.2
1L.04 3.72 12.4 2.2
Steps where 10.91 3.83 10.7 2.2
::::i:g£:ie 10.89 3.89 9.9 2.1
produced 10.88 3.92 9.7 . 2.1
10.87 4.00 8.5 2.1
8.3 1.9
8.0 ‘2.0
7.4 1.9
II-4-14
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& TABLE 4-3, CONVERGENCE TEST FOR MEM RECONSTRUCTZION,
~ TEST IMAGE 3, FULL SAMPLE
Squared-Error Entropy Hl
4.14 4,27
Steps where 0.09 4.22
meaningful o . -
images were 9.02 4,23
produced 0.02 ‘ 4.23
0.02 4.23
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5. CONCLUSION

This report ls by no means a compléte summary of image restoration
techniques. Several topics in the initial outline of work have not been
incorporated in the report due to lack of manpower and time. The high reso-
lution radiometer dmages from China Lanke arrived too late to be of usc in
this computer study. Analysils of antenna MIT and sensor PST was not carried
out, although it is noted in Chapter 2 and Reference 1l that such lineax
effects, if nonsingular, can be removed effectively by inverse filtering
technlque for noise=free data, and Wiener fdiltering [or noisy data.

In general, undersampling is quite undesirable. Many algorithms have
been develecped to comnress image data; some of them achieve very nigh com-
pression ratio for the paurticular class of Ilmages that they are designed for.
In all cases, the statistical properties of the images are studied:carefully
and algorithms designed to remove redundancy as the rate distortion theéory
suggests, One cannot expeci to recover the original source resolution when
useful information is arbitrarily discarded. This is clearly illustrated by
the two sampling strategies where onme is simulated multi-) system and the
other is lowpass filtering system. Both systems have approximately the same
number of data samples. Given that all threc test images have thelr spatial
frequency contents concentrated around zero frequency, the latter preserve
tiuch more useful information than the multi-A system ard enables a better
reconstruction. ’

Maximum entropy reconstruction method is studied to combat the under-
sampling problem. It worked very well on the stacked cube test patterms,
cven with simulated multi~A sampling of frequency axes and diagonals. It
only offers a slight or no improvement over direct transform technique on
the three test radiometer images. Since the algorithm has builtin measure-
ment error and noise constraint, it may be a better reconstruction technique,
#ven the system is not undersampled. Further study iz needed to verify the
universal worthiness of the method.
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