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Abstract

Medical devices that deliver electrical stimulation to neural tissue are important

clinical tools that can augment or replace pharmacological therapies. The success of

such devices has led to an explosion of interest in the field, termed neuromodulation,

with a diverse set of disorders being targeted for device-based treatment. Neverthe-

less, a large degree of uncertainty surrounds how and why these devices are effective.

This uncertainty limits the ability to optimize therapy and gives rise to deleterious

side effects. An emerging approach to improve neuromodulation efficacy and to better

understand its mechanisms is to record bioelectric activity during stimulation. Under-

standing how stimulation affects electrophysiology can provide insights into disease,

and also provides a feedback signal to autonomously tune stimulation parameters

to improve efficacy or decrease side-effects. The aims of this work were taken up

to advance the state-of-the-art in neuro-interface technology to enable closed-loop

neuromodulation therapies.

Long term monitoring of neuronal activity in awake and behaving subjects can

provide critical insights into brain dynamics that can inform system-level design of
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closed-loop neuromodulation systems. Thus, first we designed a system that wire-

lessly telemetered electrocorticography signals from awake-behaving rats. We hypoth-

esized that such a system could be useful for detecting sporadic but clinically relevant

electrophysiological events. In an 18-hour, overnight recording, seizure activity was

detected in a pre-clinical rodent model of global ischemic brain injury.

We subsequently turned to the design of neurostimulation circuits. Three critical

features of neurostimulation devices are safety, programmability, and specificity. We

conceived and implemented a neurostimulator architecture that utilizes a compact

on-chip circuit for charge balancing (safety), digital-to-analog converter calibration

(programmability) and current steering (specificity). Charge balancing accuracy was

measured at better than 0.3%, the digital-to-analog converters achieved 8-bit resolu-

tion, and physiological effects of current steering stimulation were demonstrated in

an anesthetized rat.

Lastly, to implement a bidirectional neural interface, both the recording and stim-

ulation circuits were fabricated on a single chip. In doing so, we implemented a low

noise, ultra-low power recording front end with a high dynamic range. The recording

circuits achieved a signal-to-noise ratio of 58 dB and a spurious-free dynamic range of

better than 70 dB, while consuming 5.5 µW per channel. We demonstrated bidirec-

tional operation of the chip by recording cardiac modulation induced through vagus

nerve stimulation, and demonstrated closed-loop control of cardiac rhythm.
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Chapter 1

Introduction

This thesis presents the development of neural interface circuits and systems for

a wide ranging field of applications, from wireless neural monitoring in subjects with

neural injuries, to therapeutic bidirectional systems with both sensing and stimula-

tion capabilities. The innovative aspects of this thesis include a wireless electrocor-

ticographic monitoring system for long-term recording in awake-behaving rodents, a

very-large-scale-integration (VLSI) chip with current steering capabilities for targeted

neural stimulation, and a bidirectional VLSI chip with both sensing and stimulation

circuits for a closed-loop therapeutic interface with the nervous system. This in-

troductory chapter serves three purposes. First, the specific aims of this work will

be described. Second, the contributions to the state-of-the-art will be summarized.

Finally, the organization of the remainder of the thesis will be explained.
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CHAPTER 1. INTRODUCTION

1.1 Specific Aims

Aim 1: To combine a multichannel neural recording chip with a wire-

less module to form an electrocorticographic recording system suitable for

untethered rats.

Rational: Physical tethers imposed on laboratory animals, such as head and body

restraints, constrain the environment in which experiments take place and the types

of behaviors that can be studied. Further, clinically relevant biomarkers may occur

sparsely in time, yet catching such activity may be critical.

Approach: We will combine a highly power-efficient custom VLSI neural interface

with a power-efficient telemetry chip to realize our system. Additionally, behavioral

monitoring will be performed via an accelerometer, which will provide quantitative

measurements of the subjects’ activity.

Expected Results: We expect the system will provide high quality electrocortico-

graphic recordings in untethered rats and will allow detection of sparse, clinically

relevant biomarkers.

Aim 2: To design a custom VLSI neural stimulation chip with on-chip

charge balancing and the ability to steer currents in-vivo.

Rational: Electrical stimulation of neural tissue is a widely used tool in basic

and clinical neuroscience and neuroengineering. Major challenges for neurostimula-

tion devices include achieving charge balanced stimulation waveforms for safety, and

creating stimulation waveforms that can activate targets with some specificity. Thus
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there is a need for compact circuits to measure currents within and across stimulation

channels to ensure charge balanced and current-steerable waveforms.

Approach: We propose an architecture that includes a shared auxiliary circuit

for 1) digital-to-analog converter calibration, 2) matching the anodic and cathodic

currents within channels for charge balancing, and 3) matching anodic and cathodic

currents across channels for current steering.

Expected Results: We expect our chip will provide accurate charge balanced stim-

ulation with high resolution digital amplitude selection and across channel current

steering.

Aim 3: To design a custom VLSI bidirectional neural interface chip with

a mixed-signal recording front-end and a current-steering neural stimula-

tor.

Rational: Bidirectional neural interfaces – systems that combine both recording

and stimulation into a unified system – have potential to advance the state of the art

in a broad set of fields. This motivates and necessitates the design of VLSI chips with

the entire recording pipeline – signal conditioning through digitization – alongside

neural stimulation circuits.

Approach: We will develop a bidirectional chip for power-efficient acquisition and

digitization of biopotential signals alongside the current-steering stimulator from Aim

2. We will build upon previous works that use a ∆Σ loop to directly generate the

digitized output. For maximum area efficiency, an array of stimulators will be fabri-

3



CHAPTER 1. INTRODUCTION

cated on the same die, and a digital controller will facilitate the coordination of the

two modules with an external programmable device.

Expected Results: We expect this chip will provide a low-noise and low-power

recording front-end alongside the flexible stimulation platform from Aim 2, which

will enable a closed-loop stimulation system.

1.2 Contributions

1.2.1 Aim 1

Two versions of a wireless ECoG system were developed by integrating a VLSI

neural interface chip with a wireless transmitter1. The first system utilized an ultra-

wideband (UWB) transmitter module, fabricated in a 0.5 µm silicon-on-sapphire

(SOS) technology2. Along with a microcontroller to coordinate their operations, the

system amplified, filtered, digitized and transmitted 16 channels of neural data at a

rate of 1 Mbps. Combined with a 200 mAhr battery, the system weighed 24 g and

could be chronically mounted on small animals. The system drew 4.8 mA from a

3.7 V battery, and could record continuously for up to 40 hours. The second version

made use of a commercial telemetry chip and also included an accelerometer for

quantitative behavioral data. Combined with a 400 mAhr battery, the system weighed

1This contribution was performed in collaboration with Mohsen Mollazadeh
2The UWB chip was provided by Wei Tang and Prof. Eugenio Culurciello of Yale University

4



CHAPTER 1. INTRODUCTION

29 g, and drew 5.1 mA from a 3.7 V battery. This system acquired simultaneous

ECoG and behavioral data from a pre-clinical rodent model of cardiac arrest and

provided evidence of seizure activity 14 hours into the recording. IEEE Transactions

on Biomedical Circuits and Systems vol. 5(2), pp. 112–119, 2011. IEEE Biomedical

Circuits and Systems Conference (BioCAS), 2011, pp. 237-240.

1.2.2 Aim 2

An 8-channel current steerable, multi-phasic neural stimulator with on-chip cur-

rent DAC calibration and residue nulling for precise charge balancing was designed.

Each channel consisted of two sub-binary radix DACs followed by wide-swing, high

output impedance current buffers providing time-multiplexed source and sink outputs

for anodic and cathodic stimulation. A single integrator was shared among channels

and served to calibrate DAC coefficients and to closely match the anodic and ca-

thodic stimulation phases. Following calibration, the differential non-linearity was

within ±0.3 LSB at 8-bit resolution and the two stimulation phases were matched

within 0.3%. Individual control in digital programming of stimulation coefficients

across the array allowed altering the spatial profile of current stimulation for current

steering. Combined with the self-calibration and current matching functions, the

current steering capabilities integrated on-chip support use in fully implanted neural

interfaces with autonomous operation for highly selective and adaptive stimulation

under variations in electrode and tissue conditions. Current steering stimulation
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CHAPTER 1. INTRODUCTION

through a multi-channel cuff electrode on the sciatic nerve of a rat was demonstrated.

IEEE Biomedical Circuits and Systems Conference (BioCAS), Oct 2013, pp. 89-92.

Manuscript submitted to IEEE Transactions on Biomedical Circuits and Systems.

1.2.3 Aim 3

A bidirectional neural interface with a 4-channel biopotential analog-to-digital

converter (bioADC) and a 4-channel current-mode stimulator in 180nm CMOS was

designed. Each bioADC channel comprised a continuous-time first-order ∆Σ modula-

tor with a chopper-stabilized OTA input and current feedback, followed by a second-

order comb-filter decimator with programmable oversampling ratio. Each stimula-

tor channel contained two independent digital-to-analog converters for anodic and

cathodic current generation. A shared calibration circuit matched the amplitude

of the anodic and cathodic currents for charge balancing. Powered from a 1.5V

supply, the analog and digital circuits in each recording channel drew on average

1.54 µA and 2.13 µA of supply current, respectively. The bioADCs achieved an

SNR of 58 dB and a SFDR of >70 dB, for better than 9-b ENOB. Intracranial

EEG recordings from an anesthetized rat were shown and compared to simultane-

ous recordings from a commercial reference system to validate performance in-vivo.

Additionally, bidirectional operation was demonstrated by recording cardiac modula-

tion induced through vagus nerve stimulation, and performing closed-loop control of

cardiac rhythm. IEEE Biomedical Circuits and Systems Conference (BioCAS), Oct
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2015, pp. 14. Manuscript submitted to IEEE Transactions on Biomedical Circuits

and Systems.

1.3 Thesis Organization

Chapter 2 introduces applications and circuit architectures for bidirectional neural

interfaces. It provides a broad background for the types of problems to which the

technologies developed in the remainder of the dissertation can be applied3.

Chapter 3 describes the design of our wireless ECoG system and presents the

in-vivo data collected with the system from untethered rodents.

Chapter 4 details our stimulator architecture and the CMOS design of the stimula-

tor chip. Both benchtop characterizations, and in-vivo demonstrations of the circuits

are presented.

Chapter 5 presents the circuit design of the ∆Σ recording front-end, and the in-

tegration of the stimulator from Chapter 4. The front-end is characterized in terms

of signal-to-noise-and-distortion (SNDR) ratio, input-referred noise, input impedance

and common-mode rejection ratio (CMRR). Intracranial EEG (iEEG) recordings col-

lected simultaneously with a commercial system are presented, and in-vivo bidirec-

tional operation is demonstrated as well.

Chapter 6 extends the work of Chapter 5 and details a closed-loop neuromodula-

tion system. Cardiac rhythm in anesthetized rodents is controlled by implementing a

3This chapter was written in collaboration with Matthew Masters
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CHAPTER 1. INTRODUCTION

proportional-plus-integral controller on a PC in real-time with the bidirectional chip.

Finally, Chapter 7 summarizes the dissertation and discusses future directions.

Important improvements that could be made to the developed technologies are dis-

cussed, and the importance and potential impact of the work is described.
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Chapter 2

Bidirectional Neural Interfaces –

Applications and VLSI Circuit

Implementations

Implantable devices that interface with the nervous system are becoming increas-

ingly viable treatment options in prosthetic and therapeutic applications. Motor

prosthetic devices record the electrical activity of the cerebral cortex,1, 2 or of periph-

eral nerves,3 to decode movement intention and actuate a robotic device. Modern

neurotherapeutic devices stimulate the nervous system to treat epilepsy,4, 5 to treat

chronic pain,6 and to aid rehabilitation following spinal cord injury.7, 8

In the aforementioned applications, natural neural activity is either recorded or

perturbed. The purpose of this chapter is to review evidence that bidirectional inter-

9



CHAPTER 2. BIDIRECTIONAL NEURAL INTERFACES

faces – systems that combine both recording and stimulation into a unified system –

have potential to advance the state of the art in a broad set of fields.

We define systems as “bidirectional” from a device engineer’s point of view. For

the purposes of this chapter, a system is “bidirectional” if it processes information

extracted from a biological system and delivers information back to the biological

system, regardless of the nature of that information. For example, a system that

processes information from an efferent branch of the nervous system, and delivers

stimulation back to the efferent branch is bidirectional by our definition, even though

the information flow is unidirectional.

Specifically, the devices covered will fall into one of three categories illustrated

schematically in Fig. 2.1: 1) neuroprosthetic, 2) neuro-repair, and 3) neurothera-

peutic. The first category, neuroprosthetic systems, consists of devices that restore

motor function. Neuroprosthetic devices are being improved upon by providing the

user with sensory information conveyed through electrical stimulation of the nervous

system (Fig 2.1(a)). The second category, neuro-repair, consists of systems that fa-

cilitate rehabilitation from brain injuries such as stroke and traumatic brain injury

(TBI). These devices pair recorded brain activity with stimulation to modulate con-

nections of neuronal populations or circumvent a damaged region (Fig 2.1(b)). The

third category, neurotherapeutic systems, consists of devices that treat nervous sys-

tem disorders (Fig. 2.1(c)). The debilitating effects of epilepsy can be mitigated in

some patients using a device that detects seizure activity and truncates it with elec-
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CHAPTER 2. BIDIRECTIONAL NEURAL INTERFACES

Figure 2.1: Block diagram illustrations of three classes of bidirectional neural inter-
faces covered in this review. (a) Bidirectional neuroprosthetic devices decode move-
ment intention and deliver sensory information to the user, or drive muscle or nerve
stimulation. (b) Neuro-repair devices pair neural stimulation with recorded neural
activity. A, B, and C represent different neuronal populations. Dark arrows represent
strong connections, and gray arrows represent weak connections. The weak connec-
tion between A and C is strengthened through hebbian mechanisms10 after injury
to B. (c) Neurotheraputic devices treat neurological disorders. This could entail de-
livering stimulation to truncate a detected seizure (left), or altering the pattern of
stimulation delivered to the sub-thalamic nucleus (STN) for treatment of PD (right).

trical stimulation.9 Additionally, bidirectional neurotherapeutic devices may improve

the efficacy of open-loop deep-brain stimulation by modulating stimulation parame-

ters based on biomarkers detected in real time.

This chapter is organized as follows. In Section 2.1 we discuss in detail how

bidirectional prostheses are currently being applied to the variety of clinical needs

mentioned above. Then, in Section 2.2, we describe implementations of these systems,

11



CHAPTER 2. BIDIRECTIONAL NEURAL INTERFACES

and highlight unique design considerations and challenges for these systems.

2.1 Applications

2.1.1 Neuroprostheses

The following subsections present recent advancements in the field of neuropros-

theses as pertaining to motor neuroprostheses and providing sensory feedback to users

of such systems.

2.1.1.1 Motor Neuroprostheses

Brain-machine-interfaces (BMIs) traditionally decode movement intention from

neural signals to control an artificial device such as a robotic arm or computer cursor.

However, an alternative strategy is to use decoded signals to drive spinal, peripheral

nerve, or muscle stimulation. These systems contain both neural sensing and electrical

stimulation capabilities.

Moritz et al. trained non-human primate (NHP) subjects to control the firing rate

of single neurons, which was used to control graded functional electrical stimulation

(FES) of wrist muscles paralyzed by a peripheral nerve block.11 This created an arti-

ficial pathway between the subjects’ cortex and the muscles, allowing them to control

flexion and extension of the wrist despite compromised neural pathways. Ethier et
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CHAPTER 2. BIDIRECTIONAL NEURAL INTERFACES

al. expanded on this strategy, and restored grasping ability in two NHP subjects by

translating population activity in motor cortex into FES of multiple muscle groups.12

Finally, Nishimura et al. used local field potentials (LFPs) to control spinal stimula-

tion. Additionally, the authors showed that a “recurrent” artificial connection could

be used to restore some functionality lost due to injury. An NHP with partial upper

limb paralysis collected juice rewards by producing and maintaining wrist torques of

sufficient magnitude to cross an experimenter-defined threshold. In several sessions,

the threshold was set such that the NHP could not naturally produce the torque

necessary to collect rewards, due to the injury. The authors applied spinal stimula-

tion upon detection of weak EMG signals in the paretic muscle. The EMG-triggered

spinal stimulation amplified native muscle activity, restoring the subject’s ability to

complete the task.13

The aforementioned systems are bidirectional in the sense that they record and

stimulate neural tissue. However, for patients in which sensory pathways are not

intact, these systems still suffer from the same drawback as traditional BMIs, in

that they rely solely on a feed-forward control strategy – they do not provide sen-

sory feedback. Bidirectional strategies can overcome this limitation by involving the

somatosensory system, and are covered in the following subsections.
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2.1.1.2 Sensory Feedback

Coordinated movements are facilitated by a rich set of sensory data communi-

cated to the brain.14 Such movements, therefore, are impaired in patients lacking

sensory feedback.15 In such cases, visual feedback alone is often relied upon in neuro-

prosthetic control for goal-directed movements.1, 2 Although it has been shown that

vision provides feedback adequate for some enhancement of movement accuracy in

these patients,16 other evidence suggests that somatosensory feedback would further

enhance control of a prosthetic device.17

In 1983 it was shown that natural sensory perception can be reproduced by electri-

cally stimulating peripheral nerves.18 Experimental work in the late 1990s and early

2000s offered strong evidence that providing somatosensory feedback, via electrical

stimulation, was possible.19 These findings have been replicated and supported by

other contemporary work and work that has followed more recently.20–22 These pio-

neering studies provided a firm scientific basis for future bidirectional motor prosthetic

systems.

The studies mentioned and referenced above demonstrated the viability of pro-

viding somatosensory information via cortical and peripheral nerve stimulation. The

following sections present recent work performed in (1) cortical and (2) peripheral

nerve stimulation.

Sensory Feedback via Cortical Stimulation

In 2011, O’Doherty et al. demonstrated a system that provided sensory informa-
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tion via cortical stimulation in a bidirectional motor prosthesis.23 Using temporally

patterned intracortical microstimulation (ICMS), they provided tactile feedback as

part of a brain-machine-brain interface. The authors presented NHP subjects with

multiple visually identical objects on a screen as subjects initially used a manual joy-

stick to explore a virtual environment. As the cursor or virtual arm touched objects,

different patterns of ICMS were applied to somatosensory cortex (S1) in an effort to

convey different textures. After training the NHPs in this paradigm, O’Doherty and

colleagues engineered a complete closed-loop brain controlled system. They simulta-

neously decoded movement signals from the motor cortex and delivered one of three

ICMS patterns (null, low frequency or high frequency) to S1 to represent the texture

of the objects in the virtual space.

One hurdle in simultaneously decoding motor signals and providing sensory feed-

back via ICMS lay in the recording artifacts caused by stimulation, which can be

several orders of magnitude larger than the signals being recorded. To circumvent

this issue, O’Doherty et al. used alternating 50 ms intervals dedicated solely for either

neural decoding or ICMS delivery. In this way, they guaranteed sufficient neural data

would be available for decoding.

To extend this sensory feedback paradigm and provide more intuitive feedback

with ICMS, investigations of stimulation parameters and strategies were conducted

by Tabot et al.24 The authors hypothesized that stimulation applied in a way that

attempts to reproduce the natural neural encoding of somatosensation would provide
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intuitive sensory feedback for a neuroprosthetic user. Contact location information

was conveyed through precise stimulation of the regions with corresponding receptive

fields in S1, pressure information was conveyed by stimulation amplitude, and the

timing of object interaction was presented through phasic stimulation at the onset

and offset of object interaction.

Furthermore, the group used a standard psychophysical paradigm to quantify the

relationship between electrical stimulation amplitude and perception in two NHP sub-

jects. With data from similar experiments using mechanical stimulation, they mapped

perceived magnitudes of mechanical stimuli to perceived magnitudes of electrical stim-

uli to create a psychometric equivalence function.24, 25 The authors then conducted

two experiments to test whether stimulation amplitude, scaled in this manner, would

be interpreted naturally. First, they applied mechanical stimulation to a prosthetic

hand equipped with sensors, and converted the mechanical stimulation magnitude to

electrical stimulation magnitude using the psychometric equivalence functions. The

accuracy with which the subjects performed a discrimination task with the artificial

sense of touch was similar to their natural ability. Second, the authors verified their

psychometric equivalence function by having the subjects compare the amplitudes of

mechanical stimulations with those of electrical stimulations, showing that subjects

made errors in discriminating between stimuli as expected when the sensations being

delivered were most similar. In conclusion, this work provides a framework to trans-

form pressure sensor data from a prosthetic hand into patterned ICMS that can be
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Figure 2.2: Depiction of the two major sensory feedback paradigms: cortical and
peripheral neural stimulation. (a) Cortical stimulation site.24 (b) Somatosensory map
in the stimulated region of the cortex along with perception locations on the NHP’s
hand.24 (c) Peripheral nerve stimulation setup with nerve cuff electrodes implanted
in the forearm of the human amputee subject.26 (d) Sensory perception location on
the subject’s phantom hand elicited by peripheral nerve stimulation.26 Adapted with
permission from.24, 26

interpreted naturally.

Sensory Feedback via Peripheral Nerve Stimulation

A multitude of peripheral nerve stimulation techniques exist. Perhaps the most

general categories of these techniques are penetrating and non-penetrating. Within

the category of nerve-penetrating stimulation are longitudinal intrafascicular elec-

trodes (LIFEs),27, 28 and transverse intrafascicular electrodes (TIMEs).29 Non-penetrating

systems include standard nerve cuff electrodes30, 31 and flat interface nerve electrodes

(FINEs).32–34 A few significant studies will highlight the latest development of these
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systems.

In 2005, Dhillon and Horch successfully used four to eight LIFEs in six long-

term upper limb human amputees to produce graded, discrete sensations of touch

and movement of their phantom hands as feedback to a neurally controlled artificial

arm.27 Similar work was performed by Rossini et al. in 2010.28 This team implanted

four LIFEs into the median and ulnar nerves of an amputee, and was able to detect

movement related nerve activity over a period of four weeks. A critical note is that,

although nerve signals were recorded for the duration of the experiment, stimula-

tion efficacy decayed after 10 days. This study also demonstrated real-time control

of motor output for three actions, localized and reproducible hand/finger sensations

through selective stimulation, reversal of plastic changes in the primary motor cortex

following sensory stimulation, and the alleviation of phantom-limb syndrome. Al-

though this study presents many impressive results which might recommend the use

of intrafascicular electrodes, the decay of stimulation efficacy illustrates one of the

major obstacles of using the electrodes for long-term recording and stimulation. The

tissue response following device insertion significantly impacts these functions.35

More recently, Raspopovic et al. demonstrated a peripherally interfaced bidi-

rectional prosthetic system using TIMEs, allowing an amputee to control a pros-

thetic hand and receive somatosensory feedback.29 The group used surface EMG

recordings of the residual limb to decode movement intention and simultaneously

electrically stimulated peripheral nerves to provide sensory feedback. The prosthetic

18



CHAPTER 2. BIDIRECTIONAL NEURAL INTERFACES

hand was outfitted with pressure sensors on the index and little fingers. Raspopovic

and colleagues linearly transformed readings from the sensors into stimulation cur-

rents, scaled in such a way as to prevent the stimulation currents from reaching

pre-determined pain limits, and ensuring the sensor output exceeded some minimum

threshold before any stimulation was applied. The authors report that an amputee

subject was able to use the bidirectional prosthesis to control three levels of force

applied by a prosthetic hand (low, medium and high), and to discriminate between

objects based on their composition (wood, plastic, or cotton) and shape (cylinder,

large sphere, small sphere), without visual or auditory feedback.

In contrast to the nerve-penetrating LIFE and TIME electrodes, nerve-cuff elec-

trodes are placed around the nerve. Clippinger et al. performed pioneering work with

nerve cuff electrodes around the median nerve of amputees in 1974.30 More recently,

Polasek et al. showed that nerve-cuff electrodes were both safe and stable in human

subjects over periods spanning up to three years.31 The FINE electrode is a nerve

cuff electrode designed to flatten the nerve to spread out the fascicles. Using FINEs,

Tyler and Durand demonstrated better access to nerve fibers for more selective stim-

ulation and recording abilities than traditional nerve cuff electrodes.32 Schiefer and

colleagues applied an eight-contact FINE to the human tibial nerve, which allowed

selective activation of those muscles responsible for dorsiflexion, plantarflexion, ankle

inversion, and ankle eversion - a level of specificity likely not achievable with a circular

nerve-cuff electrode.33
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Most recently, Tan et al. implanted two eight-contact FINEs and one four-contact

spiral electrode around the median, ulnar, and radial nerves of two 46 year old trans-

radial amputee subjects.34 By varying the location and pattern of stimulation, the

group produced repeatable, stable, and naturalistic touch perceptions at many lo-

cations on the phantom extremity of their subjects. The group reported consistent

threshold and impedance measures twelve months post-implantation. These aspects,

along with the ability to selectively stimulate the nerves at 19 of the 20 available con-

tacts, provide strong support for the chronic use of multi-contact FINEs for neural

feedback in the PNS.

2.1.1.3 Comparison of CNS and PNS stimulation

Cortical and peripheral stimulation methods have distinct advantages and chal-

lenges. They also tend to serve different patient populations. For example, a patient

suffering from a complete spinal cord injury would not benefit from peripheral nerve

stimulation but would require cortical stimulation techniques to receive sensory feed-

back.

A benefit exploited by cortical stimulation is the highly organized structure of

the tactile somatosensory cortex (Brodmann’s area 3b). In low-level somatosensory

cortex, it is straightforward to map stimulation location to percept location (Fig.

2.2). The somatotopy of the brain, however, can reorganize itself following injury,

leading to a drastic change in cortical representation of the affected and neighboring
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body parts.36, 37 In cases with substantial cortical remapping, it may be difficult to

artificially induce a percept in a part of the body that is no longer strongly represented

on the cortex.

Compared with the somatosensory cortex, the fibers within a peripheral nerve are

not arranged with a clear somatotopic map. Activating a large portion of a nerve

produces a feeling of paresthesia, a tingling or slight burning sensation.30, 34 However,

the PNS is not completely chaotic. Stewart showed that afferent and efferent nerve

fibers innervating similar regions of skin or muscle are generally grouped together “in

accord with the somatotopic organization of the motor and sensory pathways in the

central nervous system” .38 Another complication is the fact that large nerve fibers are

more easily activated by stimulation than small fibers. It has been proposed, though,

that selective stimulation of even the smallest nerve fibers may be achievable by novel

electrode design. Weber and colleagues advocate for high-density, nerve-penetrating

microelectrode arrays with feature sizes on the order of microns.39 Lacour et al devel-

oped a microchannel nerve interface which separated nerve fibers by promoting their

growth into individual microchannels.40 Fitzgerald et al. showed that a microchannel

design could facilitate selective stimulation of individual nerve fibers.41

One likely benefit of peripheral nerve stimulation is that signals can be accessed

before they are subjected to the significant processing performed by the somatosensory

system which transforms sensory input into perception of texture and shape.42 It

is likely that an artificial stimulus would be more naturally perceived if the signal
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undergoes the natural processing of the nervous system, beginning with the activation

of the lowest order sensory neurons in the peripheral nervous system.

Finally, due to the invasiveness of both methods, the majority of research has

been performed on NHP subjects until very recently. However, the barrier to hu-

man subject testing is diminishing, particularly for peripheral interface systems. For

example, Tan et al. developed a safe and reliable nerve interface technology, which

allowed them to derive biomimetic stimulation patterns by implanting multichannel

electrode arrays and having the subject directly describe the sensations produced.34

2.1.2 Neuro-repair

Restoring function or at least compensating for deficits following brain injury or

disease is a potential application for bidirectional neural interfaces. Such interfaces

are being developed to treat motor and cognitive deficits.43–47 The strategies used

to implement these two types of restorative prostheses (motor and cognitive) can be

subtly different. In both cases, neural stimulation is provided in response to recorded

activity. However, the goal of restorative motor prostheses is to induce plastic changes

in the brain that allow injured subjects to regain lost function. In contrast, in the

cognitive prostheses discussed here, a biomimetic model is constructed to bypass a

damaged region of brain.

In the subsections to follow, we first discuss major results from bidirectional neu-

ral interfaces applied to the motor system (Section 2.1.2.1), and then describe the
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advances being made to enable memory prostheses (Section 2.1.2.2).

2.1.2.1 Restorative Motor Prostheses

The following process has been hypothesized to facilitate the recovery of functions

lost to brain injury: activity recorded at one electrode acts as a “trigger” for stimu-

lation at a different, “target” electrode. Mavoori et al. first developed such a device,

called the Neurochip ,48 and soon after, Jackson et al. showed that it could induce

plastic changes in neural connectivity in-vivo.10

In a series of experiments, this group implanted autonomously operating Neu-

rochips on freely behaving NHP subjects over periods of days, and characterized the

changes in functional connectivity that resulted.10, 49, 50 Interestingly, the nature of

the device-induced reorganization, as well as the time-course of the effects, differed

depending on the locations of trigger and target. For example, Jackson et al. used a

trigger and stimulation target both within motor cortex. The Neurochip shifted the

efferent properties of the trigger network in the direction of the target network, and

the effect was maintained for more than a week after the device was deactivated.10

Alternatively, Lucas et al. used muscle activity as a trigger, and motor cortex as

the stimulation target; the Neurochip reorganized the connectivity of neurons in M1

associated with the trigger muscle, but these effects extinguished within 24 hours of

device deactivation.49 Finally, Nishimura et al. used a trigger within motor cortex,

and a target within spinal cord. The authors selectively strengthened or weakened the
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corticospinal connections under study by varying the timing of the stimulus relative

to the trigger.50 The durations of plastic effects were mixed; some changes lasted up

to two days after stimulation ceased. A complete description of these works, which

lay a neuroscientific foundation for the clinical application we describe next, is beyond

the scope of this paper, interested readers are directed to,44, 51 which provide more

comprehensive treatments of these studies.

Since the initial work from 2006,10 a number of labs have independently used this

closed-loop stimulation paradigm to demonstrate similar results.52, 53 These findings

have fueled speculation that bidirectional neural interfaces could aid in the rehabili-

tation process from various brain injuries.43, 44, 54, 55 Guggenmos et al. used a rodent

model of TBI to test the hypothesis that a bidirectional neural interface that deliv-

ers “spike-triggered” stimulation can facilitate rehabilitation.56 To enable this study,

the authors created a custom device modeled after the Neurochip.48 Azin et al. de-

signed an application-specific integrated circuit (ASIC) that contained recording and

stimulating circuits as well as signal processing circuits implementing the algorithm

described above.57, 58

Guggenmos and colleagues mounted the device on injured rats, and could deliver

closed loop stimulation continuously for 24-hours before requiring a change of battery.

Then, during recovery from brain injury, the authors provided one group of rodents

with closed-loop, spike-triggered stimulation, and provided another group with con-

stant frequency, open-loop stimulation. Over the course of recovery, rats regularly
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performed a reaching task to quantify forelimb dexterity. The performance of rats in

the closed-loop group improved at a faster rate than those in the open-loop group.

The authors analyzed the spiking activity recorded in both groups, and their results

suggested different mechanisms mediating recovery in the two cases. This research

represents an encouraging step forward, and successful replication of the results in

higher order animal models may clear the way for new therapies for human brain

injury.

2.1.2.2 Restorative Cognitive Prostheses

One strategy for cognitive prostheses is to replace a damaged region of the brain

with a biomimetic model. This model mimics how that region translates the spatial

and temporal characteristics of neural firing at its input into a unique pattern at

its output. Berger et al. developed a bio-inspired multiple-input, multiple-output

(MIMO) model that could mimic the input-output relationship of a region of brain.

The model parameters were obtained by recording spike trains from neurons project-

ing into the region concurrently with spike trains from neurons projecting out.47, 59

While this model is general, in the sense it could be applied to any region of brain,

the authors focus on the hippocampus and behavioral tests of memory.

Using a delayed nonmatch to sample (DNMS) paradigm with rats, Berger et al.

showed that the MIMO model could predict, in real time, when the subject was likely

to make an error due to poor encoding of the stimulus location.60 The authors then
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stimulated the hippocampus during the task, which improved performance. Criti-

cally, the stimulation patterns were derived from the MIMO model. Furthermore,

the authors created a pharmacological lesion in the hippocampus that impaired per-

formance in the DNMS task. Berger and colleagues restored performance to nearly

baseline levels by stimulating with model-derived patterns online.60 More recently,

Hampson et al. demonstrated similar results in non-human primate models,61 and

Opris et al. applied the same principles to prefrontal cortex.62

2.1.2.3 Future for Neuro-repair Devices

The experimental evidence supporting a role for bidirectional interfaces in reha-

bilitation from brain injury is largely speculative and preliminary. Neural implants

may one day improve rehabilitation outcomes for patients with brain injuries such as

TBI and stroke. However, more evidence is needed supporting the beneficial effects

of closed-loop stimulation. Previous failures in this field can partially be attributed

to a rush to clinical trials in humans.55

Here we’ve seen bidirectional systems applied to both the motor system and the

limbic system. In the case of motor rehabilitation, both closed loop and open loop

stimulation have beneficial effects, albeit by seemingly different mechanisms. Model-

ing by Kerr et al. indicate that open-loop stimulation restores a general drive signal.63

In memory prostheses however, the application of stimulation was not enough to im-

prove performance;60 the spatio-temporal properties of stimulation were critical, just
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as timing was critical to reshaping neural connectivity as shown by Jackson et al.,

Lucas et al, and Nishimura et al .10, 49, 50 These plastic changes induced by closed-loop

electrical stimulation may underlie some of the results seen with memory prostheses.

Interestingly, Hampson et al demonstrated that over time, stimulation with MIMO

model-derived patterns improved DNMS task performance on single trials when stim-

ulation was not performed.59 This indicates stimulation induced some fundamental

change within the underlying biology. Once stimulation was stopped permanently,

these changes decayed over a timescale of days.59

The works discussed above all represent exciting milestones in technological devel-

opment and experimental applications. Several questions regarding the use of bidi-

rectional neuro-repair devices require further study. For restorative motor prostheses,

would temporally non-regular open loop stimulation also be an effective therapeutic

option in place of closed loop56? This option should be explored because it could

reduce system complexity. Perhaps the biomimetic modeling approach would bene-

fit restorative motor prostheses. Berger et al. demonstrated a moderate benefit of

“generic” stimulation patterns, derived from data from multiple animals.60 System

complexity could further be reduced if the online implementation of the computation-

ally expensive biomimetic modeling could be bypassed. One strategy would be to use

a model to derive appropriate stimulation patterns offline, then, a simpler algorithm

be used to decide online, when to stimulate. Finally, further miniaturization and full

implantation of the devices, as opposed to the head-mounted approach, may result
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in more robust systems, as the interface between the electrodes and the electronics

in some cases can lead to device failure.56

2.1.3 Neurotheraputics

Electrical stimulation has been used for many years to treat a variety of neuro-

logical disorders. A large clinical trial, conducted 20 years ago, validated the ability

of vagus nerve stimulation (VNS) to reduce the frequency of seizures. VNS therapy,

for more than 15 years, has been an FDA approved therapy .4, 64 Deep-brain stim-

ulation (DBS) has had major success treating movement disorders such as essential

tremor (ET) and Parkinson’s disease (PD).65 Likewise, DBS has been demonstrated

to mitigate symptoms of obsessive-compulsive disorder and depression.66, 67

These clinical successes were all based on open-loop stimulation. In the following

subsections, we will show how bidirectional neural interfaces might improve upon

these conventional therapies. In Section 2.1.3.1 we discuss an FDA approved device

for the treatment of epilepsy, and in Section 2.1.3.2 we discuss progress made in

improving deep-brain stimulation therapy.

2.1.3.1 Epilepsy

Vagus nerve stimulation was the first FDA approved stimulation therapy for

epilepsy. Morris and colleagues recently reviewed available clinical data, and affirmed

the therapeutic benefits of VNS and even suggests that VNS efficacy may improve
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over time, though this conclusion may be confounded by the uncontrolled effects of

medication.68

Of course, VNS is not universally effective and has undesirable side-effects like

hoarseness, voice change, throat pain and cough.4 Hence, much research has been di-

rected at developing alternative stimulation strategies for reducing seizure frequency.

These strategies include thalamic stimulation5 and cortical stimulation.69

Fisher et al. demonstrated the benefits of open-loop thalamic stimulation in

clinical trials. The authors implanted electrodes bilaterally in a thalamic nucleus

mechanistically implicated in seizure propagation.70 Stimulation reduced median

seizure frequency by 40%, compared with 14.5% in the control group.71 Interest-

ingly, both groups saw immediate seizure reductions of around 20% in the month

following surgery.

A bidirectional approach was recently approved by the FDA. This commercial de-

vice, the Responsive Neurostimulator System (RNSr) (NeuroPace, Mountain View,

CA), continuously records intracranial EEG, extracts features from these signals,

and triggers stimulation on detection of epileptiform activity. Both the detection and

stimulus parameters are tailored by a physician to an individual patient’s needs.9 The

electrode placement is patient-dependent, and may be located within the brain, or

on its surface.72

A multicenter clinical trial of this device showed a significant decrease in average

seizure frequency of 37.9% compared with 17.3% in the control group during the
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blinded period.72 Following the blinded period, the stimulator was activated for all

subjects, and after two years, the median reduction in seizure frequency was 53%.

Note, that the effect size for closed-loop stimulation was similar to that of open-loop

stimulation discussed previously.

2.1.3.2 Movement Disorders

Another promising application is on-line detection and treatment of movement

disorders like PD. Implanted electrodes are used to record LFP, and computations

on those recordings are performed to detect patterns indicative of a diseased state.

This information would then be used either to 1) adjust the stimulation parameters

to more efficiently ease symptoms73, 74 or 2) apply therapeutic stimulation.75

Quantitative biomarkers of Parkinson’s disease are of great interest as they could

provide a metric to automate evaluation of the therapeutic effects of stimulation. Pa-

tients implanted with deep brain stimulators currently offer scientists and clinicians

brief windows of time to record from the brains of awake behaving human subjects

using implanted electrodes.76 This has implicated characteristic neural rhythms as-

sociated with movement disorders. Electrodes recording LFP in the sub-thalamic

nucleus (STN) in PD patients have been shown to exhibit abnormally high power in

the β band (10-35 Hz) that can be modulated by dopaminergic drugs77–80 or DBS.81, 82

In addition to signals from deep brain structures, cortical signals also seem to be af-

fected by PD. For example, Silberstein et al. showed that coherence in the β band
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is correlated with motor deficits, a trend reversed by application of DBS.83 Addition-

ally, de Hemptinne et al. demonstrated that surges of γ band power (50-300 Hz) in

motor cortex appear phase-locked to β rhythms recorded from STN; here too, DBS

decreased the magnitude of this feature.84

These insights open the door for a responsive neurostimulator applied to movement

disorders. In fact, Rosin et al. used a closed-loop stimulation strategy in a non-human

primate model of Parkinson’s disease, and showed it was more effective at reducing

Parkinson’s symptoms than a standard open-loop DBS strategy.75

Rosin et al. treated two NHP subjects with the neurotoxin MPTP to induce a

Parkinson’s like pathology. Following the application of MPTP, subjects lose the

ability to make volitional movements. This group mounted accelerometers on the

subjects’ limbs to quantify motor symptoms, and used the standard deviation of the

accelerometer signals as a measure of motor activity. The authors then evaluated a

number of different closed-loop stimulation strategies almost identical to the those

discussed in Section 2.1.2.

Activity in motor cortex acted as the “trigger” which led to initiation of a train

of DBS pulses. Open-loop and closed-loop stimulation strategies increased the sub-

jects’ ability to make volitional movements. However, the closed-loop strategy saw

statistically significant improvements over standard DBS. In addition to behavioral

improvements, closed-loop stimulation induced reductions in disease-state biomark-

ers.
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2.1.3.3 Benefit of Closed-Loop Neurotherepuetics

In the clinical trial for open-loop thalamic stimulation, the device delivered 90 µs,

5 V pulses at 145 Hz; the stimulation envelope had a 17% duty cycle, on for 1

minute and off for 5, which translated to 240 min/day.71 For closed-loop strategies,

the amount of stimulation delivered varies from patient to patient, and from day to

day. The median amount of stimulation delivered by the RNSr System was found to

be 4.7 min/day.9 The closed-loop strategy therefore stimulates almost 50 times less

often than the open-loop strategy.

This increased power efficiency is a great benefit to implantable devices in two

ways. For battery powered devices, the decreased power burden allows for the use of

lower capacity and thus physically smaller batteries – this can significantly decrease

the size of the implant. Additionally, lower power consumption confers a longer bat-

tery lifetime. When the battery in an implanted device dies, surgery is then required

to replace the battery. Therefore, longer battery lifetime means a decreased probabil-

ity for needing an additional surgery in older patients, and fewer additional surgeries

over the course of their life for younger patients. To develop closed-loop stimulation

paradigms that hold a therapeutic advantage over their open-loop counterparts will

require combinations of modeling85 and in-vivo studies.75

Bidirectional devices for treating neurological disorders, such as Parkinson’s, would

also benefit greatly from improved power efficiency for the same reasons. Addition-

ally however, closed-loop systems might provide a means to automate selection of
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Figure 2.3: (a) Conceptual block diagram of the bidirectional neural interface used
to induce plastic changes in-vivo in freely moving NHPs.10, 48–50 A low-noise amplifier
(LNA) extracts neural signals, which are then digitized and passed to an analog-
to-digital converter (ADC). A digital signal processing unit (DSP) runs a spike-
discrimination algorithm and triggers stimulation and transmits data. (b) Graphical
depiction of the spike detection algorithm: Upon passing through a threshold, the
recorded signal is compared with two predefined time-amplitude windows. Waveforms
that pass through both windows are classified as spikes. Two types of signals cross
the threshold in this example, the black traces are counted as spikes while the grey
traces are ignored.48

DBS parameters. The parameter space for DBS is extremely large; it includes ampli-

tude, frequency, pulse width, and temporal pattern.86–89 Tuning of these parameters

in practice must be performed manually by a highly trained neurologist to obtain

acceptable tradeoffs between alleviation of symptoms, severity of side-effects and bat-

tery life.90–92 Automated algorithms for the optimization of stimulation parameters

are therefore being explored.93
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2.2 Very Large Scale Integration (VLSI)

Implementations

There are numerous published examples combining recording and stimulation into

a single system. In addition to the applications described above, it is a classical ap-

proach used in basic science research94, 95 and allows for bidirectional bionic interac-

tions.96–98 Here, we restrict our focus to miniaturized or implantable systems designed

to treat diseases of, or injuries to, the nervous system.

Implantable systems face extremely tight constraints on both power and size.99

In bidirectional systems, these constraints become even more difficult to satisfy due

to the need for signal processing algorithms to run in real time with the recording

hardware, and the adulteration of micro-volt neural signals caused by stimulation.

Having established the utility of bidirectional interfaces, we turn in this section to

hardware implementations of bidirectional neural interface systems.

2.2.1 VLSI Systems for Spike-Triggered Stimula-

tion

VLSI systems intended for the applications described in Section 2.1.2 require a

signal processing block capable of discriminating neural spikes in real time. For

some applications, a single, tunable amplitude threshold may suffice. This requires a
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low-resolution DAC to set the threshold level, and a comparator to detect threshold

crossings.100 Alternatively, a number of groups have used the Teager Energy Operator

(TEO), an algorithm that estimates the energy of a signal ,101 for on-chip spike

detection. This method detects transient rises in signal energy above the background

noise level, and can be implemented with analog102 or digital circuits.103, 104

The spike-detection algorithm used by Mavoori et al. (discussed in Section 2.1.2)

is depicted graphically in Fig. 2.3(b). A state-machine waits for the input signal to

cross a baseline threshold. A waveform is classified as a spike if it passes through

two programmably defined time-amplitude windows (W1 and W2).48 These time-

amplitude windows are set manually based on the signals available after electrode

implantation. As discussed in Section 2.1.2, pairing the output of this algorithm with

electrical stimulation induces plasticity in-vivo.

Figure 2.3(a) depicts a block diagram of the Neurochip system discussed in Section

2.1.2. Mavoori et al. designed the original Neurochip system from discrete compo-

nents. The authors amplified and filtered neural signals using commercial operational-

amplifiers, and used a mixed-signal microcontroller to perform digitization, run the

spike discrimination algorithm, and trigger a biphasic stimulator. On-board memory

stored segments of recordings and spike detection statistics; the authors used an IR

link to download the data. Azin et al. designed an eight-channel system similar to

the Neurochip in a 0.35µm CMOS process. Each channel contained (1) a recording

front-end with an input-referred noise of 3.42µVrms in a 5.1kHz bandwidth, (2) a
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10-bit successive-approximation (SAR) analog-to-digital converter (ADC), and (3) a

constant-current biphasic stimulator. A digital processing block, shared among four

channels, implemented a high-pass filter and the spike discrimination algorithm de-

scribed above and in Fig. 2.3(b). Detected spikes, or patterns of spikes, autonomously

triggered ICMS delivery. This processing unit consumed 12µW of power, and pro-

cessed data from 4 channels, yielding an effective overhead of 3 µW per channel.57

Azin and colleagues then integrated the custom chip with a minimal set of off-chip

components to comprise a fully autonomous system. The final system weighed under

2 g and had 24 hours of battery lifetime, amenable for use in unrestrained rodents.56, 58

2.2.2 VLSI Systems for Treatment of Epilepsy

Detection of biomarkers for both seizures and movement disorders requires more

powerful digital processors than those described above. Usually, detection can be

accomplished by calculating time and/or frequency domain features of a continu-

ous EEG stream, and feeding those data to a classifier, trained on patient specific

data.110–112

Stanslaski et al. demonstrated three design innovations that make it possible to ex-

tract frequency domain features, even in the presence of a large stimulation artifact.110

First, the authors aimed to prevent sensor saturation. They performed differential

sensing symmetrically around the monopolar stimulating electrode to maximize the

common-mode nature of the stimulus artifact. They also used external passive filter-
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Figure 2.4: Four architectures for on-chip signal processing of neural data. (a) In,105

by altering the frequency and phase of the chopping clock at various points within
the front-end architecture, the authors produce an output signal that represents the
power within a programmably set frequency band. (b) Sub-band power can be ex-
tracted after amplification and filtering using tunable analog bandpass filters.106 (c)
Alternatively, a bank of digital filters can be used to extract band power after digiti-
zation of neural signals, the vector of sub-band power can then be used as the input
to a classifier.107, 108 (d) An alternative method for extracting sub-band power is to
perform an FFT on digitized signals. This, along with other features, such as signal
entropy, can be inputs into a classifier for seizure detection.109

ing to attenuate common-mode signals, which prevented the stimulus artifact from

exceeding the common-mode input range of the amplifier. Secondly, Stanslaski and

colleagues mitigated spectral contamination of the sensed signal by judicious choice

of stimulation parameters. The authors analyzed how the harmonics of the chopping

waveform (chopper stabilization was used to remove 1/f noise in the front-end ampli-

fier) interact with the harmonics of the stimulation waveform. This analysis provided

guidelines for how to choose stimulation parameters to minimize contamination of
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the frequency band of interest. Finally, biomarker classification was performed with

a support vector machine that used the state of stimulation (on or off) as a feature.

On-chip spectral analysis techniques have received considerable attention; ana-

lyzing the energy within specific signal bands of interest can be accomplished with

either analog or digital circuits (Fig. 2.4). One analog-domain method merged the

spectral extraction capabilities into the front end amplifier.105 Fig. 2.4(a) illustrates

a simplified block diagram of how this was done. Avestruz et al. used chopping

to remove low-frequency noise from the front-end amplifier. By manipulating the

frequency and phase of the chopping clocks at various points within the circuit, the

authors produced an analog output that represented the power in a band of interest.

The center and width of this band could be tuned in a robust manner. Alternatively,

Zhang et al. used four parallel switched-capacitor filters to extract the signal compo-

nent in four different frequency bands of interest (Fig. 2.4(b)). The filter architecture

allowed for band centers and widths to be digitally tuned. The authors then used a

squaring circuit and switched-capacitor integrator to produce an output representing

the energy in the respective signal band.106 Finally, digital bandpass filters (BPFs)

have been used by a number of groups to approximate the energy in different sub-

bands.107, 108, 113 Yoo et al. designed an eight channel seizure detection IC.107 Each

channel contained seven digital BPFs to aid in the classification of seizure activity.

A complete bidirectional SoC for closed-loop epilepsy treatment was described

and validated by Abdelhalim et al. 114 The chip contained 64 low-noise amplifiers
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Figure 2.5: Closed-loop seizure control. Seizure activity induced by injection of kainic
acid begins around t = 8 s (left inset). This abnormal activity can be efficiently
detected by analyzing the phase relationships between pairs of channels. After detec-
tion, a 5 Hz, 100 µA pulse train is triggered (center inset). Soon after, LFP activity
returns to low-amplitude desynchronized activity (right inset). Adapted with permis-
sion from.114

and stimulators. An innovative resource-sharing scheme allowed for the massive in-

tegration of 64-channels. Each channel could be configured as a recording channel

or a stimulator. Depending on this setting, an in-channel DAC would be used either

within a SAR ADC, or to set the stimulation current. Likewise, the SAR logic was

re-purposed to set the pulse-width of the stimulator. Further, the authors used two

sets of FIR filters to separate the in-phase and quadrature components of the input

signals. Resource-sharing eliminated the need for hardware multipliers within the

FIR filters, as the multiplications operations were merged directly into the ADC’s

SAR logic.115 The in-phase and quadrature components of channel pairs were passed
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to on-chip CORDIC cores to extract a feature useful for seizure detection, the phase

locking value (PLV). Abdelhalim and colleagues designed a feedback loop that trig-

gered bisphasic stimulation pulses when the PLV for a given channel pair exceeded a

programmable threshold. This is illustrated in Fig 2.5; the authors induced seizure

activity in a rat by injection of kainic acid.

The large number of channels present in a single chip has important practical

implications. For example, during the clinical trials for the RNSr System, issues

with lead placement and damage occurred in a few patients.9 Increased channel

count would allow physicians to cast a wide net in capturing the seizure focus and

potentially increase the proportion of patients responsive to the treatment.

2.2.3 Comparison of VLSI Systems

Table 2.1 compares several academic and commercial bidirectional neural inter-

faces. Applications such as spike-triggered stimulation (STS), memory prostheses,

treatment of epilepsy, or closed-loop DBS are represented. In cases where the signal

processing is performed by an external programmable device, the application is listed

as “general,” as the application is not fixed.

Direct comparisons of total system power consumption across designs are difficult

for bidirectional systems. System power dissipation will depend on the stimulation

rate and amplitude, factors that may vary greatly from patient to patient. In fact, this

variation across patients translates to a nearly 2-year difference in the system lifetime
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Table 2.1: Comparison of state-of-the-art bidirectional neural interface systems.

Reference 48 116 57 47, 117, 118 110, 119, 120 114 121 122 109 123

Year 2005 2011 2011 2012 2012 2013 2014α 2014 2014 2015

Technology Discrete Discrete 0.35µm 0.18µm 0.8µm, discrete 0.13µm - 0.18µm 0.18µm 65nm

Application STSβ STS STS Memory General Epilepsy Epilepsy CL-DBSγ Epilepsy STS

# Stim Chan 1 3 8 8 8 64 8 2,8 1 8

Stim Res (bits) 5 - 6 - 8 8 - 6 1 6

Stim Range
(mA)

0.1 0.2/5 0.945 - 25.5 1.09 11.5 4.1/0.116 0.03 0.9

Stim Supply
Voltage (V)

14 ±15/± 50 5 ±3.3 ±10 3.3 12 5 10 8.7

# Rec Chan 1 3 8 16 4 64 4 4 8 64

Front-end BW
(Hz)

500-5k 10-7.5k 1.1-12k 200-2k 0.05− 120δ 1-5k - 0.64-6k 0.5-7k 10-8k

Front-end Noise
(µVrms)

6 2.7 3.12 4.24 1.1δ 5.1 - 6.3 5.23 7.5

ADC Type Delta-sigma - SAR SAR + Dual
Slope

- SAR - Pipeline (log) Delta-modulated
SAR

SAR

ADC Res. (bits) 8 8 10 12 - 8 - 8 10 10

Processing Spike discrimi-
nation

Spike discrim-
ination and
sub-band power
extraction

Digital HPF,
Spike discrimi-
nation

Digital BPF,
spike sort-
ing, non-linear
MIMO neural
network

Analog sub-band
power extraction
and SVM

Sub-band PLV Line-length,
area detector,
or band-pass
detector

Digital
LPF/HPF,
sub-band power
extraction, and
PI controller

FFT, Sub-band
power extraction
ApEn, LLS clas-
sifier

Spike discrimi-
nation

Telemetry Infrared Infrared FSK - Inductive UWB Inductive Backscatter
transceiver

MedBand OOK
transciever

-

Power Supply Battery Battery Battery - Battery Battery Battery RF power har-
vesting or bat-
tery

Inductive cou-
pling or battery

-

Power Consump-
tion (mW)

40-120ǫ 284-420ǫ 0.375ǫ - 0.04ζ 1.4ζ 0.062ǫ 0.468ǫ 2.8ζ 0.193ζ

α Data here taken from user manual published online in 2014. β STS = Spike-triggered stimulation.γ CL-DBS = Closed-loop deep-brain stimulation. δ The noise and bandwidth figures are from.119 When the IC is used in spectral extraction mode, a noise-penalty is incurred, but the

bandwidth is also narrowed, allowing for a minimum detectable signal of 1µVrms.
105, 110 ǫ Power figure includes power consumed by active stimulators. ζ Power figure does not include power consumed by active stimulators.
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for patients in the 5th percentile versus the 95th percentile for the RNSr System.121

Hence, where possible, the power consumption listed in Table 2.1 does not include

power dissipated from the stimulator. In cases where the power figure does include

the stimulation block, details on amplitude and frequency can be obtained from the

references.

2.3 Conclusion

Bidirectional neural interfaces are enabling treatment and therapy with diverse

and important applications. Significant advancements are needed in our understand-

ing of neural processing and coding so that more effective therapeutic closed-loop

strategies can be developed. Newman et al. have created an open-source, closed-

loop experimentation platform,124, 125 making the means to investigate such strategies

widely available. For such systems to be widely adopted at the clinical level, perfor-

mance of neural interfaces needs improvement in areas such as size, power consump-

tion, implant life-time, and cost. Therefore, for these systems to become a clinical

reality, we need a more complete understanding of the underlying neural mechanisms

as well as smaller, more power efficient and smarter sensors. Above all, the future

of these systems depends on interdisciplinary collaborations. We believe that the

challenges described above can only be solved via synergistic cooperation among sci-

entists, clinicians and engineers. In this way, it will be possible to progress rapidly
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from scientific discoveries to novel and appropriate technologies and finally to clinical

validation and deployment.

This review is limited in certain ways. Non-invasive neural stimulation methods

such as transcranial magnetic stimulation (TMS),126 transcranial direct current stim-

ulation (tDCS)127 and transcranial focused ultrasound (tFUS)128 have been ignored.

These methods are beginning to be seen as effective tools for studying neural function

in humans, and there are ongoing efforts to translate them to clinical use.129–131 A

drawback shared among all non-invasive stimulation methods is their attainable spa-

tial resolution. With TMS for example, the focality of stimulation is limited to regions

on the order of 1 cm2.132 Localization of the stimulation electrode is of paramount

importance; hence the spatial resolution of non-invasive methods could preclude their

use in all cases. Further, noninvasive methods can only be applied sporadically for

acute studies or treatments. Unlike implanted systems, these technologies are not

available 24/7 over extended durations. Nevertheless, due to safety concerns asso-

ciated with implanted systems, noninvasive neural modulation methods will likely

always have a major clinical role.

Also, all optical methods, optical sensing and optogenetic stimulation have not

been included. Clinically relevant information can be gleaned from optical meth-

ods,133 however, a complete treatment of these methods is beyond the scope of this

article, for an in-depth review see.134 Optogenetic stimulation has astounding po-

tential given its ability to selectively target cell types, and has been used in animal
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models in bidirectional treatment of seizures.135 The major impediments to human

use are also beyond the scope of this article, however, significant progress is being

made, especially with regards to optogenetic-based retinal prostheses.136

In this chapter, a diverse set of fields in which bidirectional neural interfaces

are advancing the current state of the art have been discussed. Neuroprosthetic

devices may soon endow the user with chronic biomimetic sensory feedback, allowing

artificial devices to feel like natural extensions of the body. Neuro-repair devices are

envisioned to accelerate and enhance recovery in patients following stroke or TBI,

restoring pre-injury levels of function. Finally, neurotheraputic devices are poised

to treat the symptoms of neurological diseases in a patient-specific manner to more

efficiently ease symptoms. Advances in the engineering of VLSI systems, including

the development of fully integrated systems, are helping to drive the field from the

laboratory to the clinic.
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Chapter 3

A Wireless EEG System for Freely

Moving Rodents

The operation of bidirectional and closed-loop neurotherapeutic systems is pred-

icated on the ability to detect relevant biomarkers to influence stimulation. The

success of these systems hinges on the discovery of signals that provide informa-

tion about disease. Preclinical models of diseases in rodents can be used to discover

electrophysiological correlates of recovery from global ischemic brain injury for exam-

ple.137 However, current recording systems for laboratory animals are only capable of

sporadic recordings, making it difficult to correlate activity in the electrocorticogram

(ECoG) with subjects’ behaviors and outcomes, especially when biomarkers of inter-

est are sporadic. These challenges demand significant technological progress to enable

wireless recording of neural activity from untethered and behaving subjects.
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Over the past several years, a number of systems have been designed to record

neural activity in awake behaving animals.48, 103, 138–143 Santhanam et al.139 designed a

system which stores the spike-sorted neural data onto a flash memory card, bypassing

the need for a wireless transmitter. A later version of the same system,141 employed

a custom neural recording VLSI chip with on-board FSK telemetry.142 This system

was mounted on a rhesus monkey and used to record spike signals from one channel

continuously for six days. A similar version of this system was also employed to record

spikes and electromyography (EMG) in freely moving insects.143 Hampson et al.140

reported on a custom-built system with Bluetooth technology which could transmit

16 channels of neural data from awake and freely moving rats. This system achieved a

transmission rate of approximately 150 Kbps and could record for over five hours while

being powered by a 40 gram battery pack. Chae et al.,103 reported on a 128 channel

neural recording IC with an on-board ultra-wideband (UWB) transmitter capable

of transmitting data at up to 90 Mb/s. This system was validated on excised snail

neural tissue and offered on-board spike-sorting, emphasizing the ability to perform

digital signal processing alongside analog acquisition and RF telemetry. Szuts et

al.144 reported on a 64 channel system designed to record and transmit neural spikes

and local field potentials. The system had a telemetry range of 60 m and consumed

645 mW. It was used to record neural activity from a rat in a 10 × 10 m2 outdoor

environment.

The previous reports mainly focus on recording single-unit activity as opposed
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to ECoG or electroencephalogram (EEG) signals, which offer a more global view of

ongoing brain activity. Recording instrumentation for these signals have different

bandwidth and noise requirements than the instrumentation required for recording

spike signals. Little work has focused on designing head-mounted systems for record-

ing ECoG signals in small animals. Lapray et al.145 described a system for wireless

recording of one channel of ECoG activity in awake rats at distances up to 3 m.

Here, we present a recording system for wireless monitoring of neural and be-

havioral activity from awake behaving animals. The system allows long-term multi-

channel recording of neural signals and quantitative activity measures from tetherless

subjects with high fidelity in a small footprint. We have implemented the system to

record ECoG activity in freely moving rats.

Section 3.1 describes the functional and physical design of the system. Results of

benchtop characterization and in-vivo testing in awake subjects follow in Section 3.3,

and Section 3.4 concludes the chapter.

3.1 System Design

The wireless recording system described in this chapter takes on two versions re-

ferred in the following text as System A and System B. The core elements of both

systems include a multichannel VLSI neural recording interface, a wireless transmit-

ter, a microcontroller, and a battery. System A makes use of a UWB transmitter
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Figure 3.1: Functional block diagram of the developed neural monitoring system.
Neural signals are amplified, filtered and digitized by a custom-designed VLSI chip
that was designed by Mollazadeh et al .146, 147 A microcontroller packages the data
and sends it to a wireless transmitter. Signals are detected by a receiver circuit and
read into the computer using an FPGA-USB interface.

designed by Tang and Culurciello,148 whereas System B transmits data with a com-

mercial off-the-shelf frequency-shift-keying (FSK) transmitter (nRF24L01+, Nordic

Semiconductor, Trondheim, Norway). System B additionally includes a MEMs ac-

celerometer (ADXL345, Analog Devices, Norwood, MA) to quantify physical activity.

Fig. 3.1 illustrates a block diagram of the architecture valid for both System A and B.

Neural activity is amplified, filtered, and digitized by the VLSI neural interface. Dig-

itized data are transmitted in bit-serial format to a microcontroller which reformats

and packages the data, and sends it to the wireless transmitter. Power is supplied

with a rechargeable Li-ion battery.

The neural interface board mates with an electrode connector affixed to the skull,

and is housed in a 3D-printed plastic enclosure. In System B, the accelerometer
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is stacked on top of the neural interface board within the plastic enclosure. These

components are referred to as the headstage. The digital interface, transmitter, and

battery were held in a pouch secured to the body, and is referred to as the backpack

stage. At the receiving end, an RF receiver is interfaced to a field-programmable gate

array (FPGA) on a development board with a USB interface (XEM 3010, Opal Kelly,

Portland OR). Received data is displayed in real-time using a custom graphical user

interface (GUI) written in LabView.

3.1.1 Neural Front-End

Each channel of the neural front-end contains a bandpass amplifier with tunable

bandwidth, a programmable analog-to-digital converter (ADC), and bit-serial readout

circuitry. The bandpass amplifier in the recording front-end provides fixed gain (40

dB) amplification with tunable lowpass filtering from 140 Hz to 8.2 kHz. The amplifier

has less than 3 µVrms input-referred noise and each channel draws less than 12.5 µA of

current from the power supply (dependent on the bandwidth settings). Each channel

also contains a configurable incremental Gm-C ∆Σ ADC, which offers programmable

resolution from 8 to 12 bits and digital gain of 1 to 4. With the ADC clocked at 1

MHz, the oversampling ratio (OSR) set to 210, and digital gain set to 1, an inherent

low-pass (anti-aliasing) filter is implemented by the Gm-C integration. Finally at the

end of OSR clock cycles, the digital outputs of each channel are clocked into and

out of a parallel-in serial-out shift register with the output of all channels connected
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to each other in a daisy chain fashion. These circuits were fabricated in a 0.5 µm

2P3M CMOS process and occupied 3 mm × 3 mm of silicon area. A comprehensive

description of this system can be found elsewhere.146, 147

3.1.2 Wireless Telemetry

In System A, the transmitter consists of a voltage-controlled ring oscillator (VCRO)

as a compact pulse generator and an output buffer as the modulator. The transmitter

is capable of generating pulses with 1 ns width and the pulse rate can be controlled

between 90 MHz and 270 MHz. The UWB chip can reach a maximum of 14Mbps

and consumes 10-20 mW of power from 3.3 V supply depending on the transmission

distance. The UWB circuit was fabricated in a 0.5 µm silicon-on-sapphire (SOS)

process and occupies 420 µm × 420 µm of silicon area.

In System B, an nRF24L01+ (Nordic Semiconductor, Trondheim, Norway) transceiver

is used for telemetry. There are two tradeoffs made in using the commercial device.

First, the commercial transmitter is less power efficient; it consumes >36 mW from a

3.3 V supply during transmission when operating with a data rate of 1 Mbps. How-

ever, it provides a more robust data link when the rodent is active and moving about

its cage. Second, the commercial chip operates with a carrier frequency of 2.4 GHz,

permitting the use of a very small (2.2 × 6.5 mm2) chip antenna and decreasing the

system size and weight.
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3.1.3 Digital Interface

The two VLSI circuits described above as well as the commercial transmitter

offer a range of programmable parameters for various operating conditions. However,

the bit-serial output of the neural interface cannot be directly connected to either

telemetry chip. In System A, the telemetered data needs to be formatted in packets

in order to remove spurious RF interferences from data at the receiver side. In

System B, communication with the transmitter chip must be established with SPI

communication protocol. Hence, a digital interface module is needed to coordinate

the operations between all the modules. This interface is implemented using a power

efficient microcontroller, PIC18F24J11 (Microchip, Chandler, AZ).

On system start-up, the microcontroller programs the neural interface chip to the

desired bandwidth and ADC settings (e.g. 0.1 Hz to 1 kHz bandwidth, 10 bit resolu-

tion, and digital gain of two for recording ECoG signals). The microcontroller then

sends a “start” command to the neural interface chip to commence data acquisition,

and awaits reception of the digitized data.

In System A, the microcontroller appends a 16 bit header to the beginning of the

block and serially outputs the data to the UWB chip. The packaged data is shifted

out serially to the UWB chip at a rate of 1 Mbps. A block of data is one conversion

cycle from all channels (i.e. 16 channels digitized at 12 bits totaling 192 bits). In

System B, a data packet of both neural data and accelerometer data are sent to the

transmitter chip which independently appends a header to the beginning of the data
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packet and a CRC error checking word to the end.

Because the system is powered by a battery and available power is limited, par-

ticular care was taken in programming the microcontroller. When not reading in

samples from the neural interface or accelerometer, the microcontroller operates in a

low-power idle mode, in which peripherals continue to operate while the CPU stops

executing instructions. We use the two serial communication channels of the enhanced

universal synchronous asynchronous receiver transmitter (EUSART) peripheral to re-

ceive data from the neuropotential chip and transmit data to the telemetry chip. The

microcontroller consequently operates almost exclusively in a lower power idle state.

Finally, to further minimize the power consumption of the discrete components, we

attempted to minimize the instruction clock frequency. The ∆Σ ADC in the VLSI

neural front-end requires a 1MHz input clock, and this determined the minimum fre-

quency at which we could run the microcontroller. We use a 4 MHz crystal, which

provides a 1 MHz instruction clock cycle. This in turn limited the data transmission

rate of the UWB module to 1 Mbps. Although this rate is lower than the maximum

rate the UWB transmitter can provide, it suffices the needs of our recording system.

3.1.4 System Integration and Packaging

The headstage consists of a 2.2 × 1.2 cm2 printed circuit board (PCB). The neu-

ral interface chip was directly wirebonded to the head-stage PCB and connects to

the electrodes with a custom made connector that mates directly with the electrode
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Figure 3.2: The two versions of the wireless ECoG recording systems described in this
chapter. Both systems consisted of a headstage element in a 3D-printed enclosure as
well as a backpack. Both backpacks contained a battery, microcontroller, and wireless
transmitter. System B additionally contained an accelerometer mounted within the
headstage (not shown).

pedestal and screw-electrodes (PlasticsOne, Roanoke, VA), which are affixed via den-

tal cement to the rodent’s head. The headstage PCB and accelerometer sit inside

a custom-made plastic enclosure which was rapid prototyped in a fused deposition

modeler.

In both systems, the backpack consists of a 3 × 3 cm2 PCB housing the battery

and the microcontroller. System A contains an additional 4.6 × 2.3 cm2 PCB housing

the UWB transmitter and antenna which is etched into the PCB, while System B

contains a 2.0 × 2.3 cm2 PCB housing the FSK transmitter chip. The battery and

digital interface board sit inside a pouch that connects via hook-and-loop to a rat

jacket (Lomir, Malone, NY). The head-stage and backpack are connected with a

custom-made cable consisting of eleven 36 gauge wires in System A and an FFC

cable in System B. Images of both systems can be found in Fig. 3.2.
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3.1.5 Receiver Circuitry

The UWB receiver used in System A consists of an RF energy detector (ADL5519),

a comparator (LMV7239), a digital-to-analog converter (DAC) (AD7398), and the

FPGA integration module. The RF detector reconstructs the energy envelope from

the UWB impulse sequences, and the output is digitized through comparison with the

tunable reference voltage set by the DAC. The digitized data stream is synchronized to

the FPGA’s system clock, and the incoming bitstream is compared with the expected

16 bit header appended to each packet of data. Once the header is detected, the FPGA

reads the sixteen channels worth of data plus a checksum. The data is then transferred

to a computer through the USB interface and displayed in real-time with custom

software written in LabVIEW (National Instruments, Austin, TX). For System B the

receiver circuits were replaced with the same transceiver used in the backpack stage

as a transmitter; the other components remained the same.

3.2 Data Analysis

The inclusion of an accelerometer in System B allowed quantification of relation-

ships between recorded ECoG and behavioral state in untethered animals. The 3-axis

accelerometer signals (ax, ay, az) were reduced to a single vector magnitude |r|

|r| =
√

a2x + a2y + a2z (3.1)

Behavioral state was quantified by computing the variance of |r| in 10 second
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sliding windows overlapping by 5 seconds. This provided a measure of power in the

accelerometer signal after subtracting out the mean of 9.8 m/s2 due to gravity.

ECoG channels were processed offline in MATLAB (MathWorks, Natick, MA).

A common-average reference (CAR) filter was first applied to remove common-mode

artifacts. Decomposition into the beta and high-gamma sub-bands was accomplished

by applying a set of FIR filters with passbands of 12 - 30 Hz (beta) and 50 - 90 Hz

(high-gamma). Filters were designed to have a 100 dB stopband attenuation, a 0.1

dB passband ripple. Signals were filtered in the forward and reverse direction for

zero phase distortion. Power from the sub-band signals was extracted using the same

procedure used for the accelerometer data.

3.3 Results

The head-mounted component of System A includes the neural interface circuitry

and a plastic enclosure, and weighs 5 g. The backpack component, which includes a

digital interface, the ultra-wideband transmitter, and a 6 g battery, weighs 19 g. In

System B, the headstage weighs 6 g (due to the inclusion of the accelerometer) and

the backpack weighs 23 g (due to a higher capacity battery).

55



CHAPTER 3. WIRELESS EEG

3.3.1 Benchtop Characterization

The benchtop characteristics of each VLSI chip have been previously reported

in.146–148 Here, signal-to-noise-and-distortion (SNDR) measurements were made to

quantify any degradation in the recording front-end.

The power spectrum of the wirelessly received digital output of one channel was

measured, while a 500 µVpp 25 Hz sine wave was presented to the front-end amplifier

input, with the ADC gain and resolution set to 1 and 10 bits respectively. The total

harmonic distortion (THD) of the recorded output increased from 0.05% in the wired

condition to 0.1% in the wireless condition. SNDR decreased from 56 dB in the wired

case to 54 dB in the wireless case.

System A consumes, on average, 4.8 mA, while System B consumes 5.1 mA. The

substantial reduction in power consumption, compared to a previous version of the

system,149 was achieved by reducing the frequency of the microcontroller’s instruction

clock by a factor of 10. This current consumption figure can be broken down as

follows: 1) the head-mounted analog front-end board consumes 2.1 mA, 2) the digital

interface board consumes 1.68 mA while the microcontroller is running and 1.18 while

the microcontroller is in idle mode, and 3) the wireless module consumes 1 mA in

System A and 1.3 mA in System B. The power consumption of the accelerometer was

negligible compared with the rest of the components.
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Figure 3.3: (a) Electrodes were placed on the forearm and wrist of a human subject
in the numbered locations. (b) EMG activity was recorded during a single trial of
manipulating a pair of scissors. (c) Illustration of the electrode locations relative to
anatomical landmarks of the skull. Four channels of wireless ECoG activity were
recorded from somatosensory cortex in a rat. Three behavioral states were observed:
(d) anesthetized (e) waking and (f) active exploration.

3.3.2 In-vivo Experiments

3.3.2.1 System A

First, we evaluated the system by recording EMG activity from a human sub-

ject. Before electrode placement, the arm was cleaned with a Nuprep abrasive skin

preparation gel from D.O. Weaver & Co. (Aurora, CO). Four EMG bipolar Ag–AgCl

electrodes from Myotronics-Noromed (Tukwila, WA) were placed on the subject’s

forearm. Two were placed more proximally, closer to the elbow, while the other two

were placed more distally, closer to the wrist (Fig. 3.3(a)). Two Cleartrace LT elec-

trodes from ConMed Corporation (Utica, NY) were used as reference and ground

electrodes. The reference electrode was placed on the proximal part of the olecranon
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and the ground electrode was placed on the clavicle. In this experiment, the amplifier

bandwidth was set to 8 kHz. The ADC gain and resolution was programmed to be 1

and 10 bits respectively; this provided a sampling rate of 1 kHz. Fig. 3.3(b) shows an

example of the recorded and telemetered EMG signal while the subject manipulated

a pair of scissors. The recorded signals show that EMG activity can be recorded with

high quality in single trials of natural movement.

Thereafter, we used the system to record ECoG activity in three rats via tran-

scranial screw electrodes implanted into the skull. The surgical procedures used for

implantation were approved by the Johns Hopkins Animal Care and Use Committee.

The subjects (250 g female Lewis rats) were anesthetized with a ketamine mixture

via intra-peritoneal administration. Six burr holes were drilled into the exposed part

of the cranium, using a standard dental drill (Fine Science Tools, North Vancouver,

BC, Canada). Four of these holes corresponded to the somatosensory area for hind

limbs and forelimbs on each hemisphere, shown in Fig. 3.3(c). Forelimb sites were

located 0.2 mm posterior to bregma and 3.8 mm laterally from the bregma, and hind

limb sites were located 2.3 mm posterior to bregma and 2.5 mm laterally from the

bregma. The fifth and sixth holes were drilled 3 mm to the right and left of lambda,

to serve as an intracranial reference and ground, respectively. The transcranial screw

electrodes (E363/20, PlasticsOne, VA) were then screwed into the holes such that

the ends made contact with the dura. The distal end of each electrode was inserted

into a slot of an electrode pedestal (MS363, PlasticsOne, VA) which connected to the
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neural interface board.

For the following experiments, the bandwidth of the amplifiers was set to 8 kHz.

The gain and resolution settings of the ADC were set to 2 and 10 bits respectively;

corresponding to a sampling rate of 500 Hz. Animals were recorded continuously

during three distinct conditions: anesthetized, waking and active exploration. First,

the subjects were anesthetized under isoflurane. Burst suppression, a well-known

phenomenon occurring in anesthetized subjects which includes periods of silence in-

terspersed with pronounced activity150 is clearly present on the recorded signal, shown

in Fig. 3.3(e). Anesthesia was subsequently withdrawn, and the subject was allowed

to wake up. In the waking state (Fig. 3.3(f)), five minutes after anesthesia was with-

drawn, suppression patterns evolve into slow oscillations in the 1-2 Hz range. Once

fully awake, the subject roamed about its cage. In this last state, active exploration

was characterized by desynchronized low amplitude ECoG signals (Fig. 3.3(g)).

3.3.2.2 System B

Fig. 3.4 illustrates a 30 minute block of simultaneous 4-channel ECoG and ac-

celerometer power, computed as described in Section 3.2. The insets show ECoG

during inactive and active periods with a finer time resolution.

Fig. 3.5(top) depicts ECoG power in the beta and high-gamma bands along with

the accelerometer power over the entire 14 hour recording. Power for all signals

was normalized to the mean value, and smoothed and downsampled over 1 minute
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Figure 3.4: A 30 minute segment of simultaneous ECoG and accelerometer data
illustrating both data sets during active and inactive periods. Accelerometer data
plotted here as an RMS value calculated as described in Section 3.2. Insets illustrate
ECoG patterns during active and inactive periods on a finer time scale.

intervals. Fig. 3.5(bottom) shows a scatter plot of the log-transformed data from two

rats.

Lastly, System B was used to monitor ECoG and activity in a rodent model of

cardiac arrest.151 Fig. 3.6 shows concurrent ECoG and accelerometer data more than

14 hours post-resuscitation. High-amplitude synchronous spiking waveforms can be

observed on all channels along with high-amplitude oscillatory accelerometer readings.

This animal was found to be suffering convulsive seizures approximately four hours

later, and the recordings were stopped.
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Figure 3.5: Modulation of ECoG sub-band power during periods of high activity and
inactivity. (top) Power in the accelerometer signal along with power in the beta (12
- 30 Hz) and high gamma (50 - 90 Hz) bands. Power in all signals was normalized to
the average value over the recording. (bottom) Scatter plots of accelerometer power
versus ECoG sub-band power.

3.4 Conclusion and Future Work

This chapter presented a miniature, light-weight, and low-power stand-alone VLSI

recording system with wireless telemetry for monitoring neural activity in awake

behaving subjects. The VLSI neural interface module offers programmable bandwidth

setting for isolated recording of various neural modalities. Each channel of the neural

interface also offers a programmable ADC which in turn can be optimized for various

neural signals. The wireless modules offer low power, high rate data transfer, suitable
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Figure 3.6: Seizure activity in a rodent model of cardiac arrest captured with the
wireless system. The top four traces show ECoG bandpass filtered between 2-90 Hz.
The concurrent accelerometer magnitude vector |r| is at bottom. The high amplitude
oscillations on ECoG, interspersed with the oscillations in movement provide evidence
of an ongoing seizure.

for neural recording in small animals. System A weighed 24 grams and consumed 4.8

mA of current from a 3.7 V battery. System B weighed 29 grams and consumed 5.1

mA from a 3.7 V battery.

We successfully performed benchtop as well as in-vivo operations of the system

from awake rats. The inclusion of an accelerometer in System B allowed simultaneous

capture of behavioral and neural activity. To our knowledge, this is the first time a

VLSI interface and telemetry has been used to record ECoG activity with concurrent

activity measures from awake behaving rats. Compared to two previous designs

for recording from rats,144, 152 our design consumes less power. We have traded off

telemetry range and channel count for gains in battery lifetime, arguably the most

important parameter for performing uninterrupted chronic studies.

The presented system addresses the emerging need for studying neural activity
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in untethered awake behaving subjects. Our system allows for the uninterrupted

recording of ECoG activity following cardiac arrest in rats. In doing so, we were

able to capture seizure activity, a biomarker of brain injury after cardiac arrest,153

in an untethered rat. Therefore, these systems can enable exploratory studies of

electrophysiological biomarkers in rodent models of brain injury and disease.
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Chapter 4

A CMOS Current Steering

Neurostimulation Array with

Integrated DAC Calibration and

Charge Balancing

Electrical stimulation is a widely used tool in basic and clinical neuroscience and

neuroengineering. Common stimulation targets lie within the central and peripheral

nervous system. Stimulation of the central nervous system (CNS) has been used

to probe the functional role of populations of neurons ,20, 154 and provide sensory

feedback to users of a neuroprosthetic device.23, 24 Clinically, CNS stimulation is used

to ameliorate symptoms of Parkinson’s disease,155 and epilepsy.9 Stimulation of the
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peripheral nervous system (PNS) has also been used to provide sensory feedback to

users of prosthetic devices.29, 156 Emerging applications of PNS stimulation include

treatment of hypertension,157 inflammatory disorders,158 and heart failure.159

Designing neurostimulator circuits with very-large-scale-integration (VLSI) tech-

nology allows for the development of miniaturized, fully implantable systems,160 while

simultaneously permitting the integration of extremely large numbers of channels,161

and increased functionality. Increased functionality means gains can be made in do-

mains such as stimulation efficacy without compromising device size. This can be

used to overcome limitations of electrical stimulation such as non-specificity.

It is straightforward to deliver electrical stimulation to target organs or neurons

by placing electrodes within the proximity of the target. However, cell-types or tissue

components cannot be selectively stimulated with electrical methods as robustly as

they can be with optical methods, which poses a challenge for therapeutic stimulation

systems. Modifying the stimulus pulse shape or duration is one method for achieving

more selective stimulation.162, 163 Another degree of selectivity comes from the limited

spatial extent of the induced electric field within tissue. Spatial patterns of stimula-

tion, such as bipolar and tripolar, can be used to shape the electric field in-vivo to tar-

get groups of cells that are topographically segregated.164–166 This has been leveraged

in many neuroprosthetic applications such as cochlear implants,167, 168 vestibular pros-

theses,169 visual prostheses,170 spinal stimulators,171, 172 deep-brain stimulators,155, 173

and peripheral nerve prosthetics.174 Due to its widespread use, VLSI neurostimulator
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systems should be designed to accurately stimulate in modes other than the standard

monopolar and bipolar.175–177

Additionally, circuits can be integrated with stimulator systems to ensure safety at

the electrode-electrolyte interface. Chronic electrical stimulation can be damaging to

both the electrode and tissue either through excitotoxic or electrochemical means.178

Existing neural stimulators have addressed minimization of harmful electrochemical

effects in several ways. Precise discrete components, or a capacitor in series with the

output stage is one way to ensure no DC current flows through the electrode.179, 180

A variety of ways amenable to VLSI implementation have also been proposed. Pas-

sive discharge is achieved by shorting the electrode to a reference voltage through a

MOS switch, but due to the large RC time-constant associated with the electrode

this can be a very slow process. An active discharge approach, i.e. driving the elec-

trode to a reference voltage through a buffer, has similar effects as passive discharge,

but limits the current that flows during the discharge phase.181 Very precise charge

balancing can be obtained using feedback that measures and dynamically matches

the anodic current.182 An alternative strategy is to monitor the electrode voltage

after stimulation, and use a feedback controller to update stimulation parameters or

apply compensatory pulses.183–185 By ensuring the electrode potential stays within

safe limits, this approach prevents harmful charge buildup. In addition to the over-

head required to implement the feedback loop, controller parameters must be tuned

to obtain an acceptable transient response.
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We introduce an architecture that includes a single calibration circuit that is

shared across all channels in the array. This support-circuitry performs three func-

tions. First, it accurately ratios the currents across channels. Second, within channels,

it matches the anodic and cathodic phases for charge balancing. Finally, it allows for

referenceless calibration of each channel’s digital-to-analog converter (DAC). Here we

provide results from a circuit fabricated in a commercial 180 nm CMOS process. Ad-

ditionally, we use the proposed circuits to stimulate the sciatic nerve of anesthetized

rats. By measuring the induced electromyogram (EMG), we demonstrate in-vivo

effects of spatially patterned nerve stimulation.

4.1 Circuit Design

The block diagram of a single channel of our circuit is illustrated in Fig. 4.1. Two

independent current-mode DACs supply biases to the current sources. The output

of either DAC can be mirrored into the calibration circuit by closing switch D or

E. Switches A and C activate anodic and cathodic stimulation respectively. Switch

G disconnects current sources from electrodes. Closing switches A, C and F causes

the difference in the anodic and cathodic currents to flow into the calibration circuit.

Switch H shorts the stimulation electrode to a reference voltage (Vshort) to bleed off

residual charge from the stimulation electrode.
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Figure 4.1: A block diagram for a single channel of the neural stimulator. Anodic and
cathodic current sources have independent DACs which are routed to a calibration
circuit for coarse calibration (switches D and E). When both current sources are
simultaneously on, closing switch F allows the mismatch between the anodic and
cathodic currents (the error current) to be measured by the calibration circuit. Switch
H shorts the electrode to a reference voltage.

4.1.1 Digital-to-Analog Converter

DAC topologies used for neurostimulators include current steering DACs, imple-

mented with binary186 or unary177 weighted current source arrays, and R-2R lad-

ders.181 An advantage of current steering DACs is that only the current sources

needed for stimulation are switched on, whereas in a splitter the entire current is con-

sumed regardless of the selected code. However, the area consumed by the weighted

arrays increases exponentially with the number of bits, whereas the area of a splitter

increases linearly. So for large number of bits, the weighted arrays occupy prohibitive

amount of area.

Both DACs (Fig. 4.2(a)) are 16-bit variations of the MOST R-2R structure.187, 188

The PMOS switches in Fig. 4.2(a)(MP,SW ) operate as switched cascodes. This helps
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Figure 4.2: (a) Circuit diagram for the R-βR splitter. (b) The calibration circuit
consists of an integrator and comparator for an analog-to-time-to-digital conversion.

reduce the sensitivity of the tap currents to the digital input code, which is important

for the calibration procedure described later. Further, the increased lengths of the

transistors in the vertical branches yield an R-βR structure; choosing β=2.5 provides a

radix of 1.86 (derivation of the DAC radix as a function of β is provided in an appendix

to this chapter, Section 4.10). At each node of an infinitely long R-βR ladder, if

β >2 (and the radix is < 2), more current flows laterally than vertically through the

respective tap. This introduces redundancies into the input-output relationship.189

These redundancies can be removed via digital calibration.190

An external resistor sets the current reference to 1/100th of the fullscale stimulation

level (IFS). This current is mirrored with unity-gain into each DAC. Two copies of

the programmed current are mirrored out (Ibias and Icas in Fig. 4.2) to generate

the voltage biases used in the output current buffer in Fig. 4.3. The total current

consumed by the DAC and biasing network is 2×IFS/100 + 8×Istim/100. Transistor
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Table 4.1: Transistor sizing in the R-βR splitter

Transistor W/L (µm)

MP0 4 × 3.6/3.6

MPL 0.84/0.4

MPTa 0.84/0.4

MPTb 0.84/0.3

MPTc 0.84/0.52

MPSW 2 × 0.84/0.6

MN0 2 × 2.36/2.36

sizing for the devices in Fig. 4.8 can be found in Table 4.1.

4.1.2 Calibration Circuit

The calibration circuit, shown in Fig. 4.1(b), consists of an integrator and a

comparator described previously.146, 191 Briefly, when Rst and Rste are high, the

offsets of the inverters (common-source amplifiers, A1, A2) are stored on the capacitors

in series with their inputs, the inverters are reset to their tripping point, and the

integration capacitor is precharged. The offsets between Rst and Rste are to mitigate

errors due to charge injection.192 When Int goes high, CINT appears in parallel with

A1, and the input current is integrated. When the output of A1 passes through VInt2,

A2 trips. The time it takes for A2 to trip is quantified with a counter, digitizing the

input current.

VInt1,2 are generated off-chip and set to 800 mV and 2.5 V to keep all devices in

saturation during the integration. Their precise values do not matter, so they could be
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Figure 4.3: A modified regulated cascode, described in,192 serves as the output current
source.

generated on-chip using a resistor string and a pair of buffers to drive the offset-storage

capacitor and integration capacitor. The integration capacitor is 4.5 pF, providing

an integration times greater than 3 µs. This analog-to-time-to-digital conversion is

used in a calibration procedure described in Section 4.2, and allows for the removal

of the redundancies of the R-βR ladder. Additionally, Section 4.3 describes how the

measurement can be used to match the anodic and cathodic stimulation phases.

4.1.3 Biphasic Current Source

The output current sources are regulated cascodes; an additional branch (M5-

M7 in Fig. 4.3) increases the output swing.192 The gate of M3 is the input to a
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Table 4.2: Transistor sizing in the current buffer

Transistor W/L (µm) Transistor W/L (µm)

M1,2 200× 1.5/1.4 M8,9 300× 0.95/0.71

M5 2 × 1.5/1.4 M12 3× 0.95/0.71

M3 4 × 2/2 M10 16 × 1/1

M6 12 × 2/2 M13 48 × 1/1

M4 2 × 1/2.5 M11 15 × 1/5

M7 1/2.5 M14 5 × 1/5

common source amplifier that provides output impedance boosting. Typically, this

is connected to the drain of M1, which must stay in the vicinity of Vth, so that M3 is

at least weakly inverted.

M7 and M4 are biased to source Istim/100 and Istim/50 respectively, and M5 is

an additional finger of M1. M6 acts as a level-shifter, which allows the drain of M1

to drop to Vds,sat. Since Vds,1 is set to a value equal to the difference in Vgs between

M3 and M6, the aspect ratios of M3,6 are set to provide sufficient Vds,1 for all output

currents. The output swing of the current source is 2Vds,sat from each supply rail,

and the devices were sized to give a Vds,sat of 120 mV and 150 mV for the NMOS and

PMOS devices respectively. Maximizing output swing was a major concern, as large

voltages can be developed across the electrode-electrolyte interface.

The feedback in regulated cascode circuits can lead to instability. M2 and M9

in Fig. 4.3 are driven by the feedback amplifiers, and are sized with a very large

W/L (Table 4.2) to minimize their Vds,sat. The large gate area provides a large load

capacitance (400fF - 1pF depending on bias condition) to the feedback common-source
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Figure 4.4: The signals that activate the current sources, and connect the current
sources to the calibration circuit are gated by a set of registers that are programmed
serially.

amplifier which stabilizes the circuit.57

In practice, the signals that turn on the current sources (A and C in Fig. 4.3) are

gated by the bits within two serially loaded registers, AGATE<0:7> and CGATE<0:7>.

This configuration, shown in Fig. 4.4, permits the generation of arbitrary spatial

stimulation patterns.

4.2 Calibration Procedure

A sub-binary radix DAC can produce an analog output x, scaled from -1 to 1,

from an n-bit binary code (here, n = 16) found through n iterations of the algorithm

of Eqn. 4.1 .193 In Eqn. 4.1, rk represents the residue at the k
th step, and is initialized

to be x, bk is the kth bit in the binary code, and γk is the radix at the kth step.

bk = sign(rk−1)

rk = γkrk−1 − bk

(4.1)
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For Fig. 4.8(a), γk is the ratio of currents flowing in adjacent vertical branches (tap

currents). Therefore, to calibrate the DAC, we first obtain estimates of the tap

currents.

The time ∆t for a DC current source Iin to charge a capacitor CI from VInt1 to

VInt2 is:

∆t = CI(VInt1 − VInt2)/Iin (4.2)

Iin =
N−1
∑

j=0

ijbj = bT i (4.3)

Here, b is a column vector of zeros and ones corresponding to the input binary code,

and i is the column vector of tap currents. Combining Eqns. 4.2 and 4.3 gives Eqn.

4.4, where CI(VInt1 − VInt2) can be replaced by a single constant c1.

bT i = c1(∆t)−1 (4.4)

Eqn. 4.4 contains 16 unknowns (the 16 elements in i). For M DAC currents, the

inverse of the integration times (∆t), obtained using the calibration circuit described

in Section 4.1.2, are stored in a vector f and the corresponding M input codes are

stored in an M×16 matrix B. With M > 16, the system can be solved in the least

squares sense. In practice, we make use of all 216 measurements for each DAC.

We chose to fit our solution to the differential linearity since it is much less affected

by global nonlinearities which are approximately linear at small scales. Therefore, the

inverse times in f and the rows of B are sorted in ascending order and adjacent values

differenced yielding f∆ and B∆ respectively.
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Then, the least squares estimate of the tap current coefficients, î is found by

solving B∆i = c1f∆

î = c1(B
T

∆
B∆)−1

B
T

∆
f∆ (4.5)

Since each γi is a ratio of the elements of î, the constant c1 cancels, except in the

case of the MSB. For that case, γ15 is obtained by taking the ratio of i15 to the sum

of the other elements of î. The precise values of γi do not matter if they are <2,

providing a degree of insensitivity to the mismatch in the R-β R ladder of Fig. 4.2.

Here, the calibration procedure is initiated by an external FPGA which monitors

and times the output of the comparator (Vout Fig. 4.2(b)). Integration times are

uploaded to a PC which obtains the least-squares solution. In practice, the system

need not be connected to a PC. Calculation of the DAC coefficients (γ0 - γ15) could

be performed once by a low power FPGA or microcontroller using the recursive least-

squares algorithm (RLS). With the calculated γ’s, the proper input code for a given

output is obtained from 16 iterations of Eqn 4.1.

4.3 Matching

4.3.1 Charge Balancing

Matching the two stimulation phases is performed by activating both current

sources and closing switch F in Fig. 4.1. The difference between the two currents,
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the error current, will flow into the integrator in Fig. 4.8(b). The matching procedure

consists of two steps.

First, VInt1 and VInt2 are set equal, and an integration is triggered. The state of

Vout reflects the polarity of the error current. For example, if the anodic current is

larger than the cathodic current, the output of the integrator will fall, and Vout will

hit the positive rail (Vout = 1). Likewise, if the cathodic current is larger, the output

of the integrator will rise and Vout will hit the negative rail (Vout = 0).

Next, VInt1 6= VInt2; if at the end of step 1, V out = 1, then VInt1 > VInt2, and vice

versa. When an integration is triggered, the time it takes for the comparator to trip

is inversely proportional to the error current. Therefore, the error current integration

is timed and the input code to one of the DACs is adjusted until the error current is

minimized.

The integration time for matching is bounded only by leakage currents, which

should cause the comparator to trip over time scales of seconds. Therefore, in soft-

ware a timeout of 150 ms is enforced. Furthermore, to facilitate a quick matching

procedure, a successive approximation strategy is used, where the outcome of step 1

is used to determine the state of a given bit in the binary code, and at the end, the

code with the maximum integration time is selected.
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Figure 4.5: The calibration circuit can be used to generate spatial stimulation pat-
terns. Here, a triphasic pattern can be generated by first matching the anodic phases
of two channels, then matching the cathodic phase of a third channel to their sum.

4.3.2 Current Steering

The above procedure can be generalized to match stimulation across channels,

allowing the circuit to operate in bipolar stimulation mode, or to create complex

current-steering stimulation patterns. Fig. 4.4, illustrates a single stimulator channel

with the control signals that are arrayed across all channels. An 8-bit serially loaded

register FCAL controls the switches (switch F in Fig 4.1) that route currents to

the calibration circuit. Along with the gating discussed in Section 4.3, arbitrary

combinations of channels can be matched by connecting all active channels to the

calibration circuit simultaneously, and asserting the required gating bits.

For example, a tripolar configuration consists of one cathodic channel sinking

a current of Ic, counterbalanced by two anodic channels, each sourcing a current

Ia = Ic/2. Fig. 4.5 depicts how a tripolar stimulation pattern can be generated in

three steps. In steps 1 and 2, the anodic channels (1a and 2a) are indirectly matched

to each other. In the third step, the cathodic channel (3c) is matched to their sum.
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Figure 4.6: Impedance data for a stainless-steel cuff electrode used to interface the
stimulator in-vivo.

This procedure fixes the digital codes for the anodic sources of channel 1 and 2,

and the cathodic source of channel 3. The complementary DACs must then be tuned

for in-channel charge balance.

4.4 Electrode Interface

We interfaced our stimulator to concentric cuff electrodes (MicroProbes for Life

Science, Gaithersburg, MD). Each cuff contained nine 125 µm diameter stainless steel

contacts, with three groups of three electrodes arranged circumferentially, 90 degrees

apart, and with each group spaced 2.5 mm apart (Fig. 4.13 (inset)). These electrodes,
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Figure 4.7: Micrograph of an eight-channel stimulator, fabricated in a 0.18 µm CMOS
process. The die size including pads measures 1.5 x 1.5 mm2.

when used for acute, small-animal studies, and at low current levels (≤ 250 µA), do

not require high voltage transistors or special circuit techniques to prevent oxide

breakdown or hot-carrier effects. Figure 4.6 illustrates typical magnitude and phase

data for these electrodes.

4.5 Benchtop Characterization

An eight channel version of the neural stimulator was fabricated in a 0.18 µm

CMOS process. A micrograph of the 1.5 mm x 1.5 mm chip is illustrated in Fig 4.7.

Each stimulator channel, including DACs, occupied an area of 290 µm x 220 µm, and

the calibration circuit occupied 200 µm x 70 µm. Additionally, an SPI interface was

synthesized from a standard cell library. The remaining area consists of metal fill to
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Figure 4.8: Input output relationship of the DAC before (a) and after calibration (b).
Linearity is quantified by the differential non-linearity (DNL)(c) ≤0.3 LSBs and the
integral non-linearity (INL)(d) <3 LSBs. Points represent data across 8 channels.
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meet foundry density requirements.

4.5.1 DAC Calibration

Fig. 4.8(a,b) shows the digital input - analog output relationship before and after

calibration for a single channel. The pre-calibration non-monotonicity is by design

and clearly evident, and the procedure described in Section 4.2 was used to remove

the redundancies. The measured differential non-linearity (DNL) and integral non-

linearity (INL) for all channels are summarized in Fig. 4.8(c,d). The worst case DNL

was 0.3 LSBs, and the mean absolute value was <0.04 LSBs. INL was defined as the

difference between the actual output and the best-fit line. The worst case INL was

measured to be 2.2 LSBs, and the mean absolute value was <0.3 LSBs. Currents

were measured with a Keithley 6430 Source Measurement Unit.

Integration times ranged from 3 µs to 30 ms, and the calibration process for each

DAC took less than 9 seconds on average. Calibration of all 16 DACs took 140

seconds.

4.5.2 Matching

The matching error was determined by measuring the mean residual voltage left on

a 100 nF capacitor following four biphasic 200 µs pulses, and normalizing that value

to the peak capacitor voltage at full-scale. The capacitor voltage was buffered by an
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Figure 4.9: The difference between the anodic and cathodic currents normalized to
the full scale current.

off-the-shelf CMOS op-amp (AD8608, Analog Devices, Norwood, MA), and digitized

by a DAQ with a 16-bit A/D converter (NI USB 6251, National Instruments, Austin,

TX). The capacitor voltage was sampled at 1 MHz for 150 us before and after each

biphasic pulse. Each set of 150 samples were averaged, and the difference gave the

voltage error, which was then referred back to an equivalent error current. For each

measurement, to mitigate the effects of measurement noise, the dynamic range of the

DAQ was set to the minimum necessary voltage to accommodate the peak capacitor

voltage. This ranged from ±0.1 V (the device minimum) to ±1 V.

Fig. 4.9 illustrates the error currents after matching, normalized to the full-scale

current output. We performed this measurement only on a subset of calibrated DAC

values. For each channel 64 measurements were made instead of all 256. The worst-

case error is less than 0.3% of the full-scale current, comparable with other state-of-
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Figure 4.10: Variation in the matching between anodic and cathodic currents over
time.

the-art designs.161, 194 It typically takes less than 200 ms to find the closest match.

One advantage of this design is that once matching is performed, the parameters can

be stored digitally. However, this also leads to a potential limitation in its sensitivity

to 1/f noise. To evaluate this possibility, we continuously applied 250 µA pulses to

a capacitor over the course of 60 seconds, measuring the residual voltage after each

pulse. The pulse widths were 200 µs, and the pulse rate was 400 Hz, for a total of

24,000 pulses. After each pulse, a 200 µs delay was added to allow calculation of the

residual voltage in post-processing, and then the shorting switch was closed to bring

the capacitor voltage back to baseline before the next pulse.

Fig 4.10 shows the residual capacitor voltage, normalized to the peak voltage,

over time. The error over all 24,000 pulses had a mean and standard deviation of
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Figure 4.11: The percent difference between the stimulating cathodic current and
a pair of anodic channels. The y-axis indicates the channel selected as the cathodic
source, and the x-axis corresponds to the different pairs of channels that complete the
tripolar unit. White entries correspond to combinations where the cathodic channel
and anodic pair conflict.

0.17% and 0.07%; over the first 400 pulses (Fig. 4.10 inset) the mean and standard

deviation were 0.12% and 0.06%.

4.5.3 Current Steering

The accuracy of matching, when performed across channels, was also evaluated.

Here, error was determined by shorting all channels to a single 10 nF capacitor and

measuring the voltage on the capacitor during the inter-pulse interval. Fig. 4.11 shows

the measured error from matching a tripolar configuration (Fig. 4.5). The rows of

Fig. 4.11 correspond to the channel selected as the cathodic sink (Ic = 250 µA). The

columns correspond to different channel pairs that complete the tripolar unit. There

are 28 possible pairs of channels, 7 of which include the channel used as the cathodic

84



CHAPTER 4. A CMOS CURRENT STEERING NEUROSTIMULATION ARRAY

Figure 4.12: (a) Experimental setup for in-vitro testing. A parallel RC was placed in
series with the stimulator and the cuff electrode array submerged in saline along with
an AgAgCl return electrode. A Tektronix digital multi-meter (DMM) measured the
average voltage across the RC to record the effective DC current. (b) The electrode
potential time-domain waveform and current profile. A CMOS input op-amp was used
to buffer the electrode waveform and digitized with a 16-bit NI-DAQ. Two waveforms
are shown, one with a 1 µs inter-pulse interval (ipi) and the other with a 50 µs ipi.
The current profile was measured by replacing the parallel RC with a single 100 Ω
resistor, adding a second buffer, and feeding the two buffered waveforms into the
DAQ to be read differentially.

sink (white entries). As with charge balancing, the errors were measured < 0.3%.

4.6 In-vitro Results

We used the setup depicted in Fig. 4.12(a) to evaluate the effective DC current

when stimulating through electrodes. We measured the effective DC level for 250 µA,

75 µs stimulation at 500, and 1000 Hz, with two inter-pulse-intervals (1 µs and 50 µs).

Matching was performed immediately before the pulse train started, and the shorting

switch was activated in between biphasic pulses. No re-calibration was made during

this interval. Fig. 4.12(b) shows the time-domain stimulation waveform recorded
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Table 4.3: Effective DC measured in-vitro

Frequency (Hz) Inter-pulse inter-
val (µs)

DC (nA) Current density
(nA/mm2)

500 1 2 163

500 50 3 244

1000 1 3 244

1000 50 5 407

during this measurement. The DC measurement was given 1 minute to settle; the

values listed in Table 4.3 lists the maximum DC measured by the DMM thereafter as

well as the current density given the 0.0123 mm2 electrode surface area. To evaluate

the effect of 1/f noise in-vitro, the 1000 Hz, 50 µs ipi measurement was taken out to

10 minutes. Throughout the test, the maximum and minimum measurement was 5

nA and 3 nA respectively, with the mean shifting slightly from 5 nA to 4 nA after 5

minutes.

4.7 In-vivo Results

To test the stimulator in-vivo, we interfaced the cuff electrode described in Section

4.4 to the sciatic nerve of rats, and recorded electromyogram (EMG) signals from the

tibialis anterior (TA) and gastrocnemius (GM) muscles of the lower leg (Fig. 4.13).

Male Wistar rats weighting 300-320 g were used in this experiment. All procedures

were approved by Johns Hopkins Medical Institute Animal Care and Use Committee

(ACUC). Each rat was implanted under 2% isoflurane anesthesia with a nose cone.
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Figure 4.13: Experimental setup for in-vivo testing. A multi-channel concentric cuff
was interfaced to the sciatic nerve of rats. The electrode consisted of three concentric
triplets for a total of nine electrodes, and eight of the nine electrodes (solid circles in
inset) were connected to the neurostimulator chip. Microwires were inserted into two
muscle groups (tibialis anterior and gastrocnemius) to record intramuscular EMG in
response to stimulation.

After swabbing the dissection area with 70% ethanol, the skin was cut along the back

of the thigh. The left sciatic nerve was dissected at the midthigh and carefully freed

from surrounding tissues from the sciatic notch to the knee. The cuff electrode was

opened and placed around the sciatic nerve avoiding compression and stretch. To

record EMG activity, pairs of fine wire hook electrodes (two 40-gauge Teflon-coated

steel wires in a 27-gauge 12.5 mm hypodermic needle) were implanted in the left

gastrocnemius (GM) and tibialis anterior (TA) muscle; signals were amplified and

digitized with an RA16PA preamplifier (Tucker-Davis Technologies, Alachua, FL).

All EMG responses plotted in Figs. 4.14, 4.15 are averages of five responses.
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Figure 4.14: In-vivo recorded physiological response to spatially patterned nerve stim-
ulation in an anesthetized rat. In all plots, cuff schematics indicate the electrodes
used, and the polarity of stimulation at those sites. Green indicates cathodic first, and
red indicates anodic first. (a) EMG response of the tibialis anterior (TA) muscle (top
row) and the gastrocnemius (GM) muscle (bottom row) to monopolar stimulation of
the three center-ring electrodes at three levels of stimulation. (b) EMG response of
TA (top row) and GM (bottom row) to three patterns of stimulation at 100 µA.

The EMG response from monopolar stimulation of each of the center triplet’s

contacts is depicted in Fig. 4.14(a). Stimulation consisted of single pulses with a

75 µs pulse width, and a 50 µs inter-pulse interval. The current’s return path was

through a stainless steel needle electrode in the neck. Electrode 5 showed the highest

sensitivity for TA; a 50 µA pulse was sufficient to evoke an EMG response, while no

response was seen in GM. A 75 µA pulse was needed at electrodes 4 and 6 to evoke a

response, but each site still appeared selective to TA. At each site, the non-specificity

of stimulation prevented the stimulator from inducing the maximal response from TA

without activation of GM.
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Figure 4.15: EMG response to stimulation of the sciatic nerve in the TA (top row)
and GM muscles (bottom row). (a) Columns i-iii show responses due to monopolar
stimulation at the three center contacts. (b) Column i shows the response to a tripolar
stimulation pattern, with electrode 5 used as the cathodic contact, and columns ii-iii
show the altered response when an anodic steering contact is added at electrodes 4
and 6 respectively. The anodic contact at electrode 4 attenuates the TA response
while the anodic contact at electrode 6 attenuates the GM response.

Current steering stimulation patterns were applied to assess how EMG responses

might be altered. Fig. 4.14(b) compares the EMG response to three stimulation pat-

terns, monopolar, tripolar, and tripolar with an additional current steering contact.

The tripolar pattern consisted of the middle contact activated cathodic first (primary

electrode), and the two adjacent electrodes activated anodic first, calibrated with

an amplitude of 1/2 as described in Section 4.3. The tripolar with current steering

pattern was identical to the tripolar pattern, but with an additional second center

contact activated anodic first with an amplitude matched to the primary electrode.

Patterned stimulation at electrodes 5 and 6 had a clear effect on the evoked response.
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At electrode 4, the additional anodal contact suppressed an EMG response within

both muscles; while not useful in practice, it is shown here for completeness.

Fig. 4.15 illustrates another example of the physiological effects of using the

circuit for current steering stimulation. In this experiment, performed in a different

rat, stimulation again consisted of single pulses. We used a 50 µs pulse width, and a

50 µs inter-pulse interval. Due to the decreased pulse width selected a slightly higher

amplitude of 150 µA was required to evoke maximal EMG responses. Fig. 4.15(a)

shows the effects of monopolar stimulation to the three center contacts. Contact 4 is

preferential to the TA muscle, contact 6 is preferential to the GM muscle, and contact

5 exhibits no preference. Fig. 4.15(b) illustrates the effects of steering. Columns i-iii

depict the EMG response to tripolar stimulation with (i) no steering contact, (ii)

electrode 4 as an anodic steering contact, and (iii) electrode 6 as an anodic steering

contact. Steering with electrode 4 suppressed the EMG response in the TA muscle,

while steering with electrode 6 suppressed the EMG response in the GM muscle.

4.8 Discussion

4.8.1 DAC Calibration

The post-calibration resolution of the DACs is limited to 8-bits. One likely cause

is that the tap currents vary significantly with the input code. Interestingly, we have

found the lower order bits seem to provide no additional benefit here. For example,
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Table 4.4: Comparison of this work with the state-of-the-art

Parameter This Work 195 177 186 194 196 161 183 182

Year 2016 2015 2015 2014 2014 2013 2013 2012 2007

Technology 0.18 µm 0.18 µm HV 0.5 µm HV 65 nm 0.35 µm HV 0.18 µm HV 65 nm 0.35 µm HV 0.7 µm HV

Supply Volt-
age (V)

3.3 18 12 3 15 12 ±2.5 20 +6/-9

Number of
Channels

8 1 16 256 2 8 512 2 1

Max Istim
(mA)

0.25 1.05 1.45 0.465 1 0.504 0.05 1 1

Resolution
(ENOB)

8 (7.4) 7 (-) 9 (8) 5 (4.3) 5 (4.6) 6 (-) 5 (-) 5 (-) 7 (-)

Charge bal-
ance architec-
ture

biphasic
+ calibration

H-bridge current mirror dynamic cur-
rent mirror

dynamic cur-
rent mirror

asymmetric
H-bridge

biphasic
+ calibration

pulse inser-
tion, offset
regulation

dynamic cur-
rent mirror

Matching (%) 0.3 <0.01 3.6 ±2.5 0.5 0.1 0.05 2.24 N.A. 0.4

Stimulation
Modes

multipolar monopolar,
bipolar

multipolar multipolar monopolar bipolar monopolar monopolar monopolar
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running the algorithm on the upper 12 bits, leaving the lower 4 bits set to 0 provides

the same level of accuracy and precision. However, presently, this is not much of a

concern as most neurostimulator designs make use of only 5 to 6 bits (Table 4.4).

Given that the precision of matching can exceed 0.3%, the lower bits do provide a

benefit for charge balancing.

A limitation of the proposed calibration technique is that a linear regression is

required to compute DAC coefficients. While an on-chip implementation of the re-

cursive least squares algorithm is not prohibitive, it would be far more economical

to have an FPGA or microcontroller compute the coefficients in the background and

communicate them back to the stimulator chip.

4.8.2 Matching

The offline calibration strategy proposed here achieves a precision of 0.3% in

matching of the anodic and cathodic phases. The use of an interpulse delay allows

charge stored in the double-layer capacitance to be lost through faradaic reactions,

but the inclusion of a passive discharge switch compensates.

The 1/f noise in the current sources and biasing network increases the variance

of this measurement. To assess the long-term implications, we directly measured

the DC current flowing through a cuff electrode in-vitro over ten minutes,197, 198 and

found only a 1 nA shift in the baseline. Reported safe current densities for effective

DC in-vivo range from 230 nA/mm2199 to 750 nA/mm2.200 The maximum effective
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DC level measured here (407 nA/mm2) falls within this range. With recalibration

performed every 10 minutes and 200 ms required per channel, the calibration circuit

would need to operate with a duty cycle of only 0.27%.

4.8.3 In-vivo results

The results of Section 4.7 demonstrated altered physiological responses to current

steering stimulation patterns. The parameter space for current steering stimulation

is extensive, and we have not undertaken an exhaustive search for optimal patterns.

The stimulation patterns tested here were based off of previous studies in similar

animal models that have rigorously demonstrated the enhanced selectivity obtained

through current steering.164, 165, 174 This is an active and promising area of research,

and progress will likely rely on both novel hardware as well as mathematical modeling

of the electric field profile in tissue.166

One limitation was large variability between the two animals tested. For the first

rat, were unable to find any configurations (neither monopolar nor multipolar) that

were selective for GM. The results from the second rat show that multi-electrode ar-

rays themselves can offer some degree of selectivity. For the second rat both monopo-

lar and multipolar configurations could be selective for GM and TA. Therefore, these

results only serve to demonstrate feasibility.

Inter-animal variability was likely due to a combination of variations in nerve

cuff electrode orientation and fine-wire electrode placement within the muscles of
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interest. In particular, fine-wire electrodes have a small conduction volume that can

sensitively collect even individual motor unit action potentials. Therefore, despite

consistent placement within a specific muscle of interest, variations in the composition

of motor units, in terms of muscle type and patterns of activation, may influence the

output recorded by a fine-wire electrode. Future experiments could mitigate this

effect through the use of multiple fine-wire electrodes, and taking either averaged

measurements across the electrodes or differences between electrodes to capture higher

conduction volumes. Additionally, prior work in the field have used cuff electrodes

with contacts spanning the entire circumference of the nerve,164, 165, 174 whereas here

the arrays used covered 75% of the nerve circumference, in the future, histological

examination of the stimulated tissue should be made to validate.

4.9 Conclusion

We have presented an architecture for a current-steering neurostimulator array.

An on-chip calibration circuit facilitates spatial patterning of the electric field in-vivo

and additionally is used to calibrate an 8-bit current-mode DAC for each channel, as

well as charge balance biphasic stimulation. The calibration circuitry is shared across

channels, and therefore the architecture is particularly suited for high channel-count

systems. Further, since charge balancing is achieved without off-chip components the

system is amenable to implantable systems. Spatial patterning of electrical stimu-
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Figure 4.16: Schematic for an ideal R-βR splitter. At each tap, current splits off into
a horizontal (Ih) and a vertical component (Iv) that depends on the value of β and
the effective resistance looking down the remainder of the ladder, Reff .

lation offers a method to activate specific targets in-vivo, a major obstacle in the

development of low-side-effect neurotherapeutic stimulation systems

4.10 Appendix: Calculation of γ for an

R-βR splitter

Fig. 4.16 illustrates an ideal resistor ladder DAC with horizontal and vertical

components with resistances R and βR respectively. Each vertical branch is referred

to as a tap, and the currents flowing in each vertical branch are referred to as tap

currents. At the kth tap, current divides into a horizontal component (Ih,k) and a

vertical component (Iv,k) in proportions that depend on the geometry of the splitter.

This is due to a current division between the vertical resistance, βR, and the effective
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Figure 4.17: The effective ladder resistance depends on β and the terminating resistor
λ. λ can be chosen such that Reff,k are the same for all k.

resistance looking down the remainder of the ladder at the kth tap, Reff,k. The

amplifier serves to hold the current summing node at virtual ground, and converts

the output current to a voltage through Rt, but this will be ignored moving forward.

In a mixed-radix number system, the radix at the kth position is the ratio of the

weight of the kth position to the weight of the k+1th position. In an R−βR splitter,

the weights are the tap currents that get selected by the digital input code, and

therefore the radix of the kth tap, γk is given by the ratio:

γk =
Iv,k+1

Iv,k
(4.6)

Note, that the radix at the MSB is undefined.

To find an expression for γk in terms of β, it is assumed that Reff,k is the same

for all taps, and this is true if the proper value of λ is selected (or if the ladder is

infinitely long). From Fig. 4.17, the effective resistance looking past the final (0th)

tap is Reff,0 = R + λR. If λ is such that βR ‖ (R + λR) = λR, then the resistance

looking past the 1st tap, Reff,1 is identical to Reff,0, and so forth for every tap.

Reff,k = R + λR (4.7)
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Figure 4.18: At the kth tap, the incident current Ih,k−1 divides into a vertical and
horizontal component. A fraction, x, continues horizontally, and the remainder, (1−
x), exits vertically.

Using the equation for parallel resistors, the condition on λ that makes Eqn. 4.7

true for all k is

βR(R + λR)

βR +R + λR
= λR (4.8)

Cancelling R, rearranging, and solving a quadratic equation for λ gives

λ =

√
1 + 4β − 1

2
(4.9)

With the resistance looking down the ladder the same at each tap, the input

current to each tap splits in identical proportions at each tap. This is illustrated

in Fig. 4.18. At the kth tap, xIh,k−1 continues horizontally and (1 − x)Ih,k−1 exits

vertically. The currents in the horizontal and vertical branches at the kth tap are given

by the following equation in terms of the reference current Iref , and the number of

bits N .

Ih,k = xN−kIref

Iv,k = (1− x)xN−k−1Iref

(4.10)

97



CHAPTER 4. A CMOS CURRENT STEERING NEUROSTIMULATION ARRAY

Plugging Eqn. 4.10 into Eqn. 4.6 gives

γk =
1

x
(4.11)

The value of x can be found from Fig. 4.18 using the current divider equation

and simplified with Eqn. 4.7.

x =
βR

βR+Reff,k
=

β

β + 1 + λ
(4.12)

Finally, plugging Eqns. 4.9,4.11 into Eqn. 4.12 gives

γ =
1 + 2β +

√
1 + 4β

2β
(4.13)

With β = 2.5, the radix for the DAC used in the stimulator circuits can be found

to be

γ =
6 +

√
11

5
= 1.86 (4.14)
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Chapter 5

A Bidirectional Neural Interface

IC with Chopper Stabilized

BioADC Array and Charge

Balanced Stimulator

Biomarker extraction from physiological signals such as the electrocorticogram

(ECoG) and local field potentials (LFP) is of paramount importance to the diagno-

sis and therapy for a large number of neurological disorders. This is nowhere more

clear than for closed-loop neuromodulation therapies that drive stimulation or update

stimulation parameters based on information obtained from detected biopotentials.201

These types of systems hold potential to drastically improve the efficacy of open-loop
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neuromodulation, in applications such as deep-brain stimulation for Parkinson’s dis-

ease75 and cortical stimulation for epilepsy.72 The success of closed-loop platforms

will depend on the ability to process biopotential signals in real time, and use the

information to tailor therapy. Ultra-low power processing of neural signals can be

performed in the analog domain,105 but the flexibility inherent to digital processing

makes its use much more common.107, 108, 202 With closed-loop systems, like all im-

plantable systems, a holistic approach is necessary as sensitivity, power consumption,

and system size are all critical parameters.

A traditional biopotential measurement system adheres to a three step sequence:

1) low noise amplification and high pass filter, 2) variable gain amplification and

bandpass or anti-aliasing filter, and finally 3) analog-to-digital conversion.203 If a

single ADC is time-multiplexed across multiple channels, then an additional buffer

per channel is required to drive the input capacitance of the ADC. Interestingly

though, an increasingly popular design choice is to integrate an ADC into every

channel.146 This choice becomes even more favorable when designing with deep sub-

micron processes, where very high power efficiency and very low area designs are

obtained.204, 205 Nevertheless, these designs still abide by the standard paradigm of

amplify, filter, then quantize, and each step requires power and silicon area.

The bidirectional interface presented here builds upon previous bioADC designs146, 207

for sensing functionality, and integrates everything from front-end sensing to back-end

digital decimation in a single circuit per channel (Fig. 5.1). Without explicit volt-
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Figure 5.1: Overview of the proposed circuits. The designed chip contains four chan-
nels of recording and stimulation. An additional calibration circuit is used to match
the anodic and cathodic current sources for charge balancing.206 A serial interface
facilitates communication between this chip and an external processor.

age amplification, this circuit digitizes microvolt level neural signals. Compared with

previous works, we demonstrate 1) an improvement in bit resolution by decimating

a first-order noise-shaped bit stream with a second-order decimation filter, and 2) an

improvement in noise-power efficiency through chopper-stabilization. For stimulation

functionality, we integrated additional circuits for digitally controlled current stimu-

lation.206 Four channels of both sensing and stimulation were fabricated on a single

1.5 x 1.5 mm2 chip, and offers a versatile platform for closed-loop neuromodulation.

The organization of this chapter is as follows. In Section 5.1 we describe the
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core elements of the ∆Σ bioADC. The stimulator architecture is briefly described in

Section 5.1.6, but has been described in detail in Chapter 4. Section 5.2 contains

characterizations of the bioADC in terms of SNDR, input-referred noise, common-

mode rejection ratio (CMRR), and input impedance, and Section 5.2.3 presents in-

vivo demonstrations. Finally, Section 5.3 provides a comparison of this work with the

state of the art, and concludes the paper.

5.1 Circuit Design

The schematic for a single channel in Fig. 5.2(a) illustrates the main components

of the system. An operational transconductance amplifier (OTA), loaded with a large

output capacitor (13 pF), operates as a Gm − C integrator. A latched comparator

is used as a 1-bit quantizer, which drives an auxiliary transconductor supplying a

feedback current to the integration capacitor, implementing a 1-bit digital-to-analog

converter (DAC). As shown in Fig. 5.2(b), the loop operates as a continuous-time,

first-order ∆Σ ADC which have inherent anti-aliasing properties.208 The bitstream

generated by the comparator (Q) is decimated by a second-order comb filter with

a transfer function given by ((1 − z−N )/(1 − z−1))2. The second-order decimation

filter substantially extends the bit resolution obtainable from the first-order ∆Σ noise

shaping, offering 1.5 bits for each two-fold in oversampling ratio (OSR) rather than

a single bit per two-fold OSR for a conventional first-order (counter) decimator or
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Figure 5.2: (a) Schematic of the system, consisting of a Gm −C integrator, a latched
comparator, a transconductor as a 1-bit DAC, and a decimation filter. Chopping
switches before and within the OTA are used to reduce 1/f noise. (b) Block dia-
gram representation of the system, with the DAC current referred back to the input.
The second-order comb digital decimation filter implements two accumulators at the
system clock fs followed by two differentiators at the decimated clock fs/OSR. It is
realized in an alternative form for higher area and energy efficiency.

incremental ADC.209 Hence 10-b resolution can be obtained with just 128 rather than

1,024 OSR.

Chopping switches are placed before and within the front-end OTA to mitigate

1/f noise. Chopper-stabilized amplifiers, when interfaced to electrodes, must remove

the large differential DC offset of the electrodes that is up-modulated to the chopping

frequency.119, 203 This design uses the method of Muller et al ;205 the 1-bit output of

the ∆Σ is filtered by a discrete-time integrator, and the output is fed back to the

input through a ∆Σ DAC.
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The frequency response of this circuit can be tuned as follows. The low-pass cutoff

frequency is set by programming the oversampling ratio, and trades off resolution for

bandwidth.146 The high-pass cutoff frequency is set by the servo loop.205 In this chip

the cutoff frequency is fixed at 0.2 Hz but could be programmably tuned as described

in Section 5.1.5

The chip additionally contains a four-channel neural-stimulation module and cal-

ibration circuit detailed in Chapter 4. The calibration circuit can be used to charge-

balance the stimulation waveform within each channel, spatially pattern stimulation

into bipolar and tripolar patterns, and calibrate current DAC coefficients within each

channel.

5.1.1 OTA

A fully differential, telescopic OTA, shown in Fig. 5.3(a) is used in the Gm −

C integrator. Chopping switches are placed before capacitors Cin, to up-modulate

signals of interest, and within the OTA at the sources of cascodes M4 − M7, such

that the chopper works by switching currents.119 The chopping switches at the input

in Fig. 5.2 are composed of complementary devices, while the switches in the OTA

(Fig. 5.3(a)) are composed of either NMOS or PMOS devices. A common-mode

control signal (Vcmc) is derived using a standard circuit consisting of two differential

pairs (not shown).210 Bias voltages Vt, Vtcas, Vncas, and Vn are generated on-chip,

using a replica-biasing scheme. To maximize noise/power efficiency of the OTA, the
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Figure 5.3: (a) Transistor-level schematics of the OTA and chopping switches. (b)
Schematic and timing diagram for the latched comparator.

input pair operate in subthreshold (W/L = 213µ/0.95µ), and the NMOS load (W/L

= 95µ/3.6µ) are source degenerated. All other devices are sized with large W/L to

maximize headroom as their contributions to noise are negligible compared to that

of the input pair and the active loads.

Capacitors Cin+/Cin− (30 pF) and pseudoresistors form high-pass filters that set

the common-mode input level of the OTA. To avoid a voltage division between

Cin,+ and the parasitic input capacitance of the OTA, capacitive neutralization is

used, where MOS capacitors CM+,CM− cancel the Miller multiplied Cgd of the input

pair.210, 211

Finally, to increase CMRR, the bias voltages for M4/M5 are set as a function of

the source-coupled node voltage V p. A small current source is used to drop a voltage

105



CHAPTER 5. A BIDIRECTIONAL NEURAL INTERFACE CHIP

consisting of Vgs,4 and Vds,0. This works to keep the Vds across the input pair constant

in the presence of a common mode input.203

5.1.2 Comparator

The latched comparator shown in Fig. 5.3(b) is based on that of Yin et al ,212 which

operates in three stages: reset, amplify and latch. During reset, the differential pair

sets a small voltage difference across the reset switch that tracks the difference at the

input. With a falling edge on reset, both reset and latch are low, and the differential

pair with a cross-coupled NMOS load amplifies the difference at the input. A rising

edge on latch causes the cross-coupled inverters to amplify further and bring the

outputs to the supply rails. An S-R latch is used to hold the comparator result after

the comparator is reset. The cascodes hold the drain of the input pairs relatively fixed

which helps to reduce kickback noise during the latch phase. The offset and noise of

the comparator are noise-shaped by the ∆Σ loop, hence the constraints on this block

are fairly relaxed, so no additional pre-amplification or offset-reduction techniques

are necessary.

5.1.3 Feedback DAC

A transconductor converts the comparator outputs to a feedback current, imple-

menting a 1-bit DAC. As illustrated in Fig. 5.2(b), the magnitude of this current can
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Figure 5.4: Decimation filter schematic.209

be referred back to the input though the OTA’s Gm, and sets the full-scale range of

the ADC. The current is set with an on-chip programmable bias generator.213

5.1.4 Decimation Filter

The simplest option to decimate the output of a 1-bit ∆Σ is a counter, reset

after OSR cycles. However, this filter is approximately OSR times less effective at

suppressing out of band quantization noise compared with an ideal filter.209 A second

order filter can be obtained by cascading an accumulator after the counter, which

attenuates the out of band quantization noise to a level comparable to an ideal filter.

The impulse response of this filter can be obtained by taking the inverse z-

transform of the transfer function, or graphically by convolving two rectangular

pulses. This triangular impulse response can be implemented in a hardware-efficient

manner as illustrated in Fig. 5.4.209 The positive ramp weighted sum is obtained
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with a counter and a data-gated accumulator (Fig. 5.4 top left). The negative

ramp weighted sum is obtained by subtracting a positive ramp weighted sum from a

rectangular weighted sum. A data-gated counter (Fig. 5.4 bottom) implements the

rectangular weighted sum, and the positive ramp weighted sum is subtracted from it.

5.1.5 Mixed-Signal Servo Loop

An on-chip passive high-pass filter consisting of input capacitors and high resis-

tance MOS pseudoresistors are used to set the common-mode input voltage. However,

with chopping activated the system becomes DC-coupled, and large differential DC

offsets at the electrodes can saturate the front-end. Several bioamplifier designs have

used an active feedback loop to sense the DC level and cancel it at the input.119, 203, 214

These designs use switched-capacitor integrators in the feedback loop to extract the

DC level, and subtract it at the input. Mixed-signal designs, directly digitize each

channel and can therefore use digital processing and DACs to filter out the DC com-

ponent.204, 205 Here, a DC-servo loop consists of a digital low-pass filter to extract the

DC level, and a ∆Σ DAC subtracts that DC value from the input.

Referencing Fig 5.5, Ve represents the differential input signal at the electrodes,

while Vin represents the differential input signal seen by the OTA in Fig. 5.3(a). The

∆Σ ADC encodes Vin in Q, a 1-bit signal representing values of ±Afs, where Afs is

half the full-scale voltage. Q is filtered by a discrete time integrator with a transfer

function of shown in Fig. 5.5. Because the integrator treats Q as ±1, an implicit
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Figure 5.5: Mixed-signal servo-loop schematic. The 1-bit digital output of the ADC
(Q) is low-pass filtered by a discrete-time integrator to extract the very low fre-
quency content of the electrode signal (Ve). The low-frequency content is subtracted
before the ADC through a capacitive, ∆Σ encoded DAC, implementing a high-pass
characteristic.

scaling of 1/Afs takes place.

The integrator output is scaled by a constant right-shift, and fed to a ∆Σ DAC.

The DAC is a 5-bit, thermometer-coded capacitor array with N=31 unit capacitors

Cu. The output of the ∆Σ (n in Fig. 5.5), switches n unit capacitors to a reference

voltage Vref , and N − n unit capacitors to ground. Data-weighted averaging is used

for mismatch error shaping.209 On a given cycle, with n > 0, capacitors Ci - Ci+n−1

are switched to Vref . For the following cycle, i is incremented to i + n such that a

different subset of capacitors are used for the next DAC value. As a result, errors due

to mismatch are translated into high-frequency noise.
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In Fig 5.5, treating the ADC and DAC as unity gains, the loop gain seen by Vin

can be written as,

H(z) = K
1 + z−1

1− z−1
(5.1)

With K given by,

K =
1

Afs

1

2B
Vref

2R−1

NCu

NCu + Cin
(5.2)

Here, R is the DAC input word length. The maximum DC offset that can be canceled,

Vos,max, is set by the voltage division of Vref by NCu and Cin. K can be rewritten as:

K =
Vos,max

Afs2B2R−1
(5.3)

With the loop closed:

H(z) =
1− z−1

1 +K + (K − 1)z−1
(5.4)

The cutoff frequency, Fc, can be found by taking z = ej2πf/Fs, where Fs is the sampling

rate. With Fc ≪ Fs, and K ≪ 1, the cutoff frequency is approximated as:

Fc ≈
Fs

π
K (5.5)

With Fs=128 kHz, VFS = 5 mV, B = 3, and Vos,max = 30 mV, a cutoff frequency

of ≈ 0.2 Hz is obtained. Here, B is fixed as constant right shift of 3, but offers a

mechanism to programmably control the cutoff frequency.

5.1.6 Stimulator

The stimulator architecture implemented on this chip was previously fabricated as

an 8-channel stand-alone neurostimulator, and is described in Chapter 4. In this work,
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Figure 5.6: Schematic of the stimulator architecture used in this design.206 Each
channel contains a biphasic regulated current source with independent sub-binary
radix DACs. Switches A and C turn on the anodic and cathodic current sources
respectively. Switches D and E mirror the DAC currents to the calibration circuit to
linearize the DACs using the procedure described in Chapter 4. Switch F is used to
disconnect the stimulator channel from the electrodes during calibration. Switch G
routes the channel to the calibration unit, and switch H is used to short the electrode
to a reference voltage (Vref,elect) after each biphasic pulse to bleed off residual charge.

a four channel version has been integrated on chip to enable bidirectional operation

on the same silicon circuit. The salient features relevant to the present bidirectional

interface are illustrated in Fig. 5.6.

Each stimulation channel contains two independent, sub-binary radix, current-

mode DACs that supply biases to regulated cascode current sources. The DACs are

MOST R-βR ladders with β > 2.189 This structure provides redundancies in the

input-output relationship making it robust to mismatch. The redundancies can be

removed by a digital calibration method.193, 206 A calibration circuit is shared across
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channels and consists of an integrator and comparator. This provides an analog-

to-time-to-digital conversion; the time it takes for the integrator output to trip the

comparator is digitized with an external counter. The output of the comparator was

routed to a pad (Vcmpr in Fig. 5.6.) and this timing is performed externally. Because

an external devices is required to program the chip and read out data, the overhead

needed to perform the timing externally is negligible. With both current sources

simultaneously activated, the difference between the source and sink, or residue, is

routed to the calibration circuit and digitized by an off-chip counter. Either DAC

can then be incremented to minimize this difference for charge balanced stimulation.

Importantly, with the calibration unit shared across channels, the residue nulling

procedure described above can be applied to multiple channels at once. As a re-

sult, the stimulation currents can be matched and even ratioed to allow multipolar

stimulation patterns. Multipolar stimulation can be used to shape the electric field

in-vivo for targeted electrical stimulation. This feature is particularly important for

future closed-loop neurostimulation applications, where the electrophysiological ef-

fects of stimulation can be monitored and used to update stimulation parameters

autonomously.

5.1.7 Stimulation Artifact

Simultaneous stimulation while sensing can induce artifacts in the recordings.

Artifacts can be the result of intrinsic cross-talk between the stimulator and record-
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Figure 5.7: Micrograph of the fabricated circuits.

ing circuits as well as direct coupling through volume conduction in-vivo. Both the

recording and stimulation blocks are enclosed by guard rings to minimize cross-talk

through the chip substrate. Otherwise, artifact removal or mitigation circuits have

not been implemented on this chip. Therefore, the hardware may not be suitable for

simultaneous recording and stimulation from a single electrode array. However, for

distant recording and stimulation electrodes, the artifact is predominantly a common-

mode signal. In Section 5.2.1 characterizations of the intrinsic crosstalk are presented.

In Chapter 6, characterization of the artifact measured in-vivo is presented.
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Figure 5.8: Raw output of bioADC for a 24 Hz tone, along with the ideal NTF for a
first-order ∆Σ in black.

5.2 Measurement Results

The circuits were fabricated in a 0.18 µm 6M1P CMOS process (Fig 5.7). The

chip contains four channels; the analog circuits of Fig 5.2(a) occupy 320 µm x 580 µm,

the mixed-signal servo loops occupy 380 µm x 580 µm and the decimation filters and

output shift registers occupy 220 µm x 400 µm. The input, AC-coupling capacitors

as well as the integration capacitor were realized with MIM devices. The active

circuits were placed underneath these components, effectively cutting the required

area in half. An additional layer of metal (M4) was sacrificed to shield the MIMs and

distribute power.
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Figure 5.9: Frequency response for different settings of OSR.

5.2.1 BioADC Characterization

Fig. 5.8 shows the output spectrum of a tone test along with the theoretical

NTF for a first-order ∆Σ. At low frequencies, the resolution is noise-limited, but

at high frequencies (f > Fs/64) the noise-shaping is clearly visible, and follows the

theoretical curve very closely. Furthermore, tones at the chopping frequency and its

harmonics can be seen. Note though, since the chopping frequency is a factor of the

sampling frequency, the decimation filter nulls these peaks, and no aliasing of the

chopper ripple is observed.

Fig. 5.9 illustrates the measured the frequency response of the circuit with the
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Figure 5.10: (top) Measured SNDR as a function of the input amplitude. (bottom)
Output spectrum corresponding to the peak SNDR measurement (4mVpp) with and
without chopping.

OSR programmed to 128, 256, and 512. The decimation filter does provide attenua-

tion in the passband. For the SNDR and noise measurements that follow, an equalizer

was used to undo these in-band effects of the filter.

Fig. 5.10 shows the results of a tone tests for signal-to-noise-distortion-ratio

(SNDR) measurements. The system clock was set to 128 kHz and the oversam-

pling ratio set to 256, which gave a decimated data rate of 500 Hz. The input tone

frequency was set to 24 Hz. Peak SNDR was measured to be 58.5 dB, at an input

amplitude of 4 mVpp. Fig. 5.10 illustrates that SNDR was limited by thermal noise
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Figure 5.11: Input referred voltage noise PSD.

and power in the 3rd harmonic, which is attributed to the tanh characteristic of the

OTA’s differential pair in subthreshold. There is no need to linearize the circuit

for greater spurious-free dynamic range (SFDR) since 4 mVpp is already above the

range of most biopotentials. Fig. 5.10(b) also compares the spectrum recorded with

and without chopping. In addition to the reduction of 1/f noise, chopping mitigates

even-order distortions which are due to mismatch in the differential pair.

To measure the inherent circuit noise, the inputs of all channels were shorted

to ground. Fig. 5.11 shows the measured power spectral density (PSD) referred

back to the input with and without chopping. Chopping significantly improves noise

performance, and the dominant in-band noise source is thermal noise. The thermal
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Figure 5.12: BioADC differential input impedance across chopper frequencies.

noise level appears approximately at 60 nV/
√
Hz. Though it appears from Fig. 5.11

that the 1/f noise corner is below 1 Hz, this is not the case, as the HPF attenuates

signals below 1 Hz. At higher frequencies, the ∆Σ quantization noise can be seen

to rise above the thermal noise floor. This includes the quantization noise from the

ADC and DAC. Integrating under the curve from 0.25 Hz to 250 Hz yields a total

input referred noise of 1.0 µVrms.

The differential input impedance of the bioADC was measured for chopping fre-
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Table 5.1: Input impendence magnitude at 76 Hz across chopper frequencies.

Chopping Frequency (Hz) 0 500 1000 2000 4000 8000

Input Impedance (MΩ) 827 237 123 62 31 16

Figure 5.13: Percent variation in the gain across channels. Data accumulated from
9 chips for a total of 36 measurements. Data from each chip was normalized to the
chip average.

quencies ranging from 500 Hz - 8 kHz. Fig. 5.12 shows the magnitude and phase plots

of the input impedance as a function of frequency and Table 5.1 lists the measurement

magnitude results at 76 Hz.

Common-mode rejection of the bioADC was measured without chopper stabiliza-

tion and with chopping at 2 kHz. The measurement was made by applying a 90 mVpp

50 Hz signal to both inputs. Without chopping, CMRR was measured to be 77 dB

and increased to 97 dB with chopping enabled.

The use of an open-loop Gm stage leads to mismatch across channels. This mis-
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Figure 5.14: Crosstalk between the recording and stimulation blocks. Biphasic pulses
with 10 ms cathodic-first pulse widths were applied to a resistive load (4.7 kΩ) on
all four stimulator channels with the recording front-ends tied to ground. Recordings
were time aligned to the onset of stimulation pulses (t=0) and averaged, extracting
artifacts on channels 1, 2 and 4.

match was characterized by applying a 2.5 mVpp tone to all channels and comparing

the peak heights in amplitude spectra. This parameter was measured in the four

channels across nine chips. Within chip variation was bounded by ±2%, and a his-

togram of the across channel variation, normalized to the average for each chip is

illustrated in Fig 5.13.

Crosstalk between the bioADC and the stimulator blocks was measured by tying

the front-end inputs to ground while pulsing the fullscale current though a dummy

load (4.7 kΩ) on all channels with a pulse width of 10 ms and a 25 Hz frequency.

Recordings from each channel were then time aligned to the onset of each stimulation

pulse and averaged across 7500 pulses to extract any measurable crosstalk. Fig 5.14
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illustrates the waveforms after averaging. Channels 1, 2 and 4 show a detectable

artifacts, but the worst case is less than 1 µVpp.

5.2.2 Power Consumption and Noise Efficiency

The average static current consumption of the analog components in Fig 5.2(a)

was 1.41 µA with the following breakdown: 1.05 µA for the OTA (including CMFB

and Vpcas generation), 30 nA for the feedback transconductor, and 330 nA for the

comparator. The comparator, S-R latch, and digital buffers (not shown) also con-

sumed a small amount of dynamic power. During operation, the analog components

consumed 1.54 µA on average. The decimation filters, discrete-time integrator and

∆Σ consume comparable amounts of power. Each channel drew an additional 2.13 µA

from the digital supply to power the decimation filters, integrator, ∆Σ DAC, and for

clock distribution. Both analog and digital circuits were powered from a 1.5 V supply,

yielding a total power consumption of 5.5 µW .

To quantify the design’s power and noise performance, we can calculate the noise

efficiency factor (NEF) and the power efficiency factor (PEF). Furthermore, we can

consider separately the front-end amplifier and the system as a whole. By considering

only the power consumed by the front-end OTA (1.05 µA at 1.5 V), and taking the

bandwidth to be equal to the Nyquist rate, we calculate an NEF of 2.5, and a PEF of

9.4. For the total system, with a current draw of 3.67 µA, and a 1.5 V supply voltage,

the NEF and PEF are 4.7 and 33 respectively. The system level NEF is comparable
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to another state-of-the-art design,205 while the PEF suffers due to the relatively high

supply voltage of 1.5 V.

5.2.3 In-vivo Measurements

Two sets of measurements were performed in-vivo to validate the performance of

the circuits in a biomedical setting. All surgical procedures were approved by the

Johns Hopkins Animal Care and Use Committee. In the first experiment, stainless-

steel screw electrodes were implanted in the skull over the somatosensory cortex

of a rat, and an additional screw was implanted over the occipital region to serve

as a reference. Simultaneous intracranial EEG (iEEG) recordings were made with a

commercial, bench-top neurophysiology system (Tucker-Davis Technologies, Alachua,

FL), as well as the proposed circuits (Fig. 5.15(a)). Fig. 5.15(b) shows two 5-second

clips of iEEG from a rat under isoflurane anesthesia. The signals obtained with the

bioADC (red) were overlayed on the recordings from the reference system (blue).

When deeply anesthetized, the iEEG displays a prominent burst-suppression wave-

form in which periods of quiescence are punctuated by high amplitude bursts of

activity;215 this pattern is observed in Fig. 5.15(b)(top). However, under light seda-

tion, the iEEG becomes continuous and of lower amplitude. Fig. 5.15(c) compares

the spectrograms recorded from the two systems. Power in each frequency bin was

normalized to the median power over the entire recording.

We used the chip in a second experiment to demonstrate simultaneous sensing and
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Figure 5.15: (a) Setup for in-vivo validation of the proposed circuits. A commercial
electrophysiology workstation and the fabricated circuits were connected to screw
electrodes implanted in a rat’s skull, and the electroencephalogram was recorded while
the rat was under anesthesia. (b) Comparison of time domain EEG. Burst suppression
patterns (top) were recorded while the rat was heavily sedated. Continuous EEG was
recorded during light sedation. (c) Frequency domain comparison.

stimulation capabilities. Illustrated in Fig. 5.16(a), we simultaneously stimulated

the vagus nerve to artificially increase the parasympathetic input to the heart, and

measured the resulting effects on heart rate by measuring the electrocardiogram.

A male Wistar rat was anesthetized with 2% isoflurane in a 50:50 N2:O2 mixture

through a nosecone. A ventral incision was made in the neck, muscles were retracted

and the left carotid sheath was exposed. Then, the left cervical vagus nerve was

carefully dissected from the carotid sheath. Fig. 5.16(a) illustrates the experimental

setup. Electrical contact was made with the vagus nerve using a stainless steel, bipolar
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Figure 5.16: (a) Experimental setup to test the recording and stimulation capabilities
simultaneously. A hook electrode was interfaced to the vagus nerve of an anesthetized
rat and two subdermal needle electrodes were inserted at the left and right forepaws
to measure resulting ECG changes.(b) Recorded ECG during vagus nerve stimulation
(VNS). Black bar corresponds to the onset of VNS at a 40 Hz frequency. (c) Measured
heart rate, extracted from recorded ECG, over time as VNS frequency was steadily
increased. Over several trials we increased the stimulation frequency from 1 Hz to
35 Hz. The onset of each trial is indicated by the presence of a black bar, with the
corresponding stimulation frequency labeled. Increases in stimulation frequency have
a stronger effect on reducing heart rate as expected.216

hook electrode. A single stimulator channel was connected to one of the hooks, and

the other hook was connected to 1.5 V to bias the rodent and for the stimulation

current’s return path. The electrode was made from 250 µm stainless steel wire,

with a 1 mm hook diameter, and 0.8 mm spacing (FHC, Bowdoinham ME), and

had an impedance of 2 kΩ at 1 kHz. Biphasic pulse trains (cathodic first) were

delivered through the electrodes with the following parameters: 250 µA amplitude,

50 µs us pulse width, and 10 s pulse train duration. The electrocardiogram (ECG)

was measured differentially across the two forepaws using a single bioADC channel.
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Figure 5.16(b) shows measured ECG before, during and after a 40 Hz stimulation

train delivered to the vagus nerve. The heart rate responds almost immediately at

the onset (black bar) and offset of stimulation. Increasing the frequency of VNS

progressively slows heart rate.216 Fig. 5.16(c) shows the calculated heart rate versus

time as VNS frequency was increased. Each black bar indicates the onset of a 10

second train of stimulation, and annotated below the bar is the stimulation frequency.

Stimulation frequency was stepped up in 5 Hz increments from 5 Hz to 35 Hz; at 30

Hz the effect saturated at an approximately 30% decrease in heart rate.

5.3 Comparisons and Conclusion

We have presented a low-power, low-noise, biopotential acquisition system with

integrated stimulator206 suitable for closed-loop electrocortical neuromodulation sys-

tems. Table 5.2 summarizes the recording front-end specifications of the reported

circuits and compares the results with state-of-the-art designs. For fair comparisons

across designs we use a “system-level” NEF that considers the current consumption

of the entire recording chain including ADC. This design achieves improvement in

system-level NEF compared with prior-art. The PEF is substantially higher here

than the design of Muller and colleagues205 due to our relatively high supply voltage

of 1.5 V compared with 0.5 V.

We also propose an additional figure of merit (FoM) for bioADC systems based
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on a traditional figure of merit in ADCs.

FoMbioADC =
Power

Fs · 2ENOB′
(5.6)

ENOB′ =
20 · log10(

Afs/
√
2

Vn,rms
)− 1.76

6.02
(5.7)

The front-end amplifiers and back-end ADCs of many biopotential acquisition

systems are characterized separately. This FoM allows fair comparisons between

systems such as that proposed here and more traditional systems by taking into

account the effect of front-end noise and gain on the effective SNR in practice.

Note that though the bioADC presented here obtains an ENOB of 9 bits, this

is with a dynamic range of 5 mV, which is much larger than the dynamic range of

most biopotential signals. Therefore, the ENOB for signals of interest is lower. For

example, Fig. 5.10 illustrates that for a signal range of 1 mVpp, an ENOB of 7.7

is obtained. However, the high dynamic range has significant value. For example,

in practical EEG/ECoG systems on awake behaving subjects, movement artifacts

can be very large. Therefore, the increased dynamic range gives a degree safety for

artifactual signals to prevent saturation

SAR ADCs are typically the best choice for energy efficient analog-to-digital con-

version. The work in Table 5.2 that achieves the best (lowest) FoM is a SAR ADC.

In this case the FoM is driven low by the relatively low power despite very high

sampling frequency.114 However, SAR ADCs are prone to aliasing distortion in the

presence of high-frequency noise. This is of particular concern in bidirectional sys-
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tems, as high frequency stimulation artifacts alias into the frequency bands relevant

to biopotential sensing.110 The oversampling in ∆Σ ADCs, as well as the inherent

anti-aliasing properties of the continuous-time (CT) integrator make CT-∆Σ ADCs

particularly suited for this application. The integrated second-order decimator offers

substantial improvement in resolution without the area and power expense of second-

order noise shaping. While VCO based ADCs also provide inherent anti-aliasing, ∆Σ

architectures offer enhanced linearity.

The proposed circuits were designed specifically for EEG/ECoG recording as

demonstrated in Fig. 5.15. The major limitation in using the proposed circuit for

spike recording is the power required to increase the sampling rate to one suitable to

acquire action potentials. Typical commercial hardware sample at >20 kHz, and to

achieve this sampling rate at the current 256 OSR, would require a 5.12 MHz clock

rate. In the current implementation this would consume an unsuitable amount of

power from the digital circuits.

The performance of the proposed circuits has benefited greatly from process scal-

ing. Previous designs146, 207 were fabricated in a 0.5 µm process, so the inclusion of

the second order filter was prohibitive in terms of area. Implementation in a 180 nm

processes permitted integration of the second-order decimation filter in-line with the

CT-∆Σ. This further permitted reduction in the sampling clock frequency, which

brought down power consumption proportionally.

Further, a major challenge with integrating chopper stabilization into a biopo-

127



CHAPTER 5. A BIDIRECTIONAL NEURAL INTERFACE CHIP

tential amplifier is the electrode DC differential offset which is addressed with a

well-known and commonly used servo-loop technique. The single bit output of the

CT-∆Σ makes the mixed-signal approach205 attractive due to both the challenge of

filtering the noise shaped signal in the analog domain and the simplicity of filtering

a single-bit signal in the digital domain.

Interestingly, digital power consumption dominates total system power consump-

tion in this design. This could be addressed in two ways. First, two power domains

could be utilized, a 1.5 V supply for the analog circuits and a <1 V supply for the

digital circuits; minimal overhead in the form of level shifters would be the only re-

quirement. Alternatively, further performance and energy efficiency improvements

can be obtained by migrating the design to state-of-the-art 65nm technology.
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Table 5.2: Comparison of this work with prior art

Parameter This Work 205 114 207 146 203

Year 2016 2015 2013 2010 2009 2008

Technology 180nm 65nm 130nm 0.5µm 0.5µm 0.5µm

Power/ch. (signal cond. +
ADC) (µW )

5.5 2.3 10 20 72.6 14.2

Max Offset (mV) ±30 ±50 AC-coupled AC-coupled AC-coupled ±45

Input Referred Noise
(µVrms)

1.0 1.29 5.1 2.65 1.65 0.59

Bandwidth (Hz) 0.25-250 1 - 500 1 - 5k 1-1024 0.5 - 140 0.5 - 100

NEF (system level) 4.67 4.77 8.0 7.95 79.5 4.95

PEF (system level) 33 11 77 209 629 73.6

CMRR (dB) 97 88 75 - 76 128

ADC Architecture ∆Σ VCO SAR ∆Σ ∆Σ SAR

Sampling Rate per ch. (Hz) 500 1k 28k 512 500 1k

Resolution (ENOB) 16 (9.4) 15 (-) 8 (7.6) 10 (9.5) 10 (8.8) 11 (10.5)

SNDR (dB) 58.5 - 47.5α 59 55 64.9α

SFDR (dB) 74 52 51 59 60 -

bioADC FoM (pJ/conv) 7.6 10.3 5.5 91.7 444 38.6

Stim Channels 4 - 64 - - -

Stim Supply Voltage 5 - 3.3 - - -

Max Current (mA) 0.25 - 1.2 - - -

α measurement for ADC alone
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Chapter 6

Closed-loop Control of Cardiac

Rhythm with a Custom Integrated

Circuit

Autonomic nervous system dysfunction is concomitant with cardiovascular dis-

orders such as heart failure, hypertension and arrhythmias.217, 218 Beta-adrenergic

blockers (β-blockers) are antagonists for epinephrine, and are prescribed for these

disorders as they block the activity of the sympathetic nervous system.219 In heart

failure patients it has been hypothesized that increasing parasympathetic activity

may also offer benefit in addition to the reduction of sympathetic input inherent to

β-blockers.219

However, recent clinical trial disappointments have underscored the need to better
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understand the mechanisms of action of neuromodulation therapies.159, 220 Research

grade implantable devices for small animal models can greatly help in that regard.

The size, power, and noise constraints on implantable biomedical devices are severe,

so it is often necessary to use application specific integrated circuits (ASICs) to meet

required specifications. This chapter details the development of a closed-loop neu-

rocardiac interface using the custom very-large-scale integration (VLSI) chip from

Chapter 5 to record and stimulate bioelectric activity.

Quantitative understanding of the effect of vagal activity on the heart has been

well developed over the past century.216, 221, 222 However, previous demonstrations of

closed-loop control of this system have used standard benchtop instrumentation.223, 224

Here, all recording and stimulation circuits are contained within a single 1.5 mm ×

1.5 mm integrated circuit (IC). Signal processing is performed on a PC, but the

algorithms used are simple enough to implement on an FPGA or synthesize in a

next-generation ASIC.

6.1 System Design

Fig. 6.1 illustrates a block diagram of the system designed and implemented.

The bidirectional neural interface chip (BNIC) described in Chapter 5 records the

electrocardiogram subdermally from the chest and streams data to an FPGA devel-

opment board (XEM3010, Opal Kelly). The FPGA packages and transmits data to
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Figure 6.1: System level diagram of the for the neuromodulation system. A custom
integrated circuit containing recording and stimulation circuits acquires and digi-
tizes ECG, and delivers constant-current stimulation to the vagus nerve. An FPGA
streams data from the ASIC and delivers parameters, and communicates with a PC
over USB. Finally a PC calculates heart rate through R-wave detection, and updates
stimulation frequency through a PI controller.

a personal computer (PC) via a USB interface and sends stimulation commands to

the BNIC that control stimulation amplitude, pulse width, frequency and duration.

A PC runs a graphical user interface (GUI) written with LabWindows CVI (National

Instruments, Austin, TX), and allows the experimenter to input a “target” heart

rate. An R-wave detection algorithm is used to calculate heart rate in real-time,

and a proportional-plus-integral (PI) controller modulates vagus nerve stimulation

(VNS) frequency. Stimulation parameters are sent back to the FPGA which updates
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stimulation frequency.

6.1.1 Heart Rate Detection Algorithm

Calculation of heart rate was performed with a simple algorithm that detects the

R-wave of the ECG through crossings of an adaptive threshold. The threshold is set

by shifting ECG data into a 4-second long window and taking the threshold to be 40%

of the maximum.225 As the R-wave crosses through this threshold, the time between

the current crossing and previous crossing gives the R-R interval. However, if the

current time exceeds that of the previously calculated R-R interval, the heart rate

estimate is decremented. This is to avoid sudden drops in our estimate of heart rate,

and allows the system to respond to the slowing of the heart, without waiting for the

next R-wave, avoiding overstimulating the vagus. Finally, the instantaneous heart

rate estimates produced by this algorithm were smoothed using a moving average

filter.

6.1.2 PI Controller

The GUI allows the experimenter to set a target heart rate. Upon activation of

the controller, an error signal is computed as the difference between the target and

the calculated heart rate. The stimulation frequency at time t is set as

f [t] = Kpe[t] +Ki

t
∑

t′=0

e[t′] (6.1)
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Two heuristic modifications were made to this controller. First, in pilot experiments

it was found that stimulation above 40 Hz tended to cause arrhythmias. Secondly,

efforts here were only made to lower heart rate from a baseline value. Therefore,

the output of Eqn. 6.1 was constrained to be positive and less than 40. Thus, the

effective stimulation frequency can be written as

f [t] = max

(

0 , min

(

Kpe[t] +Ki

t
∑

t′=0

e[t′] , 40

))

(6.2)

Lastly, selection of gain coefficients Kp and Ki is non-trivial. One group has used

a computational model of the cardiovascular system in-silico to find the optimal

parameters that minimized a cost function consisting of terms proportional to the

mean squared error, overshoot, and rise time.224 A heuristic approach was taken

here, resulting in Kp = 0.05 and Ki = 1e-3.

6.2 Experimental Setup

The following experiment was carried out on male Wistar rats under a protocol

approved by the Johns Hopkins Animal Care and Use Committee. Anesthesia was

given with 2% isoflurane in a 50:50 N2:O2 mixture through a nosecone. A ventral

incision was made in the neck, muscles were retracted and the left carotid sheath was

exposed. Then, the left cervical vagus nerve was carefully dissected from the carotid

sheath.

Electrical contact was made with the vagus nerve with a tripolar micro-cuff elec-
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Figure 6.2: Experimental setup for the closed-loop vagus nerve stimulation exper-
iments. A tripolar micro-cuff electrode was placed on the vagus nerve through a
ventral incision in the neck. ECG was recorded differentially from two subdermal
needle electrodes at the right forepaw (RF) and left forepaw (LF), a third ground
electrode (not shown) was placed at the right hindpaw.

trode (Microprobes, Gaithersburg, MD). The cuff consisted of three 50 µm plat-

inum/iridium contacts spaced 0.5 mm apart, embedded in a 300 µm diameter silicone

rubber tubing. Biphasic pulse trains (anodic first) were delivered through the elec-

trodes with the following parameters: 110 µA amplitude, 225 µs pulse width. Two

of the distally located electrodes were stimulated with adjacent stimulator channels,

while the third, proximal electrode was used for the currents return path.

For ECG recording, stainless steel needle electrodes were inserted subdermally in

the left and right forepaws (LF and RF respectively), and a ground electrode was

inserted in the right hindpaw (RH). Recordings were made differentially between RF

and LF, analogous to Lead I in a standard clinical ECG. Fig. 6.2 illustrates electrode

locations.

We attempted four levels of control corresponding to 5% - 25% decreases in heart

rate from baseline, in 5% steps. In each trial, we recorded one minute of baseline data,
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Figure 6.3: (a) Raw ECG acquired with the BNIC during a baseline period. (b)
Potential recorded by an oscilloscope from the stimulating micro-cuff electrode dur-
ing a stimulation pulse. The electrode potential was buffered through a MOS-input
amplifier to avoid loading the stimulator.

then activated the PI controller. Once the measured heart rate hit the target, the

system was allowed to run for an additional three minutes (this resulted in non-equal

trial durations across the different targets), after which stimulation was turned off

and heart rate was allowed to return to baseline. In an additional trial, we set the

target to a 10% decrease from baseline, and allowed the system to run for 20 minutes.
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6.3 Results

Fig. 6.3(a) shows representative ECG captured during baseline; the P and R

waves are clearly evident. Fig. 6.3(b), depicts the time-domain potential across one

of the micro-cuff electrodes during stimulation, exhibiting both a resistive (faradaic)

and capacitive component of the electrode impedance. Due to the relatively low

level of stimulation current (110 µA), and anodic first stimulation, only 2.5 V of

positive headroom and 1.5 V of negative headroom are needed. Stimulation artifacts

could be detected in the ECG recordings, and are depicted and annotated in Fig.

6.3(c). Recordings were time-aligned to all stimulation pulse onsets and averaged

across the entire experiment. The extracted waveform illustrated in Fig. 16(e) has

a peak-to-peak amplitude of 110 µV. While noticeable in the ECG recordings, the

artifact amplitude is much lower than the R-wave peaks and thus has no impact on

the performance of the closed-loop system.

Fig. 6.4 illustrates results from the short closed-loop trials. The measured heart

rate over time for all five trials is illustrated in (a), with the time of PI controller

activation set to 0. Different color traces correspond to different trials with differ-

ent targets. The dashed black lines illustrate the target level for each trial. The

corresponding stimulation frequency computed autonomously by the PI controller is

depicted in Fig. 6.4(b). Again, different color traces correspond to the different trials.

In each trial, the large initial error was slowly reduced over the course of 60 seconds

by the PI controller, as the stimulation frequency was titrated up from 0 Hz to 2 -
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Figure 6.4: Results of closed-loop heart rate control experiments. (a) Measured
heart rate during five trials with heart rate targets (black dashed lines) ranging from
5% - 25% decreases from baseline. (b) Delivered stimulation frequency calculated
autonomously by the PI controller during each trial.

20 Hz, depending on the target. After an initial convergence period, heart rate was

held within +/- 10 bpm of the target for the duration of the trials. One exception to

the accuracy of control was a brief arrhythmia during the 20% decrease trial (spike

in the purple trace of Fig. 6.4(a) around t = 75 s). This also produced a spike in the

stimulation frequency due to Kp in Eqn. 6.2.

Fig. 6.5 depicts the measured heart rate and stimulation frequency during the
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Figure 6.5: Heart rate (blue) and stimulation frequency (red) during a > 1200 s
closed-loop control trial. The target (dashed black line) was set 10% lower than the
baseline heart rate. After an initial convergence period of 100 seconds, heart rate
was maintained within +/- 10 bpm of the target, with the exception of two brief
arrhythmias. The inset shows the ECG and R-R intervals corresponding to the first
spike in heart rate, confirming the spikes are not artifacts. Note also that in the
heart rate data, the magnitude of the arrhythmia is attenuated due to the smoothing
applied to the heart rate data.

longer, 20 minute trial. Again, the difference between heart rate and target decreases

over the course of 120 seconds. Here, the mean heart rate is maintained around the

target for the entire 20 minute duration. This trial also produced brief jumps in

instantaneous heart rate. As illustrated in the inset, this was not artifactual; in each

case, heart rate momentarily jumped above baseline and then rebounded back (the

actual amplitude of the change is attenuated in the plots due to the moving average

filter described in section 6.1.1). As in the shorter trials this produced brief spikes in
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the stimulation frequency as well.

6.4 Discussion

There are several limitations with the proposed system that present opportunities

for future work. Stimulation amplitudes were limited to 110 µA per electrode due

to the voltage compliance of the stimulator and electrode impedance (7k at 1 kHz).

The power supply was limited to 0 - 5V by the process used for chip fabrication.

This almost certainly limits the degree to which heart rate can be reduced, requiring

relatively high frequencies of stimulation (18 Hz for 20% reduction in heart rate). For

example, in one study, 2 ms pulses of 2 mA were used, and could depress heart rate

by 50% at < 8 Hz.222 Other studies have used a variety of parameters: ± 10 V stimu-

lation, synchronized to ventricular depolarization could depress heart rate by 30%,226

10 mA stimulation was used and 15% decreases in heart rate could be controlled,226

and between 0.4 - 1 mA pulses, synchronized to ventricular depolarization, were used

to effect a 10% change in heart rate.224 A second limitation is that all signal process-

ing has been performed on a PC, so the system is not completely integrated. This

could be addressed by writing the algorithms in a hardware-description language, and

synthesizing the circuits on chip using a standard-cell library. The algorithms used

(R-wave detection and PI controller) are suitable for on-chip implementation.122, 227

Further, Figs. 6.4 and 6.5 show that paroxysmal arrhythmias can arise during
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stimulation. Hence, future work will need to address more robust control strategies

capable of classifying potentially hazardous states and titrating stimulation appro-

priately.

Lastly, it can be seen in Fig. 6.5 that stimulation frequency begins to increase

from t=1000s until the end of the trial. Whether this trend would have continued

had the session not ended is of great interest; the chronic cardiovascular effects of

VNS on an intact autonomic nervous system should be further explored. As there

are physiological feedback loops working to maintain homeostasis,228 the effects of

artificial electrical stimulation could potentially wane after periods of hours. These

issues warrant further study, and mathematical models of the underlying physiology

could help in this regard.224

6.5 Conclusion

This chapter described the implementation of a closed-loop vagus nerve stim-

ulation platform using a custom CMOS chip for both biopotential recording and

stimulation. The system is a powerful platform that can enable investigation of novel

cardiac function modulation strategies. Future work will be required to integrate sig-

nal processing capabilities into a stand-alone miniaturized system, but doing so will

enable the investigation of chronically operating closed-loop neuro-cardiac interfaces.
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Chapter 7

Conclusions and Future Directions

This thesis presented three contributions to the field of bidirectional neural in-

terface technologies. First, we developed a wireless electrocorticographic monitoring

system for rats. Second, we designed an 8-channel CMOS neurostimulator chip with

on-chip charge-balancing and current steering circuits. Third we designed a bidirec-

tional neural interface chip with four channels of both sensing and stimulation.

This chapter will summarize the main contributions and then describe opportu-

nities for future research directions.
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7.1 A Wireless EEG System for Freely

Moving Rodents

Chapter 3 presented a wireless multi-channel neural recording interface for rats

and other small laboratory animals. The system weighed less than 30 grams, and

consumed 5.1 mA. Due to its small size and low power consumption, this technology

allows long-term recording in freely moving animals. For example we showed seizure

activity could be detected with the system in a rodent model of global ischemic brain

injury. This technology holds tremendous value in the context of bidirectional neural

interfaces as it enables exploratory studies in animal models of disease for discovery

of electrophysiological biomarkers that may be used to tune stimulation parameters

on-line.

7.1.1 Future Directions

The specifications for the wireless system were conceived with medium sized (300

- 400 g) rats in mind. This led to a maximum weight of 10% of their total body

weight, 30 - 40g. By distributing the weight between the head and body, this size

was very well tolerated by healthy rats. However, an under-appreciated factor was

that when studying brain activity in rats post cardiac arrest, the injury drastically

compromised the tolerability of any external device. Therefore, further reduction in

system weight would be beneficial. The subdivision of the system into a head-stage
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and backpack stage was advantageous as it allowed the recording front-end to sit

directly on the electrodes minimizing the physical distance between electrodes and

amplifiers. Any length of wire separating the two makes the system more susceptible

to interference from the mains and movement artifacts. However, the inclusion of

the backpack made the device vulnerable to mechanical failure. For example, if the

backpack was secured too tight, it would interfere with the mobility of the animal.

However, too loose and often healthy rats could free themselves.

Therefore, removal of the backpack stage in future iterations of the device would

be enormously helpful in improving the robustness of the system. This would require

stacking the wireless transmitter on top of the neural interface board within the head-

stage, removing the requirement of the microcontroller, and reducing the battery size

such that it fits within the headstage. The nontrivial efforts here include removing the

requirement of the microcontroller and reducing the battery size. However, the pur-

pose of the microcontroller was to synchronize the operations of the neural interface

and wireless module. Hence minor modifications to the digital read-out circuits in the

neural interface would obviate the need for the microcontroller. Further, Section 3.3.1

showed, 20-30% of the system power budget was consumed by the microcontroller.

Noting that integration of the microcontroller’s duties into an custom integrated cir-

cuit would most likely cut that power consumption down to a negligible amount, it is

clear that this strategy would result in improvements in both size and power. Lastly,

reducing the battery size would result in a lower system lifetime, however, in practice,
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replacing a battery once per day would not be too burdensome. Hence, for 24 hour

operation, given system power consumption of 5 mA, the system would require a 120

mAhr battery. As described in Chapter 3 we have used 200 - 400 mAhr batteries,

hence, even with no further power savings reducing battery size is still possible.

7.2 A CMOS Current Steering Neurostim-

ulation Array

Neurostimulation devices are limited in size due to the need for external compo-

nents to ensure safe, charge-balanced stimulation, and limited in specificity due to

current spread in-vivo. Chapter 4 described the design of a CMOS neurostimulator

chip where specific design innovations were introduced to address these issues. Our ar-

chitecture included a channel-multiplexed calibration circuit that matched the anodic

and cathodic stimulation phases to better than 0.3%, matched and ratioed currents

across channels with the same precision for current steering, a technique that can be

used to enhance the selectivity of electrical stimulation, and calibrated the current

DACs to 8-bit resolution. Further, we used the chip to stimulate the sciatic nerves of

anesthetized rats to test the current steering capabilities in-vivo, and saw the spatial

stimulation pattern alter evoked muscle responses.
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7.2.1 Future Directions

Technological improvements could be made to the existing design in terms of volt-

age compliance and power efficiency. It is generally accepted that constant current

stimulation is the preferred method for therapeutic systems as it maintains a con-

stant level of charge injection independent of the electrode impedance which can vary

over time, and can vary from channel to channel. However, it is not a power effi-

cient method of delivering charge to tissue because a large proportion of the power

dissipated during stimulation is dissipated within the current sources not the load.229

Additionally, for electrodes that do not engage in irreversible faradaic reactions, the

injected charge is stored on the electrode and can be recovered,230 but in general it

is wasted during the charge-balancing phase of stimulation. Power efficiency in the

stimulator output current buffer can be improved by allowing the power rails to step

up during stimulation such that a minimum “saturation” voltage is dropped across

the current sources, but no more.123

For large stimulus intensities or large electrode impedances, high voltages can

be generated across the electrodes. The chips fabricated as part of this dissertation

could only make use of supply voltages as high as 3.3 - 5 V due to process restrictions.

Gate-oxide breakdown and hot-carrier effects are phenomena that irreversibly damage

MOS devices if the voltage differences across terminals of the device exceed certain

values. For example, gate-oxide breakdown limits the gate-to-source voltage, and

hot carrier effects limit the drain-to-source voltage. There are two ways to obtain
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higher compliance voltages for the stimulation circuits. The simplest solution is to

migrate the design to a process with a high-voltage transistors. The output current

buffer would be composed of these devices could operate from ± 10 V supply rails.

Alternatively, there are circuit design techniques that permit high voltage supply rails

but stack devices in a way that limits the gate-source and source-drain voltages for

individual transistors.161

The ability to tune spatial patterns of stimulation digitally offers tremendous op-

portunities for future in-vivo experimentation that could further contribute to the

field of neurmodulation. In Chapter 4 we used our neurostimulator chip to apply

current-steering patterns to the sciatic nerve in anesthetized rats. Different spa-

tial patterns of stimulation activated different muscle groups in the hind-paw. We

used stimulation patterns that have been used by others for selective neurostimula-

tion.164, 165, 174 A more powerful approach, demonstrated by Kent and Grill for the

pudendal nerve,166 would be to create a model of the sciatic nerve and its fascicles,

use finite-element methods to simulate the electric field distribution within tissue for

different stimulation patterns, and then use computational methods to find spatial

stimulation patterns that maximize selectivity. Applying these methods to the vagus

nerve would also be of interest, as the location of monopolar stimulation itself has

been shown to enhance selectivity.231 The chip designed in Chapter 4 would be a

powerful tool to test such predictions.
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7.3 A Bidirectional Neural Interface Chip

Lastly, we designed a bidirectional neural interface chip containing four chan-

nels of bioelectric sensing and four channels of stimulation. The sensing circuits

achieved state-of-the-art performance when considering power consumption, noise

performance, and dynamic range. This chip was used to modulate cardiac rhythm

with a closed-loop controller. Prior work has used bench-top and commercial instru-

ments to perform such experiments whereas here, for the first time, this was done

using a single integrated-circuit to perform both recording and stimulation.

7.3.1 Future Directions

One important aspect of bidirectional systems not addressed in this work was

mitigation of the stimulation artifact in recordings. In Chapters 5 and 6 this issue

was circumvented by applying the circuits to paradigms in which 1) stimulation and

recording electrodes were physically separated and as a result the stimulation arti-

fact was mostly a common-mode signal, suppressed by the CMRR of the front-end

sensing channel, and 2) the feature of interest (R-wave) was much higher in am-

plitude than the residual stimulation artifact. However, the inclusion of additional

artifact-suppression circuits would make the chip more broadly applicable.

Two strategies could be implemented for artifact-rejection; the artifact can be

removed either after or before it is processed by the first stage in the sensing chain.
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The most critical consideration is saturation. If the stimulation artifact saturates the

front-end sensing circuits, it becomes impossible to recover any information from the

recording channels. If removing the artifact after the first stage, external, passive

bandpass filtering may be necessary to limit the artifact amplitude.110 Without ex-

ternal passive filtering, a very high dynamic range input stage would be necessary.

Removing the artifact before the first stage relaxes the dynamic range requirements

on the sensing architecture. In Chapter 5 the very large DC electrode offset voltage

was directly subtracted at the input to the bioADC preventing saturation. This same

principle can be applied for stimulation artifact rejection. In this case the artifact

waveform must be “learned,” which can be accomplished with an integrated adaptive

filter.232

A promising future direction would be to combine closed-loop stimulation with

current steering. For example, the bradycardic effects of vagus nerve stimulation are

undesirable in many applications. With a bidirectional system it may be possible

to titrate up and down “steering” stimulation channels to block cardiac effects while

maintaining constant stimulus strengths. The addition of other sensing modalities

into the system, such blood-pressure monitoring, might permit even further specificity.

To conclude, the research described in this dissertation has contributed to the state

of the art in bidirectional neural interface systems by developing new techniques for

wireless neural recording in small animals, IC design of neural stimulators, and IC

design of low-power, low-noise biopotential recording circuits. Aim 1 resulted in a
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system that can enable exploratory research on neural biomarkers, the discovery of

which can be leveraged in bidirectional neurotherepuetic systems. Aim 2 produced

a neurostimulator IC with on-chip charge balancing and current steering calibration.

Finally aim 3 incorporated aspects of the first two aims and resulted in a custom

chip that integrated the novel neurstimulation platform of aim 2 with state-of-the-art

sensing capabilities. This bidirectional interface chip is a powerful testbed for neu-

romodulation research. The technologies developed here will be useful in discovering

and testing new neuromodulation paradigms in pre-clinical animal models of disease,

and those discoveries could one day impact the health of patients.
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