27 research outputs found

    Active Inductor with Feedback Resistor Based Voltage Controlled Oscillator Design for Wireless Applications

    Get PDF
    This paper presents active inductor based VCO design for wireless applications based on analysis of active inductor models (Weng-Kuo Cascode active inductor & Liang Regular Cascode active inductor) with feedback resistor technique. Embedment of feedback resistor results in the increment of inductance as well as the quality factor whereas the values are [email protected] (Liang) and [email protected] (Weng- Kuo). The Weng-Kuo active inductor based VCO shows a tuning frequency of 1.765GHz ~2.430GHz (31.7%), while consuming a power of 2.60 mW and phase noise of -84.15 dBc/Hz@1MHz offset. On the other hand, Liang active inductor based VCO shows a frequency range of 1.897GHz ~2.522GHz (28.28%), while consuming a power of 1.40 mW and phase noise of -80.79 dBc/Hz@1MHz offset. Comparing Figure-of-Merit (FoM), power consumption, output power and stability in performance, designed active inductor based VCOs outperform with the state-of-the-art

    Phase-locked loop using time-based integral control

    Get PDF
    This thesis explores the time-based techniques in the context of phase-locked loop (PLL) implementation. Many studies of the topic have been performed in the past. Functioning as an effective replacement of passive capacitors, time-based integrators using oscillators prove to be more area efficient and highly digital when implemented in integrated circuits. To better explore their potential area saving benefits, the time-based techniques are implemented to serve the integral control of a type-II PLL. A comprehensive analysis is performed to evaluate the pros and cons of the new techniques. In particular, the noise and power trade-off of having additional oscillators in the system is explained in detail. The analyses are veri ed with a prototype PLL fabricated in 65 nm CMOS technology. The prototype PLL occupies an active area of only 0.0021mm^2 and operates across a supply voltage range of 0.6V to 1.2V providing 0.4-to-2.6 GHz output frequencies. At 2.2 GHz output frequency, the PLL consumes 1.82mW at 1V supply voltage, and achieves 3.73 ps_rms integrated jitter. This translates to an FoM_J of -226.0 dB, which compares favorably with state-of-the-art designs while occupying the smallest reported active area. With the application of time-based techniques in clocking circuitry, the proposed time-based integral control PLL shall present a viable alternative to the conventional purely analog or digital PLL architectures

    Clocking and Skew-Optimization For Source-Synchronous Simultaneous Bidirectional Links

    Get PDF
    There is continuous expansion of computing capabilities in mobile devices which demands higher I/O bandwidth and dense parallel links supporting higher data rates. Highspeed signaling leverages technology advancements to achieve higher data rates but is limited by the bandwidth of the electrical copper channel which have not scaled accordingly. To meet the continuous data-rate demand, Simultaneous Bi-directional (SBD) signaling technique is an attractive alternative relative to uni-directional signaling as it can work at lower clock speeds, exhibits better spectral efficiency and provides higher throughput in pad limited PCBs. For low-power and more robust system, the SBD transceiver should utilize forwarded clock system and per-pin de-skew circuits to correct the phase difference developed between the data and clock. The system can be configured in two roles, master and slave. To save more power, the system should have only one clock generator. The master has its own clock source and shares its clock to the slave through the clock channel, and the slave uses this forwarded clock to deserialize the inbound data and serialize the outbound data. A clock-to-data skew exists which can be corrected with a phase tracking CDR. This thesis presents a low-power implementation of forwarded clocking and clock-to-data skew optimization for a 40 Gbps SBD transceiver. The design is implemented in 28nm CMOS technology and consumes 8.8mW of power for 20 Gbps NRZ data at 0.9 V supply. The area occupied by the clocking 0.018 mm^2 area

    Integrated Circuit Design for Hybrid Optoelectronic Interconnects

    Get PDF
    This dissertation focuses on high-speed circuit design for the integration of hybrid optoelectronic interconnects. It bridges the gap between electronic circuit design and optical device design by seamlessly incorporating the compact Verilog-A model for optical components into the SPICE-like simulation environment, such as the Cadence design tool. Optical components fabricated in the IME 130nm SOI CMOS process are characterized. Corresponding compact Verilog-A models for Mach-Zehnder modulator (MZM) device are developed. With this approach, electro-optical co-design and hybrid simulation are made possible. The developed optical models are used for analyzing the system-level specifications of an MZM based optoelectronic transceiver link. Link power budgets for NRZ, PAM-4 and PAM-8 signaling modulations are simulated at system-level. The optimal transmitter extinction ratio (ER) is derived based on the required receiver\u27s minimum optical modulation amplitude (OMA). A limiting receiver is fabricated in the IBM 130 nm CMOS process. By side- by-side wire-bonding to a commercial high-speed InGaAs/InP PIN photodiode, we demonstrate that the hybrid optoelectronic limiting receiver can achieve the bit error rate (BER) of 10-12 with a -6.7 dBm sensitivity at 4 Gb/s. A full-rate, 4-channel 29-1 length parallel PRBS is fabricated in the IBM 130 nm SiGe BiCMOS process. Together with a 10 GHz phase locked loop (PLL) designed from system architecture to transistor level design, the PRBS is demonstrated operating at more than 10 Gb/s. Lessons learned from high-speed PCB design, dealing with signal integrity issue regarding to the PCB transmission line are summarized

    Design of Integrated Microwave Frequency Synthesizer-Based Dielectric Sensor Systems

    Get PDF
    Dielectric sensors have several biomedical and industrial applications where they are used to characterize the permittivity of materials versus frequency. Characterization at RF/microwave frequencies is particularly useful since many chemicals/bio-materials show significant changes in this band. The potential system cost and size reduction possible motivates the development of fully integrated dielectric sensor systems on CMOS with high sensitivity for point-of-care medical diagnosis platforms and for lab-on-chip industrial sensors. Voltage-controlled oscillator (VCO)-based dielectric sensors embed the sensing capacitor within the excitation VCO to allow for self-sustained measurement of the material under test (MUT)-induced frequency shift with simple and precise readout circuits. Despite their advantages, VCO-based sensors have several design challenges. First, low frequency noise and environmental variations limit their sensitivity. Also, these systems usually place the VCO in a frequency synthesizer to control the sample excitation frequency which reduces the resolution of the read-out circuitry. Finally, conventional VCO-based systems utilizing LC oscillators have limited tuning range, and can only characterize the real part of the permittivity of the MUT. This dissertation proposes several ideas to: 1) improve the sensitivity of the system by filtering the low frequency noise and enhance the resolution of the read-out circuitry, 2) improve the tuning range, and 3) enable complex dielectric characterization in VCO/synthesizer-based dielectric spectroscopy systems. The first prototype proposes a highly-sensitive CMOS-based sensing system for permittivity detection and mixture characterization of organic chemicals at microwave frequencies. The system determines permittivity by measuring the frequency difference between two VCOs; a sensor oscillator with an operating frequency that shifts with the change in tank capacitance due to exposure to the MUT and a reference oscillator insensitive to the MUT. This relative measurement approach improves sensor accuracy by tracking frequency drifts due to environmental variations. Embedding the sensor and reference VCOs in a fractional-N phase-locked loop (PLL) frequency synthesizer enables material characterization at a precise frequency and provides an efficient material-induced frequency shift read-out mechanism with a low-complexity bang-bang control loop that adjusts a fractional frequency divider. The majority of the PLL-based sensor system, except for an external fractional frequency divider, is implemented with a 90 nm CMOS prototype that consumes 22 mW when characterizing material near 10 GHz. Material-induced frequency shifts are detected at an accuracy level of 15 ppmrms and binary mixture characterization of organic chemicals yield maximum errors in permittivity of <1.5%. The second prototype proposes a fully-integrated sensing system for wideband complex dielectric detection of MUT. The system utilizes a ring oscillator-based PLL for wide tuning range and precise control of the sensor's excitation frequency. Characterization of both real and imaginary MUT permittivity is achieved by measuring the frequency difference between two VCOs: a sensing oscillator, with a frequency that varies with MUT-induced changes in capacitance and conductance of a delay-cells' sensing capacitor loads, and a MUT-insensitive reference oscillator that is controlled by an amplitude-locked loop (ALL). The fully integrated system is fabricated in 0.18 μm CMOS, and occupies 6.25 mm2 area. When tested with common organic chemicals (ε`r < 30), the system operates between 0.7-6 GHz and achieves 3.7% maximum permittivity error. Characterization is also performed with higher ε`r water-methanol mixtures and phosphate buffered saline (PBS) solutions, with 5.4% maximum permittivity error achieved over a 0.7-4.77 GHz range

    A CMOS Fractional Frequency Synthesizer for a Fully Integrated S-Band Extravehicular Activity (EVA) Radio Transceiver

    Get PDF
    Extravehicular activity (EVA) is an important aspect of space explorations. It enables astronauts carry out tasks outside the protective environment of the spacecraft cabin. The crew requires EVA radio transceivers to transmit and receive information among themselves and with equipment in space. Communication is done through the S frequency band (2GHz to 4GHz). Since the EVA radio transceiver is part of the space suits the astronauts wear for EVA, it is important that lightweight, low power consumption and miniaturized systems are utilized in their design and implementation. This thesis presents the design and implementation of a fully integrated frequency synthesizer for carrier signal generation in the EVA radio transceiver. The transceiver consists of a dual up-conversion transmitter (TX) and a direct conversion receiver (RX) at 2.4GHz. It supports 10 channels spaced at 6MHz for both video and voice communications, covering the frequency band from 2.4GHz to 2.454GHz. Therefore in the TX mode, the frequencies required are 0.8GHz to 0.818GHz (quadrature) and 1.6GHz to 1.636GHz (differential) for dual up-conversion to prevent the pulling problem between the power amplifier (PA) and voltage controlled oscillator (VCO) of the synthesizer. In RX mode, the frequencies from 4.8GHz to 4.908GHz are synthesized with a divide-by-two circuit to generate quadrature signals of 2.4GHz to 2.454GHz. In order to cover the frequency ranges in both TX and RX modes with a small area and low power consumption, a dual-band VCO fractional-N PLL is implemented. The dual-path loop filter topology is utilized to further reduce chip area. The fractional synthesizer is fabricated in 0.18μm CMOS technology and has a loop bandwidth of around 40kHz. It occupies a relatively small area of 1.54mm^(2) and consumes a low power of 22.68mW with a 1 V supply for the VCO and 1.8V supply for the rest of the blocks. The synthesizer achieves a reference spur performance of less than –62.34dBc for the lower band (LB) and less than –68.36dBc for the higher band (HB). The phase noise at 1MHz for the LB ranges from -125.38 to -130.39 dBc/Hz and for the HB -113.12 to -120.16 dBc/Hz. Thus the synthesizer achieves low power consumption with good spectral purity while occupying a small chip area making it suitable for EVA radio applications

    Circuits and Systems for On-Chip RF Chemical Sensors and RF FDD Duplexers

    Get PDF
    Integrating RF bio-chemical sensors and RF duplexers helps to reduce cost and area in the current applications. Furthermore, new applications can exist based on the large scale integration of these crucial blocks. This dissertation addresses the integration of RF bio-chemical sensors and RF duplexers by proposing these initiatives. A low power integrated LC-oscillator-based broadband dielectric spectroscopy (BDS) system is presented. The real relative permittivity ε’r is measured as a shift in the oscillator frequency using an on-chip frequency-to-digital converter (FDC). The imaginary relative permittivity ε”r increases the losses of the oscillator tank which mandates a higher dc biasing current to preserve the same oscillation amplitude. An amplitude-locked loop (ALL) is used to fix the amplitude and linearize the relation between the oscillator bias current and ε”r. The proposed BDS system employs a sensing oscillator and a reference oscillator where correlated double sampling (CDS) is used to mitigate the impact of flicker noise, temperature variations and frequency drifts. A prototype is implemented in 0.18 µm CMOS process with total chip area of 6.24 mm^2 to operate in 1-6 GHz range using three dual bands LC oscillators. The achieved standard deviation in the air is 2.1 ppm for frequency reading and 110 ppm for current reading. A tunable integrated electrical balanced duplexer (EBD) is presented as a compact alternative to multiple bulky SAW and BAW duplexers in 3G/4G cellular transceivers. A balancing network creates a replica of the transmitter signal for cancellation at the input of a single-ended low noise amplifier (LNA) to isolate the receive path from the transmitter. The proposed passive EBD is based on a cross-connected transformer topology without the need of any extra balun at the antenna side. The duplexer achieves around 50 dB TX-RX isolation within 1.6-2.2 GHz range up to 22 dBm. The cascaded noise figure of the duplexer and LNA is 6.5 dB, and TX insertion loss (TXIL) of the duplexer is about 3.2 dB. The duplexer and LNA are implemented in 0.18 µm CMOS process and occupy an active area of 0.35 mm^2

    Characterization of process variability and robust optimization of analog circuits

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 161-174).Continuous scaling of CMOS technology has enabled dramatic performance enhancement of CMOS devices and has provided speed, power, and density improvement in both digital and analog circuits. CMOS millimeter-wave applications operating at more than 50GHz frequencies has become viable in sub-100nm CMOS technologies, providing advantages in cost and high density integration compared to other heterogeneous technologies such as SiGe and III-V compound semiconductors. However, as the operating frequency of CMOS circuits increases, it becomes more difficult to obtain sufficiently wide operating ranges for robust operation in essential analog building blocks such as voltage-controlled oscillators (VCOs) and frequency dividers. The fluctuations of circuit parameters caused by the random and systematic variations in key manufacturing steps become more significant in nano-scale technologies. The process variation of circuit performance is quickly becoming one of the main concerns in high performance analog design. In this thesis, we show design and analysis of a VCO and frequency divider operating beyond 70GHz in a 65nm SOI CMOS technology. The VCO and frequency divider employ design techniques enlarging frequency operating ranges to improve the robustness of circuit operation. Circuit performance is measured from a number of die samples to identify the statistical properties of performance variation. A back-propagation of variation (BPV) scheme based on sensitivity analysis of circuit performance is proposed to extract critical circuit parameter variation using statistical measurement results of the frequency divider. We analyze functional failure caused by performance variability, and propose dynamic and static optimization methods to improve parametric yield. An external bias control is utilized to dynamically tune the divider operating range and to compensate for performance variation. A novel time delay model of a differential CML buffer is proposed to functionally approximate the maximum operating frequency of the frequency divider, which dramatically reduces computational cost of parametric yield estimation. The functional approximation enables the optimization of the VCO and frequency divider parametric yield with a reasonable amount of simulation time.by Daihyun Lim.Ph.D

    Wide-band mixing DACs with high spectral purity

    Get PDF
    corecore