11 research outputs found

    Magnetoresistive biosensors with on-chip pulsed excitation and magnetic correlated double sampling.

    Get PDF
    Giant magnetoresistive (GMR) sensors have been shown to be among the most sensitive biosensors reported. While high-density and scalable sensor arrays are desirable for achieving multiplex detection, scalability remains challenging because of long data acquisition time using conventional readout methods. In this paper, we present a scalable magnetoresistive biosensor array with an on-chip magnetic field generator and a high-speed data acquisition method. The on-chip field generators enable magnetic correlated double sampling (MCDS) and global chopper stabilization to suppress 1/f noise and offset. A measurement with the proposed system takes only 20 ms, approximately 50× faster than conventional frequency domain analysis. A corresponding time domain temperature correction technique is also presented and shown to be able to remove temperature dependence from the measured signal without extra measurements or reference sensors. Measurements demonstrate detection of magnetic nanoparticles (MNPs) at a signal level as low as 6.92 ppm. The small form factor enables the proposed platform to be portable as well as having high sensitivity and rapid readout, desirable features for next generation diagnostic systems, especially in point-of-care (POC) settings

    Integration of GMR sensors with different technologies

    Get PDF
    Less than thirty years after the giant magnetoresistance (GMR) effect was described, GMR sensors are the preferred choice in many applications demanding the measurement of low magnetic fields in small volumes. This rapid deployment from theoretical basis to market and state-of-the-art applications can be explained by the combination of excellent inherent properties with the feasibility of fabrication, allowing the real integration with many other standard technologies. In this paper, we present a review focusing on how this capability of integration has allowed the improvement of the inherent capabilities and, therefore, the range of application of GMR sensors. After briefly describing the phenomenological basis, we deal on the benefits of low temperature deposition techniques regarding the integration of GMR sensors with flexible (plastic) substrates and pre-processed CMOS chips. In this way, the limit of detection can be improved by means of bettering the sensitivity or reducing the noise. We also report on novel fields of application of GMR sensors by the recapitulation of a number of cases of success of their integration with different heterogeneous complementary elements. We finally describe three fully functional systems, two of them in the bio-technology world, as the proof of how the integrability has been instrumental in the meteoric development of GMR sensors and their applications.Peer ReviewedPostprint (published version

    Silicon-based Integrated Microarray Biochips for Biosensing and Biodetection Applications

    Get PDF
    The silicon-based integrated microarray biochip (IMB) is an inter-disciplinary research direction of microelectronics and biological science. It has caught the attention of both industry and academia, in applications such as deoxyribonucleic acid (DNA) and immunological detection, medical inspection and point-of-care (PoC) diagnosis, as well as food safety and environmental surveillance. Future biodetection strategies demand biochips with high sensitivity, miniaturization, integration, parallel, multi-target and even intelligence capabilities. In this chapter, a comprehensive investigation of current research on state-of-the-art silicon-based integrated microarray biochips is presented. These include the electrochemical biochip, magnetic tunnelling junction (MTJ) based biochip, giant magnetoresistance (GMR) biochip and integrated oscillator-based biochip. The principles, methodologies and challenges of the aforementioned biochips will also be discussed and compared from all aspects, e.g., sensitivity, fabrication complexity and cost, compatibility with silicon-based complementary metal-oxide-semiconductor (CMOS) technology, multi-target detection capabilities, signal processing and system integrations, etc. In this way, we discuss future silicon-based fully integrated biochips, which could be used for portable medical detection and low cost PoC diagnosis applications

    A handheld high-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays

    Get PDF
    We report a micro-nuclear magnetic resonance (NMR) system compatible with multi-type biological/chemical lab-on-a-chip assays. Unified in a handheld scale (dimension: 14 x 6 x 11 cm³, weight: 1.4 kg), the system is capable to detect<100 pM of Enterococcus faecalis derived DNA from a 2.5 μL sample. The key components are a portable magnet (0.46 T, 1.25 kg) for nucleus magnetization, a system PCB for I/O interface, an FPGA for system control, a current driver for trimming the magnetic (B) field, and a silicon chip fabricated in 0.18 μm CMOS. The latter, integrated with a current-mode vertical Hall sensor and a low-noise readout circuit, facilitates closed-loop B-field stabilization (2 mT → 0.15 mT), which otherwise fluctuates with temperature or sample displacement. Together with a dynamic-B-field transceiver with a planar coil for micro-NMR assay and thermal control, the system demonstrates: 1) selective biological target pinpointing; 2) protein state analysis; and 3) solvent-polymer dynamics, suitable for healthcare, food and colloidal applications, respectively. Compared to a commercial NMR-assay product (Bruker mq-20), this platform greatly reduces the sample consumption (120x), hardware volume (175x), and weight (96x)

    A Low Noise CMOS Sensor Frontend for a TMR-based Biosensing Platform

    Get PDF
    In this paper, we propose a low noise CMOS frontend for a Point-of-Care (PoC) biosensing platform based on tunnel magnetoresistance (TMR) as sensors. The integration of a low noise and low power integrated circuit (IC) with the TMR sensors reduces power consumption compared to a realization with discrete electronics, and thereby paves the way towards a portable diagnostic system. The proposed chip uses a DC-coupled fully differential difference amplifier (FDDA) to amplify the minute signals generated by magnetic nanotags (MNTs) that will be used as biomarkers in the target biosensing application. The FDDA features a gain of around 60dB with a suitable offset calibration scheme to deal with the large DC offsets caused by TMR and/or magnetic field variations. The ability to deal with changing DC fields is crucial for a portable setup that is intended to be used in unshielded environments outside the lab. The offset cancellation is achieved by two on-chip current steering DACs that can accommodate TMR resistances between 535Ω and 4.7kΩ. The presented chip is manufactured in a 180nm SOI CMOS technology and features a thermal noise floor of 7nV/√Hz. It consumes a total of 7.7mA from a 1.8V supply

    CMOS Vertical Hall Magnetic Sensors on Flexible Substrate

    Full text link

    Towards CMOS Nuclear Magnetic Resonance Spectroscopy: Design, Implementation and Experimental Results

    Get PDF
    Nuclear Magnetic Resonance (NMR) Spectroscopy is used intensively along with other ancillary spectroscopic and characterization techniques. The design and implementation of High Throughput NMR Spectroscopy is a key challenge to accelerate the drug discovery process. On the other hand, the current conventional NMR technologies are expensive and bulky. The development of novel handheld NMR spectroscopy is a key challenge towards NMR spectroscopy for Point-of-Care (PoC) diagnostics applications. This thesis addresses the above-mentioned challenges of High Throughput NMR Spectroscopy and Handheld NMR spectroscopy by developing new integrated circuits dedicated to NMR spectroscopy using Complementary Metal Oxide Semiconductor (CMOS) technology. Simulation and characterization results were also used to prove the functionality and applicability of the proposed techniques. We have designed two CMOS chips using 0.13-m technology, first chip includes number of new vertical microcoils and LNA with 780 pV/Hz at 300 MHz and the second one is a new dual-path NMR receiver

    EUROSENSORS XVII : book of abstracts

    Get PDF
    Fundação Calouste Gulbenkien (FCG).Fundação para a Ciência e a Tecnologia (FCT)

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF
    corecore