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Abstract 

Nuclear Magnetic Resonance (NMR) Spectroscopy is used intensively along with other 

ancillary spectroscopic and characterization techniques. The design and implementation of 

High Throughput NMR Spectroscopy is a key challenge to accelerate the drug discovery 

process. On the other hand, the current conventional NMR technologies are expensive and 

bulky. The development of novel handheld NMR spectroscopy is a key challenge towards 

NMR spectroscopy for Point-of-Care (PoC) diagnostics applications. 

This thesis addresses the above-mentioned challenges of High Throughput NMR 

Spectroscopy and Handheld NMR spectroscopy by developing new integrated circuits 

dedicated to NMR spectroscopy using Complementary Metal Oxide Semiconductor 

(CMOS) technology. Simulation and characterization results were also used to prove the 

functionality and applicability of the proposed techniques. We have designed two CMOS 

chips using 0.13-µm technology, first chip includes number of new vertical microcoils and 

LNA with 780 pV/√Hz at 300 MHz and the second one is a new dual-path NMR receiver. 
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Chapter 1 

Introduction 

 

THE recent advances achieved in standard microelectronics (µE) technologies and their 

applications to life science sustain a new paradigm in the design and implementation of 

integrated biosensors. This new breed of devices has recently received significant interest 

in the variety of challenging fields where they are used to speed up time-consuming 

analysis and address hitherto, insurmountably difficult tasks such as DNA sequencing [1], 

cancer detection [2], continuous glucose monitoring [3], in-vitro analysis of neuronal 

electrophysiology [4] and bacteria growth monitoring [5]. Here, the advantage of standard 

μE technology, particularly CMOS, lies in its ability to allow a monolithic integration of 

large numbers of micro-sensors along with their associated electronics circuitry. 

Fundamentally, this ushers the opportunity to realize a single device capable of replacing 

an entire chain of classical bio-analysis devices present in contemporary labs. So far, 



2 

unpackaged solutions for on-chip analysis have been demonstrated using on-chip sensing 

techniques as diverse as optical [6], magnetic [7], impedometric [2], capacitive [8]-[9], Ion 

Selective Field Effect Transistor (ISFET) [10], and NMR modalities [11]. 

NMR is a powerful method for bimolecular analysis used in a variety of life science 

applications including drug discovery [12] and PoC disease diagnostics [13]. Among 

landmark efforts in these directions, Pellecchina et al [12] have surveyed the principles that 

enable NMR for drug discovery applications and Lee et al [13] have reported a 

miniaturized NMR for detecting bacteria with high sensitivity. Despite the great 

advantages of conventional NMR technologies, these bulky systems are expensive and not 

suitable for many applications seeking low cost portable sensing techniques. 

Miniaturization of NMR systems is then a relevant solution to achieve low cost and 

handheld NMR systems suitable for PoC applications. 

1.1 Principle of NMR 

NMR is a phenomenon in which nuclei absorb and re-emit Radio Frequency (RF) 

electromagnetic signal in the presence of a static magnetic field. The spectrum of re-

emitted electromagnetic signal contains information of all spins inside the measuring 

chemical sample [14-15]. 

An NMR system consists of a coil, a static magnet and an electronics transceiver. Fig. 1.1 

shows the schematic of the NMR operation in two phases. In the first phase (Fig. 1.1a), the 
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excitation of the sample is performed and in the second phase (Fig. 1.1b), the re-emitted 

magnetic signal is recorded. The static magnet field polarizes all nuclei. The RF coil should 

generate uniform magnetic field B1. The static magnetic field (B0) and RF magnetic field 

(B1) are perpendicular as seen in Fig. 1.1. This static magnetic field is proportional to the 

magnetic resonance frequency based on the following equation. 

0 0
B 

 (1) 

 

                              (a)                                                                                (b) 

Fig. 1.1 Illustration of NMR system: (a) excitation mode and (b) recording mode 
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Where ɷ0 is the Larmor frequency, γ is the gyromagnetic ratio of the nucleus, and B0 is the 

static magnetic field. Based on this relationship, a large magnetic field allows the 

generation and recording the magnetic resonance at high frequency. The frequency of the 

re-emitted magnetic signal (ɷsample) is γ(1-σ)B0 where the σ is isotropic nuclear shielding 

of the target molecules. The molecules can be recognized from relative difference between 

ɷsample and ɷ0 which is called chemical shift (δ = (ɷsample -ɷ0)/ɷ0). 

Signal to Noise Ratio (SNR) of NMR signal can be obtained from the following equation 

[15]. 

2

01

s

coil

B
K V N

i TSNR
T fR






 (2) 

Where K is scale factor of non-uniformity of the RF magnetic field for specific coil, B1/i is 

the transverse magnetic field induced in the coil by a unit current, Vs is the sample volume, 

N is the number of spins per unit volume, T is temperature in Kelvin, Δf is the spectral 

bandwidth, and Rcoil is the resistance of the coil. Based on this equation, higher static 

magnetic field (ɷ0=γB0) results in better sensitivity while higher temperature decreases the 

sensitivity. 

1.2 Conventional NMR System 

A commercially available NMR system consists of three parts – static magnetic field 

generator, NMR probe and a spectrometer. Fig. 1.2 shows the 300 MHz NMR. 
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(d) 

Fig. 1.2 Conventional NMR System; (a) Photo of 300 MHZ Bruker NMR Magnet and 

Spectrometer [16], (b) NMR probe, (c) NMR custom made coil connected to NMR 

probe, and (d) Matching circuit for the Bruker probe 
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The static magnet is the largest and heaviest component in an NMR system as seen in Fig. 

1.2. This figure shows the 300 MHz NMR Bruker located at York University. As depicted 

in this figure, the large NMR magnet is connected to the spectrometer. As seen in Fig. 1.2b, 

the NMR probe consists of a coil. Fig. 1.2c shows the custom-made mini-coil wound on a 

glass tube. As evidenced by Fig. 1.2a, the NMR probe is inserted from the bottom while 

the sample is inserted from the top into the NMR magnet. Another important part of NMR 

probe is the matching circuitry. As seen in Fig. 1.2d, variable capacitors are used to 

accurately match the coil’s impedance to 50 Ω coaxial cable’s impedance. It is noteworthy 

that the coil in this network may decrease the SNR due to the presence of resistance in the 

coils. As shown in Fig. 1.2a, the spectrometer is a bench-top system connected to a 

computer. This system consists of a transceiver incorporated with a digital signal 

processing board. The transceiver is an analog circuit consisting of various building blocks 

such as pulse sequence generator and Low Noise Amplifier (LNA) as seen in Fig. 1.3. As 

seen in this figure, the front-end block of the transceiver is an impedance matching circuitry 

to match the input impedance of the transceiver with the 50  coaxial cable connected to 

the NMR probe. An Analog to Digital Converter (ADC) is the output front-end stage of 

this transceiver. Fig. 1.3 also shows the digital part of the spectrometer. This part is 

employed for the NMR signal processing and data acquisition purposes. 

As we have mentioned earlier in EQ(1) and EQ(2), the higher magnetic field result in 

higher resonance frequency and therefore higher resonance frequency increases the SNR. 
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However, here is a trade-off between cost of higher magnet and SNR improvement. Based 

on this fact, Table 1 shows various commercially available NMR systems operating in 

different resonance frequencies ranging from 2.3 KHz to 1GHz. As seen in this table, 

thanks to the great advances of NMR technologies, researchers can perform NMR 

spectroscopy in different frequencies with high SNR. For instance, the National Institute 

for Materials Science (NIMS) has recently developed a high magnetic station that is used 

for NMR spectroscopy higher than 1GHz. As seen in this table, many companies including 

Bruker, Oxford Instrument, GMW, ASG, Magritek and Cryogenic have launched their 

NMR products in the market. Based on this table, the main challenges of NMR technology 

are the development of high frequency NMR systems with high SNR. 

 

Fig. 1.3 Illustration of spectrometer including three main parts (1) Matching network 

contains passive components (2) Analog part contains LNA, variable gain amplifier 

(VGA), mixer (MIX), power amplifier (PA), Oscillator, and ADC (3) Digital part 

contains pulse sequence generator and digital signal processing (DSP) 
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1.3 NMR Challenges 

Despite great advances of NMR technologies for life science applications, still there are 

many key challenges to achieve the full potential of NMR technology for life science 

applications at the single molecule or single atom levels. The sensitivity can be improved 

in different ways as mentioned below. 

Table 1: Different commercially available NMR systems 

Company 
Proton NMR 

Frequency 

B0 (Field 

Strength) 
References 

NIMS 1020 MHz 24 T [17][18] 

Magritek 2.3 kHz 0.54 G [19][20] 

Oxford Instruments 250 MHZ 5.9 T [21][22] 

Bruker 20 MHz 0.47 T [13][23] 

Metrolab Instruments 21.65 MHz 0.5 T [24][25] 

Varian 60 MHz 1.4 T [26] 

Aster Enterprises 41 MHz 0.96 T [27] 

GMW Associates 680 MHz 16T [28][29] 

ASG Superconductors 21 MHz 0.5 T [30][31] 

Qualion NMR. 60 MHz 1.4 T [32] 

Resonance Systems Ltd. 20 MHz 45 T [33][34] 

JEOL USA, Inc. 930 MHz 21.8 T [35] 

SpinCore Technologies, 

Inc. 
11.6 MHz 0.275 T [36] 
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1.3.1 Static Magnetic Field B0 

According to EQ. 1, B0 is a key factor in the design and implementation of highly accurate 

NMR system. As shown in Table 1, the world largest superconductive magnet is a 24 T 

magnet that is used in over 1GHz NMR spectroscopy systems. It is noteworthy that the 

emerging NMR systems using small magnet with lower B0 intrinsically suffer from a low 

sensitivity that should be improved. In the chapter 2, we address a new circuit may improve 

the SNR. 

1.3.2 Low Temperature NMR 

As already it is mentioned, lowering the temperature is the key in the design and 

implementation of novel high-SNR NMR systems. This includes the temperature of the 

sample, coil and microelectronics circuitry. For this purpose, several companies such as 

Cryogenic Ltd have launched new NMR systems offering very low temperature operation. 

Indeed the thermal noise of the coil, sample and transceiver is around 20 K. Despite the 

fact that in such a NMR technology, the transceiver along with the NMR probe are placed 

in a chamber with the low temperature, the circuit techniques have also been used in the 

transceiver design in order to further cancel the effect of thermal as well as flicker noise 

generated in the circuit. 
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1.3.3 Filling Factor 

The filling factor is the ratio of the sample’s volume to the volume of the space exposed to 

the uniform magnetic field of the RF coil [14]. This definition is widely used in the NMR 

related literature. A higher filling factor can be achieved by developing coils with specific 

geometry surrounding the sample. Indeed, if the size of coil is larger than sample, the NMR 

signal cannot be measured accurately. Therefore, the design and implementation of RF coil 

and sample holder with the maximum filling factor is a challenge. This goal might be 

achieved by lowering the size of coil. Indeed by developing small coils with the same size 

of sample both requirements of low sample consumption and high filling factors can be 

met. According to the reciprocity principle which is described by Hoult, the sensitivity of 

the NMR RF coil is inversely proportional to its diameter, when the length to diameter of 

that coil is constant [14, 37]. Based on this, the miniaturization of the coil is a challenge to 

increase NMR sensitivity [38]. In order to improve the filling factor, the novel sample 

holder and microfluidics should be developed that is not the focus of our research in this 

thesis. For this reason we will not discuss about the improvement of the filling factor in 

this thesis. 

1.3.4 Miniaturization of RF Coil 

Despite great advantage of conventional NMR systems for life science applications, these 

systems are heavy, bulky and expensive and not suitable for many Point-of-Care 

diagnostics applications requiring handheld or portable systems. On the other hand, the 
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miniaturized NMR system holds great promise as high SNR NMR devices suitable for drug 

discovery applications. As shown in Table 2, to date, several attempts have been made 

toward miniaturization of NMR. 

As seen in Table 2, in addition to solenoid coil, other geometries such as, Helmholtz [39-

40], planar coil [41] (using liquid metal [24]), Stripline [42] and micro-slot [43] have been 

reported in new NMR systems. The main challenge in these works is to increase the quality 

factor (Q). The quality factor is defined as the ratio of reactance of the coil over its parasitic 

resistance (Lω/R). This table shows the achieved Q and/or related R in each reported NMR 

recording/excitation device. Based on EQ(2), these parameters have effect on the NMR 

SNR. Despite this fact that the uniformity of B1 is very crucial, less attentions have been 

paid to develop such devices with specific geometries to generate uniform B1 over micro-

scale samples. Among various geometries techniques, planar micro-coil has been reported 

by a number of researchers for NMR application. This is because of low complexity of 

required micro-fabrication process (such as photolithography [54]) and integrability with 

standard microelectronics technologies such as CMOS as described later in this chapter. 

1.3.5 CMOS NMR 

For the past several decades CMOS technology has played a significant role in computer 

systems and mobile communication. The landmark RF CMOS for mobile communication 

inspired the idea of developing NMR system on chip. CMOS technology by offering a 
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Table 2: Miniaturized NMR systems 

Frequency Magnet 
Coil 

Specifications 

Miniaturized 

Coil 

Spectrometer 

Specifications 
References 

20.9 MHz 0.49 T Q = 1.9 

CMOS 

Planar 

microcoil 

CMOS Fully 

Integrated Rx 
[11] 

21.65 

MHz 
0.5 T 

R = 0.3 Ω 

Q = 30.4 

Planar 

Microcoil 

Liquid Metal 

Off-chip 

Spectrometer 
[24] 

60 MHz 1.4 T Q = 42 

Planar 

Microcoil 

Sensonit 

Microfluidics 

Off-chip 

Spectrometer 
[26] 

300 MHz 7 T Q = 8 

CMOS 

Planar 

microcoil 

CMOS Fully 

Integrated Rx 
[38] 

61 MHz - 

400 MHz 
9.4 T R = 7 Ω 

Planar 

Microcoil 

Sensonit 

Off-chip 

Spectrometer 
[41] 

500 MHz 11.7 T Q = 256(LC) Microslot 
Off-chip 

Spectrometer 
[44] 

500 MHz 11.7 T R = 0.03 Microslot 
Off-chip 

Spectrometer 
[45] 

85.13 

MHz 
2 T Q = 7 

Planar 

microcoil 

CMOS Fully 

Integrated Rx 
[46] 

300 MHz 7 T Q = 6 

CMOS 

Planar 

microcoil 

Fully 

Integrated Rx 
[47] 

21.3 MHz 0.5 T Q = 16 

Off-chip 

Planar 

microcoil 

CMOS Fully 

Integrated Rx 
[48] 

300 MHz 7 T R = 0.46 Ω Solenoid 

Conventional 

NMR 

spectrometer 

(Bruker DRX 

300) 

[49] 
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distinct cost, highly integrated circuits and micro-scale coils is the best candidate for the 

design and implementation of active NMR system as mentioned below. Also, it is 

noteworthy that the CMOS by offering very high accurate circuitry can play important role 

in improving SNR by developing new circuitry. 

300 MHz 7 T R = 0.55 Ω Planar coil 

Conventional 

NMR 

spectrometer 

(Bruker DRX 

300) 

[49] 

300 MHz 7 T R = 1.52 Ω 
Helmholtz 

coil 

Conventional 

NMR 

spectrometer 

(Bruker DRX 

300) 

[49] 

< 400 MHz 7 T N/A N/A 

Off-chip  

OPENCORE 

NMR 

spectrometer 

[50] 

85 MHz 2 T R = 1.8 Ω 

Laser direct-

write 

lithographic 

technique 

Custom made 

spectrometer 

from Tecmag 

Inc 

[51] 

23.9 MHz 0.56 T Q = 28 
Solenoid 

Microcoil 

CMOS Fully 

Integrated Rx 
[52] 

600 MHz 14.1 T Q = 80~100 
Stripline RF 

coil 

Chemagnetics 

CMX-Infinity 

600 solid-

state NMR 

spectrometer 

[53] 
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In this direction, T. Cherifi [46] took the first step in 2005 by developing a CMOS 

microcoil-associated preamplifier for NMR spectroscopy, then Hakho Lee [13] in 2008 

introduced the first chip-NMR biosensor for detection and molecular analysis of cells. In 

the meanwhile, another group [55] was working on miniaturized NMR system. Jens Andres 

et al [55] in 2008 have developed a low-noise CMOS receiver front-end for NMR 

applications. As the follow up of these works, we design CMOS chip featuring LNA as 

described in chapter 2 and 3. 

In our thesis, the main role of CMOS is to develop RF circuit suitable for high throughput 

NMR as mentioned in chapter 2. Another role of the CMOS is development of the novel 

RF circuitry associated with dual path technique as mentioned in chapter 3. 

1.4 Objectives and Organization of Thesis 

The focus of this research is placed on the design and implementation of CMOS integrated 

circuits dedicated to NMR spectroscopy. In this thesis, two important challenges of NMR 

technologies are addressed. These challenges are High Throughput Spectroscopy as well 

as low frequency (or low magnetic field) NMR spectroscopy. The outcome of this research 

results in innovative NMR technologies that can be used for drug discovery and PoC 

diagnostics applications. 

1) High Throughput NMR Spectroscopy: High Throughput NMR system features a number 

of coils for multiple NMR spectroscopy purposes. Despite great advances of NMR 
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technologies, the challenge of the development of High Throughput NMR spectroscopy 

remains unmet and no commercial High Throughput NMR system is available in the 

market. In this approach, the design and implementation of NMR probe with a large 

number of RF coil along with associated circuitries are discussed. You can see the 

conventional NMR probe and the new proposed one in Fig 1.4a and Fig. 1.4b, respectively. 

We will talk about this approach in chapter 2 in details. 

2) Low frequency NMR spectroscopy: As already mentioned, the lower B0, the lower SNR 

is expected. Therefore, the SNR should be improved using lower RF magnet or other circuit 

technique. In this direction, this thesis present a novel dual path receiver dedicated to NMR 

spectroscopy. Chapter 3 describes a new circuitry designed and implemented using CMOS 

process. 

Chapter 2 addresses the first challenge by proposing a novel on-chip vertical micro-coil 

incorporated with low noise readout circuitry. The Cadence and High Frequency Structural 

Simulator (HFSS) simulation results are demonstrated and discussed in order to prove the 

functionality and applicability of proposed integrated circuit. 

Chapter 3 describes a dual path NMR receiver designed and implemented using 0.13-µm 

CMOS process. This receiver comprises a CMOS chip connected to mini-coils for NMR 

spectroscopy purposes. This chapter describe and demonstrate the Cadence and HFSS 
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simulation results. Also, the CMOS chip characterization results are shown in this chapter. 

Chapter 4 presents a summary of the proposed techniques and research results achieved 

results. This thesis takes the first step toward the development novel NMR technologies. 

The continuation of this work in the future in order to develop fully functional NMR 

spectroscopy is also discussed. 

 

Fig. 1.4 NMR Spectroscopy: Illustrations of NMR system with a) passive NMR and b) 

active probe (µF=Microfluidics) 
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Chapter 2 

300 MHz CMOS NMR Probe 

 

In this chapter, the design and simulation of a 300 MHz CMOS NMR probe is 

demonstrated and discussed. The main goal of this study is to take the first step towards 

the development of High Throughput NMR Spectroscopy. Fig. 1.4 compares the proposed 

High Throughput NMR system with a conventional NMR system consisting of a passive 

probe. This passive NMR probe comprises of a RF coil surrounding the sample and a 

matching network between the coil and spectrometer. Fig. 1.4b illustrates an active NMR 

probe consisting of a CMOS chip. This single chip features a number of coils associated 

with underneath conditioning circuitries. In this chapter the proposed circuit and sensor 

(µCoil) are presented. 
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2.1 µCoils 

CMOS technology, by offering multiple metal layers, is the best candidate to design three 

dimensional (3D) µCoils with specific geometry suitable for high SNR NMR spectroscopy. 

In this section, we demonstrate and discuss the design and simulation results of two 

different µCoil structures, namely: serial stacked coil (SSC) and differential stacked coil 

(DSC) shown in Fig. 2.1a and Fig. 2.1b. 

2.1.1 SSD and DSC Structures 

SSC is a simple structure consisting of multiple planar coils in different metal layers 

indexed by i where 8  i  1, because 0.13-μm CMOS technology that we are using, 

includes 8 metal layers. 

These planar coils with several turns indexed by j, where n.j1 are connected through vias 

in order to realize a large inductance as seen in Fig. 2.1c. Best on our HFSS simulation the 

optimum value of n is equal to 9 for the best quality factor around 300 MHz. However the 

equivalent resistance will be increased as expressed in EQ. 3 [56-58] 

,eq SSC i j
i j

R R


  (3) 

The DSC is a symmetrical differential structure consisting of multiple planar µCoils (i 

layers, and j turns in each layer) that are connected to each other with two vias [58-59]. 

The equivalent resistance of a DSC structure is expressed in EQ. 4 
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(e) 

Fig. 2.1 NMR µCoil structures: (a), (c) SSC, (b), (d) DSC and (e) Quality factor 

results of both DSC and SSC structures 
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   (4) 

As described in [58], in our design, each layer is a multiple parallel coil in order to increase 

the magnetic field B1 and decrease resistance. Therefore, a number of vias are used in 

parallel to connect the µCoils between two layers as seen in Fig. 2.1d. 

The equivalent circuit model of both DSC ad SSC structures is a tank circuit and therefore 

the quality factor of their equivalent circuits can be expressed by 

2

2

( )
1

eq eq eq

L eq eq

eq eq

L C R
Q L C

R L





 
    

 

 (5) 

Where Leq and Ceq are the equivalent inductance and capacitance and Req is the equivalent 

resistance that can be obtained from EQs. 3 or 4 for SSC and DSC structures, respectively. 

Based on EQs. 3-5, one can roughly conclude that the quality factor of the DSC structure 

is higher than that of the SSC structure. This is because Req-SSC >> Req-DSC. In the next 

section 2.1.2, we calculate the quality factor using a finite-element electromagnetic 

simulator (ANSYS HFSS). 

2.1.2 Geometry Design, Modeling and Optimization 

Two different topologies of the stacked inductors (DSC and SSC) are designed in a CMOS 

compatible manner using 8 metal layers. In this design, from a circuit point of view, two 

parameters are important for the design of µCoils. These parameters are the self-resonant 
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frequency f0 and the quality factor, which determines the noise level of the µCoil. 

Additionally, in the design of µCoils, the silicon area is another very important factor that 

should be minimized. 

The ANSYS HFSS software is employed to search for an optimum geometry at f0 = 

300MHz. Based on these studies, the quality factors of both structures versus frequency is 

obtained as shown in Fig. 2.1e. The optimum inner and outer dimensions of the 

hexagonally shaped DSC structure are 80 and 365 µm, respectively. The same geometry 

was also used for the SSC structure. As the results of HFSS modeling and simulation, the 

operating frequencies of SSC and DSC structures are 40MHz and 300MHz, respectively 

as seen in Fig. 2.1e. As expected (see 2.1.1), due to the DSC’s differential configuration, 

the inductor’s quality factor is around 2, a value 7X better than the SSC structure’s quality 

factor. 

2.1.3 Homogenous Magnetic Field  

Another advantage of the DSC structure is the homogeneity of the magnetic field B1 

generated inside the µCoil. As seen in both structures (see Fig. 2.1c and Fig. 2.1d), the 

metal vias introduce horizontal magnetic field components which affect on the 

homogeneity of the magnetic field B1. In the DSC structure, the current flowing through 

the vias between any two layers is oriented in opposite directions. 
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These opposite current directions almost cancel the horizontal magnetic field components. 

Therefore, one can argue that the symmetric structure of the DSC can largely cancel the 

magnetic parasitic effects while the asymmetric structure of SSC cannot. 

The magnetic field generated by these asymmetric and symmetric structures in three 

different directions (B1x, B1y and B1z) are demonstrated in Fig. 2.2a to Fig. 2.2f. As seen in 

these figures, the magnetic field in x and y directions are less than the magnetic field in z 

direction in both DSC and SSC structures in the middle of the coils. The ratio of the B1xy 

over B1z is 3.02% (33.67/1114) at the center point of the SSC while this ratio is 0.93% 

(11.89/1274) at the center point of the DSC. Based on these values, the vertical magnetic 

field B1z in both structures are close to each other while the DSC has lower magnetic field 

in xy-plane in comparison to the SSC structure. In addition, you can see the distribution of 

the B1z in the middle volume of the DSC and SSC structures, in Fig. 2.3a and Fig. 2.3b, 

respectively. Based on these results, the mean values of the B1z for the DSC and SSC are 

1290 A/m and 1115 A/m, respectively. Furthermore, the standard deviation of the DSC is 

around 59.5 which is about half of the standard deviation of the SSC (108). Based on all 

these results, we can say that the uniformity of the magnetic field in the DSC structure is 

much better than that of the asymmetric structure. This is the key advantage of the DSC 

structure for NMR spectroscopy. 
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                                   (a)                                                              (b) 

                 
                                 (c)                                                               (d) 

                 
                                 (e)                                                                (f) 

Fig. 2.2 Magnetic field (B1) simulation results: (a). (c), (e) B1x, B1y, B1z, generated by 

SSC respectively, (b), (d) and (f) B1x, B1y, and B1z, generated by SSC and DSC 

respectively. 
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(a) 

 
(b) 

Fig. 2.3 Population of magnetic field strength (a) DSC (b) SSC 
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2.2 Low Noise Signal Amplifier 

The design of the low noise amplifier is the key factor for the development of high SNR 

NMR spectroscopy (See section 4.1). A low noise amplifier system consists of two parts; 

a pre- and a post-amplifier stage. 

2.2.1 Front-End Pre-amplifier 

It is very crucial to replace the impedance matching with a passive voltage amplifier as 

reported in [60]. The conventional matching network may decrease the SNR due to the 

presence of resistance, however, by assuming that LNA has high input impedance, we can 

remove this conventional matching network and use passive amplifier. Fig. 2.4a shows the 

circuit model of such a passive voltage pre-amplifier, in essence a series-equivalent 

resonant circuit. Physically, this LC resonator consists of an on-chip DSC inductor in 

parallel with a tuning capacitor. The signal induced by the sample is modeled as a voltage 

in series with the inductor and capacitor pair. A Metal-Insulator-Metal (MIM) capacitor 

available in the CMOS process is employed to realize the tuning capacitor. By assuming 

that the LNA’s input impedance is very high, the voltage gain of this per-amplifier can be 

obtained from the following equation. 

   
2 22

1

1
v

S

A

LC R C 



 

 (6) 
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The optimum capacitance can also be obtained by taking the differential of EQ. 6 at C 

(∂|Av|/∂C = 0) 

 
                             (a)                                                               (b) 

 

(c) 

Fig. 2.4 Low noise amplifier (a) Per-amplifier equivalent circuit (b) Voltage gain of 

preamplifier, (c) Schematic of LNA circuitry. 
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Therefore, by choosing C, the voltage gain becomes maximum as shown in Fig. 2.4b, at a 

frequency around 300MHz. Indeed this input LC structure (pre-amplifier) boosts the weak 

NMR signal with minimal noise corruption for ensuing signal processing. This pre-

amplification is followed by a post amplifier shown in Fig. 2.4c and described in 2.2.2. 

2.2.2 Front-End Post-amplifier  

The post-amplifier is a fully differential cascode push-pull LNA that is designed and 

implemented for NMR spectroscopy purposes [47]. In this circuit M1-M4 serve as the core 

of the LNA and constitute a differential cascode voltage amplifier circuit to suppress the 

common mode noise. In this sub-circuit, M1-M2 are NMOS and M3-M4 are PMOS 

transistors. The total voltage gain can be obtained from 

 1 3 3v LNA m m
A g g R


   (8) 

Where gm1 and gm3 are the transconductances of the NMOS and PMOS input transistors 

and R3 = R4 are the output resistive loads. M7-M12, R and R1 = R2 constitute a bootstrap 

voltage reference’s circuitry to regulate the bias of the amplifier. This circuitry is used to 

minimize the thermal effect on the circuitry’s biasing. On the other hand, M13-M14 as well 

as M11 mirror the bias currents of M8. 
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For noise performance, we need to optimize the noise source of M1-4. According to the 

circuit shown in Fig. 2.4c, the input referred noise due to M1 and M3 can be stated as follows  

 
2

, 2

1 3 1 3 3

1 1
8 4

n in

m m m m

v kT kT
g g g g R


  
         

 (9) 

Where T, k and γ are temperature in Kelvin, Boltzmann constant and the drain thermal 

noise excess factor respectively. Based on this equation, the noise can be reduced by 

increasing the DC currents or, equivalently, gm1 and gm3. However the extra DC current 

increases the power consumption and consequently the temperature resulting in higher 

thermal noise level. In other words, by designing a low power circuit, we can prevent the 

self-heating of the chip [47]. 

2.3 LNA Post-layout Simulation 

We thereafter designed the layout of the integrated circuit (see Fig. 2.5) and performed the 

simulations. In this layout, the HFSS µCoil model was transferred to the Cadence IC design 

suite and connected to the amplifier. 

As we discussed in 2.2.2, the LNA is designed for optimum input referred noise. Therefore, 

we designed the LNA with a large transconductance for the input transistors to achieve 

about 780 pV/√Hz at 300 MHz. Fig. 2.6a shows the input referred noise of the LNA for 

three fabrication process corners. Another important parameter of the LNA is 
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the voltage gain. The voltage gain of the front-end receiver is around 43 dB at 300 MHz 

and this voltage gain for three fabrication process corners is shown in Fig. 2.6b. Also, both 

the input referred noise and the voltage gain of the front-end receiver are simulated for 

temperature variation (-60 °C to +60 °C) and shown in Fig. 2.6c and Fig. 2.6d for three 

fabrication process corners, respectively. It is noteworthy to mention that the bandwidth of 

the NMR signal is in the range of kHz. 

2.4 Spectral Analysis 

According to the Bloch equations [61], the NMR signal S(t) over time should be as below  

 0 21

( ) (0)

t
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  (10) 

(0) eq
S M  (11) 

 

Fig. 2.5 CMOS layout revealing three coils and associated per- and post-amplifiers. 
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Where ω0 is the angular resonance frequency, σ is isotropic nuclear shielding, and T2 is the 

spin-spin relaxation time. Also S(0) indicates the NMR signal just before the excitation and 

Meq is nuclear magnetization amplitude of the sample proportional to the number of spins 

per unit volume (N) and B0. In this part, two NMR signals are modeled for the -CH3 group 

of Lactate and Creatine (Cr). For the first one the chemical shifts are 1.27 and 1.39 ppm 

 

                                         (a)                                                           (b) 

 
                                         (c)                                                           (d) 

Fig. 2.6 Simulated input referred noise of the (a) LNA over frequency and (b) the LC-

LNA over temprature at 300 MHz for three fabrication process corners. Simulated 

voltage gain of the (c) LNA over frequency and (d) the LC-LNA over temperature at 

300 MHz for three fabrication process corners 
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and for the latter one it is 3ppm related to the reference frequency of 300 MHz. T2 is almost 

1040 mS and 100 mS, respectively. 

By using these values, we can model the NMR signal, which we use as the input of our 

LNA. If we consider that the bandwidth of the signal is 1.1 kHz for the purpose of noise 

calculations, and the parasitic resistance of the coil is 10 Ω, then the corresponding output 

spectra of both signals relative to the reference frequency of 300 MHz are shown in Fig. 

2.7a and Fig. 2.7b, respectively. The simulation results for water and toluene in the time 

domain and frequency domain are shown, as well. According to [62], water (H2O) has one 

chemical shift (δ) of 1.588 ppm and toluene (C7H8) has two chemical shifts of 2.34 ppm 

and 7 ppm. If we use EQs.10-11, we should find the relative isotropic nuclear shielding 

from associated chemical shift 

1

ref sample

sample

ref

 








 (12) 

According to EQ. 12, if we consider tetramethylsilane (TMS) as the standard reference 

whose chemical shift and isotropic nuclear shielding are zero, then we can derive the σ 

from the specific chemical shift. By this and (EQs. 10-11), the output signal of our circuit 

for water and toluene in both the time domain and frequency domain can be obtained as 

shown in Fig. 2.8 and Fig. 2.9. 
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(a) 

 

(b) 

Fig. 2.7 Simulated NMR spectrum for (a) -CH3 group (b) Creatine group. 
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(a) 

 

(b) 

Fig. 2.8 Simulated NMR spectrum: Simulated NMR signal of (a) Water and (b) 

Toluene in time domain. 
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(a) 

 

(b) 

Fig. 2.9 Simulated NMR spectrum: Simulated NMR signal of (a) Water and (b) 

Toluene frequency domain. 
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2.5 Future Work 

The development of a micro-hole inside CMOS based on the vertical coils is the key 

development toward achieving active NMR probes for drug discovery applications. 

Throughout the current chapter, we have already discussed the vertical µCoil and LNA and 

presently address this key post-processing factor. Indeed the functionality of a vertical coil 

in NMR depends on the fact that the sample is placed inside the coil. For this, the creation 

of micro-holes is a crucial feature in this technique. The chip should also employ a 

microfluidics structure in order to introduce the chemical samples to the NMR sensors. 

The creation of micro-scale through-CMOS holes at the center of the vertical µCoils will 

be a technological leap that will bring developers closer to the realization of disposable µF 

devices and reusable CMOS 2D-NMR systems. As described by Uddin et al, electron-

beam (e-beam) lithography can efficiently be used to drill tiny holes (diameter < 10nm) in 

a membrane created above the CMOS chip [63]. The creation of such a membrane above 

the CMOS chip using post-CMOS µfabrication processes is a key step towards the 

development of various Micro-Electro-Mechanical-Systems (MEMS) like; micro-

channels, micro-hot-plates and micro-cantilevers as reported in the literature [64]-[67]. 

Deep Reactive Ion Etching (DRIE) is also an important post-CMOS processing technique 

that can accurately back-etch silicon wafers of integrated chips and could also be used for 

the creation of through-CMOS micro-holes using photolithography masking techniques. 

However we can study the possibility of using e-beam and Focused Ion Beam (FIB) etching 
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techniques to increase the precision of the hole-drilling process. It is noteworthy that e-

beam and other etching techniques based on ionic diffusion into the etched materials like 

the FIB etching technique, could prove to be inappropriate for drilling through-wafer holes, 

when these high aspect-ratio channels are in proximity to active devices inside the CMOS 

chip. The reason for this is the significant charge injection into active zones possibly 

causing damage to the doped silicon oxide. The challenge herein is to control the etching 

process, bringing it to a halt when in proximity of active areas below the surface of the 

CMOS chip in order to preserve the integrity of µE devices. Despite recent progress in 

creating nano-holes (to be distinguished from through-CMOS holes) on top of CMOS 

chips, developing an array of such ducts in proximity of integrated sensors and circuitry, 

still represents a challenging endeavor. One can develop an array of vertical RF µCoils 

with through-CMOS IC µholes to direct the sample inside the µCoils using µF structures. 

2.6 Conclusion 

In this chapter, we put forward the emerging NMR technologies, brief review the 

challenges and discuss design strategies. µCoils associated with RF interface circuitries 

were designed and simulated as the core part of the NMR system. We presented a fully 

integrated CMOS multi-turn differential stacked detection coil and front-end receiver for 

NMR applications. We also employed a LC resonator as a pre-amplification stage and 

followed it by a suitable LNA optimized for low input referred noise in order to suitably 

process the weak NMR signal. The multi-turn differential stacked inductor is integrated on 
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the CMOS chip with the LNA. The desired on-chip detection inductor is implemented by 

using 8 layers of the 0.13-µm CMOS technology. Using all 8 layers of the technology 

allows us to reduce the size of the inductor at a specific frequency. Furthermore, the 

differential topology of the stacked inductor improves its quality factor without changing 

the fabrication process. Based on these discussions, we have attempted to convey the 

multidisciplinary approach needed to active sufficient active NMR probes toward the 

development of emerging NMR technology for accelerating drug discovery research in the 

pharmaceutical industry. 
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Chapter 3 

21MHz Dual Path NMR Probe 

 

This chapter lays forward the design and implementation of a fully differential CMOS chip 

design for low frequency NMR spectroscopy using low magnetic field magnets. Fig. 3.1 

Illustrates the new differential technique in comparison with conventional NMR system 

with a single coil and the proposed differential NMR system using two exciting and two 

recording millimetre scale coils (mini-coils). The small tubes containing biological or 

chemical samples are enclosed by mini-coils. One tube is empty and another one is filled 

with sample. As shown in this figure, the NMR signals of both tubes are detected in order 

to remove the effect of background NMR signal resulting from the materials of identical 

sample holders and other devices close sensing sites. The recorded signals are detected 

using the proposed CMOS circuitry discussed in the following sections. 
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3.1 Design Methodology 

In this section we propose a novel differential system that is connected to two mini-coils 

for NMR spectroscopy purposes. 

3.1.1 Proposed Circuit and System 

The proposed receiver (see Fig. 3.2) consists of two off-chip mini-coils connected to a 

CMOS IC. Off-chip pulse generators are also employed to excite the nuclei within the 

sample. In this work by knowing that the background noise generated in both sample 

holders and coils can be subtracted through the differential circuitry, our main focus will 

be on the transceiver mini-coils and CMOS IC design. 

 

Fig. 3.1 NMR system(a) Convrntional and (b) active NMR probe consisting of Dual-

path NMR receiver two pairs of coils. 
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3.1.1.1 IC Design 

As seen in Fig. 3.2, the proposed IC includes LNA, phase shifter (PS), variable gain 

amplifier (VGA), output differential amplifier (ODA) and buffer that will be discussed in 

the following sub-section. 

LNA (M1-8): this is the core part of this design, shown in Fig. 3.3a. A fully differential 

cascode push-pull LNA is adapted from [38] in order to achieve higher gain and lower 

noise. Assuming M1 (M3) and M2 (M4) are identical, the voltage gain of this amplifier is 

approximately (gm1+gm3).ro8, where gm1, gm3 are the transconductances of M1 and M3 and 

ro8 is the output resistance of M8. On the other hand, the main sources of current noise in 

 

Fig. 3.2 Schematic of proposed doual path NMR receiver (black color) along with off-

chip pulse sequencers for RF exciation purposes. 
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(a) 

 

(b) 

Fig. 3.3 Scehamatic of integrated circuits of (a) LNA, (b) PS, VGA and ODA. A 

single path 1 is shown in this figure. The second path is connected to ODA. 
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the circuit are M1-4 and M8 and the input referred voltage thermal noise, is expressed in EQ. 

13  
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Where  is the noise coefficient and gm8 is the transconductance of M8, Based on this 

equation, a higher DC current can decrease thermal noise, however the self-heating due to 

the higher power consumption should also be taken into account. It is noteworthy that 

flicker noise should be added to EQ. 13 especially for low frequency NMR applications. 

PS (R, Cv): this is a very critical part of this design needed to remove phase mismatch 

errors. These errors occur because of the difference between two components. For instance, 

off-chip mini-coils and LNAs. R and Cv are implemented in CMOS technology using an 

optional metal layer and on-chip varactor respectively. The PS is adjusted by an external 

voltage Vcntrl1. Thanks to the high impedance of M13, the gain and the phase shift of this 

phase shifter are 1/(1+RC1ω
2) and –tan-1 (RC1ω

2) respectively. 

VGA (M13-15, R2, R3 and R4) is designed to adjust the level of the output signal in the linear 

zone using the external voltage control Vcntrl2. This signal is varied due to the input NMR 

signal changes. By assuming G = gm13gm14/(gm13+gm14) and R2 >> (R3 + R4), the voltage 

gain of the VGA varies between GR2 and G(R3+R4). 
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ODA (M16-19): is designed to differentiate the signals generated in two different signal 

paths. The gain of this stage is gm16.ro19 where gm16 is the transconductance of M16 and ro19 

is the output resistance of M19. All PS, VGA, and ODA are shown in Fig. 3.3. 

3.1.1.2 Mini-Coil and Passive Amplifier 

As described in section 2.1, the development of the low frequency on-chip coil for NMR 

spectroscopy results in a very low quality factor (Q) coil and occupies a large area. For this 

reason, we have developed a low complexity solenoid mini-coil as shown in Fig. 3.4. In 

this figure the HFSS model and the equivalent circuit, including the parasitic resistance 

and capacitance between the wires, is drawn. In this mini-coil design, the strength and 

uniformity of the magnetic field B1 are the key parameters to be maximized as 

demonstrated and discussed in next section. Another important factor in this design is the 

selection of capacitor C in parallel with the mini-coil in order to boost the signal according 

to the voltage gain of the LC resonator (|Av-LC| = 1/√((1-RSCωQL)2+(RSCω)2). In this 

equation, the QL (Lω/RS) is the quality factor of the mini-coil with inductance L and 

resistance RS. The derivative of this equation at C can be used to search for the capacitance 

setting that maximizes the gain of LC circuit. This capacitor is obtained to be (Cmax = 

QL/RSC(1+QL
2)) and its voltage gain is √(1+QL

2 ). 



44 

 

3.2 Results 

In this section, we demonstrate and discuss the Cadence Spectre simulation results of the 

CMOS chip, the finite-element ANSYS HFSS simulation results of the mini-coil, and the 

experimental results. 

3.2.1 Fabrication Results and Setup 

The IC described in section 3.1.1.1, was fabricated using a 0.13-µm IBM CMOS process. 

The layout of this chip is shown in Fig. 3.5a. 

 

(a) 

 

(b) 

Fig. 3.4 Mini-coil models: (a) HFSS Model and (b) its equivalent circuit 
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The fabricated chip was bonded on a Ceramic Package (CPG06820) (Fig. 3.5b). Thereafter, 

the package was assembled on a printed circuit board (PCB). This PCB was fabricated for 

test and characterization of the CMOS chip (see Fig. 3.5c). 

 

Fig. 3.5 Fabrication Results: (a) Layout of IC including LNAs, VGAs, PSs, ODAs and 

buffers’s building blocks, (b) packged chip including CMOS fabricated die 

wirebonded to the package and (c) PCB including  discreet devices and the packaged 

chip. 
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The test setup consists of a power supply voltage, RF signal generator, oscilloscope, and 

vector network analyzer (VNA) as seen in Fig. 3.6a. Another important part of the 

measurement setup is the static magnet. In this work, we use a pair of small cubic NdFeB 

permanent magnets. The mini-coil, prepared using copper wires (see Fig. 3.6b) surrounding 

a glass tube, is placed in between these two magnets. 

3.2.2 IC Simulations 

LNA: As already mentioned two important parameters in our proposed IC are the voltage 

gain and noise performance. The voltage gain of the LNA vs frequency in different corners 

of the process is shown in Fig. 3.7a. In the worst case, the low voltage gain due to the 

process variation can be compensated using the VGA. Also, the noise performance of the 

LNA vs frequency in different corners of the process is shown in Fig. 3.7b. Based on these 

results, the LNA has been designed successfully for NMR applications. 

PS: Another important parameter in the proposed differential receiver is the dynamic range 

of the phase shifter. In this design, the range of the phase is around 5 degrees while the 

voltage gain is almost constant in this range as seen in Fig. 3.8. 

VGA: Herein we also simulated the range of gain variation in order to prove the 

functionality of the VGA. The range of the voltage gain vs control voltage is shown in Fig. 

3.9. Based on this result the gain can be doubled by changing the Vcntrl from 900 to 1075 

mV. 
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ODA: The last stage in the proposed IC is a differential amplifier that measures the 

difference between the signals received from two paths. By considering the NMR 

background signal generated by the material of a sample holder, we modeled these signals 

as shown in Fig. 3.10a and Fig. 3.10b. The output signal of the receiver shown in Fig. 3.10c 

does not include the background signal at 20MHz. The details of this procedure will 

describe in the following spectral analysis section. 

 

Fig. 3.6 Multidisciplinary Measurement Setup: photographs of (a) the electrical 

characterizations’ tools, (b) mini-Coils along with a  zoom-in’s  photo, (c) the static 

magents in the bottom and top of  mini-Coil suronunding smaple holder’s glass mini-

tube and (d) the same image of magents from different agngle. 
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(a) 

        
(b) 

Fig. 3.7 Cadance Simulation Results: (a) Voltagr Gain and (b) Noise performance in 

five different corners. 
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Fig. 3.8 PS simulation results while the voltage gain is almost constant 

 

Fig. 3.9 VGA simulation results as function of voltage control 
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Spectral Analysis: As already mentioned, the proposed dual path receiver offers the 

advantages of removing the NMR background signals. Herein the functionality of the 

receiver in this regard is demonstrated by observing the appropriate frequency shift of 

different chemical materials. In the simulation, we have assumed that the background 

signal with one fundamental frequency at 20 MHz is applied to one path of the receiver 

(see Fig. 3.10a) and the NMR signal along with background signal with two frequencies at 

21 MHz and 20 MHz are applied to the another path (see Fig. 3.10b). The output signal of 

the receiver (see Fig. 3.10c) successfully shows the removal of the 20MHz signal 

associated with the microfluidics sample holder. Some characteristics of the designed 

CMOS chip are summarized in Table 3. 

Furthermore, the NMR signals associated with water and toluene are modeled and included 

in the simulations. The frequency shift of water at 21 MHz is about 88 Hz from 21 MHz 

 
(a)                                                     (b)                                                 (c) 

Fig. 3.10 Dual-path reciever simulation: NMR signal(s) associated with (a) target 

chemical molecoules (e.g. water), (b) other mateials (e.g. sample holder) and (c) the 

output of reciever after amplification. 
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as shown in Fig. 3.11a and Fig. 3.11b. Also, the frequency shift of the toluene at 21 MHz 

should be 40 Hz and 138 Hz from 21 MHz as shown in Fig. 3.11c and Fig. 3.11d. 

3.2.3 Mini-Coil Simulations and Characterization 

Simulations: A MW35C magnet wire was used to fabricate the mini-coils. The diameter of 

this wire is 404 µm, the inner diameter of the solenoid is around 1mm and the pitch between 

wires is about 500 µm. The ANSYS HFSS simulator is used to model and simulate three 

coils with 35, 50 and 100 turns. The magnetic fields B1 in the xy-plane and the z direction 

are demonstrated in Fig. 3.12a and Fig. 3.12b. These simulations verify the uniformity of 

the magnetic field B1 in the z direction and the near absence of magnetic field in the x and 

y directions. The inductance and quality factor simulation results are also shown in Fig. 

3.12c and Fig. 3.12d. As our desired frequency should be around 21 

Table 3: CMOS Chip Specifications 

Technology CMOS 0.13µm 

Area (mm2) 1×2 

Vdd [V] 1.6 

DC current of the LNA core [mA] 3.4 

LNA 3-dB BW [MHz] 800 

Operation Frequency [MHz] 21 

Voltage Gain [dB] @ 300MHz 42.85 

Varactor resolution (fF/mV) 1.6 

Phase shift range (degree) 5 

VGA range (dB) 6 
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MHz, according to the simulation results the mini-coil should have around 100 turns. The 

operational frequency of the coil is equal to the frequency at the peak of the quality factor. 

Characterization: Three different mini-coils with varying turn numbers (N = 35, 50, 100) 

were prepared. These coils were characterized using a VNA and the real- and 

 

                                    (a)                                                               (b) 

 

                                    (c)                                                               (d) 

Fig. 3.11 NMR signal simulation results of (a), (b) Water, and (c), (d) Toluene in time 

and frequency domains respectively. 
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imaginary components of S11 for the three mini-coils were extracted; these results are 

shown in Fig. 3.13a and Fig. 3.13b. Also, the inductance and the quality factor of the coils 

were characterized and are shown in Fig. 3.13c, Fig. 3.13d, respectively. As apparent in 

Fig. 3.13d, the solenoid mini-coil with around 100 turns has a lower operational frequency 

and is the best option for the 21 MHz NMR. 

       

                                (a)                                                                 (b) 

 

(c)                                                                          (d) 

Fig. 3.12 HFSS Simulation results: (a) B1 in xy-plane (b) B1 in z-directio (c) 

inductance vs frequency, and (d) qulity factor vs frequency 
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3.2.4 Experimental Results 

The chip was characterized using various test configurations including single path #1, 

single path #2 and dual paths as shown in Fig. 3.14. A low complexity setup has been 

developed using two coils in the form of an RF transformer. A variable amplitude signal 

can be generated using this setup for the characterization of our device. The input and 

 
                                 (a)                                                                  (b) 

 
                                 (c)                                                                  (d) 

Fig. 3.13 Characterization results of mini-Coil: (a) real part of S11 and (b) imaginary 

part of S11 (c) inductance and (d) quality factor as a function of frequency. 
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output signals of the LNAs along with the excitation signal were measured separately as 

seen in Fig. 3.15a and Fig. 3.15b. As demonstrated in these figures, the gains of both 

 

                                   (a)                                                            (b) 

 

(c) 

 

(d) 

Fig. 3.14 Masurement scenarios including single (a) path 1, (b) single path 2 and dual-

path (c) in-phase and (d) out-of-phase 
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(a) 

 
(b) 

Fig. 3.15 Single path measurement: (a) path 1, (b) path 2. In these measurement 

results, three signal of input, outputs are shown. 
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LNAs are about 24 dB. The simulation results show higher values because the bias currents 

and voltages are different from the ones in practice. 

The adjustment of DC bias using high precision power supplies can result in higher gain in 

our measurements. The dual path receiver’s voltage gain was measured using in-phase 

measurement modes as seen in Fig. 3.16. In order to prove the functionality of the system 

in cancelling the undesired background frequency, the characterization in differential 

modes is very crucial. For this we measured the voltage at the input and output of the 

receiver as shown in Fig. 3.16a and Fig. 3.16b, respectively. As seen therein the signal of 

the input at 21 MHz is attenuated at the output of the differential receiver, in the in-phase 

mode, and it has been amplified in the out-of-phase modes (see Fig. 3.16c). Based on these 

characterizations, we successfully demonstrated the functionality of the chip and this 

design can be used in the future for the development of fully integrated NMR. 

3.3 Discussions 

In this section we discuss some of the practical issues associated with the design and 

implementation of low cost NMR spectroscopy tool. CMOS technology, by offering a low 

cost platform and multiple metal layers, is the best candidate to design three (3D) 

dimensional µCoils with specific geometry suitable for high SNR NMR spectroscopy. 

Herein, first we discuss the advantages and disadvantages of using on-chip µCoils for 
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low cost NMR spectroscopy and then we mention other issues and future works in this 

approach. 

3.3.1 Integrated µCoil 

CMOS technology is the best candidate to design the µCoils using multilayers of metals. 

For this reason, we designed an eight-layer solenoid on chip as shown in Fig. 3.17a. Due 

to the parasitic capacitance and resistances generated between the layers and between the 

circular coils in each layer (see Fig. 3.17b), the quality factor of such a µCoil at low 

 
(a)                                                  (b)                                                 (c) 

Fig. 3.16 Spectral measurement results: (a) Input voltage of the receiver in time 

domain and frequency domain (b) output voltage of the receiver in in-phase mode in 

time domain and frequency domain (c) output voltage of the receiver in out-of-phase 

mode in time domain and frequency domain. 
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(a) 

 
(b) 

 
(c) 

Fig. 3.17 On-chip solenoid on-chip (a) 3D CMOS µCoil, (c) equivalent circuit and (d) 

quality factor with/without hole inside. 
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frequencies is low. Specifically, as seen in Fig. 3.17c, the quality factor of this CMOS-

based coil is around 0.25. By creating the hole in the center of the coil, the quality factor is 

slightly improved; however, in the presence of the sample the quality factor can be lower 

than this value. The quality factor can slightly vary by changing the sample. Therefore, 

based on this result, for our 20-MHz design discussed in this thesis, we used a mini-coil 

instead of integrated µCoil. 

3.3.2 Other Practical Issues 

Among various practical issues associated with the proposed low cost NMR spectroscopy 

tool, microfluidics and shielding topics are briefly discussed. 

Microfluidics: The miniaturized NMR system devices include µ- or mini-coils surrounding 

the sample. Therefore, micro-channels should be incorporated in directing such small 

samples toward the sensing sites in NMR systems incorporating coil technology of this 

kind. Such µL/nL samples should be placed in the center of the uniform magnetic field B1 

using microfluidics with NMR compatible materials. This is because the generated NMR 

signal by the sample holder should be minimized. By using the microfabrication 

technology, the design and implementation of microfluidics structures is feasible. 

However, in this thesis, we discussed how the differential dual path could offer a solution 

to overcome this problem by removing the magnetic background interference arising in 

such situations. 
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Electromagnetic Compatibility is an important issue in magnetic sensing systems. As the 

core of NMR spectroscopy is the excitation and recording of an RF signal, the separation 

of an actual NMR signal from other electromagnetic interferences is a challenge. In other 

words, to prevent the electromagnetic interferences from reaching the sensing sites of an 

NMR system, an appropriate shielding package should be prepared. This package should 

include an opening for sample delivery and readings using photolithography techniques. 

3.3.3 Future Works 

In this thesis, we presented and discussed a new research approach called low cost NMR 

spectroscopy. As a first step, we discussed the design and implementation of a critical part 

of this design, which is the dual path receiver. In the simulation and experimental platform, 

the signals were measured in the presence of magnetic chemical solutions in order to 

expose the active probe to actual test conditions. However, these results cannot show the 

functionality of the proposed circuit for NMR spectroscopy. As already mentioned, it is 

important to design a new chip and fully electrical and NMR characterization should be 

performed. 

The current work discussed in this chapter will be advanced by accurately characterizing 

the magnetic field of low-strength magnet and also expanded through the study of the 

effects of non-uniformity of static magnet fields on the quality of NMR spectroscopy. 

Thereafter the complete spectrometer (combined analog and digital signal processing) 

should be designed and implemented in order to extract the NMR signal and compare it 
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with other standard techniques. A major step toward NMR PoC diagnostics is to study the 

relation between the NMR signals and harmful cells/biomolecules by incorporating the 

active NMR probe, magnet and microfluidic structure for low cost NMR spectroscopy 

purposes. 

3.3.4 Summary 

In this chapter, we proposed a new approach for developing a low cost NMR system. As a 

first step of this approach, we described the design and implementation of a fully integrated 

CMOS dual-path receiver for NMR applications. This dual-path receiver is implemented 

in a 0.13-µm CMOS technology. Cadence and ANSYS HFSS were used to simulate the 

integrated circuit and mini-coil. Furthermore, the experimental characterizations of the 

chip were also performed using a low complexity setup including a cheap magnet and a 

mini-coil surrounding a glass tube. The simulation and experimental results verified the 

functionality of the proposed integrated fully differential dual path amplifier strategy. The 

proposed device offers an important advantage for NMR spectroscopy. 
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Chapter 4 

Contributions and Future Works 

 

This chapter provides a summary of the proposed techniques and contributions achieved 

from these research studies. In the research program proposed in the Biologically Inspired 

Sensors And Actuators Laboratory, the short-term goal is the design and implement 

integrated circuit designs dedicated to emerging NMR technologies. The long-term goal is 

to completely implement the NMR system by incorporating the proposed integrated 

circuits. This thesis has successfully taken the first step toward by proposing new circuit 

and sensor techniques. In the remaining of this chapter, the main contributions and practical 

problems are discussed and then briefly the future directions put forward. 
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4.1 Contributions 

The focus of this project was placed on the design, implementation and characterization of 

CMOS chip for NMR spectroscopy. In this direction, the following research results and 

contributions were achieved. 

1) A novel Three Dimensional (3D) CMOS Based RF µCoil dedicated to NMR 

spectroscopy was proposed. This new design was verified using the following results. 

a) HFSS Simulation results were demonstrated. 

b) Spectral Analysis were demonstrated. 

2) A novel CMOS based dual path receiver for NMR spectroscopy was proposed.  

This new design was verified using the following results. 

a) Custom made Integrated Circuit design and Implementation using 0.13-µm 

IBM CMOS 

b) Cadence Simulation results were demonstrated and discussed. 

3) First CMOS Chip design, fabricated and characterized in York University 

This project describes the first successful effort in the department of electrical engineering 

and computer science, York University to design and implement a CMOS Integrated circuit 
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using standard technology. For this reason, the early stage of this research was dedicated 

to the preparation and adjustment CAD tool and after the simulation and submission of 

chip the fabrication and test of device was performed successfully. 

4) The achieved results were published/submitted in the following list of conference 

or journal papers: 

 1) Active nuclear magnetic resonance probe: A new multidiciplinary approach 

toward highly sensitive biomolecoular spectroscopy, IEEE International Symposium on 

Circuits and Systems (ISCAS), Lisbon, Portugal, 2015 

 2) Dual-path NMR Receiver using Double Transceiver Microcoils, 35th Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society 

(EMBC), Milan, Italy, 2015. 

 3) Dual Path Nuclear Magnetic ResonanceReceiver: A Multidisciplinary Approach 

Towards Low Cost Bimolecular Spectroscopy, IEEE Transactions on Biomedical Circuits 

and Systems, Submitted Oct. 5th, 2015 (Invited Paper). 

 4) Active Nuclear Magnetic Resonance Probe: A New Multidisciplinary Approach 

Toward Highly Sensitive Biomolecular Spectroscopy, IEEE Transcations on Circuits and 

Systems I, Submitted Oct. 7th, 2015 (Invited Paper). 

 5) Diffrentail CMOS NMR Spectroscopy: Design and Implementation and 

Experimental Results, IEEE International Symposium on Circuits and Systems (ISCAS), 

Montreal, Canada, 2016 (Submitted). 
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4.2 Future Works 

As already mentioned, this master thesis has successfully taken a small step toward an 

emerging NMR technology. Many efforts should be taken to complete the system for an 

actual NMR spectroscopy. Among these efforts, the following key steps should be taken 

to achieve a successful NMR spectroscopy. 

1) Fully integrated circuit: In both approaches described in chapter 2 and 3, only the 

recording system were designed and/or implemented. Therefore, the complete system 

design should be performed and the new chips are fabricated. The voltage gain and input 

referred noise can be improved in order to achieve better results. In this thesis, we discuss 

the required main parameters of CMOS chip for NMR spectroscopy. However, a new fully 

integrated CMOS chip should be designed and characterized. 

2) Post-Processing: The creation of holes in the center of CMOS chip after the chip 

fabrication is the key step to direct the sample toward the vertical coil. For this, novel 

method should be developed in order to perform the required post CMOS processing 

without damaging the underneath circuitry. 

3) NMR spectroscopy: After the design and implementation of CMOS chip the NMR 

spectroscopy is the mandatory step towards the development of new technology. For this 

reason, it is important to characterize the created magnetic field and assure of uniformity 

as well as its strength over the sensing site. Based on these characterization results, the 
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circuit design should accordingly calibrate in terms of operating frequency and voltage 

gain. 

4) Sample Delivery: A major step after the completion of CMOS design and fabrication is 

to develop microfluidic structures to deliver a small sample towards the sensing site. For 

this reason, the development of an NMR-compatible microfluidics structure is another 

challenge in this direction. 
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