63 research outputs found

    Techniques for signal to noise ratio adaptation in infared optical wireless for optimisation of receiver performance

    Get PDF
    The challenge of creating a new environment of links for wireless infrared and optical local area networks (LANs) is driving new innovations in the design of optical transceivers. This thesis is concerned with a systematic approach to the design of receivers for indoor optical wireless communication. In particular, it is concerned with how to offer bandwidth adjustment capability in a receiver according to the dynamic service quality of the incoming signals. Another part of the discussion of the thesis is how one can properly choose the front-end preamplifier and biasing circuitry for the photodetector. Also, comparison is made between different types of amplifier, and the methods of bandwidth enhancement. The designs of six different techniques of integrating transimpedance amplifiers, with photodetectors to adapt an adjustable bandwidth control receiver are discussed. The proposed topologies provide an adjustable range of bandwidths for different frequency ranges, typically between 52Hz to 115MHz. The composite technique designs were used to incorporate into a system with an automatic gain control to study its effect, on an optical wireless receiver which had bandwidth adjustment and automatic gain adjustment. Theoretical analysis of noise performance for all the designed circuits is also presented. The theory and design of obstacles of indoor optical wireless receiver delivery, in addition to techniques for mitigating these effects, are discussed. This shows that infrared is a viable alternative to ratio for certain applications

    Broadband Receiver Electronic Circuits for Fiber-Optical Communication Systems

    Get PDF
    The exponential growth of internet traffic drives datacenters to constantly improve their capacity. As the copper based network infrastructure is being replaced by fiber-optical interconnects, new industrial standards for higher datarates are required. Several research and industrial organizations are aiming towards 400 Gb Ethernet and beyond, which brings new challenges to the field of high-speed broadband electronic circuit design. Replacing OOK with higher M-ary modulation formats and using higher datarates increases network capacity but at the cost of power. With datacenters rapidly becoming significant energy consumers on the global scale, the energy efficiency of the optical interconnect transceivers takes a primary role in the development of novel systems. There are several additional challenges unique in the design of a broadband shortreach fiber-optical receiver system. The sensitivity of the receiver depends on the noise performance of the PD and the electronics. The overall system noise must be optimized for the specific application, modulation scheme, PD and VCSEL characteristics. The topology of the transimpedance amplifier affects the noise and frequency response of the PD, so the system must be optimized as a whole. Most state-of-the-art receivers are built on high-end semiconductor SiGe and InP technologies. However, there are still several design decisions to be made in order to get low noise, high energy efficiency and adequate bandwidth. In order to overcome the frequency limitations of the optoelectronic components, bandwidth enhancement and channel equalization techniques are used. In this work several different blocks of a receiver system are designed and characterized. A broadband, 50 GHz bandwidth CB-based TIA and a tunable gain equalizer are designed in a 130 nm SiGe BiCMOS process. An ultra-broadband traveling wave amplifier is presented, based on a 250 nm InP DHBT technology demonstrating a 207 GHz bandwidth. Two TIA front-end topologies with 133 GHz bandwidth, a CB and a CE with shunt-shunt feedback, based on a 130 nm InP DHBT technology are designed and compared

    Wideband integrated circuits for optical communication systems

    Get PDF
    The exponential growth of internet traffic drives datacenters to constantly improvetheir capacity. Several research and industrial organizations are aiming towardsTbps Ethernet and beyond, which brings new challenges to the field of high-speedbroadband electronic circuit design. With datacenters rapidly becoming significantenergy consumers on the global scale, the energy efficiency of the optical interconnecttransceivers takes a primary role in the development of novel systems. Furthermore,wideband optical links are finding application inside very high throughput satellite(V/HTS) payloads used in the ever-expanding cloud of telecommunication satellites,enabled by the maturity of the existing fiber based optical links and the hightechnology readiness level of radiation hardened integrated circuit processes. Thereare several additional challenges unique in the design of a wideband optical system.The overall system noise must be optimized for the specific application, modulationscheme, PD and laser characteristics. Most state-of-the-art wideband circuits are builton high-end semiconductor SiGe and InP technologies. However, each technologydemands specific design decisions to be made in order to get low noise, high energyefficiency and adequate bandwidth. In order to overcome the frequency limitationsof the optoelectronic components, bandwidth enhancement and channel equalizationtechniques are used. In this work various blocks of optical communication systems aredesigned attempting to tackle some of the aforementioned challenges. Two TIA front-end topologies with 133 GHz bandwidth, a CB and a CE with shunt-shunt feedback,are designed and measured, utilizing a state-of-the-art 130 nm InP DHBT technology.A modular equalizer block built in 130 nm SiGe HBT technology is presented. Threeultra-wideband traveling wave amplifiers, a 4-cell, a single cell and a matrix single-stage, are designed in a 250 nm InP DHBT process to test the limits of distributedamplification. A differential VCSEL driver circuit is designed and integrated in a4x 28 Gbps transceiver system for intra-satellite optical communications based in arad-hard 130nm SiGe process

    Design of 10 Gb/s burst-mode receivers for high-split extended reach PONs

    Get PDF
    The continuous stream of new applications for the internet, increases the need for higher access speed in the currently deployed communication networks. Most networks in use today still consist of twisted copper wires, inherited from the telephone network. The disadvantages of reusing the existing telephone network are twofold. Firstly, the bandwidth of twisted copper wires is limited and secondly, a large number of switches and routers are needed throughout the network leading to an excessive power consumption. The hybrid fiber coax network that reuses the television distribution network is not free from these drawbacks. The bandwidth is also limited and power hungry amplifiers are needed to bridge the distance to and from the user. The future of broadband access lies in optical fiber networks. The optical fiber has a virtually unlimited bandwidth and the lower attenuation leads to less switches and amplifiers in the network, reducing the power consumption of the complete infrastructure. This dissertation describes the design of a 10 Gb/s burst-mode receiver for high-split extended reach passive optical networks (PONs). The designed receiver incorporates two very advanced features. Firstly, the burst-mode receiver locks its gain setting within 6 ns avoiding packet loss due to gain switching during data payload reception. Secondly, the burst-mode receiver detects both burst start and burst end, making it the first burst-mode receiver of its kind to operate without any time critical signal requirements from outside the burst-mode receiver. The presented work covers the chip-level architecture study and design of a 10 Gb/s burst-mode transimpedance amplifier and a 10 Gb/s post-amplifier, which are the two most critical components of a burst-mode receiver

    Distributed Circuit Analysis and Design for Ultra-wideband Communication and sub-mm Wave Applications

    Get PDF
    This thesis explores research into new distributed circuit design techniques and topologies, developed to extend the bandwidth of amplifiers operating in the mm and sub-mm wave regimes, and in optical and visible light communication systems. Theoretical, mathematical modelling and simulation-based studies are presented, with detailed designs of new circuits based on distributed amplifier (DA) principles, and constructed using a double heterojunction bipolar transistor (DHBT) indium phosphide (InP) process with fT =fmax of 350/600 GHz. A single stage DA (SSDA) with bandwidth of 345 GHz and 8 dB gain, based on novel techniques developed in this work, shows 140% bandwidth improvement over the conventional DA design. Furthermore, the matrix-single stage DA (M-SSDA) is proposed for higher gain than both the conventional DA and matrix amplifier. A two-tier M-SSDA with 14 dB gain at 300 GHz bandwidth, and a three-tier M-SSDA with a gain of 20 dB at 324 GHz bandwidth, based on a cascode gain cell and optimized for bandwidth and gain flatness, are presented based on full foundry simulation tests. Analytical and simulation-based studies of the noise performance peculiarities of the SSDA and its multiplicative derivatives are also presented. The newly proposed circuits are fabricated as monolithic microwave integrated circuits (MMICs), with measurements showing 7.1 dB gain and 200 GHz bandwidth for the SSDA and 12 dB gain at 170 GHz bandwidth for the three-tier M-SSDA. Details of layout, fabrication and testing; and discussion of performance limiting factors and layout optimization considerations are presented. Drawing on the concept of artificial transmission line synthesis in distributed amplification, a new technique to achieve up to three-fold improvement in the modulation bandwidth of light emitting diodes (LEDs) for visible light communication (VLC) is introduced. The thesis also describes the design and application of analogue pre-emphasis to improve signal-to-noise ratio in bandwidth limited optical transceivers

    Analog Frontend Circuits for Avalanche Photodiodes

    Get PDF
    The aims of this work is to design low noise electronics for optical sensing and X‐ray spectroscopy using Sheffield‐grown Avalanche photodiodes(APD). A transimpedance amplifier(TIA) for a 2.0 μm LIDAR system is designed and tested as part of a project funded by ESA. Numerical analysis is provided for the TIA in addition to SPICE and experimental analysis. Characterisation of the TIA shows that a noise equivalent power of less than 100 fW/√Hz can be achieved with an optimised InAs APD. Preliminary results of a TIA‐InAs module at 2.0 μm is presented. A low noise charge sensitive preamplifier(CSP) with a novel local feedback is designed and characterised. The CSP shows a better noise performance than commercially available CSP such as the CoolFet 250. The CSP is also characterised for APD dark current of up 4 μA and the CSP is found to behave well for such relatively high dark current. Discrepancies between the SPICE model and measured characteristic of the CSP’s input JFET is presented and discussed. The first ever Aluminium Indium Phosphide (AlInP) APD X‐ray spectroscopy measurement is presented in this work. AlInP is the widest band material that can be grown latticematched on a GaAs substrate. Due to its wide bandgap, AlInP can offer reverse dark current of less than 2 pA at gain of 100 for a 200um device, making it desirable for room temperature operation. An energy resolution of 647 eV is obtained for AlInP APD coupled to the CSP and exposed to 55Fe X‐rays. Using the CSP presented in this work, previously reported GaAs/AlGaAs APD is characterised and compared with results obtained using a commercial CSP. A 21% improvement in X‐ray energy resolution is reported, despite degradation in the APD

    A 1.06 micrometer avalanche photodiode receiver

    Get PDF
    The development of a complete solid state 1.06 micron optical receiver which can be used in optical communications at data rates approaching 1.5 Gb/s, or in other applications requiring sensitive, short pulse detection, is reported. This work entailed both the development of a new type of heterojunction III-V semiconductor alloy avalanche photodiode and an extremely charge-sensitive wideband low noise preamp design making use of GaAs Schottky barrier-gate field effect transistors (GAASFET's) operating in in the negative-feedback transimpedance mode. The electrical characteristics of the device are described

    Diseño de un ecualizador en tiempo continuo para aplicaciones en comunicaciones serie de alta velocidad

    Get PDF
    En este proyecto se propone como objetivo principal el diseño e implementación de arquitecturas de ecualización en tiempo continuo para aplicaciones en comunicaciones serie de alta velocidad. Para ello se abordará un estudio teórico y revisión bibliográfica de soluciones de bajo coste para la transmisión de alta capacidad por fibra óptica. De los diferentes subsistemas que componen la arquitectura del receptor, este trabajo se centrará en el amplificador de transimpedancia y en el ecualizador necesario para aumentar el ancho de banda de los bloques anteriores, permitiendo la obtención de arquitecturas más eficaces del front-end analógico del receptor de fibra óptica, minimizando de esta manera los efectos que impactan seriamente sobre la sensibilidad y velocidad total del sistema. Se llevará a cabo la caracterización experimental del prototipo T2-GDE-2013. Para ello será necesario abordar en primer lugar una primera fase consistente en la unión de un fotodiodo S5973 de Hamamatsu con el prototipo del TIA en un encapsulado DIP. Posteriormente se llevará a cabo la caracterización experimental de este bloque. Estas actividades implican la familiarización con la instrumentación necesaria y el proceso específico de medida. Una vez determinada la respuesta del TIA se procederá al diseño de un ecualizador con elementos discretos. En dicho diseño se abordará en primer lugar la elección de una topología adecuada a las necesidades particulares del T2-GDE-2013. Una vez determinada la arquitectura se procederá a la selección de componentes prestando especial atención a los elementos activos. La caracterización del bloque propuesto se realizará en dos fases: 1) mediante simulación, haciendo uso de programas como Matlab u OrCAD y 2) experimentalmente, mediante el diseño y montaje de PCBs mediante Eagle o PCAD. La última fase del proyecto consistiría en estudiar la posible migración de la topología discreta, objeto del estudio anterior, a un proceso de integración monolítico, para su posible utilización en receptores multiestándar en las bandas de transmisión de hasta 10 Gbps

    Analysis of Measurements for Solid State Lidar Development

    Get PDF
    A Detector Characterization Facility (DCF), capable of measuring 2-micron detection devices and evaluating heterodyne receivers, was developed at the Marshall Space Flight Center. The DCF is capable of providing all the necessary detection parameters for design, development, and calibration of coherent and incoherent solid state laser radar (lidar) systems. The coherent lidars in particular require an accurate knowledge of detector heterodyne quantum efficient, nonlinearity properties, and voltage-current relationship as a function of applied optical power. At present, no detector manufacturer provides these qualities or adequately characterizes their detectors for heterodyne detection operation. In addition, the detector characterization facility measures the detectors DC and AC quantum efficiencies noise equivalent power and frequency response up to several GHz. The DCF is also capable of evaluating various heterodyne detection schemes such as balanced detectors and fiber optic interferometers. The design and analyses of measurements for the DCF were preformed over the previous year and a detailed description of its design and capabilities was provided in the NASA report NAS8-38609/DO77. It should also be noted that the DCF design was further improved to allow for the characterization of diffractive andholographical optical elements and other critical components of coherent lidar systems
    corecore