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ABSTRACT

Integrating RF bio-chemical sensors and RF duplexers helps to reduce cost and

area in the current applications. Furthermore, new applications can exist based

on the large scale integration of these crucial blocks. This dissertation addresses

the integration of RF bio-chemical sensors and RF duplexers by proposing these

initiatives.

A low power integrated LC-oscillator-based broadband dielectric spectroscopy

(BDS) system is presented. The real relative permittivity ε′r is measured as a shift in

the oscillator frequency using an on-chip frequency-to-digital converter (FDC). The

imaginary relative permittivity ε′′r increases the losses of the oscillator tank which

mandates a higher dc biasing current to preserve the same oscillation amplitude. An

amplitude-locked loop (ALL) is used to fix the amplitude and linearize the relation

between the oscillator bias current and ε′′r . The proposed BDS system employs a

sensing oscillator and a reference oscillator where correlated double sampling (CDS)

is used to mitigate the impact of flicker noise, temperature variations and frequency

drifts. A prototype is implemented in 0.18 µm CMOS process with total chip area

of 6.24 mm2 to operate in 1-6 GHz range using three dual bands LC oscillators. The

achieved standard deviation in the air is 2.1 ppm for frequency reading and 110 ppm

for current reading.

A tunable integrated electrical balanced duplexer (EBD) is presented as a com-

pact alternative to multiple bulky SAW and BAW duplexers in 3G/4G cellular

transceivers. A balancing network creates a replica of the transmitter signal for

cancellation at the input of a single-ended low noise amplifier (LNA) to isolate the

receive path from the transmitter. The proposed passive EBD is based on a cross-
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connected transformer topology without the need of any extra balun at the antenna

side. The duplexer achieves around 50 dB TX-RX isolation within 1.6-2.2 GHz range

up to 22 dBm. The cascaded noise figure of the duplexer and LNA is 6.5 dB, and

TX insertion loss (TXIL) of the duplexer is about 3.2 dB. The duplexer and LNA

are implemented in 0.18 µm CMOS process and occupy an active area of 0.35 mm2.
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1. INTRODUCTION

Since the first integrated circuit, integration is a trend in the semiconductor indus-

try to reduce the cost and minimize the size of products. Until now, there have been

certain discrete radio frequency (RF) blocks that are difficult to integrate. There

are two fields where there is room for more integration. The first application area

is the biochemical sensors field. Biochemical sensors are used in industry, agricul-

ture, medicine and environmental research. Biochemical sensors are conventionally

bulky, expensive and require large amounts of samples for testing. An integrated

biochemical sensor or a lab on a chip will be small in size, low-cost and requires

minute amounts of a sample. In this thesis, a chemical sensor integrated prototype

is designed that can measure real part of permittivity at 10 GHz. Another integrated

prototype is designed, fabricated and tested to measure the complex permittivity of

materials in the frequency range 1-6 GHz.

The second field is in mobile communication. Due to the fast progress in mobile

communications, hand-held mobile handsets need to support multiple bands and

standards. Software-defined-radio (SDR) is considered a solution to this dilemma

with minimum cost and area. Tremendous progress has been achieved to solve issues

related to SDR except for the required off-chip surface-acoustic-wave (SAW) RF du-

plexer. The SAW duplexer is needed to separate the RX signal from the TX signal in

frequency division duplex (FDD) systems. Since there are numerous bands to sup-

port, an enormous area on the board is allocated to SAW duplexers and RF switches.

A single integrated tunable RF duplexer can replace all these SAW duplexers and

RF switches. Many challenges regarding integrating the RF duplexer are studied

and analyzed in this dissertation. A CMOS prototype was designed, fabricated and
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tested that addressed these problems.

1.1 Integrated Chemical Sensors

1.1.1 Chemical Sensing Applications

Objects and materials are defined by their characteristics. These characteristics

are specified by the material properties: 1) electric properties, 2) magnetic properties,

3) thermal properties, etc. Electrical properties define the behavior of the material

when it is applied to an electric field, while magnetic properties define the behavior

of the material when it is applied to a magnetic field. Electrical properties are

specified by conductivity (σ) and permittivity (ε). There are many applications

where permittivity is used to determine the type of material (qualitative analysis)

or its concentration in a solution (quantitative analysis).

Biomedical applications such as glucose meters, cell counter flow cytometers, and

deoxyribonucleic acid (DNA) detection sensors are all based on electrical properties

of the blood, cells, and DNA, respectively. Flow cytometers can also be used to

distinguish between different cells. The variation of the output of the flow cytometer

with frequencies can help to extract the electrical properties of the cells. Dead

cells have a different response from living cells. Furthermore, cancerous cells can be

differentiated from healthy cells. Even extraction of electrical properties of cancerous

cells helps to identify the stage of cancer. The electric circuit should be very sensitive

to distinguish these little variations from the noise.

1.1.2 Design Challenges of Integrated Dielectric Spectroscopy

Since the complex permittivity of materials changes with frequency, having the

ability to measure complex permittivity with frequency helps to distinguish the ma-

terial. Broadband dielectric spectroscopy (BDS) require high sensitivity and high

dynamic range for a wideband frequency range. There are many challenges in de-
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signing integrated biochemical sensor as a lab on a chip. There are electrical design

problems: 1) high sensitivity to fine disturbance in the material under test (MUT),

2) minimizing the effect of ε′ on reading ε′′ and vice versa, 3) wideband frequency

operation, 4) faster readout rates, 5) minimizing the consumption of materials used

in testing. Also, there are big challenges with dealing with the chemical liquids on

the surface of requiring stable microfluidic channels or on-chip chambers.

1.2 Integrated Frequency-Division Duplexing

During the evolution of the cellular communication, the method of separating the

transmitted (TX) signal and the received (RX) signal has changed from generation

to generation. Wireless mobile communication is a bi-direction communication using

the same channel “full duplex”. If the communication link is through single direction,

it is called “half duplex”. The single communication channel has many resources to be

divided between TX and RX signals: time, frequency, spatial and polarization. Time

division duplex (TDD) and frequency division duplex (FDD) are used in different

generations of mobile communications. Spatial division duplex (SDD) can be used at

millimeter frequencies since the antenna needs to have high directivity. In FDD, TX

and RX signals are separated with a frequency separation called “full duplex” (FD)

frequency, and higher order surface-acoustic-wave (SAW) filters are used to separate

between TX and RX bands. The filters achieve out-of-band rejection greater than

50 dB. Since the first generation of mobile phone have analog communication system

FDD was the suitable choice with frequency division multiple access (FDMA).

1.2.1 Motivation for Integrated FDD Duplexers

In the second generation (2G), Global System for Mobile Communications (GSM)

introduces digital communication and time division multiple access (TDMA). TDD

is used in 2G since it is similar to TDMA. Starting from the third generation (3G),
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FDD was adopted to maximize the data rate by working all the time. The fourth

generation (4G) has two versions: 4G-FDD used for high data rate communication

and 4G-TDD. Since 4G mobile communication needs to support multiple bands using

software-defined-radio (SDR), the design complexity of 4G-FDD increases since each

band requires a separate off-chip SAW duplexer. The impacts on the area and the

cost are enormous directing the research to solve this problem.

Since the frequency selectivity of SAW filters is defined by the mechanical cuts

in their fabrication, they are impossible to tune. Finding a way to digitally tune an

integrated high-performance RF duplexer will be of great importance to save cost

and minimize the space required on board.

1.2.2 Design Challenges of Integrated FDD Duplexers

Since the filters require very high-quality factor (Q > 100) to implement low

loss and high isolation duplexer, filtering technique can not be used to design the

duplexer. All integrated duplexers used electrical balance concept to implement on-

chip duplexers. Electrical balance duplexers (EBDs) are very similar to the hybrid

transformer used in phone lines to convert the 4-wire link to 2-wire link. The method

has its drawbacks: 1) there is higher insertion loss (IL) in the TX and RX signal

paths with a physical limit on the summation of TXIL and RXIL is less than 6 dB,

2) antenna impedance is varying with time mandating a circuit to track this variation

to preserve the high isolation between TX and RX, 3) the linearity of the duplexer

should be very high since the intermodulation of the high power TX signal and any

blocker received signal can affect the sensitivity of the receiver. These problems are

very tough to solve, and the research in this area is still in its initial phase such that

any progress in addressing any of the drawbacks is significant.
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1.3 Objectives of the Dissertation

The central purpose of the dissertation is to integrate blocks that are convention-

ally needed to be off-chip. They are bulky and expensive, and their integration will

reduce the total cost and the total size of the product. In order to achieve this aim,

the thesis defines key objectives to reach.

The work on the biochemical sensor has four objectives:

� Sensitivity enhancement by reducing the effect of flicker noise, temperature and

environment variations,

� Measuring complex permittivity (ε = ε′ − jε′′),

� Maximizing the frequency range of operation such that it can be used as di-

electric spectroscopy system,

� Minimizing the power consumption to assist in the portability of the device.

The work on the RF duplexer has three objectives:

� Studying the physical limits on TXIL and RXIL in passive EBDs (all passive

components) and how to reduce them,

� Implement a prototype on chip EBD with low noise figure (NF ) and low TXIL,

� Studying the benefits of using active EBDs (active + passive components)

regarding NF and TXIL and their effects on the linearity of the duplexer.

1.4 Dissertation Organization

The dissertation is divided into six main sections. In main section 2, the first

section 2.1 has all the required definitions that are used in the chemical sensors.

Section 2.2 shows the comparison among different types of techniques to measure
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the permittivity. A proposed high accuracy LC-oscillator based chemical sensor

is analyzed in section 2.3 where its measurements of measurements are shown in

2.3.5. In section 2.4, a flow cytometer module is presented using discrete components

that can operate from 100 kHz to 50 MHz. Two types of breast cancer cells are

differentiated from each other using the flow cytometer in sub-section 2.4.3. The

section is concluded in sub-section 2.5.

In main section 3, a proposed wideband dielectric spectroscopy system is pre-

sented. Section 3.1 is the introduction for the sensor. Section 3.2 presents the theory

of operation of the sensor. System simulations for the noise analysis are shown in

section3.3 where the cancellation of flicker is verified by correlated double sampling

(CDS). The implementations of the circuits are shown in section 3.4.Section 3.5.3

shows the measurements of the fabricated chip, while section 3.6 concludes main

section 3.

The passive EBDs are analyzed main section4. Section 4.1 is the introduction for

the EBD concept and current literature. Sections 4.2are 4.3 are comparing among

different integrated EBD topologies. The circuit implementation and the measure-

ments results of the prototype EBD are shown in 4.4 and 4.5, respectively. The

performance of the prototype is concluded in section 4.6. Active EBDs are described

in sections 5.1 and 5.2. Two implementations for integrated active EBDs are designed

but not fabricated are shown in 5.3. The main section is summarized in 5.4.

Finally, section 6.1 concludes the work in the dissertation and the suggestions for

future work are in 6.2.
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2. DIELECTRIC SPECTROSCOPY SENSORS

Detection of chemicals and biological materials is vital in an enormous number of

applications, including pharmaceutical, medical, oil, gas, and food/drug safety fields.

A practical material detection approach involves characterizing physical and electri-

cal properties of materials under test (MUTs), such as electrical permittivity [1]. The

development of efficient permittivity detection techniques will benefit systems used

for medical diagnosis and imaging, DNA sensing, material characterization, agricul-

tural development, forensics, and bio-threat detection. Since many chemicals/bio-

materials show significant changes at RF/microwave frequencies [1–7], permittivity

detection in this band is particularly useful for chemical detection [5] and for medical

applications, such as cell detection [4, 6] and blood-sugar monitoring [7].

2.1 Basic Definitions

2.1.1 Permittivity Definition

Assuming a parallel plate capacitor with area (A) spaced by distance (d), the

voltage (V ) applied on the capacitor will develop an electric field (
−→
E ) where

−→
E =

∇V = E0~a where E0 is the scalar quantity of electric field and ~a is the unit vector to

define direction. The charges stored in the capacitor (Q0) in free space is proportional

to the applied voltage by:

Q0 =
Q0

A
A = C0 V = C0E0 d, (2.1)

*© 2016 IEEE. Parts of section 2.3 are reprinted, with permission, from O. Elhadidy, M.
Elkholy, A. A. Helmy, S. Palermo and K. Entesari, “A CMOS Fractional-N PLL-Based Microwave
Chemical Sensor With 1.5% Permittivity Accuracy,” in IEEE Transactions on Microwave Theory
and Techniques, vol. 61, no. 9, pp. 3402-3416, Sept. 2013.
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where C0 is the ratio between the stored charge and applied voltage defined as the

capacitance of the capacitor. If the capacitor is in free space, charge density (Q0/A)

is directly proportional to by:

Q0

A
= ε0E0 & C0 = ε0

A

d
, (2.2)

where ε0 is the permittivity of free space (ε0 = 8.85× 10−12 F/m). If a homogeneous

dielectric is introduced between the plates keeping the potential constant the charge

stored is given by:

Q = Aε0εr E0, (2.3)

where εr is the dielectric constant of the material and ε (ε = ε0εr) is the permittivity

of the material. The increase in the capability of storing charges for the same voltage

or electric field is due the polarization of the material where [8]:

Q−Q0 = Aε0E0 (εr − 1) . (2.4)

This increase may be attributed to the appearance of charges on the dielectric sur-

faces. Negative charges appear on the surface opposite to the positive plate and

vice-versa (Fig. 2.1 found in [9]). This system of charges is apparently neutral and

possesses a dipole moment (Mp):

Mp = Aε0E0 (εr − 1) d. (2.5)

Since the volume of the dielectric is v = Ad, the dipole moment per unit volume is

defined as polarization (P ) of material:
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P = ε0E0 (εr − 1) = χ ε0E0, (2.6)

where the constant is called the susceptibility χ = εr−1 of the material. The electric

flux density D defined by:

D = ε0εr E0 = P + ε0E0. (2.7)

Polarization of a dielectric may be classified according to:

1. Electronic or Optical Polarization

2. Orientational Polarization

3. Atomic or Ionic Polarization

4. Interfacial Polarization.

Each type of polarization has defined range of operation where the dipoles motion

has a time constant (τ) and its behavior is changing with frequency {dispersion of

the material}. Fig. 2.2 shows the different frequency ranges of the various types of

polarizations [8]. Due to the relaxation of the polarization, the permittivity has real

and imaginary components which are function of frequency (εr = ε′r − j ε′′r).

2.1.2 Dielectric Frequency Dispersion and Mixture Theories

For pure MUTs, the complex permittivity frequency dependency follows the

Cole–Cole model [10] and the complex permittivity numbers in [11]. The model

is as follows:

εr = ε′r − j ε′′r = εr,∞
εr,0 − εr,∞

1 + (j ω τ)1−λ , (2.8)
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Free Charges
Bound Charges

Dipole

Figure 2.1: Schematic representation of dielectric polarization. [9]

where εr,0 is the static permittivity at zero frequency, εr,∞ is the permittivity at

∞, τ is the characteristic relaxation time, and λ is the relaxation time distribution

parameter. The dispersion of permittivity of distilled water (DI-water) at different

temperatures is shown in Fig. 2.3 [12].

Binary mixtures are composed of two materials, which are: 1) the environment

(host) and 2) the inclusion (guest) with ratios of (1− q) and q, respectively. The

complex permittivity of a binary mixture is a function of the complex permittivities

of the two constituting materials and the fractional volume ratio . This relationship

is mathematically defined as follows [13,14]:

εeff − εe
εeff + 2 εe + ν (εeff − εe)

=
εi − εe

εi + 2 εe + ν (εeff − εe)
, (2.9)

where εeff is the effective mixture permittivity, εe is the permittivity of the environ-

ment, εi is the inclusion permittivity, and ν is a parameter to define the employed
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Figure 2.2: Frequency dependence of the real and imaginary parts of the dielectric
constant (schematic). [8]

model. has values of 0, 2, and 3 corresponding to Maxwell–Garnett, Polder-van

Santen, and quasi-crystalline approximation rules, respectively.

2.2 Dielectric Spectroscopy Background

There are different techniques to read the change in ε′r and ε′′r . They can be

divided into two categories: 1) Excitation-based measuring technique, 2) Oscillator-

based measuring technique. In the excitation-based technique, there is an external

source that defines frequency that is used in the measurement. For the oscillator-

based technique, no external source is required since the measurement frequency is

the oscillation frequency.
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(a) (b)

Figure 2.3: The dispersion of distilled water at different temperatures: (a) dielectric
constant ε′r and (b) loss factor ε′′r [12].

Gm

Vrefp

Vrefn

Csen

Cref Quantizer

Figure 2.4: Implementation of the excitation based technique using switched capac-
itors circuit.

2.2.1 Excitation-Based Measuring Technique

There are different employments for the excitation-based measuring technique.

The simplest one is using a switched capacitor circuit as a capacitive sensor. A ref-

erence voltage is applied on the sensor and reference capacitors and the difference
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in charges is calculated, as shown in Fig. 2.4 [15]. Switched capacitors circuit tech-

niques can be used to digitize the output using simple switched capacitor analog to

digital converter (ADC). The advantages of this technique are simplicity and low

power operation. It also has its drawbacks: 1) it can not be used to measure ε′′r , 2)

it suffers from harmonics problems which minimize its use in measuring ε′r versus

frequency, 3) it has higher noise level due to aliasing of the noise of the operational

transconductance amplifier (OTA), 4) it can be used at low frequencies only.

TIAEA fRF
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VO1,I

Csen

Cref

Sinusoidal
Source

DDS

TIAEA

Csen

Cref

Sinusoidal
Source

DDS
fRF-fIF fIF

VO1,Q

VO1,I

VGA

TIAEA fRF

VO1,Q

VO1,I
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Square
Wave

Source

(a)

(b)

(c)
BPF

HRM

TIAEA
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Cref fRF-fIF fIF

VO1,Q

VO1,I
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(d)
BPF

HRMSquare
Wave

Source

Figure 2.5: Different implementations of the excitation based technique using TIA:
(a) a sinusoidal excitation signal and a single stage mixer, (b) a square-wave exci-
tation signal and a single stage harmonic rejection mixer, (c) a sinusoidal excitation
signal and a two stage mixer and (d) a square-wave excitation signal and a two stage
harmonic rejection mixer.
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Figure 2.6: Reading the change in capacitance as a change in the phase of ILOs.

Another technique is shown in Fig. 2.5(a). A differential excitation signal is ap-

plied on the sensing and reference capacitors. The currents that are passing through

these capacitors is added and converted to a voltage using a trans-impedance ampli-

fier (TIA). The TIA should have very low input resistance to minimize its effect on

the measurements. Furthermore, the TIA should have very low input referred noise

since its noise dominates the noise of the system. It can measure ε′r and ε′′rusing

quadrature mixers after the TIA and can operate continuously from low frequencies

till moderate frequencies. This technique has its drawbacks: 1) it needs sinusoidal

excitation source which is not easy to generate, 2) the dc offset and flicker noise of

the mixers can affect the noise of the system, 3) high power consumption, 4) it needs

external source with wide frequency range. The sinusoidal source can be replaced

by a square-wave signal, but the harmonics of the square-wave signal will generate

output due to higher order harmonics. To minimize the effects of the harmonics dif-

ferential mixers are used to eliminate even order harmonics and 8-phases (16-phases)
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harmonic rejection mixers are used to cancel the 3rd and the 5th harmonics ( up to

the 13thharmonic), as shown in Fig. 2.5(b) [16]. The dc-offset and flicker noise of the

mixers can be solved using low IF superheterodyne receiver with an IF frequency

near 1 MHz [17], as shown in Fig. 2.5(c) and (d).

Another excitation-based technique is using an injection-locked oscillator (ILO)

to be locked at a particular frequency using an external source, as shown in Fig. 2.6

[18]. This technique is similar to the oscillator-base technique, but the change in

capacitance changes the relative phase of oscillation. A phase detector (PD) measures

the phase difference between the sensor and reference ILOs phases. This technique

can achieve very high sensitivity in measuring ε′r even at very high frequencies. It

has drawbacks too: 1) its dynamic range is tiny since the ILO is out of lock for

significant frequency shifts, 2) measuring ε′′r is hard since the injection complicates

the relation between ε′′r and the oscillation amplitude.

2.2.2 Oscillator-Based Measuring Technique

Table 2.1: Comparison Among Different Techniques to Measure Permittivity
Excitation Based Tech. Oscillator Based Tech.

Switched Using TIA Injection Ring Osc. LC Osc.

Cap. Locked Osc.

Operating Freq. low low to high high moderate to high high

Freq. Range wide wide very narrow wide moderate

Freq. Programmability easy easy difficult easy difficult

External Source yes yes yes no no

Reading ε′′r no yes no yes yes

Sensitivity in ε′r moderate moderate high moderate high

Sensitivity in ε′′r NA moderate NA moderate moderate

Dynamic Range in ε′r moderate moderate medium moderate high

Dynamic Range in ε′′r NA moderate NA low low

Harmonics Problem yes yes no no no
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Figure 2.7: Reading ε′r and ε′′r using the frequency and amplitude of the oscillator.

Oscillator based measuring technique is simpler than the excitation-based tech-

nique. The sensing and reference capacitors are used in sensing and reference oscil-

lators, respectively. Each oscillator has two outputs: frequency and amplitude, as

shown in Fig. 2.7. In LC-oscillators, the frequency is determined by inductance L

and capacitance C. Therefore, ε′r can be found directly using the frequency with high

sensitivity with low dc power consumption [1, 19]. Frequency is converted into digi-

tal using frequency-to-digital converter (FDC) which can be as simple as a counter.

However, in ring oscillators, the frequency is determined by the capacitance C and

the loss. Measuring complex permittivity using ring oscillators can be achieved with

moderate sensitivity in reading ε′r and ε′′r [20]. Although ring oscillators can oper-

ate at very wide frequency range, dc power consumption at high frequencies is much

higher compared to LC oscillators. Furthermore, ring oscillators are noisier and their

frequency is not stable compared to LC oscillators.

In the oscillator-based technique, there is no need for an external source, but the
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frequency is not controlled. To define the frequency of measurement, an integer-N

phase-locked loop (PLL) is used to control the frequency [1,20]. Table 2.1 summarizes

the comparison among the different techniques.

2.3 High Accuracy Chemical Sensor Prototype

Capacitance-based sensing, where a capacitor exposed to an MUT exhibits changes

in electrical properties, is a conventional technique reported in the literature for

permittivity detection. Low-frequency charge-based methods to detect capacitance

changes include embedding biomaterial sensitive capacitors in a relaxation oscilla-

tor [21] and as load devices for charge integration with precisely controlled current

sources [15]. Another example in the 10-MHz range is an impedance spectroscopy

approach [22], where a sinusoidal voltage source excites a material-sensitive capacitor

and the impedance magnitude and phase is extracted with a coherent detector.

However, the techniques mentioned above are not well suited for permittivity de-

tection at microwave frequencies. For microwave permittivity sensing, one approach

is to detect the sensor’s reflection and or transmission properties to characterize the

MUT [7,23,24]. A drawback of these approaches is that they require somewhat large

transducer structures, especially if scaled to the 10-GHz range. Another microwave-

based technique is to deposit the MUT on top of a microwave resonator and observe

the permittivity change as a shift in the resonance frequency. While onboard sensors

have been implemented using this resonant-based technique, [23], fully integrated

permittivity sensors at microwave frequencies are necessary for compact size and low

cost to be suitable for lab-on-chip and point-of-care applications.

In [1], a CMOS integrated microwave chemical sensor based on capacitive sensing

is proposed with an LC voltage-controlled oscillator (VCO) that utilizes a sensing

capacitor as a part of its tank. The real part of the permittivity of the MUT applied
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on the sensing capacitor changes the tank resonance frequency, and hence, the VCO

free-running frequency. Embedding the material sensitive VCO in a phase-locked

loop (PLL) allows the oscillator free-running frequency shift to be translated into a

change in the control voltage, which is read by an analog-to-digital converter (ADC).

A multi-step detection procedure, with the ADC output bits controlling an external

tunable reference oscillator to equalize the control voltage in both the presence and

absence of the material, is then used to read-out the sensor oscillator frequency shift.

While this system was able to measure the real part of the permittivity of organic

chemicals and binary organic mixtures in the range of 7–9 GHz with a 3.5% error,

defined as the absolute difference between the room temperature (20◦ C) measured

and theoretical values [10, 11], it suffers from several drawbacks, which are: 1) an

expensive tunable reference frequency source is required; 2) the ADC resolution limits

the accuracy of the frequency shift detection, and 3) utilizing a single VCO sensor

necessitates a complicated multi-step measurement procedure and makes the system

performance susceptible to low-frequency environmental variations.

This paper presents a CMOS fractional-N PLL-based chemical sensor based on

detecting the real part of an MUT’s permittivity. Detection of this real part of the

permittivity is suitable for the characterization of mixing ratios in mixtures, which

is beneficial in many applications, including 1) medical applications such as the

estimation of the glucose concentration in blood [7] and 2) the estimation of mois-

ture content in grains [25]. The system utilizes both a sensor and reference VCO,

which enables improved performance and lower complexity compared to the system

in [1]. For the frequency-shift readout, instead of controlling an expensive externally

tunable reference oscillator, a low-complexity bang–bang control loop periodically

compares the control voltage when the sensor and the reference oscillator are placed

in the PLL loop and adjusts a fractional- loop divider. Since the system determines
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permittivity by measuring the frequency difference between the sensor and reference

VCO, common environmental variations are canceled out, and the measurement pro-

cedure is dramatically simplified to a single-step material application. Also, utilizing

a high-resolution fractional divider allows the frequency shift resolution measure-

ment to be limited by system noise, rather than the ADC quantization noise [1].

This section is organized as follows. Sub-section 2.3.1 discusses VCO-based sensing

systems and provides an overview of the proposed fractional- PLL-based chemical

sensor system. Key design techniques for the capacitive sensor and the VCO, which

is optimized to minimize the effect of the imaginary part of the permittivity on the

oscillation frequency to ensure the real part is accurately detected, are discussed in

Sub-section 2.3.2. Sub-section 2.3.3 provides more circuit implementation details of

the shared bias sensor and reference VCO, other PLL blocks, and the bang–bang

comparator, which senses the VCO control voltage. The 90-nm CMOS prototype

and the chemical sensing test setup are detailed in Sub-section 2.3.4. Sub-section

2.3.5 shows the experimental results, including characterization of the major circuit

blocks and organic chemical mixture detection measurements.

2.3.1 VCO-Based Sensing Systems

This section first details leading features of VCO-based sensing systems. The

proposed fractional- PLL-based sensor system is then described.

2.3.1.1 VCO-Based Sensor Characteristics

A VCO-based sensor is composed of a sensing VCO and a frequency detector

to detect a frequency shift, ∆f , as shown in Fig. 2.8(a). The frequency resolution,

defined as the minimum frequency shift that can be detected by the system, is

primarily a function of the system’s input referred noise and frequency detector

quantization noise. Note that both the VCO phase noise and the frequency detector
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Figure 2.8: VCO-based sensors incorporating: (a) a single VCO and (b) reference
and sensing VCOs.

circuitry can contribute to the system’s input-referred noise. The performance of

the sensing system in Fig. 2.8(a) is limited by VCO temperature sensitivity and

low-frequency noise. This behavior motivates the use of a reference oscillator [19],

as shown in Fig. 2.8(b), and measuring the desired frequency shift as the difference

between the sensing and the reference VCOs. One practical issue with this approach

is that the two VCOs should be in close proximity to maximize noise correlation.

However, this causes VCO frequency pulling when the VCOs are simultaneously

operating. In order to avoid this, the two VCOs can be periodically activated such

that only one operates at a time [19]. This chopping results in a beneficial high-pass

filtering of the correlated low-frequency noise between the sensor and reference VCO.
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Figure 2.9: VCO-based sensor using a PLL and an ADC as a frequency detector [1].

One common frequency detector implementation is a frequency counter [19].

While this method can achieve high resolution, it requires long measurement times,

on the order of milliseconds. Also, since the VCOs are embedded in an open loop

system, the absolute oscillator frequency drift makes it difficult to characterize the

MUT properties at a precise frequency.

A PLL can serve as a closed-loop frequency detector circuit, as shown in Fig. 2.9

[1], to enable MUT characterization at a precise frequency. For a fixed division ratio,

N , and reference frequency, fref , the change in the VCO free-running frequency is

translated into a change in the control voltage, Vc, and read out using an ADC.

This method also offers a significantly faster measurement time set by PLL settling,

typically on the order of microseconds, which is useful for high-throughput chemical

characterization systems and emerging biosensor platforms for real-time monitoring

of fast biological processes, such as protein- drug binding kinetics [26].

In addition to the VCO, the other blocks in the PLL-based system also contribute

to system noise and should be analyzed by considering the transfer function from
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that particular block to the control voltage node. The PLL filters high-frequency

content of the VCO input-referred noise, Vn,vco, as the transfer function, Vn,vco/Vc, is

a low-pass response with a cutoff frequency equal to the loop bandwidth [1], while

noises from the charge pump (CP), In,cp, and input reference clock, φn,ref , are band-

pass filtered by the loop. Also, in the locked condition, the CP noise is scaled due

to it only appearing on the control voltage for a time equal to the reset path delay

of the phase-frequency detector (PFD) [27], which is a fraction of a reference clock

cycle. Assuming a low-noise input reference clock, the VCO noise and CP noise are

dominant. However, care should also be used in choosing the loop filter resistor, as

its noise on the control voltage is high-pass filtered by the loop. Note, an important

trade-off exists between the control voltage noise level and the PLL settling time,

as reducing the PLL bandwidth filters more VCO input-referred noise and CP noise

at the cost of increasing the system measurement time. Another important noise

source, the system quantization noise, is set by the ADC resolution [1]. This implies

a significant increase in ADC resolution requirements and overall complexity for

improved frequency shift measurement capabilities.

2.3.1.2 VCO-Based Sensor Characteristics

As mentioned before, the use of a reference VCO enables filtering of correlated

low-frequency noise between the sensor and reference VCOs. This correlation is

achieved in a PLL-based system with the proposed sensor architecture shown in

Fig. 2.10. Here, the PLL utilizes a single fixed reference clock and is controlled by

fS the clock, which alternates between having the sensor oscillator and fixed integer

divider, NS, in the loop and having the reference oscillator and adjustable fractional

divider, NR, present.

When fS is in the low state, the reference VCO frequency, fvco,R, is set to 8 ×
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Figure 2.10: Block diagram of the dielectric sensor based on a fractional-N fre-
quency synthesizer with sensor and reference VCOs and dual-path loop dividers. A
bang–bang control loop adjusts the fractional divider value to determine the fre-
quency shift between the sensor and the reference VCO.

NR × fref and the control voltage settles to Vc,R, while when fS is in the high state,

the sensor VCO frequency, fvco,S, is set to 8×NR×fref and the control voltage settles

to Vc,S. Assuming that the two division values are equal, NR = NS, the difference

between Vc,R and Vc,S is a function of the MUT induced frequency shift between the

two VCOs and

fvco,R = fo +KvcoVc,R, (2.10)

fvco,S = fo −∆f +KvcoVc,S, (2.11)
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where Kvco is the VCO gain in Hz/V, fo is the free-running frequency of the reference

VCO, and ∆f is the difference between the free-running frequencies of the reference

and sensing VCOs, which is the subject of detection. Substituting fvco,R = 8NR fref

and fvco,S = 8NS fref results in

8NR fref = fo +KvcoVc,R, (2.12)

8NS fref = fo −∆f +KvcoVc,S. (2.13)

Thus, as shown in Fig. 2.11(a), the frequency shift can be approximated as

∆f = Kvco (Vc,S − Vc,R) . (2.14)

However, measuring the frequency shift based on the difference between Vc,R and

Vc,S suffers from two drawbacks, which are: 1) the accuracy is degraded due to the

VCO gain non-linearity and 2) a high-resolution ADC is required. Using (2.14), the
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relationship between the VCO frequency, frequency shift in ppm, the average VCO

gain Kvco, supply voltage, VDD, and the number of ADC bits, NADC , is

∆f (ppm) =
VDD 106

2NADC
× Kvco

fvco
. (2.15)

For example, if VDD = 1.2 V,Kvco = 500 MHz/V, and fvco,S = 10 GHz, an ADC

with a minimum 10-bit resolution is required to detect frequency shifts in the order

of ∼60 ppm. The following describes how these two drawbacks are mitigated by a

different detection algorithm and a bang–bang control loop.

In order to eliminate the effect of VCO gain non-linearity, a different detection

algorithm is used that is based on changing the division value, NR, until the control

voltage Vc,R becomes equal to the control voltage Vc,S, as shown in Fig. 2.11(b).Here,

the difference between NR and NS represents the frequency shift between the two

VCOs,

∆f = 8 fref (NS −NR) . (2.16)

Here, the frequency shift measurement is independent of the VCO gain non-

linearity. However, the measurement accuracy is still limited by the reference fre-

quency value and the resolution of the adjustable frequency fractional divider. As

reducing the reference frequency mandates reducing the PLL bandwidth, which in-

creases the PLL settling time, this system employs an off-chip fractional divider, NR.

While this fractional divider could easily be implemented in the CMOS chip, since

designing high-resolution dividers is much easier than high-resolution ADCs, due to

tape-out time constraints an external divider was used in this prototype, as shown in

Fig. 2.10. A fractional divider with M -bit fractional resolution provides a minimum

frequency shift of ∆fmin =
(
fref/2

M
)

(106/fvco). For example, utilizing a 25-MHz
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reference frequency, 10-GHz VCO frequency, and a 25-bit fractional divider results

in a resolution of 7.7× 10−5 ppm.

Switching clock

fs

Filtered Vc

NR = NS

(S/H)R

(S/H)S

Time

Voltage

Figure 2.12: System signals: sensor/reference control fS, filtered control voltage Vc,
and output of sample and hold circuits.

In order to alleviate the need for a high-resolution ADC, a bang–bang control

loop is used to adjust the divider value. Here the term “bang–bang” indicates that

the control loop’s error detector, which is a comparator, generates only a quantized

logical “ -1” or “ +1” depending only on the error sign, similar to the operation of

a bang–bang phase detector used in clock-and-data recovery (CDR) systems [28].

As illustrated in Fig. 2.12, the control voltage is sampled during each phase of the

switching clock, fS, using sample and hold circuits (S/H)R and (S/H)S and applied

to a comparator. The comparator output is used to adjust the fractional divider

value and determine the frequency shift. A cumulative density function (CDF) of
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the difference between Vc,R and Vc,S with σV c = 25 mV, which corresponds to 15
ppm at Kvco = 500 MHz/V.

the average comparator output, Vcomp, versus the difference between Vc,R and Vc,S

is shown in Fig. 2.13, assuming Gaussian system noise. If the average comparator

output is near a logical “ -1” or “ +1,” the difference between Vc,R and Vc,S is

significantly larger than the total system noise and the system uses the averaged

comparator output to adjust the reference divider. As the difference between Vc,R

and Vc,S moves toward zero, the system noise causes the comparator to output a

similar number of “ -1” and “ +1” outputs, and the averaged output approaches zero.

Once the averaged comparator output is near zero to within a certain tolerance, the

frequency shift is then calculated. As the sensor divider remains fixed, this approach

ensures that the frequency shift is measured at a fixed frequency, regardless of the

frequency shift.

The flowchart of Fig. 2.14 summarizes the system operation as follows:

1. The MUT is deposited on top of the sensing VCO.
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Figure 2.14: Flowchart of the frequency shift measurement algorithm.

2. The comparator output bits are read out to a PC and digitally filtered.

3. The division ratio, NR, is tuned until the average comparator output ap-

proaches zero.

4. At which, the frequency shift is measured as fref (NR −NS).

Note that this measurement procedure requires only a single MUT application, and is

dramatically simpler than the multi-step MUT application and de-application proce-

dure of [1]. Several techniques are utilized to improve the system noise performance

and account for mismatches between the sensor and reference VCO. A filtered version
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of the PLL control voltage at node X (Fig. 2.10) is sampled to filter high-frequency

noise. Additional low-frequency noise filtering is also possible by increasing the av-

eraging time of the comparator outputs. As the mismatches between the two VCOs

and the comparator input-referred offset introduces a systematic system offset, this

is accounted for during sensor calibration by characterizing the system with the sens-

ing VCO not loaded with any MUT. For this calibration case with the sensor only

exposed to air, the difference between NR and NS is read out, recorded, and serves

as the overall system offset. Note that this offset calibration should be performed

at each material characterization frequency in order to account for the VCOs’ Kvco

variation with frequency. In addition, any Kvco mismatch between the VCOs can be

calibrated by performing measurements with control materials of known permittivity;

with system accuracy improving with the number of calibration materials employed.

Additional sensor calibration details are provided in the experimental results of sub

section 2.3.5.2.

2.3.2 Sensor Design

2.3.2.1 Sensing Element

Each MUT has a frequency-dependent complex relative permittivity εr (ω) ,

ε′r (ω)− jε′′r (ω) with both real and imaginary components. The real part represents

the stored energy within the material and the imaginary part represents the ma-

terial’s loss with the loss tangent quantifying the ratio between ε′′r (ω) and ε′r (ω)

(tan δ = ε′′r (ω) /ε′r (ω)). As the objective of the implemented sensor is to detect the

real part of the MUT’s complex permittivity, the MUT is placed on top of a capacitor-

based sensor, and the permittivity is measured with the change in the sensor’s ca-

pacitance. This section explains the sensor’s design and essential characteristics. It

also discusses the effect of the material’s loss on the capacitance measurements and
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permittivity detection.

A capacitor implemented on the top metal layer of a CMOS process with an

area of 0.0461 mm2, shown in Fig. 2.15(a) and (b), forms the sensing element. The

325 µm ×142 µm capacitor has the equivalent circuit model shown in Fig. 2.15(c).

The MUT affects the electromagnetic (EM) fields between t1 and t2, with the ad-

mittance Y12 (ω) between t1 and t2 having a fixed capacitive component due to the

direct parallel-plate capacitance between the capacitor’s metal, Cfixed, a parallel plate

capacitance to substrate, C10, C20 and a fringing capacitance that changes according

to the permittivity of the MUT, C12,MUT. Loss components are present due to the

substrate loss and MUT loss, which are modeled by Rsub and G12,MUT, respectively.

EM simulations show that the capacitor quality factor in air is approximately 4.7

at 10 GHz and degrades to 1.7 when loaded with an MUT with permittivity of 10

and tan δ = 1. While this sensor capacitor Q is lower than anticipated due to an

error in the substrate loss estimation in the initial design phase, it is only a minor

contributor to the total oscillator tank Q, and it does not have a significant impact

on the overall system performance.

When the sensor is exposed to air, the fringing component consists only of C12,air

due to air being lossless. After depositing a MUT with permittivity of εr (ω) =

ε′r (ω) − jε′′r (ω), the fringing component changes to the parallel combination of

C12,MUT and a conductive part, G12,MUT. Neglecting the sensor interconnect resis-

tance, Rint, the equivalent parallel- plate capacitance and conductance of the sensing

element are approximately given by

C12,MUT = ε′r (ω)C12,air &G12,MUT = ωε′′r (ω)C12,air (2.17)

Fig. 2.15(d) shows the equivalent half circuit model, where Cs is the effective
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capacitance proportional to the real part of the material’s dielectric constant, Cs =

2 ε′r (ω)C12,air, and Gs is the effective parallel conductance modeling the effect of the

material loss, Gs = 2ωε′′r (ω)C12,air.
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Figure 2.16: Sensing capacitance variations versus the deposited height of the MUT
for five ε′r values.

The capacitance Cs changes with ε′r and with the height of the MUT deposited

on top of the sensing capacitor [1]. EM simulations for the sensing capacitor were

performed using Sonnet [29] where Fig. 2.16 shows the value of the sensing capac-

itance versus the MUT height for different values of ε′r up to 30. The capacitance

increases with MUT height until saturating for heights larger than 50 µm, which is

considered to be the sensor EM field saturation height.

A more detailed expression for the sensor input capacitance is obtained from the

total admittance at terminal t1, including the sensor interconnect resistance
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Yt1 u jωCo
1−RintGo

1 + (ωRintCo)
2 +Go

1 + ω2C2
oRint/Go

1 + (ωRintCo)
2 , (2.18)

where Go = Gsub +Gs and Co = 2Cfixed + C10 + Cs.

Table 2.2: Sensor Capacitor Model Parameters in Air
C12 7 fF
C10 18 fF
C20 55 fF
Gsub1 0.32 mS
Gsub2 1.15 mS
Rint 0.55 Ω
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Figure 2.17: Sensing capacitance variations versus ε′r of MUT for height 200 µm
(above saturation height) at 10 GHz.

Equation (2.16) shows that in addition to the sensor capacitance terms, the sensor

conductance can impact the total equivalent capacitance at t1 due to the interconnect
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resistance term. Rint should be minimized in order to minimize the effect of the sensor

conductance on its capacitance. As shown in Table 2.2, the Rint value of 0.55 Ω is

achieved by using wide top-level metal connections. Fig. 2.17 shows that this allows

for a nearly linear relationship between Cs and ε′r, with the loss tangent (tan δ)

having only a small effect on the value of Cs for ε′r less than 10.

2.3.2.2 Sensing VCO
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Figure 2.18: Simplified schematic of the nMOS cross-coupled sensing VCO.

Fig. 2.18shows a simplified schematic of the sensing VCO used to measure the

capacitance change Cs (ω) due to the MUT deposition. The large intrinsic transcon-

ductance, with a relatively small parasitic capacitance of the nMOS cross-coupled

transistors, allows for high-frequency operation at the nominal 1.2-V supply voltage.
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In addition to the sensing capacitor, inductor L1 and capacitor C1 make up the os-

cillator’s resonance tank. By applying the MUT, Cs (ω) changes and the frequency

of oscillation shifts by a value of ∆f . Assuming C1 is much larger than Cs (ω), there

is a linear relationship between ∆f/fo and Cs the relative capacitance change for

small frequency shifts

∆f

fo
≈ −1

2

∆Cs
(C1 + Cs)

≈ −(ε′r − 1)C12,air

(C1 + Cs)
, (2.19)

where fo is the resonance frequency in air.
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Figure 2.19: Percentage variation of the resonance frequency versus ε′r for different
values of tan δ at a MUT height of 200 µm.

The simulation results of Fig. 2.19, which show the percentage variation of the

VCO resonance frequency with ε′r for different values of tan δ, verify this linear re-

lationship and show only a small impact due to tan δ. Note that the material loss,

or ε′′r , can affect the frequency shift due to two reasons, which are: 1) it can poten-

tially change Cs (however, as shown in the previous section, ε′′r has a small effect on
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Cs) and 2) loss variations result in amplitude variations, which translate into fre-

quency variations due to amplitude modulation to frequency modulation (AM–FM)

conversion [30]. This AM-FM conversion is a nonlinear process, as shown in the

VCO simulation results of Fig. 2.20. For small amplitudes up to around 0.45 V, the

frequency is nearly constant versus the amplitude. However, as the amplitude fur-

ther increases, the frequency decreases dramatically. Thus, to minimize the AM–FM

conversion, the selected range for the VCO single-ended amplitude is designed below

0.45 V.
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Figure 2.20: Percentage variation of the VCO output frequency versus the single-
ended amplitude level.
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2.3.3 Circuit Implementation

2.3.3.1 Sensor and Reference VCOs

In order to track the frequency drift of the sensing VCO due to environmental

conditions and low-frequency noise, a reference VCO is also employed, as shown in

Fig. 2.21(a). Since the frequency shift is measured as the difference in the oscillat-

ing frequency of both the sensing and reference VCOs, any correlated noise is fil-

tered [19].While noise correlation is maximized with the sharing of as many elements

as possible, with the best scenario involving the sharing of all VCO components,

except the sensing and reference capacitors. In this case, the periodic enabling of the

VCOs necessitates a high-frequency switch which degrades the tank quality factor

considerably at 10 GHz. However, it is still possible to share the tail current source,

which represents the primary source of flicker noise between the two VCOs with a

low-frequency switch. Thus, the VCO noise contribution in the system frequency

shift measurements is affected only by the non-common elements, which include the

cross-coupled pair and the LC tank. It is worth mentioning that the applied MUT

has a negligible impact on both the sensor and reference VCO tank inductance due to

the virtually unity relative permeability of the materials under study. Moreover, any

changes in the inductor’s parasitic capacitance due to MUT application is minimized

due to the 1 µm passivation layer between the MUT and the inductors.

The VCO phase noise should be minimized to enhance the sensor sensitivity,

particularly at low-frequency offsets where flicker noise dominates. To achieve this

noise reduction, the following design techniques are implemented.

1. The inductor quality factor is maximized at the operating frequency by em-

ploying a single-turn inductor using wide 4- µm-thick top metal (Al) tracks

that are 5.75 µm from the substrate, resulting in an inductor quality factor
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(QL1) of around 18. When varactor and sensor capacitor losses are included,

the total tank Q degrades to 10 in the air and around 7 when loaded with an

MUT with permittivity of 10.

2. A low-pass filter formed with RF and CF reduces the noise contribution of the

bias transistor M3.

In order to minimize the phase noise due to AM–FM conversion, the oscillator’s

bias current is adjusted to keep the single-ended oscillation amplitude around 0.45

V (Fig. 2.20). A peak detector, shown in Fig. 2.21(b), is connected to the VCO

output to sense the amplitude level, which is used to control the amplitude. Table

2.3 summarizes the VCO transistor sizes and tank component values. Post-layout

simulations show that the VCO operating near 10 GHz has a 7% tuning range, phase

noise of -107 dBc/Hz at a 1-MHz offset, and 9-mA current consumption.

Table 2.3: Sizes of Transistors in VCO
M0 480 µm/0.8 µm

M1, M2 22 µm/0.1 µm
M3 80 µm/0.8 µm
M4 768 µm/0.1 µm
L1 220 pH
C1 ≈ 1 pF

2.3.3.2 Frequency Divider

Fig. 2.22shows a detailed block diagram of the on-chip integer divider. To provide

flexibility in reference clock selection, the integer divider has a programmable ratio

from 256 to 504 with a step of 8. The divider is partitioned into current-mode

logic (CML) stages, which offer high-frequency operation and superior supply noise

38



Ccon_a

M1a M2a

M0

M3

L1a L1a

Csense

C1aC1a

VDD

Vc

IT

Out1pOutn

Ibias M4a

Ccon_b

M1b M2b

L1b L1b

C1bC1b

VDD

Vc

Out2p

M4b

Out2n

fs

CF

RF

M1 M2

Ib1

VDD

Outp Outn

PD_Out

(b

)

(a)

Figure 2.21: (a) Schematic of the shared bias VCO circuits (the sensing VCO and
the reference VCO) with a common tail current source to increase correlated noise.
(b) Peak detector schematic.
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rejection, for the initial divide- by-8, followed by CML-to-CMOS conversion and the

use of static CMOS circuitry to implement the remaining division in a robust and low-

power manner. Two independent CML divide-by-2 blocks are utilized for the initial

10-GHz frequency division in order to provide sufficient isolation between the sensor

and reference VCOs and also reduce oscillator loading. These initial dividers are ac

coupled to the VCO for proper biasing and consume 2 mA each with an effective

12-GHz bandwidth. A MUX unit then selects which divided clock is placed in the

loop and also serves as a buffer to drive a second CML divide-by-4 stage. As this

second divider stage works near 1.25 GHz, it only consumes 0.3 mA. The CML-to-

CMOS converter stage [31] drives both a buffer to the external fractional divider and

the on-chip five-stage dual-modulus 2/3 divider [32] that provides a programmable

division ratio from 32 to 63 with a step of 1.

2.3.4 System Integration and Test Setup

Table 2.4: Sensor Chip Power Consumption
Block Power Consumption (mW)
VCO 10.8

High Frequency Dividers 7.2
PFD + CP 0.4

Output Buffer 3.6
Total 22

Fig. 2.23shows the chip microphotograph of the PLL-based dielectric sensor,

which was fabricated in a 90-nm CMOS process and occupies a total chip area

of 2.15 mm2 . As detailed in Table 2.4, the overall chip power consumption is 22

mW, with the VCO and high-frequency dividers consuming the most power. An
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open-cavity micro lead frame (MLP) 7 × 7 mm2 QFN-48 package is used for chip

assembly to allow for MUT deposition on top of the sensing capacitor. All electrical

connections between the chip and the package lead frame are made via wire-bonding.

An off-chip commercial discrete fractional frequency divider (ADF4157) from

Analog Devices is utilized in order to achieve high resolution in the frequency shift

measurements. The external divider has 25-bit resolution, which allows for potential

frequency shift measurements down to 6 × 10−4 ppm, considering the divide-by-

8 on-chip CML divider. This implies that the system is not limited by the divider

quantization noise, but rather by the system random noise discussed earlier. Fig. 2.24

shows the photograph of the printed circuit board (PCB) with the mounted sensor

chip and the external divider. The sensor chip interfaces with the external divider

with a buffered version of the on-chip CML divide-by-8 output at 1.25 GHz (Fig. 2.22)

driven to the outer divider. Furthermore, the divided output signal at 25 MHz fed

back to the CMOS chip to MUX (Fig. 2.10) that selects the PFD input based on the

switching clock phase. Simple level-shifting interface ICs are used to condition the

comparator’s serial output bits to levels sufficient for the PC, which performs the

digital filtering. The frequency shift measurement algorithm of Fig. 2.14 is performed

automatically via a Labview program such that the MUT is deposited on top of the

sensor, the external reference divider is adjusted with a successive-approximation

procedure, and the corresponding frequency shift is measured directly.

2.3.4.1 System On-Board Integration

Organic chemical liquids, including methanol and ethanol and their mixtures,

are applied to the sensor chip via a plastic tube fixed on top of the chip [1]. Due to

the 1.2-mm tube diameter being comparable to the chip area and tube mechanical

handling limitations, both the reference and sensing VCOs are covered by the MUT
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Figure 2.23: Microphotograph of the PLL-based dielectric sensor chip.

during testing. In order to avoid the effect of the MUT on the reference VCO, the

metal capacitor in Fig. 2.23 is not attached to the reference oscillator. While this

does result in a systematic offset between the VCOs, this is easily measured with

the sensing capacitor exposed to air and later calibrated out. In order to control

the volume of the material applied on the sensor chip, a Finnpipette single-channel

micro-pipette is utilized to apply the liquid via the tube. After material application,

the tube is capped to avoid evaporation. All measurements were performed with

volumes less than 20 µL, which is sufficient to cover the sensor in excess of the

saturation height due to the small sensor size.
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2.3.5 Experimental Results

This section discusses the fractional- PLL-based chemical sensor experimental

results. First, key measurements of the PLL and system sensitivity are presented.

Next, data is shown with the system characterizing organic chemical mixtures.

2.3.5.1 PLL and Sensitivity Characterization

The output spectrum and phase noise of the closed-loop PLL with the sensor

VCO in the loop is measured at the output of the divide-by-8 CML block, as shown

in Fig. 2.25 and 2.26, respectively. For the 1.3-GHz signal, reference spurs less than

-60 dBc and a phase noise of -97 dBc/Hz at a 1 MHz offset are achieved. This phase

noise converts to -79 dBc/Hz at a 1-MHz offset for the on-chip 10.4-GHz signal. As

shown in Fig. 2.27, the PLL achieves a 640 MHz locking range between 10.04-10.68
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Figure 2.25: PLL output spectrum after CML divide-by-8 divider.

GHz and Kvco =885 MHz/V , at control voltage of 0.85 V, with the sensing VCO in

the loop. Due to the absence of the sensor capacitor, the PLL achieves a 650 MHz

locking range between 10.49–11.14 GHz and Kvco = 925 MHz/V , at control voltage

of 0.85 V, with the reference VCO in the loop. Similar phase noise is achieved for

both VCOs operating inside the PLL versus the control voltage.

In order to characterize the system noise level, the bang–bang divider control is

set in open-loop, and a CDF of the average comparator output is produced by varying

the external divider value, NR. A switching frequency fS = 1 kHz is employed in

order to allow enough time for the PLL to settle with high accuracy. The results in

Fig. 2.28 are fitted to a Gaussian distribution and a system noise sigma of 15 ppm

44



 

Frequency Offset
10 KHz 100 KHz 1 MHz 10 MHz

 

 

P
h

as
e 

N
o

is
e 

(d
B

c/
H

z)

-160

-150

-140

-130

-120

-110

-100

-90

-80

-70

-170

Figure 2.26: Reference VCO phase noise measurements after CML divide-by-8 di-
vider.

is extracted. This noise value is very close to the 13 ppm predicted by previously

discussed system simulations, indicating that the comparator noise is most likely

currently limiting the system performance.

2.3.5.2 Sensor Calibration

As previously described in the Fig. 2.14 flowchart, the MUT is deposited on the

sensor and the corresponding frequency shift is measured to determine the permittiv-

ity. Due to process variations, system offset, and KV CO mismatches, the relationship

between frequency shift and permittivity has to be calibrated for stable and accurate

measurements. While (2.19) predicts an ideally linear shift in frequency with MUT

ε′r, the use of a higher order polynomial function allows additional degrees of freedom

to calibrate for items such as KV CO mismatches. A quadratic equation is used to
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describe the frequency shift in megahertz as a function of the permittivity [1]:

∆f = a (ε′r − 1)
2

+ b (ε′r − 1) + c, (2.20)
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where a, b and c are the calibration constants. Note that the constant c represents

the system offset mentioned in 2.3.1.2. Three calibration materials are required to

determine these constants. In this work, air, pure ethanol, and pure methanol are

used as calibration materials whose ε′r at the testing frequency (10.4 GHz) are 1,

4.44–j2.12 (tanδ = 0.48), and 7.93–j7.54 (tanδ = 0.95), respectively [11]. Depositing

each of these calibration materials on the sensor independently and measuring the

induced frequency shifts allows extraction of a, b and c, which are found to be 0.0162,

19.9046, and 360.0808, respectively. During this calibration process, the comparator

output is digitally filtered by averaging for 100–200 bits in order to ensure stable

measurements. Fig. 2.29 shows how the measured frequency shift ∆f versus ε′r

matches with the calibration curve.
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2.3.5.3 Mixture Characterization and Permittivity Detection

As a proof of concept, the system is used to detect the permittivity of a mixture

of ethanol and methanol with several ratios of q and (1− q), respectively, 0 ≤ q ≤ 1.

Mixture accuracy is ensured by preparation with high volumes using a micropipette

with 1 µL accuracy. For example, with a q of 0.4 and a total volume of 500 µL, 200

µL of pure ethanol is mixed with 300 µL of pure methanol using the micropipette. 20

µL is then taken from the mixture and deposited on top of the sensor for detection.

For this case, the absolute value of the frequency shift is then measured and found

to be 454.45MHz (|∆f − c| = 94.38 MHz). Using (2.20) and the values of a, b and

c, the permittivity is then estimated to be 5.76. Repeating this procedure for other

q values, Fig. 2.30(a) shows the frequency shift values ∆f versus q, and Fig. 2.30(b)

compares the measured ε′r versus q with the theoretical Polder-van Santen mixture
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Figure 2.30: Measurement results of an ethanol–methanol mixture. (a) Frequency
shift versus the concentration of methanol in the mixture. (b) Effective dielectric
constant derived from the measured frequency shifts and compared to the model
with ν = 2 and permittivity percentage error.

model (ν = 2) (2.9). The maximum difference between the measured and theoretical

permittivity is less than 1.5%, as shown in Fig. 2.30(b). Note that the maximum

error values are achieved for mixtures with comparable host and guest levels. Higher

accuracy levels are achieved for more extreme ratios, with the sensor able to differen-
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tiate mixture permittivities with fractional volume down to 1%. These measurements

show that the detected permittivities fit quite well to the theoretical values and that

the system can characterize mixtures at a high accuracy level.

Table 2.5 summarizes the performance and compares the results with prior work.

This work achieves a higher level of integration and higher frequency measurement

capabilities relative to the work of [23] and [34–36]. Compared to the system in [1],

the presented fractional-N PLL-based sensor achieves a more than 2× improvement

in permittivity error at comparable power consumption and CMOS integrated circuit

(IC) area.

2.3.5.4 System Accuracy Limitations

Although the measured 15 ppmrms system noise without material application

(Fig. 2.28) converts to a 0.1% rms permittivity value from (2.20), several error

sources contribute to the 1.5% maximum error observed between the measured and

theoretical permittivity values. A discussion of these error sources follows, along

with proposed solutions.

� KVCO mismatch: While system performance is insensitive to KV CO non-

linearity, KV CO mismatch does impact the system error. The use of a higher

order polynomial curve and additional calibration materials can reduce this

error term.

� Temperature dependency: Since permittivity measurements are performed

at room temperature without precise temperature control (while 20 ◦C permit-

tivity values are used in the calibration procedure) any temperature variation

will degrade sensor accuracy. A potential solution for future systems is to em-

ploy an accurate temperature sensor and integrated heater beside the sensing

capacitor for temperature stabilization.
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� Mixing accuracy: It is important to follow standard mixing procedures to

ensure high measurement accuracy levels. Increasing the volumes mixed to

obtain a given ratio can improve this.

� Air/gas bubbles: Any air or gas bubbles present in the material on top of

the sensing capacitor will impact the measured permittivity. A more advanced

microfluidics structure for material dispensing is a potential solution to this

issue.

2.4 Cell Detector Cytometer Prototype

Label free cell detection and characterization has many benefits in early many

medical and research fields. Early detection of cancer can be enhanced by detecting

circulating tumor cells (CTCs). Each cell has certain electric properties depending on

its size, its cytoplasm properties and its membrane properties. A flow cytometer can

be used to differentiate between cells, but it requires high sensitivity and operation at

different frequencies [37–39]. At very low frequencies less than 10 kHz, the membrane

electrical properties (conductivity σmem, real permittivity ε′mem) affects the effective

impedance of the cell. Between 100 kHz and 50 MHz, the average properties of

the cytoplasm (conductivity σp, real relative permittivity ε′p) determine the effective

impedance of the cell. At higher frequencies, the properties of inside of the cytoplasm

affect the effective impedance. One parameter is used to describe the properties of

the cytoplasm of cells is the Clausius–Mossotti factor Kp(f) used in dielectrophoresis

(DEP) to differentiate and identify the cells [40,41]. Kp(f) can be calculated by:

Kp(f) =
(σp − σm) + jω

(
ε′p − ε′m

)
(σp + 2σm) + jω

(
ε′p + 2 ε′m

) ≈ −j (σp/ω) +
(
ε′p − ε′m

)
−j (σp/ω) +

(
ε′p + 2 ε′m

) , (2.21)
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where σm is the conductivity of the medium (σp >> σm ) and ε′m is the real permit-

tivity of the medium (∼ 80 ε0). The material is PBS with enough conductivity to

preserve the cells alive.

A prototype flow cytometer was designed to determine the average properties of

the cytoplasm of the cells to work between 100kHz and 100MHz. The microfluidic

part was designed and fabricated by Po-Jung Huang and Prof. Jun Kameoka in

Electrical and Computer Engineering Department at Texas A&M University, Col-

lege Station. The microfluidic channel passed over two differential electrodes with

separation of 20 µm between adjacent electrodes. The channel has three inlets and

one outlet with 80 µm width, as shown in Fig. 2.31.
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Figure 2.31: Block diagram of the flow cytometer prototype PCB.

The block diagram of the designed printed circuit board (PCB) is shown in

Fig. 2.31. A signal generator is used to excite the electrodes by a sinusoidal sig-

nal and a sensing trans-impedance amplifier (TIA) is used to sense the differential
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admittance and convert the sensed current to voltage. A modulator chip is used to

convert the output of the TIA to baseband in-phase (I) and quadrature (Q) signals

which are filtered and amplified. The amplifier bandwidth is more than 100 MHz,

but the modulator chip can operate till 200 MHz clock (∼ 50 MHz excitation signal).

A 16 bit NI DAQ card is used to interface the I and Q output to be processed by

the computer.

2.4.1 Cytometer Theory
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Figure 2.32: Theory of cytometer (a) Hypothetical block diagram with cell moving
(b) Output of the cytometer after demodulation with time (I and Q outputs)
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Figure 2.33: How to relate flow cytometer output to Clausius–Mossotti Factor Kp(f),
(a) flow cytometer electrodes and TIA, (b) Output and its comparison to Kp(f).

The theoretical base of the operation of the cytometer is measuring the differ-

ential admittance while a cell passes over the differential electrodes. As shown in

Fig. 2.32(a), the output voltage changes while the cell moves from position A to posi-

tion E. The output is the difference between the voltages when the cell is at positions

B and D, as shown in Fig. 2.32(b). The cell is modeled as a sphere with capacitance

(Cp) and conductance (Gp) depending on the size of the cell and cytoplasm real
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permittivity (ε′p) and cytoplasm conductivity (σp), respectively. The surrounding of

the cell is modeled by a tube that is in series the cell with capacitance (β Cm) and

conductance (β Gm) which are proportional to real permittivity (ε′m) and medium

conductivity (σm), respectively, as shown in Fig. 2.32(a). Cm and Gm are the capac-

itance and the conductance of the same relative space of the cell but has medium

electrical properties (ε′m, σm). β is the ratio that between the admittance of the cell

of the in-series medium to the admittance of the cell size but with medium proper-

ties. Therefore, β is only depending on the size of the cell and its position relative

to the electrodes. The differential admittance (∆Y (f)) can be calculated by:

∆Y (f) =
β YpYm

(Yp + β Ym)
− β Ym

(1 + β)
=

β2

(1 + β)
Ym

(Yp − Ym)

(Yp + β Ym)
, (2.22)

Since Yp (Yp = Gp + jωCp) and Ym (Ym = Gm + jωCm) are defined for the same

dimensions:

∆Y (f)

Ym (f)
=

β2

(1 + β)

(σp − σm) + jω
(
ε′p − ε′m

)
(σp + β σm) + jω

(
ε′p + β ε′m

) , (2.23)

∆Y (f)

Ym (f)
≈ β2

(1 + β)

−j (σp/ω) +
(
ε′p − ε′m

)
−j (σp/ω) +

(
ε′p + β ε′m

) , (2.24)

Comparing (2.24) to (2.21), ∆Y (f) has the same profile behavior as Kp(f) but

with β instead of 2 in the denominator. The complex output has same behavior as

Kp(f) but shifted to higher frequencies, as shown in Fig. 2.32(b) since β << 2 .

The output of the TIA VTIA (f) is simply directly proportional to ∆Y (f) and

can be calculated by:

VTIA (f, t) = Vin (f)
Ym0 (f)

YF (f)
β
−j (σp/ω) +

(
ε′p − ε′m

)
−j (σp/ω) +

(
ε′p + β ε′m

)g (t) , (2.25)
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where Vin (f) is the input voltage that excites the flow cytometer, Ym0 (f) = Ym (f) β/ (1 + β)

is the admittance of the medium measured using one electrode which can be found

by calibration process, YF (f) = 1/RF + jωCF is the admittance of the feedback of

TIA where CF is the feedback capacitance and RF is the feedback resistance, and

RF is the function that determines the position of the cell versus time. By measuring

the difference between position B and position D. The complex output at baseband

∆V ∗O (f) (∆V ∗O (f) = ∆V ∗O,I (f) + j∆V ∗O,Q (f)) can be formulated as:

∆V ∗O (f) = 2A0Vin (f) e−jφ
Ym0 (f)

YF (f)
β
−j (σp/ω) +

(
ε′p − ε′m

)
−j (σp/ω) +

(
ε′p + β ε′m

) , (2.26)

where A0 is the gain of the mixer, and is the phase difference between the ex-

citation signal path and the modulator multiplying signal. The gain and phase

are calibrated using capacitive micro-beads to have output ∆VO (f) (∆VO (f) =

∆VO,I (f) + j∆VO,Q (f)) that is directly depending on the properties and calculated

by:

∆VO (f) = β

(
ε′p − ε′m

) (
ε′p + β ε′m

)
+ (σp/ω)2 − j (1 + β) ε′m (σp/ω)

(σp/ω)2 +
(
ε′p + β ε′m

)2 . (2.27)

2.4.2 System Simulations

The purpose of the system simulation of the cytometer is to verify its operation

and to determine the practical Challenges and how to address them. The purpose of

the cytometer system is to determine the electrical properties of the cell (ε′p, σp) to

estimate the Clausius–Mossotti factor Kp(f) variation with frequency using (2.21).

Since the medium electrical properties (ε′m, σm) are known (0.1M PBS solution),

the only unknown parameters in (2.27) are ε′p, σp and β. The parameter (β) is a
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Figure 2.34: Simplified Cell Model in the channel.

scaling geometrical parameter which is nearly directly proportional to the size of the

cell (unknown). To determine these three unknowns, three parameters are required

to be measured by the cytometer for each cell. From (2.27), there are two outputs

per frequency (∆VO,I(f) and ∆VO,Q(f)), but in reality, some of these values are

not accurate enough due to the following issues: 1) phase adjustment and timing

problems, 2) complexity of the dependence of output on cell electrical properties,

3) system noise and errors. To address the phase adjustment problem, one of the

carrier frequencies should be very low frequency (∼ 1MHz) to minimize the effect of

both ε′p and ε′m. As a result, the output voltage has only a real part (∆VO,I(f1M))

which is depending on the size of the cell or (β). This output voltage will be used

as a normalization factor for the outputs at other frequencies to adjust the phase

and gain. For the timing problem, a known micro-bead can be used for gain and

delay calibration. The device is calibrated first and then β is determined using the
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Figure 2.35: Simulink Results and comparison between the extracted output with
the noise and the actual one

measured value ∆VO,I(f1M).

To simplify the relation between the output and cell electrical parameters, the

zero crossing frequency of ∆VO,I(f) or fc,Y and the normalized value of ∆VO,Q(f) at

this frequency which can be easily measured are used to estimate (ε′p, σp). With the

assumption that σp >> σm and ε′p and ε′m are close, (2.27) can be used to estimate

fc,Y and ∆VO,Q(fc,Y ) as follows:

fc,Y ≈
1

2π

√
σ2
p(

ε′m − ε′p
) (
ε′p + β ε′m

) (2.28)

∆VO,Q (fc,Y )

∆VO,I (f1M)
≈ −

√ (
ε′m − ε′p

)(
ε′p + β ε′m

) (2.29)
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Figure 2.36: Real{Kp(f)} using actual parameters and the extracted ones

To minimize the effect of the errors and noise, a simple least mean square (LMS)

method is used on the output data to determine the best quadratic curve that fits the

readings at the four carrier frequencies (other than 1MHz) and it is used to predict

fc,Y and ∆VO,Q(fc,Y ).

A complete system simulation using MATLAB Simulink was built and tested

on different cell sizes and cell parameters. The simulation target is to verify the

above methodology for calibration and noise suppression. The simulation results

are shown in Fig. 2.35, for the case where a = 3 µm, Leff = 10 µm, W = 80 µm,

deff = 14 µm, σm = 0.019 S/m (0.01X PBS), ε′m = 80 ε0, σp = 0.19 S/m (10 times

σm) and ε′p = 60 ε0 defined in Fig. 2.34 with a flow rate= 2 µL/s. The simulation

has five frequencies {1 MHz, 60 MHz, 90 MHz, 110 MHz, 140MHz} to have best

accuracy around expected fc,Y . Noise of the TIA is modeled by a white gaussian
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noise source added to the output of the TIA.

The LPF bandwidth was chosen to be 29 kHz. The results show that the ex-

tracted output from the simulation in the presence of the noise will match well with

the theoretical values output based on direct equations, as shown in Fig. 2.35. This

implies that the extracted parameters will be close to the theoretical ones. A com-

parison between the real part of the Clausius–Mossotti factor Kp(f) using theoretical

parameters and the extracted ones from the simulation is shown in Fig. 2.36.

2.4.3 Measurement Results of Prototype

Figure 2.37: Photo of the prototype PCB.

A prototype was implemented to verify the concept and to have initial infor-
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mation about the biomedical part before the integrated circuit implementation. A

microfluidic was implemented above two sensing electrodes as shown in Fig. 2.37.

The microfluidic structure was bonded directly the board using Aluminum bond-

wires. This board can be used to measure the cell impedance at a single frequency

which is excited externally. Discrete TIA and demodulator are used to down-convert

the signal around the excitation frequency to baseband. A second order LPF with

cutoff frequency 15kHz is used to filter the noise. The board can measure capacitance

up to 500fF with a standard deviation of 0.2fF (∼ 68 dB dynamic range) with input

excitation frequency up to 60 MHz. Initial measurements on the prototype using

two types of cells (cell 1: MCF-7 σp = 1.299 S/m, and cell 2: MDA-MB-231 σp =

1.168 S/m). The in-phase and the quadrature outputs at two frequencies (20MHz

and 30MHz) are shown in Fig. 2.38. The outputs are normalized to 330 fF as a ref-

erence for the measurement. The initial measurements show that the responses are

changing with frequency, and the two cells have different responses. Furthermore, it

is clear from the graph that the variation of reading is small to identify the difference

between the two readings. The error bars show the standard deviation of more than

500 cells.

2.5 Conclusion

The chapter introduces basic concepts of permittivity measurements techniques

and presents the work done for two applications: 1) the integrated circuit high

accuracy permittivity sensor, 2) the PCB-based flow cytometer.

A self-sustained fractional-N PLL-based CMOS sensing system is used for di-

electric constant detection of organic chemicals and their mixtures at precise mi-

crowave frequencies. System sensitivity is improved by employing a reference VCO,

in addition to the sensing VCO, which tracks correlated low-frequency drifts. A
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Figure 2.38: Measurements results where outputs are ratios to a reference capacitance
for MDA-MB-231 and MCF-7 cells (for more than 500 cells).

simple single-step material application measurement procedure is enabled with a

low-complexity bang–bang control loop that samples the difference between the con-

trol voltage with the sensor and reference oscillator in the PLL loop and then adjusts

a fractional frequency divider. Binary mixture characterization of organic chemicals

shows that the system was able to detect mixture permittivities with fractional vol-

ume down to 1%. Overall, the high-level of integration and compact size achieved in

this work makes it suitable for lab-on-chip and point-of-care applications.

A proposed model for modeling the operation of flow cytometer is presented with

a methodology to convert the results of the differential admittance measurements

of the cells to the Clausius–Mossotti factor Kp(f). A prototype PCB-based flow
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cytometer is designed and tested to prove the capability to differentiate different

cells (MDA-MB-231 and MCF-7 cells) using their response when passed through the

microfluidic channel in the flow cytometer.
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3. A WIDEBAND LOW POWER LC-DCO-BASED COMPLEX DIELECTRIC

SPECTROSCOPY SYSTEM IN 0.18 µm CMOS

3.1 Introduction

Broadband dielectric spectroscopy (BDS) studies the dielectric properties of ma-

terials as a function of frequency to describe their types and quantities [42,43]. BDS

enables label-free, non-destructive, and real-time material characterization, which is

a very valuable technique for numerous industrial, biological, and clinical diagnostics

applications. The dielectric properties of materials, expressed by the complex rela-

tive dielectric permittivity (ε∗r , ε′r − jε′′r), vary with frequency from lower than 1

mHz up to higher than 1 THz depending on the type of motion of the particles of the

material. The radio frequency (RF) range is important since it can detect variations

in the material properties down to the cell size and coarse intracellular variations.

This has many biomedical applications such as cells detection [44], antibodies [45] or

bacteria detection [46,47].

Microwave frequencies can achieve higher resolution in determining intracellu-

lar permittivity variations [18, 38, 48]. At these frequencies, many liquid organic

compounds have characteristic permittivity variation with frequency, that can be

used for compound identification [49]. However, today’s BDS instruments are not

portable, very expensive, high power, and require large (100’s of mL) sample volume.

Integrated BDS platforms are highly desirable for many aspects: lower cost, smaller

sample volume of the material under test (MUT), and smaller area of the sensor

which can open new applications for BDS. Additionally, integrated low power BDS

*© 2016 IEEE. Parts of these sections are reprinted, with permission, from M. Elkholy and
K. Entesari, “A Wideband Low Power LC-DCO-Based Complex Dielectric Spectroscopy System in
0.18 µm CMOS,” submitted to IEEE Transactions of Microwave Theory and Techniques in Aug.
2016.
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sensors have the potential to be used in hand-held devices or in emerging internet-

of-things (IoT) applications.

There are two different approaches for measuring the MUT-loaded sensor admit-

tance, namely amplifier-based BDS and oscillator-based BDS. In the amplifier-based

approach, a single-tone voltage excitation signal is applied to the MUT-loaded sen-

sor, and the current signal is measured as an amplitude and phase similar to an

RF receiver front-end [16, 50]. This enables measuring both real (ε′r) and imaginary

(ε′′r) permittivity across a wide frequency range. Because of the complexity of these

systems, their power consumption is very high and they mostly rely on external

high-resolution analog-to-digital converter (ADC) [16, 50]. More importantly, they

usually use an external bulky excitation source (e.g., RF signal generator), because of

the implementation challenges of a fully-integrated on-chip wideband pure sinusoidal

signal source.

On the other hand, oscillator-based BDS platforms are simpler, self-sustained,

and more power efficient [1, 20, 51]. The MUT-loaded sensor loads the oscillator

circuitry and the sensor admittance shifts the frequency and the loop gain of the

oscillator. In [1], the frequency shift due to an on-chip capacitor sensor is measured

as a change in the control voltage of an LC voltage controlled oscillator (VCO)

placed in a phase locked loop (PLL). However, this technique measures only the real

permittivity (ε′r) and suffers from a narrow frequency range because of the LC-VCO.

A wideband complex BDS platform using a ring VCO is proposed in [20]. It uses

an amplitude-locked loop (ALL) technique to measure both ε′r and ε′′r through two

frequency shift measurements. However, the poor phase noise performance of ring

VCOs and the complex measurement procedures dramatically degrades the accuracy

of the BDS system.

To address these challenges, this chapter presents an integrated chemical complex
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dielectric spectroscopy system based on a wide band, low power, low noise LC-

DCO. The proposed BDS system has three dual-band VCO cores to achieve a wide

frequency range (∼ 1-6 GHz). It can measure both ε′r (ω) and ε′′r (ω) accurately

and relies on a differential architecture, using sensor and reference oscillators, and

correlated double sampling (CDS) scheme to minimize the impact of flicker noise and

temperature variations on the sensor precision. The operation of the chemical sensor

is verified by a prototype fabricated using a 0.18µm CMOS technology. The rest

of the chapter is organized as follows: Section II provides the basic concept behind

the proposed system. Section III presents the system analysis of the proposed BDS

system. Section IV discusses the implementation details, while the measurement

results of the prototype are shown in section V. Finally, the key contributions of this

work are summarized in section VI.

3.2 Oscillator-Based Sensors

3.2.1 Capacitive Sensors

Dielectric constant or permittivity is an electrical property of materials that mea-

sures their ability to store electric energy in the presence of electric fields. Therefore,

capacitive sensors are the most suitable to measure permittivity. The admittance

of a parallel plate capacitors Ys (ω) is directly proportional to permittivity and is

calculated by:

Ys (ω) = j ω εo εr (ω)
A

d
, (3.1)

where A is the surface area of the parallel plate, d is separation between plates, ω

is angular frequency, εo is permittivity of free space, and εr is the relative complex

permittivity. Since ε∗r , ε′r − jε′′r , (3.1) can be simplified to:
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Figure 3.1: (a) LC-oscillator schematic where C = Cd+Ct+Cs , G = Gd+Gt+Gs and
r is series resistance of inductor, (b) three stages differential ring-oscillator schematic
where C = Cd + Ct + Cs and G = Gd +Gt +Gs.

Ys (ω) = j ω Cs (ω) +Gs (ω) = εo
A

d

(
j ω ε′r (ω) + ω ε′′r (ω)

)
, (3.2)

where capacitance Cs (ω) is directly proportional to ε′r (ω), and conductance Gs (ω)

is directly proportional to ε′′r (ω). In this work, the admittance Ys (ω) is measured by

loading an integrated oscillator, in order to realize a simple self-sustained low power

chemical sensor.

3.2.2 LC versus Ring Oscillator-Based Sensors

The frequency of an LC-oscillator depends on the value of its inductance and

capacitance. Therefore, the tuning range of LC-oscillators is limited, while the phase

noise performance depends on the quality factor (Q) of the resonating LC network.
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The frequency of LC-oscillator fosc,LC seen in Fig. 3.1(a) can be calculated by:

fosc,LC =
1

2π

√
1

L (Cd + Ct + Cs (fosc))
− r2

L2
, (3.3)

where L is the differential inductance, Ct is the differential capacitance used for

tuning, Cd is the effective differential capacitance of the active devices, Cs (fosc) is

the differential capacitance of the sensor at fosc, and r is the series resistance with

the inductance. The total capacitance is modeled by C = Cd + Ct + Cs, as shown

in Fig. 3.1(a). The total differential conductance G = Gd + Gt + Gs does not affect

the frequency of oscillation, but it affects the loop gain at fosc, where Gd models

the differential conductance of the active devices, and the shunt conductance of the

inductor, Gt models the parasitic differential conductance of the tuning capacitance

with negligible variation, and Gs is the differential conductance of the sensor. The

series resistances with capacitors are not considered since inductor loss is dominant

at the required frequency range. The sensitivity of fosc,LC to Cs is determined by:

∆fosc,LC
fosc,LC

= − ∆Cs (fosc)

2 (Cd + Ct + Cs (fosc))
. (3.4)

Even though the sensitivity of fosc to Cs is relatively low, the signal to noise ratio

(SNR) of the sensor is still high due to the low phase noise of LC-oscillators. In

[1, 18, 51], ε′r (ω) is measured with high precision using an integrated LC-oscillator-

based chemical sensors. However, they operate only in a narrow frequency band, as

increasing the tuning capacitance Ct compared to Cs degrades the sensitivity and

the precision of the sensor.

Ring oscillators can achieve very wide frequency operating range since the fre-

quency varies with the current charging and discharging the capacitors. They also

occupy a compact area, as a result, they are more suitable for sensor arrays than

69



LC except at very high frequency where the size of the inductor is significantly

smaller [52]. In Fig. 3.1(b), a simplified schematic for a differential ring-oscillators

with N delay stages is shown, where each stage has a resistive load and a full steered

current operation [53]. The frequency of oscillation fosc,ring can be expressed as:

fosc,ring =
1

2π

(Gd +Gt +Gs (fosc))

(Cd + Ct + Cs (fosc))
tan

( π
N

)
. (3.5)

Here, Gt is the differential conductance used for frequency tuning with parasitic

differential capacitance. Ct and Gd models the differential conductance of the active

devices. Gt controls the tuning range of the oscillator. The sensitivity of fosc,ring to

Cs, and Gs is calculated by:

∆f

fosc,ring
=

∆Gs (fosc)

(Gd +Gt +Gs (fosc))
− ∆Cs (fosc)

(Cd + Ct + Cs (fosc))
. (3.6)

This illustrates the coupled effect on ring oscillator frequency due to both Cs and

Gs. Based on the fact that the amplitude is mainly depending on the variation of

conductance only, an ALL was proposed by [20] to isolate the change in frequency

due to ∆Gs from ∆Cs. By implementing this procedure, ring oscillators can be

used to determine both ε′r (ω) and ε′′r (ω), but with moderate accuracy. The sensor

has a high sensitivity to Cs, as any small variations in Cs are translated to large

variations in fosc,ring, because Cd and Ct are small and comparable to Cs. However,

ring-oscillators-based chemical sensors have poor signal to noise ratio (SNR) and

relatively poor or moderate precision due to their poor phase noise performance.

Furthermore, they considerably consume high power to operate at high frequencies.

3.2.3 Wideband LC-Oscillators

The frequency of the LC-oscillator can be tuned by changing inductance L or ca-

pacitance Ct as explained by (3.3) and (3.4). In 0.18 µm CMOS process used in this
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work, Ct,max/Ct,min≈ 3.15, and Cd+Cs ≈ Ct,min. Assuming fixed L, fmax/fmin≈ 1.44

(frequency tuning of ± 18 % around center frequency). The ratio of fmax/fmin de-

pends mostly on the technology, since smaller feature size helps to minimize capaci-

tances of the switches and the cross-coupled pair. Therefore, larger tuning range can

be achieved for smaller feature size CMOS technology.

To achieve even wider frequency ranges, there should be a way to change L.

Switched inductors were proposed to have large frequency steps providing wider

tuning ranges, where the frequency in each range is controlled by changing Ct as in

[54]. The main drawback in this topology is the added parasitics of the switch. Switch

series resistance degrades the quality factor of inductor QL and hence considerably

degrades oscillator phase noise. Additionally, switch off-capacitance decreases the

self-resonance frequency of the inductor. Another solution to change the effective

inductance seen by the oscillator is using two or more coupled inductors as seen in

Fig. 3.2. By controlling the current direction flowing in one inductor, the effective

inductance can be L + M or L − M , where L is the self-inductance, and M is

the mutual inductance between the two coupled inductors [55]. Since the trans-

conductors used in this topology have high output resistance, the quality factor does

not degrade.

Since minimizing phase noise is critical to achieving high SNR and minimize

the perturbation of the output frequency reading, coupled inductors with coupled

trans-conductors topology is the most suitable one to widen the frequency range

of LC-oscillators. The oscillator has two modes of operation: low-frequency mode

and high-frequency mode. In low-frequency mode, Gm1 trans-conductor is ON and

Gm2 is OFF, while in high-frequency mode Gm2 is ON and Gm1 is OFF. In each

mode, the tunable capacitance is used to change the frequency in such a way to

have two overlapped ranges of frequency. Assuming (L+M) / (L−M) ≈ 2, the
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Figure 3.2: Dual mode oscillator has two modes of operation: 1) mode 1 for low-
frequency range, 2) mode 2 for high-frequency range.
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Figure 3.3: Model of the dual mode oscillator, where the transformer is replaced
by the self-inductance L, the mutual inductance M , series resistance r and shunt
conductance GL as part of G ( G = GL +Gd +Gt +Gs ).

total frequency range is nearly doubled such that fmax/fmin ≈ 2 (frequency tuning

of ± 34 % around center frequency).

Loop gain of the oscillator changes based on the mode of the oscillator. For a

transformer with L1 = L2 = L, loss of L1 and L2 can be modeled by series resistances
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rL1 and rL2, respectively, (rL1 = rL2 = r), and shunt conductances GL1 and GL1,

respectively, (GL1 = GL2 = GL), modeling the substrate loss for the transformer.

GL1 and GL2 are added to Gd1, Gt1 and Gs1, and Gd2, Gt2 and Gs2 to form G1 and

G2, respectively, and is shown as G in Fig. 3.3 (G1 = G2 = G). The transformer

is modeled by its mutual inductance M in series with the self-inductance L on each

side. Using nodal analysis and superposition, the open loop gain L (s) defined from

vX0 to vX or from vY 0 to vY is calculated by:

L(s) =
sM Gm

(1 + (sL+ r) (sC +Gx))2 − s2M2 (sC +Gx)2 , (3.7)

where Gm is the differential trans-conductance from vX to vY and vice versa, and

Gx = G−Gm0. Gm0 is the differential cross-coupled transconductance at each node

vX and vY . Assuming Gx is negligible and Gm0 ≈ G, the frequency of oscillation is

determined by the Barkhausen condition as:

ωosc =
1√

C (L±M)

√
1± r2C

2M
, (3.8)

and the gain condition for oscillation is satisfied by:

Gm ≥
C r

M

(
1− ω2 LC

)
≈ ±C r

L±M
. (3.9)

From (3.8), the actual frequency of oscillation has two values: one low frequency close

to ωL = 1/
√
C (L+M), and one high frequency close to ωH = 1/

√
C (L−M). The

value of Gm required at ωL is positive, while at ωH is negative with nearly double

the magnitude. Since this oscillator is essentially two coupled oscillators, coupled

in-phase in low-frequency mode and out of phase at high-frequency mode, the phase

noise performance is better than single oscillator by a factor of 3 dB. To cover a

very wide frequency range of 1-6 GHz, three dual-band oscillators were used with
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three different capacitive sensors. The three capacitors are all subjected to the same

MUT, and only one oscillator is working at a time. Since each oscillator has a

different sensitivity, calibration is required to link the results of the three sensors

together.

3.2.4 Proposed System for Complex Permittivity Measurement

DCO
MUT

fMUT
A0

DC0

εεεεr′′′′    ∝∝∝∝    ((((fAIR - fMUT)))) εεεεr″″″″    ∝∝∝∝    ((((ISS0 - ISS2))))
(a) (b)

ISS0

DCO
AIR

fAIR
A0

DC0

ISS1

DCO
MUT

fMUT
A0DC0
ISS0

DCO
AIR

fMUT
A0DC2
ISS2

Figure 3.4: (a) Model for reading ε′r at same input digital control and same amplitude
but different frequencies. (b) Model for reading ε′′r at same frequency and amplitude
but different input digital control.

The proposed system to measure the complex permittivity of MUT is based

on a dual-band LC digitally controlled oscillator (DCO) architecture operating in

an open loop status. Measuring capacitance Cs is indicative to ε′r, and measuring

conductance Gs is indicative to ε′′r . To measure Cs at certain frequency fMUT , two

identical oscillators are used where one of them has the sensor capacitor loaded by

MUT, while the other one is left in the air, as shown in Fig. 3.4(a). DC0 is the

control word for the capacitor bank of the DCO for both oscillators to have fixed Ct

and Cd in (3.3), such that the oscillator with MUT oscillates at fMUT . For better
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stability of the frequency, an ALL is used to have constant amplitude A0 for both

oscillators. From (3.2) and (3.4), ε′r (fMUT ) is calculated at fixed Cd and Ct by:

ε′r (fMUT )− 1 ≈ 2Ctotal
Cs0

(
fAIR − fMUT

fMUT

)
, (3.10)

where fAIR is the frequency of oscillation in the air, while fMUT is the frequency

of oscillation with MUT, Ctotal is the total capacitance to achieve fMUT (Ctotal =

Cd + Ct + Cs0 ε
′
r (fMUT )), Cs0 is the capacitance of the sensor in air.

Measuring conductance using an LC-oscillator is challenging, since it does not

affect the frequency. However, the conductance affects the loop gain of the oscillator

and the amplitude of oscillation. Assuming a current limited region where the am-

plitude is directly proportional to tail current for a single resonance oscillator [30],

the amplitude of differential oscillation (A) can be expressed as:

A ≈ 2

π

ISS
Gd +Gt +Gs +GL,eff

, (3.11)

where ISS is the dc tail current source, GL,eff models the effective differential con-

ductance due to the series resistance of the inductors GL,eff ≈ r Ctotal/ (L±M)

, Gt conductance is mainly due to resistance series with tuning capacitance Ct

(Gt ≈ QC Ct/
√
Ctotal (L±M)) where QC is the effective quality factor of the tun-

ing capacitor, and as mentioned before Gs and Gd are the differential conductance

due to sensor and substrate/ active device, respectively. For a fixed amplitude (A0)

and control setting DC0 as shown in Fig. 3.4(a), the ratio between ISS and total

conductance is fixed. Therefore, any variation in the conductance is translated to a

variation in ISS current determined by:

ISS0 − ISS1 ≈
π

2
A (∆Gs + ∆GL,eff,1 + ∆Gd,1 + ∆Gt,1) . (3.12)
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The variation of ISS does not depend only on ∆Gs but also on ∆GL,eff,1 (∆GL,eff,1 ≈

r∆Cs/ (L±M)), ∆Gd,1 due to substrate loss variation with frequency and ∆Gt,1.

∆GL,eff and ∆Gd,1 are comparable to ∆Gs and need to be calibrated using ∆Cs

found from reading frequency. Another way to enhance the reading with less depen-

dence on ∆Cs reading is to measure the difference in current in a different condition.

In Fig. 3.4(b), digital control DC2 is different form digital control DC0 to achieve

same frequency for both oscillators. The difference in current can be determined by:

ISS0 − ISS2 ≈
π

2
A (∆Gs + ∆Gt,2) . (3.13)

Here, ∆Gt,2 (∆Gt,2 ≈ −QC ∆Ct/
√
Ctotal (L±M)) has less effect on the reading of

∆Gs and can be calibrated by a single time measurement of the oscillator in air.

Therefore, ε′′r (fMUT ) is determined by:

ε′′r (fMUT ) ≈
Gtotal,AIR

2π fMUT Cs0

(
IMUT − IAIR

IAIR

)
, (3.14)

where IAIR is ISS2 for air after ∆Gt,2 calibration, IMUT is ISS0 for MUT and Gtotal,AIR

is the total differential conductance of the oscillator in air (Gtotal,AIR = Gt + Gd +

GL,eff ) . From (3.10) and (3.14), ε′r (fMUT ) and ε′′r (fMUT ) are nearly linear functions

with (fAIR − fMUT ) and (IMUT − IAIR), respectively.

3.3 System Analysis

3.3.1 System Architecture

The proposed spectroscopy system is based on six LC-DCOs (a sensor and ref-

erence for three bands DCO1, DCO2 and DCO3) to support the wide frequency

range operation from 1 GHz to 6 GHz. The proposed block diagram is shown in

Fig. 3.5(a), where there are two DCOs operating on different time intervals. Both
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Figure 3.5: (a) Block diagram of the proposed sensor (the gray area is where the
digital data is processed off-chip) (b) timing diagram showing CDS operation (CDS
implementation is controlled by switches S1, S2 and S3).

oscillators share the same control of the ALL to control the amplitude, while they

have separate capacitor banks to change the frequency independently. Switches S1,

S2 and S3 are used such that only one oscillator is working at a time.

The proposed system consists of two loops: 1) an on-chip ALL loop which is

used to lock the amplitude of the oscillation to A0 (A0 ≈ 1.4Vpp deferentially), and
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2) an off-chip frequency-locked loop (FLL) to adjust the digital controls DCSEN and

DCREF controlling sensing and reference oscillators, respectively. The FLL is required

to lock the sensing oscillator to fMUT using the frequency controlled word (FCW).

The output DCSEN which is saved as DC0 applied to both sensor and reference

oscillators during ε′r measurement. The FLL is enabled again to lock the reference

oscillator to fMUT with the output DCREF is saved as DC2. During, ε′′r measurement,

DCSEN = DC0 and DCREF = DC2.

In Fig. 3.5(a), a 32-bit on-chip frequency-to-digital converter (FDC) is used to

convert the frequency of its input clock to a digital word using a high-speed counter

and a sampler with reading NF as a digital stream updated every sample time TS

(TS = 1/fS). Furthermore, the biasing current to the oscillators is mirrored and fed

to an integrating analog-to-digital converter (ADC) with numeric output as NI up-

dated every sample TS time . The timing diagram is shown in Fig. 3.5(b), where the

final readings are DF and DI proportional to ε′r (fMUT ) and ε′′r (fMUT ), respectively.

The outputs DF and DI are calculated using correlated double sampling (CDS) to

minimize the effect of flicker noise and drifts.

3.3.2 Sensitivity and Correlated Double Sampling (CDS)

The sensitivity of the sensor is defined by the minimum detectable variation in ε′r

and ε′′r . The standard deviation (σf ) of the frequency and the standard deviation of

the current (σi) read by the counters can be calculated by the following equations [56]:

σf =

√√√√√ ∞̂

fmin

Sf (f)
sin2 (π f TS)

(π f TS)2 df, (3.15)

σi =

√√√√√ ∞̂

fmin

Si (f)
sin2 (π f TS)

(π f TS)2 df, (3.16)
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where Sf (f) is the power spectral density of frequency fluctuations, Si (f) is the

power spectral density of the DCO dc biasing current and fmin is the minimum

frequency for integration which is the inverse of the observation interval (Tobs). LC-

based open loop oscillators have low phase noise where they can achieve high sensi-

tivity in measuring ε′r.

The sensitivity of measuring the bias current of the oscillator is affected by all the

elements that contribute to the circuit bias current and the reference current used

in the current ADC. Since Flicker noise dominates the noise at low frequencies, σf

and σi are determined by flicker 1/f noise behavior. Both σf and σi increase with

Tobs due to the nature of flicker noise, therefore, Tobs should be limited and fixed for

comparison. To enhance the sensitivity of the sensor, the impact of flicker noise has

to be mitigated.

The most effective methods to minimize flicker noise are chopping and CDS. CDS

is preferable in this system since it is inherently a sampled system. LC oscillators

have different noise sources contributing to phase noise and amplitude noise. Phase

noise is translated to an error in ε′r, while amplitude noise is translated to an error

in ε′′r . The LC tank and the cross-coupled devices are replicated for each oscillator

(DCOSEN and DCOREF) and their noise cannot be canceled by CDS. Due to the

difficulty of having a switch with very low resistance and small capacitance, a switch

between the sensor with MUT and a sensor in the air was avoided. Using a technology

with a smaller feature size, a direct switch at the sensor can be designed to minimize

the flicker noise. In Fig. 3.5, CDS is designed to cancel all noise sources except

the noise due to the core of the oscillators. The dominant source of flicker noise is

the peak detector that senses the amplitude of oscillation since the size of the peak

detector transistors should be small to avoid adding extra capacitance loading the

oscillators.
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Behavioral modeling of the oscillator can help to simulate the transfer function

of noise sources with and without CDS, as shown in Fig. 3.6. The oscillator tank

is modeled as a shunt R-C circuit, where the dc voltage on this shunt R-C repre-

sents the oscillator amplitude. The value of the shunt resistance can be modeled

as Rshunt = 1/πG to determine the single-ended amplitude at dc as A = Ibias/πG.

Cshunt is adjusted to have bandwidth fosc/2Q. Since the highest contributor of flicker

noise in LC-DCOs is the AM-FM conversion of amplitude noise to phase noise, the

model is based on finding the amplitude noise and use df/dA factor extracted from

measurements, shown in Fig. 3.7, when ALL is off. An integrator with a sample and

hold is used to model the change from frequency to phase where edges are counted.

This model can predict the noise in the frequency reading accurately, while avoiding

the high frequency oscillation to have faster simulation time. The ALL circuit is sim-

ulated using its transistor-level implementation since it does not have high frequency

signals.

Noise sources that do not affect the amplitude at low frequencies are not modeled

to have faster simulation time by not including the transitions at fosc. Furthermore,

their effect on phase noise at frequency shifts less than 1 kHz can be neglected.

Noise sources nmb1 and nmb2 (modeling the noise of cross-coupled device and the

biasing transistor of the DCO) do not affect the noise of the frequency since they

are divided by the loop gain of the preceding lossy integrator. nALL (modeling input

referred noise of ALL circuit) is the dominant noise source to affect the frequency

reading where peak detector small devices cause higher flicker noise at peak detector

input. Transient noise analysis is used for simulating 2,200 samples with a sample

rate (fS = 10 Hz) to validate the effect of CDS on frequency reading, as shown in

Fig. 3.8. The frequency noise with CDS is nearly half of the frequency noise without

CDS. Additionally, CDS has the ability to cancel any low frequency variations such
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Figure 3.7: The measured relation between bias current and frequency shifts from
fo when ALL is off.

as temperature and humidity drifts. The simulated σf with CDS is about 0.28 ppm

which is slightly lower than the measured σf (∼ 2.1 ppm) due to the inaccuracy of

flicker noise models and the estimated AM-FM df/dA conversion factor.

3.3.3 Selectivity of the Sensor

The selectivity of LC based sensors can be enhanced by minimizing the effect

of ε′′r on ε′r reading, and vice-versa. From (3.3) frequency is independent on Gs to

the first order, but the frequency is affected by ε′′ as a secondary effect due to the
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variation of the oscillation frequency with oscillation amplitude. This phenomenon

is called AM-FM conversion due to the variation of the average capacitance with

amplitude [30]. To minimize this effect, the analog controlled varactors are replaced

by digitally controlled varactors, and an ALL is used to fix the amplitude of both

readings in air and with the material. Therefore, the reading of ε′ is the frequency

difference between an oscillator with MUT and another oscillator in air for the same

control word and the same amplitude.

Minimizing the effect of ε′r on ε′′r reading is challenging since the losses of the

inductor and the tuning capacitor are functions of the frequency of oscillation which

varies with ε′r. To solve this issue, the tuning capacitance is used to compensate the

effect of ε′r on the frequency by providing fixed frequency for the oscillator with MUT

and the oscillator in air. For compensating the effect of the change of the tuning
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capacitor on loss, a lookup table is used to determine increased bias current due to

changing tuning capacitor (∆Icorr). This value should be added to the difference

between the bias current of the oscillator with MUT and oscillator in air.

Another source of the interference between ε′r and ε′′r readings is the series resis-

tance of the sensor. If the sensor has a series resistance (rs) and assuming rsGs << 1,

the admittance of the sensor (Ys) can be calculated by:

Ys (ω) = j ω Ceff +Geff ≈
j ω Cs +Gs

1 + 2 rsGs + r2
sω

2C2
s

, (3.17)

where Geff is the effective conductance of the sensor with rs, and Ceff is the effective

capacitance of the sensor with rs. The effect of rs is to couple the reading of ε′r and ε′′r

minimizing the selectivity of the reading. To preserve high selectivity of the sensor,

rs is chosen to be less than 0.5 Ω.

3.4 Circuit Implementation

3.4.1 Sensor Implementation

The capacitive sensor is centered in the chip to make the contact area with MUT

away from the bondwires and pads. The sensor is an interdigitated capacitor, as

shown in Fig. 3.9(a). The capacitor is implemented using the top metal where an

opening in the passivation layer is used to have direct contact of the MUT. The

technology used has six metal layers where the top-metal has 4 µm thickness and

9.94 µm separation from substrate (conductivity ∼ 7.4 S/m). The circuit model of

the sensing capacitor based on electromagnetic (EM) simulation using Sonnet [29]

is shown in in Fig. 3.9(b), where Ls (∼ 40 pH) and rs (∼ 0.4 Ω) model the series

inductance and resistance of the capacitor, respectively, C0 models the direct inter-

digitated capacitance that is not affected by the MUT, Cts models the capacitance

to substrate, Csub models the substrate capacitance, Rsub models the substrate resis-
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Figure 3.9: (a) Layout of the sensing capacitor in DCO1, (b) model of the sensing ca-
pacitors with parameters for DCO1(1-2.2 GHz), DCO2 (1.9-3.4 GHz) and DCO3(3.4-
6.3 GHz)

tance, and Rsubd models the differential substrate resistance. Since there are three

different oscillators for the three different frequency ranges, there is a different sens-

ing capacitor for each oscillator. The parameter of each sensing capacitor is shown

in Fig. 3.9(b), where Cs0 decreases for oscillators working at higher frequencies.

3.4.2 DCO Implementation

Two different oscillators are employed in the sensor architecture shown in Fig. 3.5(a):

sensing DCO and reference DCO, where only one oscillator is operating at a time.

For measuring ε′r and ε′′r at a certain frequency, there are different bands of operation.

In each band, two oscillators were selected as the sensing DCO and reference DCO

with similar transformers. DCO1, DCO2 and DCO3 are used for Band 1 (0.99 to

2.15 GHz), Band 2 (1.86 to 3.42 GHz) and Band 3 (3.4 to 6.31 GHz), respectively.
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sensing DCO in air, and the frequency bands are defined using EM + post-layout
simulations.

These frequency bands are determined using post layout and EM simulations. The

3D model of the transformers used in the DCOs are shown in Fig. 3.11 with their

parameters extracted from EM simulations, where k is the mutual coupling factor

of the transformer (k = M/L), D1,outer is the outer diameter of the outer inductor,

D1,inner is the inner diameter of the outer inductor, D2,outer is the outer diameter of

the inner inductor, and D2,inner is the inner diameter of the inner inductor. Cmaxand
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Figure 3.11: Schematic of a single DCO.

Cmin are the maximum and minimum capacitances of sensing DCO in air, respec-

tively. The values of L are adjusted for best quality factor (Q) for the transformer

to enhance phase noise and minimize dc power consumption.

The capacitance tuning is implemented using two capacitor banks: 1) coarse

capacitor bank (6 bits) implemented using metal-metal capacitors and series switches,

2) fine capacitor bank (7 bits) implemented using NMOS capacitors in inversion

mode. Due to technology limitation, the frequency ranges at Bands 2 and 3 are

less than Band 1, because of the smaller capacitor bank. Each oscillator is biased

using a different tail current source to bias Gm0, Gm1 and Gm2 in Fig. 3.11. Gm0
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and Gm1 have the same size and biasing current, while Gm2 has double the size and

biasing current for the increased loss in the higher frequency mode (3.9). The current

consumption of the oscillator ranges from 2 mA to 13mA from 1V supply.

3.4.3 ALL Circuit

ALL circuit has mainly two functions: 1) stabilizing the frequency reading and

minimizing the effect of ε′′r on ε′r reading, 2) locking the amplitude to preserve fixed

relation between the biasing current and the measured conductance. Fig. 3.5 shows

the schematic of the ALL circuit including three blocks: 1) CDS switches (S1and S3)

to select sensing oscillator or reference oscillator, 2) peak detector block, 3) trans-

conductor Gma with capacitor Ca2 to form an integrator. The peak detector block

is a simple differential pair (M1 and M2) with gates connected to oscillator outputs,

as shown in Fig. 3.12.

Since M1 and M2 devices are loading the oscillator, their sizes should be small.

M1 and M2 pass current when the gate voltage is higher than the source. In this
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case, capacitor Ca1 is charged to the peak value of the gate minus the threshold

voltage. To eliminate the effect of the process and temperature variations, a replica

cell of the peak detector is used (M3 and M4) where the amplitude information is the

difference between vpd and vpdcm. Since the amplitude is required to be compared to

a value for feedback loop, the value is set implicitly using the dc voltage of the gates

of the peak detector where the setting value should be the difference between vbg (∼

850 mV) and vrefA (∼ 690 mV). The ALL forces vpd and vpdcm to be equal (∼ 390

mV) which is low enough to use PMOS transistors (M5 and M6) as Gma inputs. The

dominant pole of the ALL is determined by the output resistance of Gma and Ca2(∼

50 pF) acting as an integrator with zero gain at Gma/Ca2 = ωint angular frequency.

The loop stability is controlled by lowering Gma such that the unity gain frequency

is far less than the non-dominant poles with settling time of 2µs.

3.4.4 Frequency to Digital Converter (FDC) and Dividers

The FDC is a 32-bits synchronous frequency counter, shown in Fig. 3.13(a),

where the input clock (fCLK) triggers the two least significant bits (LSBs), fCLK/4

triggers the following six bits and fCLK/256 triggers the rest of the bits. The output

of the 32-bits counter is sampled by fS and saved in a 32-bits register. Since the

maximum input frequency to the counter is limited by the technology to 1 GHz, the

output frequency of the DCO needs to be divided to be in the operating range of the

counter. Furthermore, the output of the DCO has to be converted from differential

to CMOS level such that it can clock the CMOS counter. Since there are three

oscillators with different frequency bands, dividers and buffers are designed for each

band, as shown in Fig. 3.13(b). For band 1, a buffer is connected directly to the

DCO1 converting the differential signal to CMOS rail to rail single-ended output.

The buffer has two inverters biased in their high gain point where the oscillator
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Figure 3.13: (a) Block diagram of the synchronous counter, (b) block diagram of
dividers and buffers configurations for all bands, (c) schematic of ILFD for DCO3

based on three stages ring-oscillator.

output is ac-coupled at the input of the inverters. The buffer is followed by a divider

by 2 for the lower frequency range or by 4 for the higher frequency range. The

measured power consumption of the buffer, the counters and the clock distribution

is 5-6 mW from 1.65V supply.

For the second frequency band, the oscillator is followed by a current mode logic

(CML) divider by two which is followed by a buffer same as the first frequency band.
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The CML divider is directly connected to the oscillator with dc power consumption

of 2.1 mW from 1 V dc supply. For the third band, DCO3 is followed by an injection

locking frequency divider (ILFD) to divide the frequency by 2 to lower the current

consumption required by a divider at this high frequency for 0.18µm technology.

The ILFD is a simple three stages differential ring oscillator with programmable

load resistance RD (2 bits), as shown in Fig. 3.13(c) [57]. Ring oscillators have

small area and wide injection locking range. The power consumption of ILFD is

configurable using RD setting from 1.1 mW to 2.1 mW using 1 V dc supply. The

input clock is injected deferentially to two stages using ac-coupling, while the third

stage is connected to ground, where the ring oscillator is tuned to oscillate at half

the input frequency.

3.4.5 Current Integrating ADC

The current ADC has to be linear and low noise with a low power consumption.

Since the speed is not critical for the ADC, integrating ADC was the most appropriate

topology. The current is compared to a reference current Iref (∼ 200 µA) and

converted to a pulse width modulated (PWM) signal where the width of the pulse

is proportional to Iin/Iref . The sampling rate of the PWM signal TOUT is controlled

by an external clock (fsi ∼ 8-10 MHz). The schematic of the integrating ADC is

shown in Fig. 3.15. Signals SN1 and SN2 are used to control the NMOS switches that

discharge capacitors CA using input current Iin (current drawn by the DCO current

mirror shown in Fig. 3.11), while SP1 and SP2 are used to control the PMOS switches

that charge capacitors CA using reference current . Since Iin ≤ Iref , the charging

time is less than the discharging time and Tcharging = Iin/Iref×Tsi where Tsi = 1/fsi.

The control signals are generated from vM and vN signals, where their voltage levels

are compared to vHIGH and vLOW voltage levels using four comparators, as shown
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in Fig. 3.15. The output signal TOUT controls a counter with clock fCLK (same one

used for measuring frequency), such that the pulse width modulated signal is filtered

and converted to the digital counter reading CRI . NI is the difference between

two consecutive CRI readings, where Iin = NI/NF × Iref . The total dc power

consumption of the ADC is 670 µW without including the counter. The measured

ADC output can be compared to the measured current of the oscillator for maximum

Rb setting (∼ 31) in Fig. 3.11, as shown in Fig. 3.15. The results show good linearity

with a gain difference between HF mode and LF mode. This difference is not critical

since each reading is calibrated at the same frequency and the same mode.

3.5 Measurement Results

The chip is fabricated using 0.18 µm IBM CMOS process with dual supplies

(1 Vdc and 1.65 Vdc). The low supply voltage is used for the DCOs, ILFD and

CML divider. The high supply voltage is used for the digital circuits, the buffers,
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ALL circuit and the integration ADC. The dc power consumption depends on the

frequency and mode of operation (3.5-17 mW) from 1 V dc supply and (4-6 mW) from

1.65 V dc supply. The die photograph is shown in Fig. 3.16. The chip area is 2.4 ×

2.6 mm2 where the dominant area is the area of the transformers and the capacitance

bank of the oscillators. The sensing capacitors from each band are located close to

each other to localize the sensing area. The chip is tested using the PCB in Fig. 3.17.

3.5.1 Electrical Characterization

3.5.1.1 Phase Noise and Frequency Range

The frequency ranges of the oscillators are determined by the three oscillating

bands where each band is divided to lower sub-band and higher sub-band. The phase

noise of the oscillator at 1GHz is measured by spectrum analyzer E4446A, where

fCLK is buffered and measured. The phase noise of DCO1 at minimum frequency

after division by 2 setting (∼ 488 MHz) is measured with ALL “on” and “off”, as

shown in Fig. 3.18. When ALL is on, the phase noise at 1 MHz and 100 kHz offsets

increases due to the added noise of the ALL loop, but the stability of the oscillation

frequency is better as seen at the low-frequency offsets (< 10 kHz).
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Figure 3.18: Phase noise at 488 MHz from lower band of DCO1 after division by 2,
where the blue curve is for ALL “on”, while the red curve if for ALL “off”.

In Fig. 3.19, the oscillator current versus frequency is plotted on a logarithmic

scale in frequency to emphasize the comparison among the three bands. The fre-

quency range has gaps between the lower sub-band and the higher sub-bands in each

band due to higher unexpected values of the transformer coupling factor (k). The

gaps can be avoided by lowering k and using smaller feature size technology to max-

imize the tuning range of the capacitance. The measured frequency gaps are from

1.417-1.53 GHz, 2.543-2.693 GHz, and 4.327-4.684 GHz. The frequency gaps will not

affect the shape of the spectrum, since the variations of ε′r(f) and ε′′r(f) are smooth

relative to these frequency gaps.

The oscillator current of the higher sub-band is nearly double that of the lower

sub-band due to the series resistance of the inductors (3.9). The phase noise at 1

MHz and 100 kHz offset frequencies are shown in Fig. 3.20 where the figure of merit

(FOM) of the oscillators is between 182 dB to 172 dB at 1 MHz offset frequency

while ALL is “on”,
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Figure 3.20: Phase noise at 1 MHz and 100 kHz offset frequencies for the three bands
with ALL “on”.

3.5.1.2 Noise Performance

Since the repeatability of the reading is critical, the frequency reading noise with

a large number of samples is measured. The frequency shift noise is expected to

be relatively low due to the low phase noise performance of LC-oscillators [1, 51].
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Figure 3.21: Frequency shifts of DCOSEN, DCOREF and the difference reading using
CDS in ppm. (fCLK = 515 MHz)

The counters’ readings are sampled by a 4 Hz (TS = 0.25 s) clock limited by the

serial interface speed and they are monitored for 10,000 samples or 41.67 minutes.

For DCOSEN and DCOREF running at 2.06 GHz and counter clock fCLK of 515 MHz

(division = 4), the shift of the frequency with time is shown in ppm (relative to

515 MHz) in Fig. 3.21. The standard deviation of ∆f is 2.1 ppm after using CDS.

CDS helps to cancel the common-mode flicker noise and the drift of the frequency

with time or temperature variations. This variation means the standard deviation

in capacitance reading is 3.6 aF.

Current variations are nearly two order of magnitude higher than frequency vari-

ations due to the low dependence of the frequency on bias current in LC-oscillators.

The current variation of iSEN and iREF for 5,000 samples at 2 Hz (TS = 0.5 s) is

shown versus time in Fig. 3.21. The standard deviation of ∆i is 110 ppm with CDS.
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Figure 3.22: Current shifts of DCOSEN, DCOREF and the difference reading using
CDS in percentage.

Due to this higher noise in measuring current, the error in measuring ε′′r is expected

to be much higher than the error measuring ε′r. This represents the impact of the

circuit noise. Another source of perturbations is the dependence of the material on

temperature fluctuations. Therefore, 10 samples are acquired for each measurement

to enhance the accuracy.

3.5.2 Measurement Using Ethanol-Water Mixture

For measurements of the chemicals, 10 samples are acquired at each frequency and

averaged to enhance accuracy. Ethanol-water mixtures are measured to determine

the capability of the sensor to measure the complex permittivity versus frequency.

In Fig. 3.23, ε′r was measured for ethanol-water mixtures between ethanol 100% to

ethanol 60%. Ethanol 95%, ethanol 75% and ethanol 60% are used for quadratic

calibration of the relation between frequency shifts and ε′r [1]. The error in measure-
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Figure 3.23: ε′ measurement versus frequency for ethanol mixtures between 100%
to 60% with step 5%, where calibration points are ethanol 95%, ethanol 75% and
ethanol 60%.

ments is less than 2% except for ethanol 85% which may be due to the accuracy of

preparation of the mixture. ε′′r is measured for two ethanol-water mixtures: ethanol

85% and ethanol 70%, as shown in Fig. 3.24 (a) and (b) respectively. Air, ethanol

95% and ethanol 60% are used for quadratic calibration to relate dc current shifts to

ε′′r . The worst case error is less than 5%, where the main sources of error are the high

noise in current reading and inaccurate calibrations of the capacitor bank loss. The

capacitor bank fine tuning causes higher losses than expected. At highest frequency

band, the ALL loop fails to lock affecting the accuracy of reading of ε′′r .

3.5.3 Measurement Using PBS

Phosphate-buffered saline (PBS) characterization is critical to determine the con-

ductivity of the medium used for preserving cells. The current shift readings can be

used to determine the conductivity of PBS solutions with different concentrations

ranging from 0.1X PBS to 1X PBS. Since PBS has the same profile of ε′r similar
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Figure 3.24: ε′′r measurement versus frequency for (a) ethanol 85% mixture and (b)
ethanol 70% , where calibration points are air, ethanol 95% and ethanol 60%.

to de-ionized (DI) water, all concentrations have the same frequency shifts. Differ-

ent PBS solutions with different concentrations are measured versus frequency and

their conductivity measurements are used to extract the value of PBS concentration

of each solution using DI water and PBS 1X as calibrating mediums, as depicted

in Fig. 3.25. The PBS 1X (from Thermo Fisher Scientific) with dc conductivity

σPBS,1X ∼ 1.59 ± 0.19 S/m is diluted to different concentrations and the measured

current shifts are used to determine the concentration of the PBS solutions with DI

water and PBS 1X as calibration points. The error increases at higher frequency

bands mainly due to two reasons: 1) the relative difference in total conductivity

between PBS 1X and DI water decreases at higher frequencies since DI water ε′′r

increases at higher frequencies, 2) the accuracy of the ALL degrades at higher fre-

quencies. To verify the variation of the measured total conductivity (σt = σ + ω ε′′r ,

where σ is the conductivity of material) of PBS 1X with frequency, air, ethanol 95%

and DI water are used for calibration to find the total conductivity of PBS 1X, as
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Figure 3.25: Concentration measurement of PBS solutions versus frequency using DI
water and PBS 1X for calibration.

shown in Fig. 3.26.

The measurements results show comparable performance to wide-band spec-

troscopy systems [16, 17, 20] while achieving much lower power consumption. Fur-

thermore, the sensitivity in measuring ε′r in air (based on the standard deviation of

∆f measurements) has comparable accuracy to systems of high accuracy in measur-

ing ε′r only at single frequency [18, 59]. The comparison between the spectroscopy

system with recent literature is shown in Table 3.1. The system can measure complex

permittivity using LC-oscillator with wider frequency range compared to [1], where

CDS is implemented to enhance the sensitivity and stability of sensor reading with

comparable power consumption. The sensor can work at high frequencies with lower

power consumption compared to [16,17,20].
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Figure 3.26: Total conductivity measurement of PBS 1X versus frequency using air,
ethanol 95% and water for calibration.

3.6 Conclusion

A spectroscopy system is proposed using LC-based oscillator capacitive sensing.

The sensor can measure the complex permittivity of different materials including

de-ionized water and PBS at multiple frequencies in the 1-6 GHz range. The system

has a reference oscillator to alleviate the effects of the temperature and drifts using a

correlated double sampling (CDS) technique with 2.1 ppm random noise in frequency

shift reading and 110 ppm in current shift reading. The sensor was tested with

ethanol-water mixtures with different concentrations and achieved a maximum error

of 2% in real permittivity and 5% in imaginary permittivity in 1-3.8 GHz frequency

range.
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4. LOW LOSS INTEGRATED CMOS ELECTRICAL BALANCE DUPLEXERS

4.1 Introduction

The pursuit of higher data rate in wireless communications will continue in the

future to meet the ever increasing demands. The 3rd Generation Partnership Project

(3GPP) standard has increased the number of frequency bands [60], where the multi-

band operation is an essential requirement for all commercial cellular handsets. A

frequency division duplexing (FDD) scheme is commonly used in 3G and 4G-FDD

cellular handsets, such that the transmitter (TX) and the receiver (RX) are working

simultaneously but in different frequency bands. The necessity to share the antenna

between TX and RX urges the need for a duplexer to isolate between the transmit

and receive paths. Conventionally, a surface acoustic wave (SAW) duplexer is used,

because of its high isolation. With the increased number of bands, the RF front end

complexity scaled significantly as shown in Fig. 4.1(a). Each band has a dedicated

tuned SAW duplexer, a power amplifier (PA), and a low noise amplifier (LNA). As

the number of supported bands increases, the cost of the tuned SAW duplexers can

surpass the transceiver IC cost. Furthermore, the significant area allocated for the

multiple SAW duplexers can limit the form factor of the cellular handset.

Different approaches have been demonstrated to address the aforementioned chal-

lenges. The first approach replaces SAW duplexers with bulk acoustic wave (BAW)

duplexers [61, 62], because of their smaller size and lower temperature sensitivity.

*© 2016 IEEE. Parts of sections are reprinted, with permission, from M. Elkholy, M. Mikhemar,
H. Darabi and K. Entesari, “Low-Loss Integrated Passive CMOS Electrical Balance Duplexers With
Single-Ended LNA,” in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 5,
pp. 1544-1559, May 2016.

*© 2014 IEEE. Parts of sections are reprinted, with permission, from M. Elkholy, M. Mikhemar,
H. Darabi and K. Entesari, “A 1.6-2.2GHz 23dBm low loss integrated CMOS duplexer”, Proceedings
of the IEEE 2014 Custom Integrated Circuits Conference, San Jose, CA, 2014, pp. 1-4.
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Figure 4.1: (a) Conventional FDD solution using multiple SAW duplexers , (b)
Integrated FDD solution using tunable on-chip duplexer.

However, BAW duplexers are more expensive than SAW duplexers, so this approach

does not resolve the cost challenge, even though the BAW cost is expected to de-

crease in the future by the advancements in BAW technology. A second approach

relies on dual-band duplexers by combining two duplexers into a one to cut cost and

area by a factor of two [63, 64]. However, the increased insertion loss of dual-band

duplexers limits the performance.

A completely different approach relies on a tunable integrated duplexer with a

wideband RX and a wideband PA, as shown in Fig. 4.1(b). This approach is con-

sidered optimal in terms of flexibility, cost, and area, but its implementation is very

challenging. In the last decade, there were significant research efforts to develop

a wideband SAW-less RX with a low noise figure (NF ) and a high linearity per-

formance as demonstrated in [65, 66]. A multi-mode multi-band PA with a highly

promising performance is demonstrated in [67]. However, designing a wideband tun-

able duplexer with acceptable performance is an extreme challenge and is considered

the bottleneck of this wideband approach.

A tunable duplexer can be implemented as a tunable lumped LC or a microstrip
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filter [68–70], but the TX-RX isolation is usually limited (∼20dB). The performance

of the duplexer is usually improved as the TX-RX frequency separation is increased,

for example, UMTS-FDD band I. Furthermore, a cancellation circuit can be used to

enhance the total isolation in a receiver architecture with TX leakage suppression as

presented in [71,72]. A wideband or a tunable circulator can also be used to provide

about 20dB basic isolation, in conjunction with a TX cancellation circuit to cancel

the residual TX signal at the LNA input [73, 74]. This approach usually has a low

insertion loss that improves the total efficiency of the PA. However, the impedance

mismatches at the antenna is considered a major drawback of this approach. The

tunable duplexers mentioned above are not fully integrated, since LC filtering needs

very high quality factor off-chip inductors, while circulators are bulky especially for

wideband operation and cannot be integrated.

A fully integrated duplexer was first reported in [75]. It is based on an electrical

balance between two paths in order to cancel the TX signal at the RX input. The

electrical balance duplexer (EBD) relies on a hybrid auto-transformer to separate

between TX and RX signals. An enhanced version was proposed later in [76] to

enable a wider bandwidth operation, while achieving high isolation close to SAW

duplexers. However, it could not support high power operation, because the PA

signal appears as common-mode at the input of a differential LNA, degrading its

linearity performance. To support higher TX power levels, a fully differential EBD

was proposed in [77, 78]. Nevertheless, the drawback of this differential solution is

the added balun at the antenna port which considerably increases the insertion loss

of the duplexer.

This chapter presents a fully integrated tunable duplexer with a single-ended

LNA that can handle high power operation up to 22 dBm. It is based on a cross-

connected transformer topology without the need of any extra balun at the antenna.
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The operation of the duplexer is verified by a prototype fabricated using a 0.18µm

CMOS technology [79]. The rest of the chapter is organized as follows: Section 4.2

provides an overview of electrical balance duplexers (EBDs). Section 4.3 presents

the proposed EBD architecture followed by a comprehensive analysis of its insertion

loss and noise performance. Section 4.4 discusses the implementation details of the

prototype EBD, while the measurement results of the prototype are shown in section

4.5. Finally, the key contributions of this work are summarized in section 4.6.

4.2 Passive Integrated EBDs

4.2.1 Reciprocity Concept

The main functionality of a duplexer is to deliver the TX power from the power

amplifier (PA) to the antenna (ANT) and to deliver the RX power from the ANT

to the low noise amplifier (LNA) at the same time. For a 3-port passive matched

duplexer, the duplexer S-matrix can be described by:

S3p,ideal =


0 1 e−jθ 0

0 0 1 e−jγ

1 e−jθ 0 0

 (4.1)

where ANT is port 1, TX is port 2 and RX is port 3, θ, γ and φ and are the

phase shifts due to the delays in the different paths of the duplexer. In this case, the

S-matrix is non-reciprocal, since the S-matrix for reciprocal materials should have

elements Snm = Smn (m6=n) [80]. On the other hand, all passive integrated elements

such as resistors, capacitors and inductors are reciprocal by nature, since they are

made of isotropic materials. The ideal duplexer can be built using ferrite materials

which have different permeabilities depending on the direction of propagation. This

property is used to build circulators to circulate the RF power as seen in Fig. 4.2(a).
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Figure 4.2: RF duplexer using (a) a circulator, and (b) an electrical balance.

Circulators are extensively used in base stations, but they are bulky and require

strong magnetic fields. Furthermore, circulators usually have narrow bandwidth [81].

In practice, circulators cannot achieve very high isolation between the TX and RX

signals, since any reflection at the ANT port will be considered as received signal

from the antenna. Thus, the isolation is simply the return loss (RL) at the ANT

port of the circulator.

Since a lossless passive wideband on-chip 3-port duplexer cannot be realized due

to the reciprocity condition, the 3-port passive duplexer has to be lossy. This inherent

loss affects both the TX insertion loss (TXIL) and the noise figure (NF ). Another

configuration of this lossy duplexer has four ports, where the added port is used

to model the loss simplifying the analysis by dealing with 4-port lossless passive S-

matrix [82]. This extra port is called the balance (BAL) port as seen in Fig. 4.2(b).
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Figure 4.3: Anti-symmetric directional coupler emulated by (a) a hybrid transformer,
and (b) a cross-connected transformer.
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Figure 4.4: Single component emulation of anti-symmetric directional coupler with
one floating port using (a) a center-tapped inductor, and (b) a single transformer.
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4.2.2 Four-Port Reciprocal Duplexers

The main concept behind this type of duplexers is to divide the TX power between

the ANT and the BAL ports with certain ratio r defined as the ratio of the TX signal

power delivered to the ANT port divided by the TX signal power delivered to the

BAL port. The scattering matrix of the 4-port passive lossless duplexer in Fig. 4.2(b)

is defined by [83]:

S4p,ideal =
1√

1 + r



0
√

re−jθ 1 e−jγ 0

√
re−jθ 0 0 1e−jγ

1e−jγ 0 0
√

re−jβ

0 1e−jφ
√

re−jβ 0


, (4.2)

where ANT is port 1, TX is port 2, RX is port 3 and BAL is port 4, θ, γ, φ and β

are the phase shifts due to the delays in different paths of the duplexer. To satisfy

the condition for a lossless passive scattering network, the phases should be related

as follows [80]:

(θ − φ) + (β − γ) = (2n1 + 1) π, (4.3)

where n1 is any integer number. If there is a reflection at the ANT port (ΓANT 6= 0),

a reflected TX signal at the BAL port is needed in order to cancel TX signal at the

RX port, as shown in Fig. 4.2(b), satisfying the following condition:

(
ΓANT

√
r e−jθ

)
e−jγ +

(
ΓBAL e

−jφ) √r e−jβ = 0. (4.4)

By applying eq. (4.3) to eq.(4.4):

ΓBAL = ΓANT e
j2(β−γ). (4.5)
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For this reason, this type of duplexers is called electrical balance duplexers (EBDs),

since the concept of isolation is based on balancing two paths TX-ANT-RX and

TX-BAL-RX to cancel each other.

The well-known directional coupler (DC) can be used as a 4-port EBD, since it

has two pairs of conjugate ports. Conjugate ports are two port that are completely

isolated from each other where Snm = Smn = 0 (m 6= n). Two types of directional

couplers can be used as 4-port EBDs: i) the symmetric one (S12 = S34, S13 = S24),

ii) the anti-symmetric one or magic-T, ((S12 = −S34, S13 = S24) or (S12 = S34,

S13 = −S24)). Lumped element circuits can be used to emulate the anti-symmetric

DC, as shown in Fig. 4.3, namely a hybrid transformer and a cross-connected trans-

former [84]. This can be further simplified using one floating port, as illustrated in

Fig. 4.4. These two circuits will be studied to determine the pros and cons of possible

configurations of passive EBDs. The scattering matrix of the symmetric one can be

formulated as:

SDC,sym =
e−jθ√
1 + r



0
√

r ±j 0

√
r 0 0 ±j

±j 0 0
√

r

0 ±j
√

r 0


. (4.6)

In this case, the RX signal in ANT-RX path has an extra phase shift of ±π/2

relative to ANT-TX path. Furthermore, β − γ = ±π/2, and ΓBAL = −ΓANT . The

scattering matrix of the anti-symmetric DC is given by:

SDC,sym =
e−jθ√
1 + r



0
√

r 1 0

√
r 0 0 ±1

1 0 0 ∓
√

r

0 ±1 ∓
√

r 0


. (4.7)
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In the anti-symmetric S-matrix, β − γ = ±π or 0, and ΓBAL = ΓANT . Also, there is

always a π phase difference between TX-BAL path and RX-BAL path.

Directional couplers are wideband and low loss, but they are bulky and cannot

be integrated. Symmetric DC cannot be easily emulated using integrated lumped

components, since it requires a wideband π/2 phase shifter. However, the opera-

tion of the anti-symmetric DC can be emulated using integrated hybrid [76,77] and

cross-connected transformers as shown in Fig. 4.3(a), (b), respectively. The hybrid

transformer power ratio r depends on the ratio between the inductances from center-

tape point, P2, to ports P1 and P4, while in case of the cross-connected transformer

it is determined by the turn-ratios and the coupling factors of the transformers [85].

In order to simplify the design of the integrated low noise amplifier (LNA), the

RX port is not matched. The port is usually capacitive or open circuit to have

maximum voltage at the input of the LNA. This can be modeled as aRX = bRX ,

where bRX is the reflected wave at RX port and aRX is the incident wave at RX port,

since all the power at the RX port is reflected back. Assuming θ = 0 in (4.7) for

simplicity, the S-matrix of the three remaining ports can be calculated using:


bANT

bTX

bBAL

 =


1

√
r ∓

√
r√

1+r

√
r 0 ∓1

∓
√

r√
1+r

∓1 r√
1+r




aANT

aTX

aBAL

 (4.8)

where aANT , aTX and aBAL refer to the incident (input) waves andbANT , bTX

and bBAL refer to the output waves. From (4.8), ANT and BAL ports are no longer

conjugates and the return loss at the ANT becomes a function of r. In case ΓBAL =

ΓANT , TX and RX ports are conjugate and TXIL is the same for both cases of the

matched and the open circuit RX port.
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4.2.3 Practical Configurations

The hybrid transformer and the cross-connected transformer have two pairs of

terminals called conjugate pairs (P1 − P4 and P2 − P3), as shown in Fig. 4.4. A

conjugate pair forms two terminals that are isolated form each other. Since the EBD

is a 4-port device of paired ports, there will be four different port configurations for

each structure. Due to the symmetry of the structures in Fig. 4.3, only two unique

configurations are available for each transformer structure. As a result, there are two

possible configurations using the hybrid transformer, where the TX and the RX ports

are exchanged, and two possible configurations using a cross-connected transformer,

where the ANT and the BAL ports are exchanged.

4.2.3.1 Floating RX

This is the default EBD configuration reported in [76–78, 86, 87]. As described

in Fig. 4.5, the TX port is the center-tap of the hybrid transformer in Fig. 4.4(a).

To achieve the matching condition (ΓBAL = ΓANT ), the balancing impedance must

satisfy:

ZBAL = r ZANT (4.9)

The TX signal is common-mode for ANT and BAL ports, while the RX signal is the

difference between ANT and BAL ports. Since the ANT and the BAL ports have the

same TX voltage, this duplexer is called voltage-mode EBD. In this configuration,

the RX port can be considered as a floating port between the ANT and the BAL

ports. To eliminate the high voltage common-mode signal, a transformer is used

as difference detector. The receiver insertion loss (RXIL) profile is optimum at

the resonance between L2 and CLNA, while the passband from the TX port to the
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ANT and BAL ports has a low-pass response. This circuit achieves low transmitter

insertion loss (TXIL), since the PA is directly connected to the antenna, but it has

two main drawbacks: i) the RX signal is attenuated due to transformer coupling loss

from the ANT port to the LNA, ii) the common-mode TX signal at the input of

the LNA is relatively large due to the capacitive coupling of the transformer, where

the attenuation or common-mode rejection ratio (CMRR) depends on the parasitic

coupling capacitance (CC). The CMRR can be calculated using:

CMRR = 20 log10

(
CC
CLNA

)
(4.10)

PA

ZBAL= r ZANT

2CLNA

VRX

VBAL

VTX

ZANT

L2

VRX ∝ (VANT -VBAL)

2CLNAi

i
r

L1r+1
1

L1r+1
r

VANT

LNA

CC

Figure 4.5: An EBD with a floating RX port (voltage-mode EBD) [82].

The second drawback was addressed in [77, 78] using a fully differential version

of this duplexer. However, this necessitates adding an extra balun at the ANT port.

This extra balun degraded TXIL + RXIL by 1-2 dB. Another solution is recently
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proposed in [87] by grounding one side of secondary winding, where a single-ended

LNA is used instead of the differential LNA. The effect of coupling CC is canceled

at RX port by extra capacitance parallel to ZBAL.

4.2.3.2 Floating TX

Another duplexer configuration is realized by exchanging the PA and the LNA of

the first configuration as shown in Fig. 4.6. The difference between ANT and BAL

voltages is proportional to the TX voltage, while the TX port is floating. Unlike the

floating RX configuration, where ANT and BAL ports have the same voltage, the

floating TX configuration is characterized by a TX current flowing through ANT and

BAL ports with the same magnitude but opposite direction, as seen in Fig. 4.6. Thus,

this circuit is called a current-mode EBD. Since the PA and LNA were exchanged in

this configuration, the transfer function from TX to ANT will be a band-pass around

the resonance frequency of L2 and CPA, while the transfer function from ANT to RX

will be a low-pass. By applying ΓBAL = ΓANT , the condition for TX-RX isolation is

given by:

ZBAL = ZANT /r (4.11)

Since the two impedances ZBAL and ZANT have the same TX current (i), then the

voltage at the balance impedance VBAL = −i ZBAL= −i ZANT/r, while the voltage

at the antenna VANT = i ZANT . This means VBAL = −VANT/r. This is an advantage

in this configuration, since the balancing network has a lower voltage. The lower

voltage VBAL means simpler switch design in ZBAL compared to the floating RX

configuration . Another advantage of this configuration, when used with on-chip

power amplifiers, is the ability to merge the transformer with the power combiner

of the PA to decrease the losses in the transformer. On the other hand, the main
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ZBAL= ZANT /r

k

2CPA

VTX

VBAL

VRX

ZANT

L2

2CPAi

L1r+1
r

L1r+1
1

VANT

LNA PA

VRX = VANTr+1
1 VBALr+1

r+

i

Figure 4.6: An EBD with a floating TX port (current-mode EBD).

drawbacks of this circuit are the higher TXIL due to the coupling losses of the

transformer and the higher NF due to increased LNA noise. The increase in the

NF is due to the low voltage RX signal at the LNA input, which causes higher effect

of LNA noise on the total NF .

4.2.3.3 Floating ANT

This configuration is different from the previous configurations, since it is based

on emulating an anti-symmetric directional coupler by a cross-connected transformer

(see Fig. 4.4(b)) instead of the hybrid transformer. The PA is connected to the input

port, while the LNA is connected to the isolated port, as shown in Fig. 4.7. Because

of the orientation of the antenna relative to the RX port, the RX signal has an

extra π phase shift. Since ZBAL and ZANT have the same TX voltage, then they are

related by ZBAL = r ZANT to satisfy the TX-RX isolation condition. Consequently,
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PA

LNA

k

CLNA

VRX

VRX= -VANT + i ZBAL/r 

ZANT

VTX

r:(r+1)

ZBAL = 
r ZANT

VANT=i ZANT
ir

r+1
L1

L2

r
i

i

VBAL

i

i1:1

Figure 4.7: An EBD with a floating ANT port. The antenna in nature is relative to
ground, thus a balun is required between the antenna and the duplexer.

this circuit has the same balancing condition as the floating RX configuration in

Fig. 4.5. In this circuit, r depends on the turn ratio of the transformer connected

to the TX port and the coupling factor k of this transformer [84, 85]. A second

transformer with (1 : 1) ratio is required to convert the single-ended voltage across

the ANT port to a floating voltage and vice-versa. This added transformer degrades

both TXIL and NF and limits the use of this configuration.

4.3 Proposed EBD with Floating ZBAL

4.3.1 Floating ZBAL Configuration

Based on the cross-connected transformer topology, a fourth configuration is re-

alized in this work. By swapping ANT and BAL ports of the third configuration,

the BAL port will be floating with no need for a balun. The proposed circuit, shown

in Fig. 4.8, employs a floating ZBAL to ensure wideband operation. The condition
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of the isolation is defined by ZBAL = r ZANT . The proposed circuit has four main

advantages: i) there is no common-mode TX signal at the input of the single-ended

LNA. Consequently, this duplexer can support higher power operation without com-

promising the LNA linearity performance, ii) a relatively large voltage RX signal is

achieved at the LNA input minimizing the effect of the LNA noise on the total NF ,

iii) the ANT port is directly connected to the TX port, since there is nearly no TX

voltage drop across the transformer between the two ports, iv) there is a direct path

between ANT port and RX port through ZBAL without degradation due to trans-

former coupling loss. However, these advantages come at the cost of the increased

design complexity. First, the balance ratio r in this configuration depends on the

coupling factor of the transformer (k), which can be alleviated using accurate elec-

tromagnetic (EM) simulation of the transformer to determine r. Additionally, the

design of a tunable floating balancing network ZBAL that supports high power oper-

ation is very challenging. This issue will be addressed in detail in sub sections 4.4.3

and 4.4.4.

4.3.2 TXIL and RXIL Analysis

The insertion loss of duplexers is very crucial since it highly affects the total

power efficiency of the transmitter and the sensitivity of the receiver. For ideal

lossless passive EBDs (Fig. 4.2(b)), the TX power is divided between the ANT and

BAL ports and RX power is divided between BAL and ANT ports. Thus, TXIL

and RXIL can be determined by:

TXIL = −10 log10

(
PTX−ANT
PTX

)
= 10 log10

(
r + 1

r

)
(4.12)

RXIL = −10 log10

(
PRX−ANT
PRX

)
= 10 log10 (r + 1) (4.13)
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i
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Figure 4.8: The proposed EBD with a floating balancing network (BAL) port alle-
viates the problem of common-mode TX signal at LNA input in [76].

Transformer loss effect is not accounted in (4.12) and (4.13), since they describe

TXIL and RXIL of a lossless passive 4-port EBDs. Transformer loss affects TXIL

and RXIL of the four aforementioned configurations differently. The TXIL and

RXIL of the proposed configuration (Fig. 4.8) are analyzed and compared to the

first configuration depicted in Fig. 4.5. In both configurations, the transformer is

replaced by its equivalent circuit model, which is an ideal transformer with parasitic

self-inductances and resistances, as shown in Fig. 4.9. Since the TX and RX ports are

conjugate, the RX port is set as a short circuit without affecting TXIL to simplify

the analysis. TXIL of the first and fourth configurations are given by:

TXILC1 = 10 log10

(
1 + r + r1/R

r

)
(4.14)
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Figure 4.9: (a) First configuration (floating RX) and (b) Forth configuration (floating
ZBAL), where the transformer is replaced by its equivalent circuit (Q2 = ω0 L2/r2).
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TXILC4 = 10 log10

(
1 + r

r ρ2

)
(4.15)

where

1

ρ2
=

(
1 +

r1 (1 + r) + ω0 L2/ (1 + r)Q2

r R

)
(4.16)

and r1 is a series resistances to model the loss in primary L1, while Q2 models loss

of secondary turn L2 at the frequency ω0 and R is the resistance of the antenna. By

comparing (4.14) and (4.15), TXIL of both configurations are close to each other,

since r1 and r2 are very small compared to R. The derivation of (4.14) and (4.15) is

explained in detail in section 4.3.3.

Similarly, TX port can be replaced by an open circuit without affecting the trans-

fer function from ANT to RX to simplify the RXIL analysis. Using Fig. 4.9, RXIL

of configuration 1 is found to be:

RXILC1 = 10 log10

(
1 + r + r1/R

σ2

)
(4.17)

where

1

σ2
=

(
1 +

(1 + r)R+ r1

k2Q2 ω0 L1

)
(4.18)

and k is the transformer coupling factor. σ models the extra RXIL due to the loss

in the secondary coil of the hybrid transformer in Fig. 4.9(a). RXIL of configuration

4 can be calculated by:

RXILC4 = 10 log10

(
1 + r

ψ2

)
(4.19)

where

1

ψ2
=

(
1 +

R (1 + r)

Q2 ω0 L2

)
. (4.20)

Equations (4.17) and (4.19) are also derived in section 4.3.3. ψ is used to model the
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effect of the loss in the secondary coil illustrated in Fig. 4.9(b). By comparing (4.17)

and (4.19), RXILC4 of the proposed configuration is lower than RXILC1, because

of the 1/k2 factor in σ definition which is not present in ψ definition.

4.3.3 Detailed TXIL and RXIL Analysis

To derive (4.14) and (4.15), the RX ports in Fig. 4.9 can be considered as a short

circuit, because TX and RX ports are conjugate ports. Fig. 4.10(a) and (b) show

the circuit after reduction of RX port. Furthermore, the reactive elements can be

removed at the frequency of operation, because their effect will be canceled at the

matching port impedance to be simplified to Fig. 4.10(c) and (d).

For configuration 1 in Fig. 4.10(c), the rms voltage at TX port VTX,rms can be

calculated by:

VTX,rms =
√
PTX RTX =

√
PTX

(
r

r + 1

)(
R+

r1

r + 1

)
, (4.21)

where RTX is the TX port resistance, PTX is the TX input power at the duplexer

and R is RANT . Therefore, the rms voltage at ANT port:

VANT,rms = VTX,rms
R

R+ r1/ (r + 1)
=
√
PANT,TXR. (4.22)

From (4.21) and (4.22):

TXILC1 = 10 log10

(
PTX

PANT,TX

)
= 10 log10

(
1 + r + r1/R

r

)
(4.23)

which is the same as (4.14).

For configuration 4 in Fig. 4.10(d), the rms voltage at TX port VTX,rms can be
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Figure 4.10: Circuit model (a) for calculating TXIL in config. 1, (b) for calculationg
TXIL in config. 4, (c) simplified of (a), (d) simplified of (d).
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Figure 4.11: Circuit model (a) for calculating RXIL in config. 1, (b) for calculationg
RXIL in config. 4, (c) simplified of (a), (d) simplified of (d).
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calculated by:

VTX,rms =
√
PTX RTX =

√
PTX

(
r R

r + 1
+ r1 +

ω0L2

Q2 (r + 1)2

)
. (4.24)

Therefore, the rms voltage at ANT port:

VANT,rms =
√
PANT,TXR =

VTX,rms r R

r R+ (1 + r) r1 + ω0L2/Q2(1 + r)
(4.25)

(4.15) can be derived from (4.24) and (4.25).

For calculating RXIL, the TX port in Fig. 4.9 is assumed to be an open circuit,

since the RX and TX are conjugate ports. The circuit models in 4.9 are simplified

to the circuit models in 4.11(a) and (b). In Fig. 4.11(a), the leakage inductance in

series with the antenna is neglected since it is in series with a much larger impedance.

At high values of L1, this leakage inductance cannot be neglected increasing RXIL

than the one predicted by expression. Fig. 4.11(a) and (b) can be further simplified

at the resonance frequency of L2 and CLNA, as shown in Fig. 4.11(c) and (d). Since

the ANT port is not matched because TX port is open circuit, RXIL is defined as

RRX/PANT,RX . For configuration 1 in Fig. 4.11(c), the rms voltage at the RX port

is defined by:

VRX,rms =
√
PRX RRX ≈

√
PRX

(
Q2ω0L2 Req
Q2ω0L2 +Req

)
, (4.26)

where

Req =
L2

k2 L1
(R (1 + r) + r1) . (4.27)

The rms voltage at the ANT port due to the RX signal is calculated by:

VANT,rms =

√
PANT,RX

RL2

k2 L1
= VRX,rms

RL2/k
2 L1

Req
. (4.28)
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From (4.26) and (4.28):

RXILC1 = 10 log10

((
1 + r +

r1

R

)(
1 +

Req
Q2ω0L2

))
(4.29)

which is the same result as in (4.17).

For configuration 4 in Fig. 4.11(d), the rms voltage at RX port VRX,rms can be

calculated by:

VRX,rms =
√
PRX RRX ≈

√
PRX

(
Q2ω0L2 (1 + r)R

Q2ω0L2 + (1 + r)R

)
. (4.30)

Therefore, the rms voltage at ANT port:

VANT,rms =
√
PANT,RXR =

VRX,rms
1 + r

, (4.31)

where (4.19) can be derived from (4.30) and (4.31).

4.3.4 Noise Analysis

Noise figure (NF ) of a passive circuit is the same as its RXIL; however, consid-

ering the noise due to the LNA, the cascaded NF of the EBD and the LNA is higher

than RXIL and depends on EBD configuration. Assuming LNA input impedance

is capacitive (CLNA) which resonates with the inductor L2, NF can be modeled at

the resonance frequency by the following equation:

NF = 10 log10

(
1

|S31|2
+

v̄2
n,LNA

|AV |2 4 kB T B R

)
(4.32)

where AV is the voltage gain from the ANT noise source to LNA input, S31 is the

S-parameter from ANT to RX where its magnitude is the inverse of RXIL, R is the

antenna resistance, v̄2
n,LNA is the input voltage referred noise of the LNA, γ is the

effective noise factor of input MOS devices, B is the noise bandwidth. Assuming
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LNA noise is dominated by input devices of the LNA, v̄2
n,LNA can be modeled by

4 kB T B γ/Gm,eff , where Gm,eff is the effective transconductance of the LNA input

devices. Using the scattering matrix of anti-symmetric directional couplers by setting

ΓRX = 1 [85], AV can be determined by:

|AV | =
∣∣∣∣VRXSVS

∣∣∣∣ = |S31|
√
RRX
R

(4.33)

where VS is the voltage source that models the RX signal at the antenna, VRXS is

the voltage at RX port due to VS, and RRX is the resistance seen at RX port when

ΓBAL = ΓANT . AV and RRX for each configuration are shown in Table 4.1. Thus

NF is described as:

NF = RXIL+ 10 log10

(
1 +

γ

Gm,eff RRX

)
(4.34)

The value of RRX depends on the configuration and can be found by setting TX

port open or short circuit and analyzing the circuit at the frequency of resonance

of L2 with CLNA. So for configuration 1, when TX port is open circuit, RRX−C1 ≈

(1 + r)RL2/k
2L1. Similarly, for configuration 4, when TX port is an open circuit,

RRX−C4 ≈ (1 + r)R. While, for configuration 2, when TX port is a short circuit,

RRX−C2 ≈ R/(1 + r). Therefore, the first and fourth configurations have small

added NF due to the LNA while the second configuration is highly affected due to

the small value of RRX .

4.3.5 Comparison Among Different Configurations

Table 4.1 summarizes a comprehensive analysis for the four passive EBD config-

urations. In order to verify the analysis, the four configurations are designed and

simulated using different values of r, but with fixed values of L2, CLNA = CPA (or

resonance frequency of L2 =5.4 nH and CLNA =1.3 pF at f0 =1.9 GHz), and Gm,eff .
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Also, the coupling factor of the transformer is fixed for this comparison (k =0.75).

The loss of the transformer is modeled by a series resistance on each branch where

Q1 = ω0 L1/r1 and Q2 = ω0 L2/r2. For comparison purpose, Q1 and Q2 are assumed

to be fixed (∼ 15). To change r in the first and second configurations, the point of

center-tape is shifted to change the division of power ratio between ANT and BAL

ports. L1 was chosen to minimize the sum of TXIL and RXIL using the following:

L1opt,C1 ≈
R

ω0
(1 + r)

√
Q1

2.2 k2Q2
(4.35)

L1opt,C1 is the optimum L1 value to provide the minimumTXIL + RXIL for

the first configuration calculated from (4.14) and (4.17). L1opt,C2 will be the same

as L1opt,C1 , but r needs to be replaced by 1/r. Fig. 4.12 shows that the analysis

results of TXIL + RXIL almost match the simulation results for different r values

of the first configuration. The discrepancy for large L1 values is due to two sources

of errors: i) simplification in RXIL expression of the first configuration (or TXIL

expression of the second configuration) as illustrated in section 4.3.3, ii) reflections

at TX and RX ports which increase TXIL and RXIL respectively. For the fourth

(and third) configurations, L1 value is controlled by the ratio r and can be calculated

directly from L2 and r by:

L1,C4 =
L2

k2 (1 + r)2 (4.36)

For NF comparison, a fixed Gm,eff of 80 mS is used for all configurations with γ =

1 for short-channel effect. As shown in Fig. 4.13, the analytical expressions almost

match simulation results. Clearly, for all configurations, as r increases the duplexer

TXIL is improved at the expense of NF degradation. The NF in configuration 4 is

better than NF in configuration 1 by 0.5 dB for r > 1.5. The NF of configuration 2
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Figure 4.12: Comparison between TXIL + RXIL calculated by the theoretical
expression and by simulation in configuration 1.

is higher than the other configurations due to its low RRX as depicted in Fig. 4.13(c).

Configuration 4 is compared against configuration 3, as shown in Fig. 4.13(b) and

(d). Both configurations have almost the same NF , but TXIL of configuration 4 is

slightly lower for r > 1 and TXIL of configuration 3 is slightly lower for r < 1 .

4.4 Circuit Implementation

A prototype is implemented in 0.18µm CMOS technology to verify the oper-

ation of the proposed EBD configuration with floating ZBAL [79]. It operates in a

frequency range of 1.6-2.2 GHz. This section discusses the circuit implementation de-

tails of the duplexer and is divided into five sub-sections describing the main blocks

of the prototype including transformer, LNA, and balancing impedance network.

The fourth sub-section demonstrates the impact of ZBAL non-idealities on NF and
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tion 3 without considering the balun loss.
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linearity performance, while the last section describes the effect of switch-induced

ZBAL modulation on the linearity performance.

4.4.1 Transformer

The transformer is initially designed for a power ratio of r =1.45 to achieve about

3 dB TXIL with acceptable NF . The primary side has one turn while the secondary

side has two turns. The transformer is designed with an outer dimension of 484 µm,

and a 5 µm metal spacing using the thick top aluminum layer of 0.18 µm CMOS

process. The thickness of the top metal (M6) is 4 µm which improves the transformer

quality factor. The underneath connections are made with three thin metal layers

(M3-M5) to decrease the connection resistance without too much added parasitic

capacitance.

The layout of the transformer is shown in Fig. 4.14, where the routing to TX

(or PA) and ANT pads is included in the EM simulation, since it affects the overall

performance. EM simulation was performed using Sonnet to accurately model the

transformer properties especially the ratio r. From EM simulation, L1 =1.83 nH,

L2 =3.62 nH and |k| =0.61. k seems relatively small considering a tightly wound

interwound transformers (∼ 0.8) due to the extra routing from the pads to the

winding. Using the model in Fig. 4.9(b), the calculated r = 1.31. The slight change

from the designed value r =1.45 is due to the extra routing from the transformer to

the pads. The quality factor of L1 (Q1) and the quality factor of L2 (Q2) variations

with frequency are shown in Fig. 4.15. These results are for ANT and PAGND ports

connected to ground, and measuring the impedance at TX and RX ports.

4.4.2 LNA

The LNA is designed using a complementary common-source low noise transcon-

ductance amplifier (LNTA) withGm =70 mS (Gm = gmp+gmn) and a drain resistance
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Figure 4.14: Layout of transformer, L1 =1.83 nH (width W1 =18 µm) contains the
middle turning, L2 =3.62 nH (width W2 =10 µm) contains both outer and inner
turnings and the spacing between the turns is 5 µm (all the provided dimensions in
the figure are in micons).
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Figure 4.16: Schematic of the LNA.

(RD =70 Ω), as shown in Fig. 4.16. The output matching is achieved without the

need for an external buffer. The use of PMOS and NMOS devices increases Gm/Id
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while a large overdrive voltage enhances the linearity performance of the LNA. The

LNA current is controlled by the current mirror M0-M2 and IB, while the output

dc voltage equals to Vgs,M1. RF is used only for dc biasing of the drain of M1 and

M2, thus its value was chosen to be higher than 10 kΩ to preserve the high input

impedance at VIN . Another advantage of this topology is its wide band operation,

since it is inductorless. The resonance frequency at the input can be changed by

varying the capacitance at VIN to increase the operating range.

4.4.3 Balancing Impedance

The radiation impedance of a typical planar inverted-F antenna (PIFA) used in

cellular handsets varies slowly as the near-field of the antenna is perturbed. Recently,

an antenna tuning circuitry has been used to compensate for the antenna impedance

variations to present more stable impedance for the PA [88]. The balancing impedance

should track the residual antenna impedance variation within the bandwidth of in-

terest to achieve the required TX-RX isolation. Moreover, for multi-band operation,

ZBAL needs to be tuned to achieve the required isolation in each band. The design

of ZBAL has three challenges: high power operation, floating impedance, and wide

tuning range with fine steps for an acceptable range of antenna impedance variation.

High power operation mandates stacking of thick gate devices, where triple-well 3.3V

NMOS devices were used to arbitrarily control the bias of the bulk. Since the TX

signal will be higher than 10 Vpp, the bulk should be carefully biased to avoid the

forward bias of the drain/source diodes during negative excursions of the TX signal.

Therefore, the bulks of the switches are biased at -1 Vdc when the switches are off

while it is biased 0 Vdc when the switches are on. The gates and bulks are biased

through level shifters and buffers that convert the digital control word to (3V/-1V)

for gate biasing and (0V/-1V) for bulk biasing.
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Figure 4.17: RC network for ZBAL implementation.

The implementation of the programmable RC floating impedance network with

minimum RX signal loss through the parasitics of switches is extremely challenging.

To minimize the effect of these parasitics while achieving fine tuning steps, the design

of the RC network is divided into coarse and fine sections for both R and C com-

ponents, as shown in Fig. 4.17. Resistance coarse tuning is achieved using a series

network with 3-bit control as shown in Fig. 4.18(a) to provide a wide tuning range of

43-121 Ω. Rg and Rb are large resistances (∼ 90 kΩ) to minimize their effect on NF .

This network is replicated four times with parallel connection and independent con-

trol to achieve the required range of resistance with minimum parasitics. The layout

diagram of the course resistor cell is depicted in Fig. 4.18(c). Fine resistance tuning

is realized by a 3-bit control of parallel resistors with stacked switches to provide 0.5

Ω fine tuning steps. A capacitor bank with coarse/fine tuning is designed to provide

a wide tuning range of 600 fF and fine resolution of 10 fF. Furthermore, the course

tuning element C in Fig. 4.18(b) also represents the stacked switches used to enable

TX high power operation. The tolerated normalized antenna admittance is shown
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Figure 4.18: (a) Schematic of the balancing resistance coarse tuning element, (b)
schematic of the capacitive coarse tuning element, (c) layout diagram of a resistive
coarse tuning element (area 85×55 µm2).
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in Fig. 4.19. In practice, an antenna tuning unit (ATU) is required to convert the

wide variation of the antenna impedance within VSWR≈3 to the tolerated range of

VSWR≈1.3 - 1.5 [89, 90]. As depicted in Fig. 4.19, an extra capacitance tuning is

needed to support the ANT impedance within VSWR≈1.5 at 1.8 GHz. Since only

the reactive part of the tolerated ANT admittance range is affected by frequency, the

tolerated admittance range in Fig. 4.19 will slightly decrease at 1.6 GHz and slightly

increase at 2.2 GHz.

�

0
.2

0
.5

1
.0

2
.0

5
.0

+j0.2

-j0.2

+j0.5

-j0.5

+j1.0

-j1.0

+j2.0

-j2.0

+j5.0

-j5.0

0.0 ∞

VSWR=2

VSWR=1.5

Figure 4.19: Supported antenna admittance normalized to 20mS at 1.8GHz, where
blue points represent the covered range of shunt R-C of ZBAL, and red dots represent
post-layout simulation.
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Figure 4.20: Effect of tunable ZBAL on (a) RXIL (EBD only) (b) Cascaded NF
(EBD and LNA) (c) RX gain (EBD and LNA).

4.4.4 Impact of ZBAL Non-idealities on NF and Linearity

To assess the effect of the parasitics due to the tunable ZBAL on EBD RXIL and

the cascaded NF , the duplexer is simulated with an ideal R-C then compared to

the NF with the implemented tunable ZBAL including the switches (schematic only

and post-layout), as shown in Fig. 4.20(a) and (b). The minimum RXIL increased

from 4.6 dB to 5.35 dB, while the minimum NF increased from 5.22 dB to 6.21
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dB. The increase in NF is attributed to RX signal loss due to switches parasitics

(see Fig. 4.20(a) and (c)), and the resistors used in switches biasing. The layout

of the tunable resistors and capacitors is optimized to minimize the parasitics as

illustrated in Fig. 4.18(c), where the top metal layers are used for routing with width

proportional to the expected currents to pass. Furthermore, very thin wires are used

to connect Rg and Rb to the gates and the bulks of the switches, respectively. The

sizes of the switches and the resistors in Fig. 4.18(c) are designed to support the

highest occurring current, when the switches are all “on”. The sizes of the switches

(Fingers = 12, W =5 µm, W =0.4 µm) are optimized to minimize the increase in

RXIL.

For the ideal RC case in Fig. 4.20(b), the minimum NF equals to 5.22 dB.

The main contributors to noise from simulation are: i) RANT 28.9 %, ii) RBAL

38.9 %, iii) transformer 11.4 %, iv) LNA (including RD ) 20.4 %. The LNA adds

only 0.9 dB to the cascaded NF which is expected to decrease by using advanced

CMOS technologies with smaller feature size compared to 0.18 µm. At 2.25 GHz

(where NF is minimum), Q1 =17 and Q2 =13.5, or r1 =1.5 Ω and r2 =3 Ω. Using

(4.15) and (4.19), TXIL =2.77 dB and RXIL =4.47 dB, where r = 1.31 and

R =50 Ω. The theoretical NF is calculated using (4.34) to be 4.97 dB, where

RRX ≈ (1 + r)RANT ≈ 117Ω, γ ≈ 1 and Gm,eff ≈ 70mS. The difference between

theoretical and simulated NF is only 0.25 dB. This difference is mainly because of

the resistive load of the LNA which is not included in the NF expression.

The impact of the switches on NF can be significantly reduced by using a silicon

on insulator (SOI) technology, since there is no need for isolation resistances to bias

the bulk. However, the excess noise due to the gate biasing resistances is still present.

Furthermore, the SOI technology has minimum parasitic nonlinear substrate capac-

itance that reduces harmonic distortion [87]. In circuit level, to break the trade-off
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between the number of stacked transistors affecting NF and linearity performance,

a transformer can be used to convert the floating BAL port into a differential ZBAL

with two impedance networks referenced to ground. The transformer may limit the

bandwidth of TX-RX isolation, which can be alleviated by using a wide bandwidth

transformer and a dual-notch balancing network similar to [87,91].

Since there is a direct trade-off between the number of stacked devices in the

balancing network and NF , only two stacked devices were used to switch capaci-

tances, as shown in Fig. 4.18(b). The implemented course tunable resistance shown

in Fig. 4.18(a) suffers from a degraded linearity, when VG1 = −1 V , VG2 = 3 V and

VG3 = 3V . The linearity of switches is affected mainly by two mechanisms when the

switch is off, namely conduction and breakdown. Assume there are two RF signals

with amplitudes A1 and A2 at the switch drain and source terminals respectively as

shown in Fig. 4.21. To prevent conduction, VGS has to be less than the threshold

voltage Vth,NFET (∼ 0.7 Vdc). The maximum VGS = ∆A/2−1V occurs at the peaks

of the RF signal, where ∆A = A1 − A2 is the difference in voltage amplitude at

drain and source terminals. Therefore, ∆A is limited to 3.4 V. Similarly for the bulk

connection to avoid forward biased diodes, ∆A is also limited to 3.4 V. Assuming

drain-gate and drain-bulk breakdown voltages of 3.6 V, the maximum tolerable ∆A

before the breakdown is 5.2 V. Consequently, the linearity of ZBAL is limited by the

conduction mechanism (through drain/source or drain/bulk) not breakdown. The

linearity is verified by simulating the balancing network to have IIP3 = 43.5 dBm

for ZBAL setting that introduces the highest intermodulation. This linearity per-

formance is reasonable to verify the operation of the proposed topology and can be

enhanced in future work using a differential ZBAL implementation.

The intermodulation between a received blocker and the TX signal is very critical

in the evaluation of the duplexer linearity performance. Since ZBAL is floating, the

139



received blocker signal at ANT port propagated to RX port modulates the value

of ZBAL. The third order intermodulation (IM3) of the blocker signal and TX

signal is high in the case of floating ZBAL. The differential ZBAL implementation

can significantly improve the IM3 performance, as it does not suffer from the trade-

off between NF and linearity, and three stacked devices or more can be used to

implement the switches. Additional improvement in linearity is achieved by using a

fixed resistive load while a tunable C-L-C matching π-network is used to change the

effective input resistance [87]. Since ZBAL is not a function of the blocker signal, the

IM3 of the blocker and TX signals is enhanced.

4.4.5 Switch-Induced ZBAL Modulation

Cdg

Csg

Cdb

Csb

-1Vdc -1Vdc

BulkGate

A+∆A

A

2
∆AA+ 2

∆AA+

Rg Rb

Figure 4.21: Schematic diagram of a switch unit in the off state.

The non-linear behavior of ZBAL due to conduction mechanism of the switches in

a stacked structure can be modeled by studying the relation between the conduction
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current (ids) of a single NMOS switch and the voltage applied on it in the off-state.

When the switch is off, the current (ids) is a non-linear function of drain/source

voltage difference (vds):

ids ≈ Is1 exp

(
VG + vds/2

nVT

)
+ Is2

[
exp

(
VB − vds/2

nVT

)
− 1

]
(4.37)

where the first term is due to the sub-threshold conduction current and the second

term is due to the conduction current through the bulk-drain diodes. Is1 is the sub-

threshold current at VGS = 0, n the is slope factor, VG is the dc bias of the gate, Is2

is the reverse-biased current of the diode, VB is the bulk dc voltage, and VT is the

thermal voltage. Using Taylor expansion, ids can be approximated as:

ids ≈ g1vds + g2v
2
ds + g3v

3
ds (4.38)

where g1, g2 and g3 are the conductance parameters:

g1 ≈
Is1

2nVT
exp

(
VG
nVT

)
− Is2

2VT
exp

(
VB
VT

)
(4.39)

g2 ≈
Is1

(2nVT )2 exp

(
VG
nVT

)
− Is2

(2VT )2 exp

(
VB
VT

)
(4.40)

g3 ≈
Is1

(2nVT )3 exp

(
VG
nVT

)
− Is2

(2VT )3 exp

(
VB
VT

)
(4.41)

By assuming VB = VG, the excess non-linear current (∆i) passing through switch

can be found:

∆i = g2v
2
ds + g3v

3
ds ≈ exp

(
VG
VT

)
[

v2

(2NVT )2

(
Is1
n2

+ Is2

)
+

v3

(2NVT )3

(
Is1
n3
− Is2

)]
(4.42)
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where v is the voltage across the stacked switches during off-state (v = Nvds) which

is nearly the same voltage difference across ZBAL and N is the number of stacked

switches. The non-linear balancing network admittance (YBAL) can be expressed as:

YBAL = Y0

(
1 + y1v + y2v

2
)

(4.43)

where Y0 is the small signal admittance, while y1 and y2 are the first and second

order non-linear coefficients of YBAL. y1 and y2 are strong functions of VG and N . y1

generates HD2 and IM2 distortion close to dc, while y2 generates HD3 and IM3

distortion. It is very crucial to reduce y2 since it defines IIP3 and TX-signal blocker

intermodulation at the band of interest. Since y1 and y2 are directly proportional to

g2 and g3 respectively, the IIP3 of ZBAL can be calculated by:

IIP3(ZBAL) ≈

√∣∣∣∣ 4

3y2

∣∣∣∣ ∝ N VT exp

(
−VG
2VT

)√∣∣∣∣ VTn3YO
Is1 − n3Is2

∣∣∣∣ (4.44)

The analysis reveals the behavior of ZBAL IIP3, which is increased as the number

of stacked devices N increases. The IIP3 is also increased by decreasing the dc

voltages of the gates and the bulks of the switches.

4.5 Measurement Results

The proposed duplexer and LNA, shown in Fig. 4.8, are implemented using

0.18µm CMOS technology [79]. They occupy an active area of less than 0.35 mm2.

The die photograph is shown in Fig. 4.22. The LNA draws 7 mA from 1.5 V sup-

ply. The printed circuit board (PCB) is implemented using FR4 material and four

metal layers, where the two intermediate layers were assigned for ground planes. The

traces between the PA, ANT and Vout pins to the SMA connectors are designed to

be a 50Ω transmission line (width = 14 mil, separation = 10 mil). The losses of the

traces (∼ 0.2 dB at 2 GHz) were de-embedded using two transmission lines (TLs)
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Figure 4.22: Die micrograph.

of the same length as PA-ANT trace and ANT-Vout trace. For NF measurement,

a high gain low NF (<1.5 dB) amplifier is added after the output Vout to amplify

the output noise by 30 dB to minimize the effect of the input noise of the spectrum

analyzer. Fig. 4.23 shows the simulated and measured results of TXIL and NF

of cascaded duplexer and LNA using Agilent network analyzer N5230A and Agilent

spectrum analyzer E4446A. The TXIL is between 2.8-3.4 dB after de-embedding

losses of PCB traces, while the minimum cascaded NF range is between 6.3-6.8 dB

in 1.6-2.2 GHz frequency range.

Since the implemented balance ratio r is about 1.31, the input resistance seen at

the PA port of the chip is close to r RANT/ (r + 1) or 29 Ω. However, this port is

required to match to 50Ω off-chip TL. An off-chip matching network is implemented
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Figure 4.23: Measured TX insertion loss and noise figure of the cascaded duplexer
and LNA.

in the TX side to transform the 29Ω to 50Ω using the on-chip series inductance of

the duplexer and taking into account the bondwire inductance. The measured S22

(TX port) is less than -13 dB over the required range of 1.6-2.2 GHz, as shown in

Fig. 4.24. Theoretically at the point of maximum isolation, the ANT port should

have the maximum of S11 ≈ −10 log10 (r + 1) or -7.3 dB, when the RX port is open

circuit (at the resonance frequency of L2 and CLNA). However, due to the losses

of L2, the measured S11 (ANT port) is less than -12 dB in the frequency range

of 1.6-2.2 GHz, as depicted in Fig. 4.24. The measured TX to RX isolation for

multiple balancing network settings are overlaid in Fig. 4.25. If the notch frequency

is adjusted to the center of the TX band, more than 60 dB of isolation is achieved.

For a maximum duplex frequency spacing of 190 MHz required by IMT band, the
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Figure 4.24: Measured PA return loss and ANT return loss.

isolation in RX band is better than 40 dB (for RANT = 50Ω ). The effect of ZANT

variation on TX-RX isolation is shown in Fig. 4.26(a) and (b), where the minimum

isolation BW (isolation < −40 dB) is 180 MHz for a 50Ω resistive load with a parallel

inductance of 12.5 nH (VSWR ∼ 1.42). Furthermore, shunt capacitance at ANT is

balanced by tuned shunt capacitance at ZBAL, where TX-RX isolation bandwidth

remains unchanged, and the balancing condition is applied on a wider frequency

range. Inductive has the minimum TX-RX isolation bandwidth since ZBAL has a

capacitive tuned element to compensate the inductance.

Pure resistive antenna impedance has the widest bandwidth of TX-RX isola-

tion as shown in Fig. 4.26(a). Inductive ZANT has the minimum TX-RX isolation

bandwidth, since ZBAL has capacitive tuned element to compensate the inductance.
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Figure 4.27: Simulated and measured IIP3 at TX input with two tones at 1.8725
GHz and 1.8775 GHz. The measured IIP3 is limited by PA OIP3 to around 41.8
dBm. By de-embedding the PA non-linearity, the measured IIP3 of the duplexer is
about 45.7 dBm.

The high-power operation and linearity measurements of the duplexer are done

using three test setups: i) two-tone test at the TX input, ii) a jammer at full-duplex

separation from TX signal, iii) triple-beat (TB) test. For the two-tone test, a high

power external PA (mini-circuits ZHL-16W-43X+) is used with an output-intercept

point (OIP3) of 44.1 dBm at the PA pin of the duplexer (including the losses of

the isolator, cables and traces). Fig. 4.27 shows the simulated and measured input

third order intercept-points (IIP3) of the duplexer at PA input. The frequencies of

the measured two tones are adjusted at 1.8725 GHz and 1.8775 GHz while the input

power is reported at the PA input pin of the chip. Furthermore, a 30 dB attenuator

147



fTX fb fRX

TX Signal

Blocker
XMD

δδδδ

δδδδδδδδ

fTXfb fRX

TX Signal

Blocker
IM3∆∆∆∆f

(b)

(c)

∆∆∆∆f

(a)

Spectrum Analyzer 
E4446A

TX Signal 
Generator

PA mini-circuits 
ZHL-16W-43X+

30dB 
Attenuator

Signal 
Generator
(Jammer)

ANT

TX

LNA
Output

Figure 4.28: Conceptual figure to illustrate the settings for (a) setup for linearity
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Figure 4.29: Simulated and measured IM3 resulting from the jammer at ANT port
(fTX =1.875GHz, fRX =1.955GHz with 80MHz full duplex (FD) separation separa-
tion, Pb =-30dBm and fb =1.795GHz).

is added at the ANT output to protect the spectrum analyzer from the high power

TX signal. The simulated IIP3 of the duplexer is 49.1 dBm. The measured IIP3

accounts for the non-linearity of the PA and the duplexer, it is limited by the OIP3 of

the PA to around 41.8 dBm. The effect of the PA non-linearity can be de-embedded

to calculate the measured IIP3 of the duplexer to be about 45.7 dBm.

The setup of the linearity measurement is shown in Fig. 4.28(a), where the TX

signal along with a jammer (blocker at frequency fb) at the ANT can cause a third

order intermodulation (IM3) at the desired RX frequency. An attenuator is used

to protect the signal generator from the high TX power at ANT port. A blocker

at full-duplex (FD) separation from TX frequency is located at fb = fTX − ∆f ,

where ∆f = fRX − fTX , as shown in Fig. 4.28(b). Fig. 4.29 shows the results

assuming ∆f =80 MHz (frequency separation in UMTS Band II), fTX =1.875 GHz,
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Figure 4.30: Simulated and measured receiver IIP3 with two tones 1.95 GHz and
1.96 GHz at the ANT port.

and fRX =1.955 GHz. The blocker power (Pb) was -30 dBm at 1.795 GHz at the

ANT port. The IM3 at LNA output changes with slope +2 with PTX . As shown

in Fig. 4.29, the simulated IM3 level for EBD without LNA is very close to that of

EBD with LNA, which indicates the non-linearity is dominated by the EBD up to

20 dBm TX power. The measured results show that the duplexer has about -50 dB

IM3 to Pb at PTX = 22 dBm (PANT =18.8 dBm). Pb =-30 dBm was used instead

of Pb =-15 dBm for 3GPP standard, since very high blocker power modulates the

floating ZBALcausing unacceptable IM3.

The triple-beat test of the duplexer was measured to determine the output cross-

modulation distortion (XMD) up to Pb =-30 dBm at fb = fRX − δ (δ =5 MHz) [92],

as shown in Fig. 4.28(c). For TX signal containing two sinusoidal tones with total

power of 22 dBm (PANT =18.8 dBm) and 5 MHz separation, XMD to Pb ratio
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equals -53.5 dB, or input referred XMD at ANT = −96.5 dBm for Pb =-43 dBm

(3GPP standard). The proposed EBD linearity is still not sufficient to replace SAW

duplexers, since the main objective of the prototype was to prove that the proposed

cross-connected transformers structure can be used as an EBD with high TX-RX

isolation. The receiver linearity is also measured using the two-tone test at the ANT

port, which is highly affected by the linearity of the LNA since signals propagate

from ANT to LNA directly. Fig. 4.30 shows that the IIP3 at the RX side is close

to 6.2 dBm. This high linearity is achieved by using NMOS-PMOS inverter based

transconductance LNA with adjusted biasing to achieve high linearity. The high

overdrive voltages of NMOS (∼150 mV) and PMOS (∼320 mV) support achieving

high linearity in converting the input voltage to current while the voltage swing at

LNA output is maximized by centering the dc of the drain of NMOS/PMOS near

half the supply voltage. For out-of-band IIP3, where two-tone test at 1.795 GHz and

1.875 GHz generates IM3 product at 1.955 GHz, the measured IIP3 is 5.9 dBm.

The chip performance is summarized in Table 4.2 with a detailed comparison

with state-of-the-art integrated duplexers and a commercially available off-chip SAW

duplexer. The hybrid transformer duplexer in [82] achieves excellent TXIL and cas-

caded NF , but it cannot handle high power since it has no common-mode isolation.

A differential version of the duplexer is used in [83] and [91] to enable high-power op-

eration by improving the common-mode isolation at the expense of higher insertion

loss. In [86], a step-down transformer is used in a dual-notch balancing network to

enhance power handling and linearity, but it suffers from a large RXIL. Recently, a

hybrid transformer EBD with single-ended LNA is reported [87], where a shunt ca-

pacitor is added to ZBAL at the BAL port to compensate for the capacitive coupling.

However, since the compensation path is indirect, it has a different transfer function

through the hybrid transformer than the direct capacitive coupling reducing TX-RX
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isolation bandwidth. The excellent linearity performance of [87] is attributed to two

main factors. First, it has a technology advantage by using a partially depleted SOI

process, which has smaller junction parasitics compared to bulk. The process also

has a high substrate resistance and three very thick metals that minimize insertion

losses. Second, it uses two extra inductors in ZBAL network to create a two-notch

isolation profile that relaxes the impact of parasitics on bandwidth of TX-RX iso-

lation. This considerably increases the area of the duplexer (∼5x compared to this

work).

The proposed duplexer is implemented using a standard 0.18µm CMOS process

with a single thick metal layer and achieves excellent TXIL, while supporting up to

22 dBm TX input power. The proposed EBD has a minimum effect of capacitive

coupling on the bandwidth of TX-RX isolation. Furthermore, it can be used for

medium power applications where the area is critical since it occupies small active

area (∼0.35 mm2). The linearity performance is limited compared to [83, 87, 91],

because of the complexity of the tunable floating balancing network. The EBD NF

and linearity can be significantly improved by using an SOI technology and adding

a wideband transformer to implement a differential ZBAL. It employs a wideband

transformer in ZBAL to enhance cascaded NF by 1 dB and linearity performance of

the duplexer by about 20 dB.

4.6 Conclusion

A widely-tuned fully-integrated FDD duplexer to support multi-band 3G/4G

radios is highly desirable, to minimize the increasing cost and area of SAW/BAW

duplexers. Integrated electrical balance duplexers (EBDs) are very promising to

achieve high isolation between TX and RX bands with the advantage of tuning over

a wide frequency range. However, designing a widely-tuned integrated duplexer with
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competitive insertion loss and linearity performance is very challenging. A wide-

band tunable EBD with a single-ended LNA is proposed by employing a floating

balancing impedance. It enables RF power operation up to 22 dBm while achieving

higher than 50 dB TX-RX isolation from 1.6-2.2 GHz. A comprehensive analysis for

different configurations of passive EBDs is presented, showing the sources of losses

of the duplexer and their effect on noise figure and insertion loss. This work presents

a step forward to replace today’s band-specific SAW/BAW duplexers with a fully

integrated low-loss wideband duplexer.
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5. ANALYSIS OF INTEGRATED ACTIVE ELECTRICAL BALANCE

DUPLEXERS

5.1 Introduction

The concept of active EBD is also introduced and analyzed in this chapter to

achieve lower TXIL and NF . Active TX suppression techniques were reported

previously to provide additional isolation for a low performance passive duplexer by

TX replica cancellation [69,93,94] and by TX filtering using M-phase passive-mixer-

based high-Q band pass filters [72,73]. However, these techniques still rely on passive

duplexers and are not suitable for high power applications. A direct active EBD was

reported only in [95] to enhance the total power efficiency of the duplexer using a

rectifier to convert the RF power consumed in the lossy EBD to dc. In this chapter,

an active EBD is proposed to achieve better insertion loss than the theoretical limit

of passive EBDs. The concept of TX current cancellation is analyzed and compared

to [95] in terms of noise figure and power efficiency.

5.2 Active Integrated EBDs Theory

All duplexers in the previous section were passive and required an extra balancing

impedance to achieve the desired isolation. Since active devices are non-reciprocal,

they can provide an advantage to passives in terms of insertion loss (TXIL and

RXIL). However, these devices consume more dc power and this dc power con-

sumption should be included in the power transfer efficiency of the duplexer. The

proposed figure of merit (FOM2) of the active EBDs, considering dc power consump-

tion effect, is formulated as:
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FOM2 = NF + 10 log10

(
ηPA (PDC + PACTIV E)

PANT

)
(5.1)

where ηPA is the efficiency of the PA at the transmitter, PDC is the dc power con-

sumed by the PA and PACTIV E is the dc power consumed by the active circuit of the

duplexer. Active EBDs can be categorized based on two major techniques. The first

technique is the TX power reuse proposed in [78] by converting the TX power con-

sumed in RBAL to dc power. The second technique proposed in this thesis employs

TX current cancellation. PACTIV E is different depending on the type of the active

EBD; it is negative for power reuse EBDs, while it is positive for TX current cancel-

lation EBDs. The main parameters that define the performance of active EBDs are

power efficiency, noise figure, and linearity. FOM2 can be used to compare active

EBDs with the same linearity, since there is a trade-off between power efficiency and

linearity.

5.2.1 TX RF Power Reuse EBDs

The idea of the power reuse is to use an RF-dc converter instead of the balancing

resistance. A rectifier is used to convert the RF power to dc current input to the

battery. The EBD, in [95], used this technique as shown in Fig. 5.1. A class E

RF-dc converter is used for its high efficiency. To preserve the functionality of the

duplexer, the effective impedance seen at the input of the rectifier should be matched

to the antenna impedance, however due to the rectifier nature the input impedance

is varying with the input power. Thus the linearity of this duplexer is not acceptable

except if the TX power has certain defined power level range. Another problem in

the power reuse technique is its power efficiency. If the rectifier can convert the

power at BAL port to dc by efficiency ηBAL, then PACTIV E = −ηBALPBAL. If the

transformer loss is ignored, the FOM2 in (5.1) can be expressed as:
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PA

ZANT

L2

L1r+1
1

L1r+1
r

LNA

VBAT

Figure 5.1: Power reuse active EBD circuit [95].

FOM2 = 10 log10 (1 + r) + 10 log10

(
1 + r

r
− ηPA ηBAL

r

)
(5.2)

Assuming ηBAL = 60% reported in [95], and ηBAL = 50% which represents a

highly efficient linear PA at r = 1 , FOM2 is enhanced from 6dB to 5.3dB. Since

FOM2 is varying with r, there is a value for r to provide minimum FOM2 ropt1 =

√
1− ηPA ηBAL, and FOM2,min is calculated by:

FOM2 = 10 log10 (1 + r) + 10 log10

(
1 + r

r
− ηPA ηBAL

r

)
(5.3)

From the analysis, ropt1 is slightly less than 1 depending on the values of ηBAL and

ηPA. The power efficiency of this technique is even worse for lower ηPA which makes

this technique difficult to use in practice.
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VPA

CPA

VANT

RPA

vP

i1

RANT

vS

=R
L1L1

Figure 5.2: A transformer coupling between ANT and TX ports.

5.2.2 TX Current Cancellation EBDs

On analyzing a simple circuit with two ports ANT and PA, and an ideal trans-

former as shown in Fig. 5.2, a TX signal modeled by voltage source vP can be

canceled with a concept similar to noise cancellation reported in [96]. Current drawn

from ANT port i1 = (vS − vP ) / (R +RPA), where vS is a voltage source modeling

the RX signal and RPA is the source resistance of the PA. i1 can be used with an-

other voltage signal to cancel vP . The voltage at the ANT port VANT , it contains a

component of vP , but with same sign as vS. VANT is calculated by:

VANT = vS − i1R =
vS RPA + vP R

R+RPA
. (5.4)

To cancel the TX signal (vP ), i1 and VANT must be added together with correct

weights as defined by VRX2:

VRX2 = VANT + i1R. (5.5)

The main difficulty of the TX cancellation is how to add these two signals to-

gether. This addition can be in terms of voltages or currents. For a voltage addition,
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VPA

VRX2

L1 CPA

VANT

RPA

Gm2

vP

RANT=R

=1/R

i1

L1

+Gm RF

i2

TIA

i1

vS

Figure 5.3: Proposed concept of active EBD using TX current cancellation.

i1 is converted to a voltage by a resistance, which results in an increased higher

effective TXIL. Furthermore, this resistance will add an extra noise source. This

voltage addition operation is similar to the voltage-mode passive EBD (configuration

2). On the other hand, for a current addition, a transconductance (Gm2) is needed to

convert VANT to current, where its output current is added to i1 to cancel TX signal

as shown in Fig. 5.3. The advantage of this method is its high power efficiency since

the TX voltage at the output of the transconductance is zero or the transconduc-

tance does not provide any real output power. A trans-impedance amplifier (TIA) is

used to convert the current to output voltage with very low input impedance. The

output voltage VRX2 is calculated by:

VRX2 = RF (Gm2 VANT + i1) = vS
RF
R
, (5.6)
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where RF is the feedback resistance of the TIA. Another advantage of this method

is the diminished effect of the TIA noise since RF can be very large relative to R.

Furthermore, using an ideal transformer, the TXIL is zero, since the TX voltage of

the PA is completely applied on the antenna. This means that the duplexer FOM2

is enhanced by 3dB ignoring the power consumed in Gm2.

M1

M2

VANT

RB2

CC2

Vb2

RB1

CC1

Vb1

VDD

-i2

Figure 5.4: Proposed concept of active EBD using TX current cancellation.

To be able to handle large input TX voltage, the transconductance Gm2 should

have linear output current with the high input voltage. The proposed transconduc-

tance, shown in Fig. 5.4, is similar to the class AB power amplifier in [97], where

NMOS and PMOS transistors are used to achieve very high linear transconductance.

Thick gate high voltage devices are used to support higher gate voltage. Transistors

M1 and M2 are biased such that at zero input they are in the saturation region. For
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Figure 5.5: Simulated transconductance variation with input voltage vin.

a large positive (negative) voltage, M1 (M2) is working in velocity saturation and

M2 (M1) is off.

The advantage of velocity saturation region is having constant Gm2 with in-

put voltage. The dc current consumed can be approximated by Idc = Ipeak/π =

(Gm2 Vpeak) /π , where Ipeak is the peak of the RF output current and Vpeak is the

peak of RF input voltage. The maximum applied Vpeak (Vp,max) on the transcon-

ductance is defined by Vp,max = VBD − Vb1, where VBD is the breakdown gate-source

voltage of the MOSFET device, and Vb1 is the biasing gate-source voltage. The

transconductance variation with input voltage is shown in Fig. 5.5. The small signal

gm is defined by the first derivative of output current (Iout) with Vin, while the large

signal is defined as Iout/Vin. Using 0.18µm CMOS process, and thick voltage 3.3V

devices for high breakdown voltage, the variation of the large signal Gm2 is smaller

than ±10% for input range up to ±2.5 V. In practice, the large signal Gm2 is required

to track the variation of ZANT in order to cancel TX signal efficiently. Furthermore,
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Gm2 is adjusted to have optimum TX cancellation at the maximum operating TX

voltage, while at lower TX voltage the slight degradation in isolation is tolerable.

The maximum applied voltage on the Gm2 is related to the breakdown voltage of the

transistors. The total power consumed by Gm2 (PACTIV E) can be calculated by:

PACTIV E ≈
VDD Vpeak

π R
≈ 2VDD
π Vpeak

PANT . (5.7)

VRX2

VANT

RPA

Gm2

RANT=R

=1/R

i1

+Gm RF
i2

TIA

i1

2
Rn,v

2
RFn,v

2
opn,v

2
Gm2n,i

Figure 5.6: Active EBD with noise sources to calculate NF .

The noise figure of the receiver can be found using the noise model illustrated

in Fig. 5.6. Assuming a high gain opamp in the TIA, the input impedance of the

TIA is very low at the required frequency range. The total output noise at VRX2 is

calculated by:

v2
n,o = v2

n,R

R2
F

R2
+ i

2
n,Gm2R

2
F +

(
1 +

RF
R+RPA

)2

v2
n,op + v2

n,RF . (5.8)
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where v2
n,R is the noise due RANT , i

2

n,Gm2 is the noise due to Gm2, v2
n,op is the noise

due to TIA s’ opamp and v2
n,RF is the noise due to RF . The noise figure is calculated

by:

NF = 10 log10

(
1 + γ +

(
R

RF
+

R

R+RPA

)2 v2
n,op

v2
n,R

+
R

RF

)
. (5.9)

If RF � R and v2
n,op � v2

n,op , NF can be simplified to 10 log10 (1 + γ). Using

PTX = ηPAPDC = PANT , the FOM2 of the active EBD can be calculated from (5.1)

and (5.7) by:

FOM2 = 10 log10 (1 + γ) + 10 log10

(
1 +

2ηPA PDC
π VPeak

)
. (5.10)

Assuming γ = 1 , VDD = 1.8 V, Vpeak = 1 V (PANT = 10 dBm), and ηPA = 40% ,

FOM2 = 4.64 dB which is less than the theoretical limit of passive EBDs (∼ 6dB)

without considering the effect of transformer loss.

5.3 Active Integrated EBDs Implementation

Two different implementations of TX current cancellation EBD were designed

and simulated using 0.18µm CMOS process for 1.7-2.1 GHz frequency band using

TX current cancellation techniques as shown in Fig. 5.7(a) and (b). In Fig. 5.7(a),

the transformer coupling loss will mainly affect TXIL, while NF will be close to

ideal transformer case. vPA was used for feed-forward cancellation, because the

transconductance needs opposite signs for cancellation of TX signal and to avoid the

effect of the transconductance input capacitance on ANT port impedance. CBAL is

used to adjust the phase of i2 to cancel i1 at the required frequency. Furthermore,

an extra tunable capacitance at ANT port can be used to support inductive ANT

impedance. CBAL and Gm2 should be tunable to track the variation of the ANT

impedance versus frequency. Gm2 tunability is implemented by segmentation of
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Gm2 into segments, where each segment has NMOS and PMOS devices and can be

activated or deactivated using a digital switch.

In the second prototype shown in Fig. 5.7(b), transformer loss affects mainly

the NF accompanied with a slight effect on TXIL since i′1 is less than i1 due to

transformer coupling loss. CC3 is used to short the other terminal of L2 at high

frequencies, while preserving the dc voltage at the output node of Gm2. The polarity

of the current is adjusted by using a transformer with negative k. Fig. 5.8(a) and

(b) show the simulated variation of large signal NF and effective TXIL with the

output TX power at the antenna (PANT,TX) in case of fRX = fTX + 80 MHz. The

increase of NF with input TX power (PTX) is due to the switching action of M1

and M2 noise sources of Gm2, since flicker noise close to dc and thermal noise at

harmonics of 2 fTX are converted to fTX . For the effective TXIL (TXILeff ), ηPA

variation with PTX is modeled by ηPA = ηmax
√
PTX/P13dBm, where P13dBm (or 20

mW) is the rated power for the duplexer where ηmax = 50 %.

As seen in Fig. 5.8, FOM2 is higher than theoretical analysis due to: the increase

in NF by more than 1 dB at high PANT,TX and due to the increase in TXILeff at

low PANT,TX . The minimum FOM2 is at mid-range.

The linearity of the two active EBDs was tested by measuring the change of

TX-RX isolation with PTX as shown in Fig. 5.9(a) and (b). The TX isolation was

adjusted for TX cancellation at PTX = 13 dBm atfTX = 1.85 GHz. The TX isolation

is below -35 dB for PTX = 2 dBm to 13 dBm. The harmonic distortion due to the

TX signal is plotted as an indication of the linearity of Gm2. Harmonic distortion

HD2 and HD3 are less than -35dB. Furthermore, the full duplex separation test is

used to test the linearity of the duplexer, where a blocker at the ANT port (at fb =

2 fTX − fRX) is used to inter-modulate with TX signal. The third intermodulation

(IM3) ratio to blocker power (Pb) variation with input TX power is shown in Fig.
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5.9, where Pb = −30 dBm and fb = fTX − 80 MHz. IM3 − Pb ratio increases with

PTX till PTX = 0 dBm then decreases having two minima and increases again. The

reason for this behavior is the nature of Gm2 demonstrated in Fig. 5.5, where the

large signal Gm2 is changing with PTX . Furthermore, the worst IM3 − Pb happens

close to the local minima of the small signal Gm2. It is clear that the two major

drawbacks of active EBDs are their linearity performance and the increase of NF

with the input TX power. These drawbacks can be enhanced by improving the high

power transconductance in the active EBD.

5.4 Conclusion

Active EBDs can have better insertion loss compared to passive EBDs at the cost

of worse linearity and higher NF at higher TX power. Two practical designs of active

EBDs, based on TX current cancellation, were proposed. They can operate up to 13

dBm TX output power at the antenna, and achieves 3dB better FOM compared to

passive EBD. However, they suffer from linearity problems that limit the range of

the input TX power and the maximum tolerable blocker power.
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Figure 5.7: Real implementation of EBD using TX current cancellation (a) first
prototype favoring NF , (b) second prototype favoring TXIL.
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6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

The dissertation focuses on the integration of radio frequency (RF) biochemical

sensors and frequency division duplex (FDD) RF duplexers. The integration of RF

biochemical sensors are explored by two proposals: 1) a high accuracy chemical

sensor measuring real relative permittivity ε′r at 10 GHz, 2) a wideband dielectric

spectroscopy sensor system that can measure complex permittivity (ε′r and ε′′r) in 1-6

GHz range.

The high accuracy chemical sensor, fabricated in IBM 90 nm CMOS technology,

has a self-sustained fractional-N PLL-based CMOS sensing system to measure the

dielectric constant of organic chemicals and their mixtures at precise microwave fre-

quencies. System sensitivity is improved by employing a reference VCO, in addition

to the sensing VCO, which tracks correlated low-frequency drifts. A simple single-

step material application measurement procedure is enabled with a low-complexity

bang–bang control loop that samples the difference between the control voltage with

the sensor and reference oscillator in the PLL loop and then adjusts a fractional fre-

quency divider. Binary mixture characterization of organic chemicals shows that the

system was able to detect mixture permittivities with fractional volume down to 1%.

Overall, the high-level of integration and compact size achieved in this work makes

it suitable for lab-on-chip and point-of-care applications. The dc power consumption

is less than 22 mW.

The spectroscopy system is proposed using LC-based oscillator capacitive sens-

ing. The system is fabricated using IBM 0.18 µm CMOS technology and tested

with less than 24 mW dc power consumption. The sensor can measure the complex
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permittivity of different materials including de-ionized water and PBS at multiple

frequencies in the 1-6 GHz range. The system has a reference oscillator to alleviate

the effects of the temperature and drifts using a correlated double sampling (CDS)

technique with 2.1 ppm random noise in frequency shift reading and 110 ppm in cur-

rent shift reading. The sensor was tested with ethanol-water mixtures with different

concentrations and achieved a maximum error of 2% in real permittivity and 5% in

imaginary permittivity in 1-3.8 GHz frequency range.

Integration of FDD RF duplexers has an enormous impact to avoid the high

cost and the huge size of surface-acoustic-wave (SAW) duplexers. Integrated electric

balance duplexers (EBDs) are the best candidate for replacing SAW duplexers while

achieving high isolation between TX and RX bands with the advantage of tuning

over a wide frequency range. However, EBDs suffer from high transmitter insertion

loss (TXIL) and high noise figure (NF ). To enhance TXIL and NF , two proposed

EBDs were designed and analyzed. The first one is passive EBD with single-ended

LNA to avoid high power common-mode TX signal at the input of the differential

LNA in the previously published EBDs. This passive is implemented in IBM 0.18

µm CMOS technology and tested. The second one is an active EBD which was not

fabricated.

The wide-band tunable EBD with a single-ended LNA is proposed by employing

a floating balancing impedance. It enables RF power operation up to 22 dBm while

achieving higher than 50 dB TX-RX isolation from 1.6-2.2 GHz. A comprehensive

analysis for different configurations of passive EBDs is presented, showing the sources

of losses of the duplexer and their effect on noise figure and insertion loss. This work

offers a step forward to replace today’s band-specific SAW/BAW duplexers with a

fully integrated low-loss wideband duplexer.

The simulated active EBDs have better insertion loss compared to passive EBDs
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at the cost of worse linearity and higher NF at higher TX power. Two practical

designs of active EBDs, based on TX current cancellation, were proposed. They can

operate up to 13 dBm TX output power at the antenna, and achieves 3 dB better

FOM compared to passive EBD. However, they suffer from linearity problems that

limit the range of the input TX power and the maximum tolerable blocker power.

6.2 Recommendations for Future Work

6.2.1 Wideband High Frequency Flow Cytometer

The fabricated wideband spectroscopy system suffers from some drawbacks due

to the technology used for fabrication. For more advanced technology with smaller

feature size, the frequency gaps in the design can be avoided and the overlap between

the frequency ranges is maximized. Furthermore, the frequency can be extended to

higher frequencies. A flow Cytometer working between 1 GHz and 10 GHz can

be used to differentiate between cells that have variation in their nuclei electric

properties. The detection of this variations requires a very high sensitivity of the

sensing electronic circuit and a stable microfluidic channel on the integrated circuit.

Another drawback in the fabricated prototype is the low speed serial interface. Using

faster interface will promote the speed of the reading of the differential admittance of

the capacitive sensor till 100 kHz readout frequency to be suitable for flow Cytometer.

6.2.2 Fabrication of the Active Electrical Balance Duplexers

The active electrical balance duplexers (EBDs) in section 5.3 needs to be fabri-

cated and measured. The purpose of these EBDs is to be used in systems which have

SAW duplexers but didn’t required high TX power. Another direction of the research

in this area is to use reciprocal passive mixers [98] to filter the RX signal and TX

signal from each other. As shown in Fig. 5.9, current i1 = VANT/RANT is summed

to current i2 = jωCPAVPA after the passive mixers at the input of the TIA. i1 and i2
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should be summed in a way to cancel TX signal and amplify RX signal. CPA value

will adjust the magnitude of TX signal of i2 to match i1, while θ is used to adjust the

phase. Capacitor CPA is used to convert VPA voltage to current instead of resistance

to avoid power consumption since capacitors are ideally are lossless elements. Since

the receiver is designed to cancel TX signal, it also cancels the reciprocal noise due to

phase noise of the clock fRX . The implementation of this duplexer requires advanced

node technology to support the passive mixer that support high TX current through

its switches.

L2 CPA

VANT

L1

i1

ZANT

PA
VPA

fRX fRX

VRX

TIAVref

RF

θθθθ

i2

Figure 6.1: A TX cancellation active EBD using reciprocal passive mixing to achieve
higher linearity and lower NF .
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