97 research outputs found

    A Class-AB/D Audio Power Amplifier for Mobile Applications Integrated Into a 2.5G/3G Baseband Processor

    Get PDF
    A filterless class-AB/D audio power amplifier integrated into a feature-rich 2.5G/3G baseband processor in standard 65-nm CMOS technology is designed for direct battery hookup in mobile phone applications. Circuit techniques are used to overcome the voltage limitations of standard MOS transistors for operation at voltage levels of 2.5-4.8 V. Both amplifiers can drive more than 650 mW into an 8-Omega load with maximum distortion levels of 1% and 5% for class-D and class-AB, respectively, all from a 3.6-V power supply. The achieved power-supply-rejection ratios are 72 and 84 dB, respectively. The mono implementation of both amplifiers together is 0.44 mm(2)

    Design of a Class-D Audio Amplifier With Analog Volume Control for Mobile Applications

    Get PDF
    A class-D audio amplifier with analog volume control (AVC) section and driver section for wireless and portable applications is proposed in this paper. The analog volume control section, including an integrator, an analog MUX, and a programmable gain amplifier (PGA) is implemented with three analog inputs (Audio, Voice, FM). For driver section, including a ramp generator, a comparator, a level shifter and a gate driver is designed to obtain a low distortion and a highefficiency. Designed with 0.18 um 1P6M CMOS technology, the class-D audio amplifier with analog volume control achieves a total root-mean-square (RMS) output power of 0.5W, a total harmonic distortion plus noise (THD+N) at the 8-Ω load less than 0.06%, and a power efficiency of 89.9% with a total area of 1.74mm2

    Design of a Continuous-Time (CT) Sigma-Delta modulator for class D audio power amplifiers

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadore

    Low Power DC-DC Converters and a Low Quiescent Power High PSRR Class-D Audio Amplifier

    Get PDF
    High-performance DC-DC voltage converters and high-efficient class-D audio amplifiers are required to extend battery life and reduce cost in portable electronics. This dissertation focuses on new system architectures and design techniques to reduce area and minimize quiescent power while achieving high performance. Experimental results from prototype circuits to verify theory are shown. Firstly, basics on low drop-out (LDO) voltage regulators are provided. Demand for system-on-chip solutions has increased the interest in LDO voltage regulators that do not require a bulky off-chip capacitor to achieve stability, also called capacitor- less LDO (CL-LDO) regulators. Several architectures have been proposed; however, comparing these reported architectures proves difficult, as each has a distinct process technology and specifications. This dissertation compares CL-LDOs in a unified manner. Five CL-LDO regulator topologies were designed, fabricated, and tested under common design conditions. Secondly, fundamentals on DC-DC buck converters are presented and area reduction techniques for the external output filter, power stage, and compensator are proposed. A fully integrated buck converter using standard CMOS technology is presented. The external output filter has been fully-integrated by increasing the switching frequency up to 45 MHz. Moreover, a monolithic single-input dual-output buck converter is proposed. This architecture implements only three switches instead of the four switches used in conventional solutions, thus potentially reducing area in the power stage through proper design of the power switches. Lastly, a monolithic PWM voltage mode buck converter with compact Type-III compensation is proposed. This compensation scheme employs a combination of Gm-RC and Active-RC techniques to reduce the area of the compensator, while maintaining low quiescent power consumption and fast transient response. The proposed compensator reduces area by more than 45% when compared to an equivalent conventional Type-III compensator. Finally, basics on class-D audio amplifiers are presented and a clock-free current controlled class-D audio amplifier using integral sliding mode control is proposed. The proposed amplifier achieves up to 82 dB of power supply rejection ratio and a total harmonic distortion plus noise as low as 0.02%. The IC prototype’s controller consumes 30% less power than those featured in recently published works

    Low Power High Efficiency Integrated Class-D Amplifier Circuits for Mobile Devices

    Get PDF
    The consumer’s demand for state-of-the-art multimedia devices such as smart phones and tablet computers has forced manufacturers to provide more system features to compete for a larger portion of the market share. The added features increase the power consumption and heat dissipation of integrated circuits, depleting the battery charge faster. Therefore, low-power high-efficiency circuits, such as the class-D audio amplifier, are needed to reduce heat dissipation and extend battery life in mobile devices. This dissertation focuses on new design techniques to create high performance class-D audio amplifiers that have low power consumption and occupy less space. The first part of this dissertation introduces the research motivation and fundamentals of audio amplification. The loudspeaker’s operation and main audio performance metrics are examined to explain the limitations in the amplification process. Moreover, the operating principle and design procedure of the main class-D amplifier architectures are reviewed to provide the performance tradeoffs involved. The second part of this dissertation presents two new circuit designs to improve the audio performance, power consumption, and efficiency of standard class-D audio amplifiers. The first work proposes a feed-forward power-supply noise cancellation technique for single-ended class-D amplifier architectures to improve the power-supply rejection ratio across the entire audio frequency range. The design methodology, implementation, and tradeoffs of the proposed technique are clearly delineated to demonstrate its simplicity and effectiveness. The second work introduces a new class-D output stage design for piezoelectric speakers. The proposed design uses stacked-cascode thick-oxide CMOS transistors at the output stage that makes possible to handle high voltages in a low voltage standard CMOS technology. The design tradeoffs in efficiency, linearity, and electromagnetic interference are discussed. Finally, the open problems in audio amplification for mobile devices are discussed to delineate the possible future work to improve the performance of class-D amplifiers. For all the presented works, proof-of-concept prototypes are fabricated, and the measured results are used to verify the correct operation of the proposed solutions

    Correction of errors and harmonic distortion in pulse-width modulation of digital signals

    Get PDF
    Article number 153991Pulse-Width (PW) modulation is widely used in those applications where an analog or digital signal has to be encoded in the time domain as a binary stream, such as switched-mode power amplifiers in transmitters of modern telecommunication standards, high-resolution digital signal conversion using single-bit digital-to-analog converters, and many others. Due to the fact that digital signals are sampled in the time domain, the quality of the resulting PW modulated waveforms is worsened by harmonic distortion. Multilevel PW modulation has been proposed to reduce these adverse effects, but the modulated waveform is no longer binary. In this paper, the mechanisms by which harmonic distortion is produced are analyzed. As a result, the distortion terms are mathematically quantified and used to correct the errors. Note that a correction network based on a simple subtraction of the distortion terms from the PW modulated signal would produce a waveform that would no longer be binary. The proposed correction network is implemented in the digital domain and, by means of a sigma-delta modulator, preserves the binary feature of the PW modulated output.Ministerio de Ciencia, Innovación y Universidades (España) RTI201- 099189-B-C2

    Output Impedance Shaping for Frequency Compensation of MOS Audio Power Amplifiers

    Full text link

    Design and Implementation of Switching Voltage Integrated Circuits Based on Sliding Mode Control

    Get PDF
    The need for high performance circuits in systems with low-voltage and low-power requirements has exponentially increased during the few last years due to the sophistication and miniaturization of electronic components. Most of these circuits are required to have a very good efficiency behavior in order to extend the battery life of the device. This dissertation addresses two important topics concerning very high efficiency circuits with very high performance specifications. The first topic is the design and implementation of class D audio power amplifiers, keeping their inherent high efficiency characteristic while improving their linearity performance, reducing their quiescent power consumption, and minimizing the silicon area. The second topic is the design and implementation of switching voltage regulators and their controllers, to provide a low-cost, compact, high efficient and reliable power conversion for integrated circuits. The first part of this dissertation includes a short, although deep, analysis on class D amplifiers, their history, principles of operation, architectures, performance metrics, practical design considerations, and their present and future market distribution. Moreover, the harmonic distortion of open-loop class D amplifiers based on pulse-width modulation (PWM) is analyzed by applying the duty cycle variation technique for the most popular carrier waveforms giving an easy and practical analytic method to evaluate the class D amplifier distortion and determine its specifications for a given linearity requirement. Additionally, three class D amplifiers, with an architecture based on sliding mode control, are proposed, designed, fabricated and tested. The amplifiers make use of a hysteretic controller to avoid the need of complex overhead circuitry typically needed in other architectures to compensate non-idealities of practical implementations. The design of the amplifiers based on this technique is compact, small, reliable, and provides a performance comparable to the state-of-the-art class D amplifiers, but consumes only one tenth of quiescent power. This characteristic gives to the proposed amplifiers an advantage for applications with minimal power consumption and very high performance requirements. The second part of this dissertation presents the design, implementation, and testing of switching voltage regulators. It starts with a description and brief analysis on the power converters architectures. It outlines the advantages and drawbacks of the main topologies, discusses practical design considerations, and compares their current and future market distribution. Then, two different buck converters are proposed to overcome the most critical issue in switching voltage regulators: to provide a stable voltage supply for electronic devices, with good regulation voltage, high efficiency performance, and, most important, a minimum number of components. The first buck converter, which has been designed, fabricated and tested, is an integrated dual-output voltage regulator based on sliding mode control that provides a power efficiency comparable to the conventional solutions, but potentially saves silicon area and input filter components. The design is based on the idea of stacking traditional buck converters to provide multiple output voltages with the minimum number of switches. Finally, a fully integrated buck converter based on sliding mode control is proposed. The architecture integrates the external passive components to deliver a complete monolithic solution with minimal silicon area. The buck converter employs a poly-phase structure to minimize the output current ripple and a hysteretic controller to avoid the generation of an additional high frequency carrier waveform needed in conventional solutions. The simulated results are comparable to the state-of-the-art works even with no additional post-fabrication process to improve the converter performance
    corecore