9 research outputs found

    A 6.78MHz Adaptive-ZVS Class-D PA with Dynamic Dead-Time for Wireless Power Transfer system

    Get PDF
    Department of Electrical EngineeringIn this thesis, a class-D power amplifier (PA) with adaptive zero-voltage switching (A-ZVS) technique for Low power 6.78 MHz resonant wireless power transfer (R-WPT) system is proposed. In R-WPT operation, the loading impedance of a PA can be varied by the process tolerance of the LC resonant components and WPT environments, such as the resonant topology, coupling coefficient and loading condition of the receiver. The proposed A-ZVS feedback loop of PA calibrates the equivalent resonant capacitance using PWM-controlled switched capacitor in real-time to achieve ZVS by adjusting the loading impedance to be slightly inductive. Furthermore, the proposed PA adjust the dead-time according to variation of WPT environments. The proposed PA was fully integrated except for one switched capacitor used as the tuning element and fabricated in a TSMC 0.18um BCD process. The measurement results demonstrated robust ZVS operation with a peak system efficiency of 52.7% and an enhanced maximum transmitting power of 107%.ope

    Circuits and systems for inductive power transfer

    Get PDF
    Recently, the development of Wireless Power Transfer (WPT) systems has shown to be a key factor for improving the robustness, usability and autonomy of many mobile devices. The WPT link relaxes the trade-off between the battery size and the power availability, enabling highly innovative applications. This thesis aims to develop novel techniques to increase efficiency and operating distance of inductive power transfer systems. We addressed the design of the inductive link and various circuits used in the receiver. Moreover, we performed a careful system-level analysis, taking into account the design of different blocks and their interaction. The analysis is oriented towards the development of low power applications, such as Active Implantable Medical Device (AIMD) or Radio-Frequency Identification (RFID) systems. Three main approaches were considered to increase efficiency and operating distance: 1) The use of additional resonant coils, placed between the transmitter and the receiver. 2) The receiver coil impedance matching. 3) The design of high-efficiency rectifiers and dc-dc converters. The effect of the additional coils in the inductive link is usually studied without considering its influence on other parts of the WPT system. In this work, we theoretically analyzed and compared 2 and 3-coil links, showing the advantages of using the additional coil together with a matching network in the receiver. The effect of the additional coils in a closed-loop regulated system is also addressed, demonstrating that the feedback-loop design should consider the number of coils used in the link. Furthermore, the inclusion of one additional resonant coil in an actual half-duplex RFID system at 134:2 kHz is presented. The maximum efficiency point can be achieved by adjusting the receiver coil load impedance in order to reach its optimum value. In inductive powering, this optimum impedance is often achieved by adapting the input impedance of a dc-dc converter in the receiver. A matching network can also be used for the same purpose, as have been analyzed in previous works. In this thesis, we propose a joint design using both, matching network and dc-dc converters, highlighting the benefits of using the combined approach. A rectifier must be included in any WPT receiver. Usually, a dc-dc converter is included after the rectifier to adjust the output voltage or control the rectifier load impedance. The efficiency of both, rectifier and dc-dc converter, impacts not only the load power but also the receiver dissipation. In applications such as AIMDs, to get the most amount of power with low dissipation is crucial to full safety requirements. We present the design of an active rectifier and a switched capacitor dc-dc converter. In low-power applications, the power consumption of any auxiliary block used in the circuit may decrease the efficiency due to its quiescent consumption. Therefore, we have carefully designed these auxiliary blocks, such as operational transconductance amplifiers and voltage comparators. The main contributions of this thesis are: . Deduction of simplified equations to compare 2 and 3-coil links with an optimized Matching Network (MN). . Development of a 3-coil link half-duplex RFID 134.2 kHz system. . Analysis of the influence of the titanium case in the inductive link of implantable medical devices. . Development of a joint design ow which exploits the advantages of using both MNs and dc-dc converters in the receiver to achieve load impedance matching. . Analysis of closed-loop postregulated systems, highlighting the effects that the additional coils, receiver resonance (series or parallel), and type of driver (voltage or current) used in the transmitter, have in the feedback control loop. . Proposal of systematic analysis and design of charge recycling switches in step-up dc-dc converters. . New architecture for low-power high slew-rate operational transconductance amplifier. Novel architecture for high-efficiency active rectifier. The thesis is essentially based on the publications [1{9]. During the PhD program, other publications were generated [10{15] that are partially or non-included in the thesis. Additionally, some contributions presented in the text, are in process of publication.Hace ya un buen tiempo que las redes inalámbricas constituyen uno de los temas de investigación más estudiados en el área de las telecomunicaciones. Actualmente un gran porcentaje de los esfuerzos de la comunidad científifica y del sector industrial están concentrados en la definición de los requerimientos y estándares de la quinta generación de redes móviles. 5G implicará la integración y adaptación de varias tecnologías, no solo del campo de las telecomunicaciones sino también de la informática y del análisis de datos, con el objetivo de lograr una red lo suficientemente flexible y escalable como para satisfacer los requerimientos para la enorme variedad de casos de uso implicados en el desarrollo de la “sociedad conectada”. Un problema que se presenta en las redes inalámbricas actuales, que por lo tanto genera un desafío más que interesante para lo que se viene, es la escasez de espectro radioeléctrico para poder asignar bandas a nuevas tecnologías y nuevos servicios. El espectro está sobreasignado a los diferentes servicios de telecomunicaciones existentes y las bandas de uso libre o no licenciadas están cada vez más saturadas de equipos que trabajan en ellas (basta pensar lo que sucede en la banda no licenciada de 2.4 GHz). Sin embargo, existen análisis y mediciones que muestran que en diversas zonas y en diversas escalas de tiempo, el espectro radioeléctrico, si bien está formalmente asignado a algún servicio, no se utiliza plenamente existiendo tiempos durante los cuales ciertas bandas están libres y potencialmente podrían ser usadas. Esto ha llevado a que las Redes Radios Cognitivas, concepto que existe desde hace un tiempo, sean consideradas uno de los pilares para el desarrollo de las redes inalámbricas del futuro. En los ultimos años la transferencia inalámbrica de energía (WPT) ha cobrado especial atención, ya que logra aumentar la robustez, usabilidad y autonomía de los dispositivos móviles. Transferir energía inalámbricamente relaja el compromiso entre el tamaño de la batería y la disponibilidad de energía, permitiendo aplicaciones que de otro modo no serían posibles. Esta tesis tiene como objetivo desarrollar técnicas novedosas para aumentar la eficiencia y la distancia de transmisión de sistemas de transferencia inalámbrica por acople inductivo (IPT). Se abordó el diseño del enlace inductivo y varios circuitos utilizados en el receptor de energía. Además, realizamos un cuidadoso análisis a nivel sistema, teniendo en cuenta el diseño conjunto de diferentes bloques. Todo el trabajo está orientado hacia el desarrollo de aplicaciones de bajo consumo, como dispositivos médicos implantables activos (AIMD) o sistemas de identificación por radio frecuencia (RFID). Se consideraron principalmente tres enfoques para lograr mayor eficienciay distancia: 1) El uso de bobinas resonantes adicionales, colocadas entre el transmisor y el receptor. 2) El uso de redes de adaptación de impedancia en el receptor. 3) El diseño de circuitos rectificdores y conversores dc-dc con alta eficiencia.El efecto ocasionado por las bobinas resonantes adicionales en el enlace inductivo es usualmente abordado sin tener en cuenta su influenciaen todas las partes del sistema. En este trabajo, analizamos teóricamente y comparamos sistemas de 2 y 3 bobinas, mostrando las ventajas que tiene la bobina adicional en conjunto con el uso de redes de adaptación. El efecto de dicha bobina, en sistemas de lazo cerrado fue también estudiado, demostrando que el diseño del lazo debe considerar el número de bobinas que utiliza el link. Se trabajó con un sistema real de RFID, analizando el uso de una bobina resonante en una aplicación práctica existente y de amplio uso en el Uruguay

    Wireless Power Transfer System for Battery-Less Body Implantable Devices

    Get PDF
    Department of Electrical EngineeringAs the life expectancy is increased and the welfare is promoted, researches on the body implantable medical devices (BIMD) are actively being carried out, and products providing more various functions are being released. On the other hand, due to these various functions, the power consumption of the BIMD is also increased, so that the primary battery alone cannot provide sufficient power for the devices. The limited capacity and life time of batteries force patients to make an additional payment and suffering for the power supply of the BIMD. Wireless power transfer technology is the technology which has been making remarkable progress mainly in wireless charging for personal portable devices and electric vehicles. Convergence of wireless power transfer technology (WPT) and rechargeable battery can extend the life time of the BIMD and reduce the suffering and the cost for battery replacements. Furthermore, WPT enables the devices which do not need to operate consistently such as body implantable sensor devices to be used without batteries. In this dissertation, techniques to support WPT for BIMD are introduced and proposed. First, basic researches on magnetic coupled WPT are presented. The basics which are important factors to analyze power transmission are introduced. In addition, circuits that make up the WPT system are described. There are three common technical challenges in WPT. Those are efficiency degradation on coil geometry, voltage gain variation with coil geometry, and power losses in WPT. The common challenges are discussed in chapter II. Moreover, additional challenges which are arisen in WPT for BIMD and approaches to resolve the challenges are addressed in chapter II. Then, efficiency improvement techniques and control techniques in WPT are presented in chapter III. The presented techniques to improve efficiency are applied in coil parts and circuit parts. In coil parts, efficiency enhancement technique by geometric variation is proposed. In circuit parts, instantaneous power consuming technique for step-down converter is suggested. Li-ion battery charger is also discussed in chapter III. Additionally, the wireless controlled constant current / constant voltage charging mode and the proposed step charging method are described. After that, WPT system for BIMD is discussed one by one with the proposed techniques for each part in chapter IV. A load transformation is suggested to improve efficiency in weak coupling, and suppress voltage gain variation under coil displacement. Power conversion efficiency improvement techniques for rectifier and converter are also proposed. By using the proposed technique for the converter, we can remove the bootstrap capacitors, and reduce the overall size of power circuits. In conclusion, techniques in coil parts and circuit parts to handle challenges in WPT for BIMD are fully investigated in this thesis in addition to the efficiency improvement and control techniques in common WPT. All the techniques are verified through simulations or experiments. The approaches realized in the thesis can be applied to other applications employing the WPT.clos

    Design of Power Management Integrated Circuits and High-Performance ADCs

    Get PDF
    A battery-powered system has widely expanded its applications to implantable medical devices (IMDs) and portable electronic devices. Since portable devices or IMDs operate in the energy-constrained environment, their low-power operations in combination with efficiently sourcing energy to them are key problems to extend device life. This research proposes novel circuit techniques for two essential functions of a power receiving unit (PRU) in the energy-constrained environment, which are power management and signal processing. The first part of this dissertation discusses power management integrated circuits for a PRU. From a power management perspective, the most critical two circuit blocks are a front-end rectifier and a battery charger. The front-end CMOS active rectifier converts transmitted AC power into DC power. High power conversion efficiency (PCE) is required to reduce power loss during the power transfer, and high voltage conversion ratio (VCR) is required for the rectifier to enable low-voltage operations. The proposed 13.56-MHz CMOS active rectifier presents low-power circuit techniques for comparators and controllers to reduce increasing power loss of an active diode with offset/delay calibration. It is implemented with 5-V devices of a 0.35 µm CMOS process to support high voltage. A peak PCE of 89.0%, a peak VCR of 90.1%, and a maximum output power of 126.7 mW are measured for 200Ω loading. The linear battery charger stores the converted DC power into a battery. Since even small power saving can be enough to run the low-power PRU, a battery charger with low IvQ is desirable. The presented battery charger is based on a single amplifier for regulation and the charging phase transition from the constant-current (CC) phase to the constant-voltage (CV) phase. The proposed unified amplifier is based on stacked differential pairs which share the bias current. Its current-steering property removes multiple amplifiers for regulation and the CC-CV transition, and achieves high unity-gain loop bandwidth for fast regulation. The charger with the maximum charging current of 25 mA is implemented in 0.35 µm CMOS. A peak charger efficiency of 94% and average charger efficiency of 88% are achieved with an 80-mAh Li-ion polymer battery. The second part of this dissertation focuses on analog-to-digital converters (ADCs). From a signal processing perspective, an ADC is one of the most important circuit blocks in the PRU. Hence, an energy-efficient ADC is essential in the energy-constrained environment. A pipelined successive approximation register (SAR) ADC has good energy efficiency in a design space of moderate-to-high speeds and resolutions. Process-Voltage-Temperature variations of a dynamic amplifier in the pipelined-SAR ADC is a key design issue. This research presents two dynamic amplifier architectures for temperature compensation. One is based on a voltage-to-time converter (VTC) and a time-to-voltage converter (TVC), and the other is based on a temperature-dependent common-mode detector. The former amplifier is adopted in a 13-bit 10-50 MS/s subranging pipelined-SAR ADC fabricated in 0.13-µm CMOS. The ADC can operate under the power supply voltage of 0.8-1.2 V. Figure-of-Merits (FoMs) of 4-11.3 fJ/conversion-step are achieved. The latter amplifier is also implemented in 0.13-µm CMOS, consuming 0.11 mW at 50 MS/s. Its measured gain variation is 2.1% across the temperature range of -20°C to 85 °C

    A Novel Power-Efficient Wireless Multi-channel Recording System for the Telemonitoring of Electroencephalography (EEG)

    Get PDF
    This research introduces the development of a novel EEG recording system that is modular, batteryless, and wireless (untethered) with the supporting theoretical foundation in wireless communications and related design elements and circuitry. Its modular construct overcomes the EEG scaling problem and makes it easier for reconfiguring the hardware design in terms of the number and placement of electrodes and type of standard EEG system contemplated for use. In this development, portability, lightweight, and applicability to other clinical applications that rely on EEG data are sought. Due to printer tolerance, the 3D printed cap consists of 61 electrode placements. This recording capacity can however extend from 21 (as in the international 10-20 systems) up to 61 EEG channels at sample rates ranging from 250 to 1000 Hz and the transfer of the raw EEG signal using a standard allocated frequency as a data carrier. The main objectives of this dissertation are to (1) eliminate the need for heavy mounted batteries, (2) overcome the requirement for bulky power systems, and (3) avoid the use of data cables to untether the EEG system from the subject for a more practical and less restrictive setting. Unpredictability and temporal variations of the EEG input make developing a battery-free and cable-free EEG reading device challenging. Professional high-quality and high-resolution analog front ends are required to capture non-stationary EEG signals at microvolt levels. The primary components of the proposed setup are the wireless power transmission unit, which consists of a power amplifier, highly efficient resonant-inductive link, rectification, regulation, and power management units, as well as the analog front end, which consists of an analog to digital converter, pre-amplification unit, filtering unit, host microprocessor, and the wireless communication unit. These must all be compatible with the rest of the system and must use the least amount of power possible while minimizing the presence of noise and the attenuation of the recorded signal A highly efficient resonant-inductive coupling link is developed to decrease power transmission dissipation. Magnetized materials were utilized to steer electromagnetic flux and decrease route and medium loss while transmitting the required energy with low dissipation. Signal pre-amplification is handled by the front-end active electrodes. Standard bio-amplifier design approaches are combined to accomplish this purpose, and a thorough investigation of the optimum ADC, microcontroller, and transceiver units has been carried out. We can minimize overall system weight and power consumption by employing battery-less and cable-free EEG readout system designs, consequently giving patients more comfort and freedom of movement. Similarly, the solutions are designed to match the performance of medical-grade equipment. The captured electrical impulses using the proposed setup can be stored for various uses, including classification, prediction, 3D source localization, and for monitoring and diagnosing different brain disorders. All the proposed designs and supporting mathematical derivations were validated through empirical and software-simulated experiments. Many of the proposed designs, including the 3D head cap, the wireless power transmission unit, and the pre-amplification unit, are already fabricated, and the schematic circuits and simulation results were based on Spice, Altium, and high-frequency structure simulator (HFSS) software. The fully integrated head cap to be fabricated would require embedding the active electrodes into the 3D headset and applying current technological advances to miniaturize some of the design elements developed in this dissertation

    Development of multi-MHz Class-D soft-switching inverters

    Get PDF
    Wireless Power Transmission (WPT) systems are becoming rapidly mature and accessible to customers, and it is expected that they are going to take a large share of the electrical equipment market around the world in the near future. Many tech companies and university research labs have recently focused on design, development, and optimization of different blocks of these systems. WPT systems can be designed to transfer power either through electric fields or magnetic fields. Operating at the multi-MHz frequency will bring about the smaller size of the wireless link for both types of WPT systems. The advent of Wide Bandgap (WBG) devices like Gallium Nitride (GaN) FETs and Silicon Carbide (SiC) MOSFETs has paved the road to design multi-MHz inverters and use them as the Radio Frequency (RF) power source in the transmitter of WPT systems. Designing an efficient inverter which can maintain its soft-switching performance while facing variable load or delivering variable output power is one of the major design challenges in this field. The second challenge in this area is related to the difficulties of Electromagnetic Compatibility (EMC) of the inverter, which is the direct result of operating at MHz switching frequency range. The Electromagnetic Interference (EMI) level can be reduced by designing a stronger filter or trying to remove the harmonics from the switching source. In this thesis, to tackle the first challenge mentioned above regarding soft switching, the Dynamic Dead-Time Control (DDTC) approach is proposed and utilized to sustain the soft-switching of a multi-MHz Full-Bridge (FB) Class-D inverter over the full range of active load and output power. Simulation results are presented to show that dynamically controlling the Dead-Time (DT) during input DC voltage control and load variations, reduces switch-node voltage overshoot, prevents large current spikes in the switching devices, and reduces associated high switching loss. Finally, experimental results obtained from the prototype of the system are provided to validate the effectiveness of the proposed approach. Then, a soft-switching multi-MHz multi-level Class-D inverter is developed to address the second challenge of EMI issues associated with MHz switching frequency operation.The inverter is designed to eliminate the 3rd and 5th harmonics from its output voltage waveform. This will, in turn, make it possible to meet EMC and achieve the same level of harmonic attenuation on the output of the inverter with a smaller size and more efficient output EMI filter as opposed to utilizing a bulky, high-order, High-Quality (HQ) filter. The impact of DT on the modulation parameters of the multi-level inverter is investigated through mathematical analysis, and the results are utilized during the system simulations and practical implementation. A prototype is built to validate the theoretical and simulation analysis on a practical testbed. The harmonic analysis comparison carried out between the experimental results obtained from the multi-level inverter and FB Class-D inverter prototypes shows how the multi-level inverter is capable of suppressing unwanted 3rd and 5th harmonic to a much lower level which in turn leads to smaller size and more efficient output filter

    Um retificador ativo CMOS de baixa potência para aplicações biomédicas implantadas.

    Get PDF
    Este trabalho apresenta o desenvolvimento de um retificador ativo CMOS de baixa potência projetado para fornecer alimentação elétrica a circuitos biomédicos que estejam implantados. Apesar do retificador poder ser facilmente aplicado em outras finalidades, todos os detalhes do projeto como tipo de enlace eletromagnético, tipo de retificador e frequência de operação foram pensados para aplicações implantadas. O retificador ativo utiliza comparadores que aceleram o chaveamento dos transistores do retificador e reduzem assim as perdas causadas pela corrente reversa originada pela baixa velocidade de chaveamento dos transistores MOS conectados como diodos. O tipo de comparador proposto e utilizado nesta aplicação foi resultado do estudo feito com outros comparadores já empregados em aplicações semelhantes. Desenvolvido em processo Digital IBM 130-nm e projetado para operar na frequência de 13,56MHz, todo o projeto apresentou rendimento acima da média encontrada em publicações atuais. A eficiência PCE máxima é de 92% e o retificador consegue entregar uma tensão de saída de 1,233V para uma tensão de entrada de 1,3V

    Designing a Clinically Viable Brain Computer Interface for the Control of Neuroprosthetics

    Get PDF
    Currently no brain computer interfaces exist that can control the individual fingers of a hand prosthesis and is suitable for permanent implantation in and individual with a single limb amputation. Within this thesis a design for a novel minimally invasive brain computer interface system is proposed that would be relatively low risk, allow for control of a prosthesis using existing cortical structures and be suitable for patients with loss of a single limb. The early stage development and proof of concept work has been done taking into account relevant regulatory requirements, so that a finalised version of the design would be suitable for regulatory certification. This novel design is found to be worth pursuing and may in turn open up new research opportunities

    A 13.56MHz wireless power transfer system with reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices

    No full text
    A 13.56MHz wireless power transfer system with a 1X/2X reconfigurable resonant regulating (R3) rectifier and wireless power control for biomedical implants is presented. Output voltage regulation is achieved through two mechanisms: the local PWM loop of the secondary side controls the duty cycle of switching the rectifier between the 1X and 2X modes; and to adapt to load and coupling variations, the duty cycle information encoded in Manchester code is fed back wirelessly to the primary side using a novel backscattering uplink technique to adjust the transmitter power of the primary coil. The primary transmitter and the secondary R3 rectifier are fabricated in 0.35μm CMOS process. The measured maximum received power and receiver efficiency are 102mW and 92.6%, respectively. © 2014 IEEE
    corecore