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ABSTRACT

A battery-powered system has widely expanded its applications to implantable medical de-

vices (IMDs) and portable electronic devices. Since portable devices or IMDs operate in the

energy-constrained environment, their low-power operations in combination with efficiently sourc-

ing energy to them are key problems to extend device life. This research proposes novel circuit

techniques for two essential functions of a power receiving unit (PRU) in the energy-constrained

environment, which are power management and signal processing.

The first part of this dissertation discusses power management integrated circuits for a PRU.

From a power management perspective, the most critical two circuit blocks are a front-end rectifier

and a battery charger. The front-end CMOS active rectifier converts transmitted AC power into

DC power. High power conversion efficiency (PCE) is required to reduce power loss during the

power transfer, and high voltage conversion ratio (VCR) is required for the rectifier to enable low-

voltage operations. The proposed 13.56-MHz CMOS active rectifier presents low-power circuit

techniques for comparators and controllers to reduce increasing power loss of an active diode with

offset/delay calibration. It is implemented with 5-V devices of a 0.35 µm CMOS process to support

high voltage. A peak PCE of 89.0%, a peak VCR of 90.1%, and a maximum output power of 126.7

mW are measured for 200Ω loading.

The linear battery charger stores the converted DC power into a battery. Since even small

power saving can be enough to run the low-power PRU, a battery charger with low IQ is desir-

able. The presented battery charger is based on a single amplifier for regulation and the charging

phase transition from the constant-current (CC) phase to the constant-voltage (CV) phase. The

proposed unified amplifier is based on stacked differential pairs which share the bias current. Its

current-steering property removes multiple amplifiers for regulation and the CC-CV transition, and

achieves high unity-gain loop bandwidth for fast regulation. The charger with the maximum charg-

ing current of 25 mA is implemented in 0.35 µm CMOS. A peak charger efficiency of 94% and

average charger efficiency of 88% are achieved with an 80-mAh Li-ion polymer battery.
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The second part of this dissertation focuses on analog-to-digital converters (ADCs). From a

signal processing perspective, an ADC is one of the most important circuit blocks in the PRU.

Hence, an energy-efficient ADC is essential in the energy-constrained environment. A pipelined-

successive approximation register (SAR) ADC has good energy efficiency in a design space of

moderate-to-high speeds and resolutions. Process-Voltage-Temperature variations of a dynamic

amplifier in the pipelined-SAR ADC is a key design issue. This research presents two dynamic

amplifier architectures for temperature compensation. One is based on a voltage-to-time converter

(VTC) and a time-to-voltage converter (TVC), and the other is based on a temperature-dependent

common-mode detector. The former amplifier is adopted in a 13-bit 10-50 MS/s subranging

pipelined-SAR ADC fabricated in 0.13-µm CMOS. The ADC can operate under the power supply

voltage of 0.8-1.2 V. Figure-of-Merits (FoMs) of 4-11.3 fJ/conversion-step are achieved. The latter

amplifier is also implemented in 0.13-µm CMOS, consuming 0.11 mW at 50 MS/s. Its measured

gain variation is 2.1% across the temperature range of -20 °C to 85 °C.
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NOMENCLATURE

ADC Analog-to-Digital Converter

CC Constant Current

CDAC Capacitor DAC

CM Current Mode or Common Mode

CV Constant Voltage

DAC Digital-to-Analog Converter

DNL Differential Non-Linearity

ENOB Effective Number of Bit

FFT Fast Fourier Transform

FoM Figure of Merit

IC Integrated Circuit

IMD Implantable Medical Device

INL Integral Non-Linearity

ISSCC International Solid-State Circuits Conference

LSB Least Significant Bit

OTA Operational Transconductance Amplifier

PA Power Amplifier

PCE Power Conversion Efficiency

PMIC Power Management Integrated Circuit

PRU Power Receiving Unit

PSD Power Spectral Density

PTU Power Transmitting Unit
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PVT Process Voltage Temperature

RX Receiver

SAR Successive Approximation Register

SFDR Spurious-Free Dynamic Range

SNDR Signal-to-Noise+Distortion Ratio

SOC State of Charge

SOVC Symposium On VLSI Circuits

TC Trickle Current

THD Total Harmonic Distortion

TVC Time-to-Voltage Converter

TX Transmitter

VCR Voltage Conversion Ratio

VM Voltage Mode

VTC Voltage-to-Time Converter

WPT Wireless Power Transfer

ZCD Zero-Crossing Detector
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1. INTRODUCTION

1.1 Motivation

A battery-powered system has widely expanded its applications to implantable medical de-

vices (IMDs) and portable electronic devices. Recently, it has been studied together with an en-

ergy harvesting system to harness ambient energy [1]. The first IMD with an implantable battery

was a battery-powered pacemaker inserted into a patient in Sweden in 1958 [2]. Since then, sev-

eral types of IMDs have entered the clinic—including pacemakers, cochlear implants, and deep

brain stimulators—improving the quality and longevity of human lives. Likewise, advancement

of portable electronic devices like laptops and smart phones have facilitated ubiquitous comput-

ing and user-friendly interfaces, aided by high-resolution displays used in these devices. Fig. 1.1

shows an example of a neural recording and stimulation system [3, 4]. From a probe array, weak

neural signals are sensed, amplified, and digitized in an analog front-end block. Also, electrical or

optical stimulation signals are generated by a digital-to-analog converter (DAC). Since the system

is located in the isolated environment, power management of the system is critical. Energy can be

sourced by wireless power transfer [5] or energy harvesting [1]. A battery charger stores redundant

energy in a battery [6]. Wireless data communication block can be embedded, too.
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Figure 1.1: An example of a neural recording and stimulation system.

1



10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

Specific Power [W/kg]

S
p

e
c

if
ic

 E
n

e
rg

y
 [

W
h

/k
g

]

(a)

VFULL

VTC-CC

ITC

ICC

ITERM

(b)

Figure 1.2: Li-ion battery’s (a) Ragone plot and (b) CC-CV charging profile.

While specific requirements for batteries vary according to applications, an ideal battery for

any of the applications should have high energy density and high specific energy to reduce volume

and weight. The size constraint of IMDs, however, limits the use of batteries with high energy

capacity; hence, conventional IMDs require frequent battery replacements. Portable electronic

devices confront a similar challenge due to device portability limiting the battery size and making

it difficult to meet the high-power demand of high-resolution displays. In this regard, a lithium-ion

(Li-ion) battery is a good fit for these applications due to its high energy density and high specific

energy. Fig. 1.2(a) shows a Ragone plot [7] for various energy storage devices. Based on data
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collected from [8] and [9], the plot shows that a Li-ion battery is superior to competitors over a

wide range of discharging time in terms of specific energy, whereas a capacitor is superior for

short-time discharging.

As a fast and stable charging technique for a Li-ion battery, constant current (CC) - constant

voltage (CV) charging is popular [10]. Fig. 1.2(b) shows a typical charging profile of a CC-

CV battery charging algorithm. Initially, trickle-current (TC) charging is necessary for a deeply

discharged battery. This is because equivalent series resistance (ESR) of the discharged battery is

large, and high current through large ESR can generate excessive heat leading to a loss of capacity.

Charging current in the TC phase, ITC, is typically no more than 0.1 C [11]. Once the battery

voltage is larger than threshold voltage V TC-CC ranging from 2.5 V to 3 V [11, 12], the TC phase

is switched to the CC phase to speed up the charging process. Charging current in the CC phase,

ICC, is typically 0.2 C to 1 C [10,11]. As the battery voltage approximates the maximum charging

voltage V FULL (4.1 V-4.2 V), the CC phase is switched to the CV phase for precise regulation

of battery voltage. Note that CV regulation for the CV phase requires high precision for battery

safety and health, whereas CC regulation for the TC/CC phases does not [10]. The whole charging

process is terminated when the charging current is less than ITERM which is 0.025 C-0.05 C [13,14]

or 10% of the maximum charging current [15].

In summary, a Li-ion battery can be the optimal energy storage device for a battery-powered

system, and the CC-CV charging algorithm is popular for fast charging. However, we have not

answered a critical question: how do we get and process the energy to charge the battery? Con-

ventionally, a battery-powered system is charged through a battery power cord. To cut the last

cord, wireless power transfer (WPT) techniques were actively investigated recently along with

the emerging applications such as neural recording and stimulating systems [16], an intraocular

pressure sensor [17], and a non-contact memory card [18]. A key design issue in WPT is how

efficiently the energy is transferred, and a solution to the design problem lies in rectifier design

with high power conversion efficiency (PCE) and high voltage conversion ration (VCR), which are
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defined as

PCE =
P LOAD

P IN
(1.1)

VCR =
V DC

V AC
(1.2)

where P LOAD, P IN, V DC, and V AC are rectifier output load power, rectifier input power, rectifier

output DC voltage, and a rectifier input AC voltage amplitude.

To store the received energy, energy-efficient battery charger design is also essential. Since the

aforementioned emerging applications usually consume mW or sub-mW power, even small power

saving in the battery charger contributes to prolonged device operations. Therefore, it is necessary

to design a battery charger with low quiescent current (IQ) in the energy-constrained environment.

Therefore, .

While a high-performance rectifier and a energy-efficient battery charger are important in terms

of power management of the power receiving unit (PRU), a low-power high-performance analog-

to-digital converter (ADC) is important in terms of signal processing in the PRU. Currently three

types of ADC architectures compete in a design space with moderate-to-high resolution and speed:

a pipelined ADC, a successive approximation register (SAR) ADC, and a pipelined-SAR ADC.

Fig. 1.3 shows ADC trends published in International Solid-State Circuits Conference (ISSCC)

and Symposium on VLSI Circuits (SOVC) from 2012 to 2017 [19]. A pipelined ADC has been

a dominant architecture for moderate-to-high resolution and speed applications. However, a SAR

ADC emerged due to its simple architecture and low power operations about 10-15 years ago. Fig.

1.3(a) shows a Nyquist sampling frequency (fs,nyq) versus SNDR. In Fig. 1.3(a), they compete in

the design space of 50-to-70 dB SNDR, and a pipelined ADC is better than a SAR ADC in high

speed applications. However, energy efficiency of a pipelined ADC is low, so a pipelined-SAR

ADC was proposed for better energy efficiency as a hybrid architecture. Fig. 1.3(b) clearly shows

that a pipelined ADC has higher energy consumption (P/fs) than a SAR ADC does. A pipelined-
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(a)

(b)

Figure 1.3: ADC trends published in ISSCC and Symp. VLSI Circuits from 2012 to 2017. (a)
Speed vs. SNDR and (b) Energy vs. SNDR [19].

SAR ADC takes strength of both a pipelined ADC and a SAR ADC. Therefore, a pipelined-SAR

ADC can be targeted for the PRU under the consideration of scaling of power supply voltage and

CMOS technology.

1.2 Research Contribution

This research investigates design of both power management integrated circuits (ICs) and

ADCs for the PRU. For the power management ICs, a high-performance rectifier and a low IQ
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linear battery charger are considered. In the rectifier design, we proposed novel low-power com-

parator circuits for active diodes along with a dynamic logic-based feedback controller to achieve

higher PCE and VCR. In battery charger design, we proposed a single amplifier as known as the

unified amplifier to perform CC and CV regulation with lower IQ. Both are good for power man-

agement ICs in the energy-constrained environments. In ADC research, we proposed a subranging

pipelined-SAR ADC with a temperature-insensitive time-based amplifier. This work tries to solve

the PVT variation of a high-gain dynamic residue amplifier in the pipelined ADC at the cost of de-

sign complexity. Moreover, a temperature compensation technique for a moderate-gain dynamic

amplifier is investigated with the benefit of lower design complexity.

1.3 Dissertation Organization

Chapter 2 presents a CMOS active rectifier with a voltage mode switched-offset comparator in

TSMC 0.35µm CMOS for wireless power transfer [5]. Novel switched-offset comparators and dy-

namic logic-based feedback controllers reduce power for active diode operations which are robust

to PVT variations.

Chapter 3 describes a linear battery charger for energy-constrained low-power applications [6].

With a proposed low IQ technique, the battery charger achieves low-power operations, maintaining

fast regulation. A prototype is implemented in TSMC 0.35µm CMOS.

Chapter 4 discusses a subranging pipelined-SAR ADC using a temperature-insensitive time-

based amplifier in IBM 0.13µm CMOS [20]. By using both voltage-to-time conversion and time-

to-voltage conversion, temperature-insensitive inter-stage gain is achieved.

Chapter 5 presents a simpler temperature compensation technique for inter-stage gain, which

is implemented in in IBM 0.13µm CMOS [21]. A temperature-dependent common mode detector

contributes to temperature-insensitiveness of the inter-stage gain amplifier.

This dissertation is concluded in Chapter 6. Chapter 6 summarizes this research and discusses

the future work.
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2. DESIGN OF A CMOS ACTIVE RECTIFIER FOR WIRELESS POWER TRANSFER*

2.1 Rectifiers

A rectifier is a circuit block that converts the input AC voltage to the output DC voltage. Recent

research on energy harvesting and wireless power transfer makes rectifier design gain interest,

again. Fig. 2.1 shows many applications adopting rectifiers. Wireless power transfer for portable

devices such as tablet PCs and smart phones, electric vehicles (EVs), and bio-implantable devices

like neural stimulators are representative examples.

Rectifier

L1C1 C2L2

PA

PTU

k

VREC

DC-DC 
Converter

VDC1

DC-DC 
Converter

VDC2

ADC
Sensor

Stimulator

Battery 
Charger

PRU (IMD)

Channel

C1, C2: Off-chip resonance cap.
k: coupling coefficient (< 0.1)

VACP

VACM

VREC

VSS
controller

Implantable 
Medical devices

Electric vehicles

Smart phones

Figure 2.1: Examples of wireless power transfer applications.

Rectifiers can be categorized into passive rectifiers and active rectifiers [22, 23]. Passive recti-

fiers have the simplest architecture using passive diodes, diode-connected transistors, or gate cross-

coupled transistors. A forward voltage-drop problem with passive diodes and diode-connected

transistors is mitigated by using Schottky didoes [24], low threshold voltage devices, or gate cross-

coupled transistors. However, the Schottky diodes are not always available in CMOS [23], so

circuit techniques like threshold voltage cancellation are proposed [23, 25, 26]. Moreover, a pas-

sive rectifier with gate cross-coupled transistors still suffers from reverse current.

*©2018 IEEE. Parts of this chapter are reprinted, with permission, from "A 13.56 MHz CMOS Active Recti-
fier With a Voltage Mode Switched-Offset Comparator for Implantable Medical Devices", by Kyoohyun Noh, Judy
Amanor-Boadu, Minglei Zhang, and Edgar Sánchez-Sinencio, IEEE Trans. VLSI Syst., October 2018.

7



Table 2.1: CMOS Passive Rectifier Performances
TBCAS, 2012 JSSC, 2010 ISSCC, 2009 JSSC, 2006

[23] [26] [27] [25]
Technology (nm) 180 180 130 300
Frequency (MHz) 10 402-405 915 or 1000 900

PCEpeak (%) 80 45.2 65 11
POUT (mW) 2 - 0.24 0.028

In contrast, active rectifiers use active diodes to reduce conduction loss. An active diode is com-

prised of a comparator and a pass transistor. Since high-speed comparator design is critical to the

overall rectifier performance, many comparator designs have been proposed, and they are reviewed

in Section 2.3. Although active rectifiers have high power conversion efficiency, they are not at-

tractive solutions to very low power applications or high-frequency applications. This is because

static power consumption from control circuits challenges start-up operations, and high-frequency

switching consumes considerable switching power from large pass transistors and drivers [23].

Therefore, low-power rectifiers like RF energy harvesters or rectifiers operating at hundreds MHz

are usually based on passive rectifiers. Table 2.1 shows passive rectifier performances.

2.2 Wireless Power Transfer for IMDs

Owing to energy constraints, implantable medical devices (IMDs) require efficient AC-DC

conversion with high power conversion efficiency (PCE) and high voltage conversion ratio (VCR)

in conjunction with efficient DC-DC conversion. IMDs typically use piezoelectric energy harvest-

ing or wireless power transfer (WPT) for power telemetry [1, 28]. Depending on types of IMDs,

voltage and power requirements are diverse. For example, lithium-ion batteries popular to IMDs

require a full charging voltage of 4.2 V [2, 11]. Moreover, general therapeutic stimulation param-

eters for deep brain stimulation (DBS) are 1-5 V stimulus amplitude, 60-200 µs stimulus pulse

duration, and 120-180 Hz stimulus frequency [29]. Power level of 100 mW can support a wide

range of IMDs such as neural recorder/stimulators, retinal implants, and cochlear processors [28].

Fig. 2.2 shows how wireless charging works in cochlear implants and retinal implants.

Recently, resonance-based WPT has been actively investigated to enhance spatial flexibility
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Figure 2.2: 2 or 3-coil wireless power transfer system examples for IMD applications. The photo
of retinal implant charging is credited to Robertba, 2011 under Creative Commons license [30].
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Figure 2.3: General resonance-based WPT system for IMDs with secondary parallel LC resonance.

in loosely coupled systems whose coupling coefficient, k, is typically less than 0.1 [31]. Fig. 2.3

shows a general resonance-based WPT system comprised of a power transmitting unit (PTU),

an inductive channel, and a power receiving unit (PRU). A PTU consists of a coil driver and a

controller. Both class-D and class-E power amplifiers (PAs) are popular coil drivers. While the

class-E PA has higher efficiency, the class-D PA has strengths over the class-E PA regarding its

lower design complexity and robustness against load impedance variation [32]. PTU/PRU coils

for an inductive channel are made of Litz wire or a PCB trace. Coil resonance configuration of the

PRU depends on how a high-Q LC tank is made. For example, a low power system in the mW
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Figure 2.4: Active rectifier with NMOS active diodes and offset calibration.

range employs parallel LC resonance in the PRU, whereas a medium-to-high power system in the

W range uses series LC resonance. A PRU can include a rectifier, power management blocks, and

load circuits.

To achieve high end-to-end efficiency of the WPT system, rectifier power loss should be mini-

mized. Switching loss and conduction loss are major loss components, and their optimization has

been studied well. Appendix A shows the detailed analysis. To minimize these power losses, an

active rectifier with NMOS active diodes shown in Fig. 2.4 is preferred to a passive rectifier and an

active rectifier with PMOS active diodes because it avoids the forward voltage-drop of a passive

diode and the large switching loss of a PMOS power transistor [33]. The rectifier converts input

differential AC voltage, V ACP−V ACM, to the output DC voltage, V REC. On-chip capacitors, CO and

CAC, help to reduce the number of off-chip capacitors and the effect of bonding wire inductance.

Dynamic body biasing for PMOS power transistors prevents latch-up [34]. Moreover, circuit tech-

niques like a buffer with a starving resistor inserted for short-circuit current suppression [35] and

adaptive power transistor sizing [36] further reduce the power loss. However, these techniques do
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not solve the issues related to power transistor switching timing: reverse current and maximum

conduction time.

Recent comparator offset/delay calibration techniques for accurate power transistor switch-

ing [33,36–42] minimize reverse current, and maximize conduction time, thereby enhancing PCE.

While conduction loss is reduced significantly, however, the power loss of comparators and off-

set calibration circuits becomes one of the major power loss components [37, 42]. For example,

under the rectifier output voltage of 3.29 V and 500 Ω loading, comparators and offset calibration

circuits occupy 36% of the total power loss in a well-designed rectifier [37]. Their loss along

with switching loss is detrimental to PCE particularly in light-load systems. Therefore, low-power

circuit techniques for comparators and offset calibration circuits are necessary.

This chapter presents low-power comparators and offset calibration circuits for a 13.56 MHz

CMOS active rectifier shown in Fig. 2.4. The proposed voltage mode switched-offset compara-

tor achieves low-power switched-offset operations, while the proposed low-power dynamic logic-

based offset calibration circuits generate control signals for the switched-offset operations. The rest

of this chapter is organized as follows. Section 2.3 reviews prior art common-gate comparators for

active diodes. Section 2.4 presents the voltage mode switched-offset comparator with the offset

calibration circuits, and discusses comparisons with the current mode counterpart. Section 2.5

discusses technology scaling effects on power loss. Section 2.6 reports the measurement results.

Conclusions are drawn in Section 2.7.

2.3 Review of Common-Gate Comparators for Active Diodes

A basic NMOS active diode consists of an NMOS power transistor, a comparator, and a buffer.

Since the comparator compares the input voltage with 0 V, a common-gate comparator has been

widely employed in rectifiers [35–39, 43–45]. Fig. 2.5 shows different kinds of common-gate

comparators for the active diode1 shown in Fig. 2.4. Accurate on/off-switching of the active diode

is crucial to secure the maximum conduction time and prevent reverse current. However, delay of

the comparator and the buffer makes the on/off-switching inaccurate.

To compensate for the delay, two approaches have been proposed in comparator design. One
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Figure 2.5: Simplified comparators for the active diode1 of Fig. 2.4: (a) positive feedback [43],
(b) unbalanced biasing [44], (c) unbalanced sizing [45], and (d) offset current injection [36, 37].

is to enhance the comparator speed with the help of positive feedback. The comparator shown in

Fig. 2.5(a) [43] utilizes latching operation through capacitive cross-coupling between the main

comparator and a speed-up comparator, enhancing the transient response of the output V CMPL.

However, high voltage can induce large current through the stack of diode-connected transistors,

which worsens PCE.

The other approach is to inject artificial offset into the comparator. Fig. 2.5(b)-Fig. 2.5(d)

show various offset injection methods such as unbalanced biasing [44], unbalanced sizing [45],

and offset current injection [36, 37], respectively. The unbalanced biasing of Fig. 2.5(b) is simple,

but has proven effective only for off-switching compensation by making IB1 larger than IB2. In case

of unbalanced sizing in Fig. 2.5(c), both on- and off-switching compensations are done. SWON is

closed and SWOFF is open for the on-switching, and vice versa for the off-switching. However, the
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Figure 2.6: Concept of the voltage mode switched-offset comparator.

amount of offset is fixed by transistor sizing in the design phase, so compensation is not robust to

process, voltage, and temperature (PVT) variation and loading conditions. Offset current injection

of Fig. 2.5(d) compensates for on/off-switching in a way similar to the operations of SWON and

SWOFF for the unbalanced sizing. The amounts of the offset currents, ION and IOFF, can be either

fixed in the design phase [38,39] or adjusted adaptively [36,37]. However, offset current injection

accompanies extra power consumption to implement artificial input-referred offset voltages. In

case of the adaptive offset currents, comparator power loss increases when large input-referred

offset voltage is required, or the rectified output voltage, V REC, is high.

2.4 Voltage Mode Switched-Offset Comparator With Offset Calibration Circuits

2.4.1 Voltage Mode Switched-Offset Comparator

We will refer to a comparator shown in Fig. 2.5(d) as a current mode switched-offset com-

parator. In this section, we propose a voltage mode switched-offset comparator to reduce power

loss.

Fig. 2.6 illustrates the concept of the proposed voltage mode switched-offset comparator. In

contrast to the current mode offset control shown in Fig. 2.5(d), the offset control circuit in Fig. 2.6
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Figure 2.7: Proposed voltage mode switched-offset comparator.

directly injects the offset voltage into the comparator without using extra current. Switches, SWON

and SWOFF, are initially closed, and are open to inject the required offset voltages when the active

diode is turned on or off, respectively. The on-chip offset calibration feedback adjusts the mag-

nitude of offset voltages, V ON and V OFF, by calibrating their control voltages, V C_ON and V C_OFF,

respectively [36,37]. Diodes, DON and DOFF, are current limiting diodes to suppress shoot-through

current. A switched resistor, RSLEW, enhances a comparator slew rate during the on-switching by

suppressing M 5 gate capacitor charging. M 5 and M 6 are used as a current folder in the proposed

comparator, whereas they are used as a current mirror in conventional comparators. While an

accurate mirror ratio is not design interest, it is design intent to amplify small incremental cur-

rent through M 1 by switching RSLEW for fast on-switching. For proper RSLEW control, a required

switch, SW R, should be open before the on-switching, and be closed right after the on-switching.

SWON, SWOFF, and SW R are controlled by the on-chip offset calibration circuits.

Fig. 2.7 shows the proposed comparator circuit. M 7 and M 10 implement the required offset

voltages, V ON and V OFF, controlled by their gate voltages, V C_ON and V C_OFF. M 8 and M 9 are

the current limiting diodes. SON and SOFF are control signals for switched-offset operations. The
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Figure 2.8: Simulated waveforms of the proposed comparator.

resistor RSLEW is an N-well diffusion resistor with high sheet resistance. Resistance variation is

acceptable as long as the resistance is large enough to suppress charging to the gate capacitor of

M 5 during the on-switching.

Fig. 2.8 shows simulated transient waveforms of the input, output, and internal nodes of the

proposed comparator. For accurate on-switching, SON becomes low to inject the offset voltage

before V ACP crosses 0 V. V MIR_LB controlled by M 7 starts to increase, while the current limiting

diode M 9 suppresses shoot-through current through M 3. At this point, RSLEW further helps a

fast comparator decision by enhancing the slew rate of V CMPL. As shown in Fig. 2.8, V MIR_T

drops quickly in comparison with M 5 gate node voltage, V M5_G. When the gate signal, V GL,
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Figure 2.9: (a) Simplified NMOS active diode with on-chip offset calibration feedback and its
timing diagram [37] and (b) its detailed V DS sampling network.

of the NMOS power transistor, MNL, in Fig. 2.4 transits from low to high, SON and SOFF are

inverted as shown in Fig. 2.8, and the offset voltage for the off-switching is injected. V MIR_RB

controlled by M 10 starts to increase, while the current limiting diode M 8 suppresses shoot-through

current through M 1. Short-circuiting RSLEW rapidly increases V MIR_T, thereby reducing the current

through M 6. When V GL transits from high to low, SOFF becomes high, and the offset voltage for

the off-switching is reset.

2.4.2 Low-power Dynamic Logic-based Switch Controller

Fig. 2.9(a) shows an NMOS active diode with on-chip offset calibration circuits. Sampling-

based offset/delay calibration circuits [36, 37, 41] sample V DS of the power transistor, MNL, at

the transition of V GL, and negative feedback forces the sampled V DS to be 0 V. Therefore, re-

verse current is minimized, and conduction time is maximized. Here, we adopted operational

transconductance amplifier (OTA)-based feedback [36, 37]. Since there is no specific constraints

on calibration feedback loop bandwidth, low-power low-speed two-stage Miller-compensated am-

plifiers are used for stability [36, 37]. The one-shot scheme [37] prevents multiple pulsing [33]. A

switch controller in Fig. 2.9(a) generates control signals for sampling (SONS, SOFFS, and SHOLD),

switched-offset (SON and SOFF), and the one-shot scheme (SBLOCK), occupying most power loss of

the whole offset calibration circuits. This is because analog power consumption of the OTAs and
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Figure 2.10: Conventional switch controller examples from (a) [37] and (b) [36].

sampling/holding capacitors, CS and CH, can be minimized as mentioned above. Both CS and CH

are 108 fF in this design, and dummy switches are used for sampling to minimize charge injection

and clock feed-through as shown in Fig. 2.9(b). Offset voltage of the amplifiers are minimized by

common-centroid layout with large transistors.

NOR gate-based SR latches and rising/falling edge detectors are key blocks to conventional

switch controllers. The inputs of the SR latches are connected to the edge detector output signals

[37] or the rectifier input signals [36]. Fig. 2.10 shows conventional switch controller examples

[36, 37]. The SR latches significantly affect power loss of the switch controller in Fig. 2.10(a).

A NOR gate has larger input capacitance than a simple inverter gate, which increases power loss.

Moreover, for proper latching operation, the input signal of the NOR gate-based SR latch should

be stable for the duration longer than propagation delay through two cross-coupled NOR gates,

TD_NOR1 + TD_NOR2. This constraint requires the output pulse signal duration of the edge detector,

TD_FED or TD_RED, to be longer than TD_NOR1 +TD_NOR2, thereby increasing power consumption of

the edge detector.

In Fig. 2.10(b), the SR latch input is connected to the rectifier input AC voltage, V ACP [36],

and a slow transition of V ACP increases short-circuit power of the SR latch. As shown in Fig. 2.8,

rail-to-rail transitions of V ACP take longer than 10 ns. Therefore, it is necessary that the input of

the SR latch avoid the output pulse signal of the edge detector or the rectifier input AC voltage
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Figure 2.11: (a) Proposed dynamic logic-based switch controller for the offset calibration circuits
and (b) its simulated waveforms

for low-power operation. Note that control signals generated by Fig. 2.10(b) do not exactly match

those in Fig. 2.9(a) because on-chip offset calibration feedback circuits in [36] are slightly different

from Fig. 2.9(a). We adopted offset calibration shown in Fig. 2.9(a) for our proposed controller to

avoid delay from correction logic circuits in Fig. 2.10(b) which are inserted between a comparator

and a buffer.

Fig. 2.11 illustrates the proposed low-power dynamic logic-based switch controller and its

simulated waveforms. Eliminating NOR-based SR latches solves the aforementioned problems.
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MN1, MP1, MP2, and INV 3 in Fig. 2.11(a) are functionally equivalent to RED1 and SRL1 in

Fig. 2.10. At the falling transition of V GL in Fig. 2.11(b), an NMOS power transistor, MNL, is

turned off. At this point, a falling edge detector, FED1, generates a short pulse, and triggers the

following self-resetting domino buffer with a small keeper, MP2. The generated pulse duration

should be long enough to discharge the internal node of V X, but shorter than propagation delay

of the delay line block, D1. Propagation delay of D1 should be long enough to prevent multiple

pulsing. Since small capacitance at the node of V X enables rapid discharging, FED1 can reduce

power consumption. A pulse signal for the one-shot scheme, SBLOCK, makes the comparator output

voltage, V CMPL, grounded to prevent multiple switching of the comparator. SHOLD is a control

signal for holding capacitors, CH, and is a non-overlapped signal with SONS and SOFFS. The other

falling edge detector, FED2, generates a pulse signal at the falling transition of SHOLD. MN2 and

MP3 implement a dynamic SR latch triggered by pulse signals at V GL and V Y. The node of SONS is

also buffered by a static inverter with a small keeper, MP4, to avoid a high impedance node. SONSB

is a complementary signal to SONS for sampling switches. SON and SOFF are generated to control

offset injection switches. In contrast to Fig. 2.10, we use a domino buffer consisting of MP6, MP7,

MN4, and an inverter to generate SON. By doing this, voltage mode switched-offset injection for

on-switching, V ON, starts earlier, which increases range of V ON. The dynamic inverter is used to

reduce short-circuit current induced by a slow transition of V ACP.

Fig. 2.12 shows power consumption of controller core circuits in Fig. 2.10(a) and Fig. 2.11(a),

respectively. The same falling edge detectors, FED1 and FED2, and delay line block, D1, are used

to assess the proposed low-power techniques for the worst case simulation. If we reduce TD_FED in

Fig. 2.11(a), power consumption is reduced more. Power consumption is reduced by 22-24%. In

summary, as compared with the example shown in Fig. 2.10(a), the proposed switch controller has

less number of edge detectors and less internal capacitive loading by eliminating NOR gate-based

SR latches, which leads to lower power consumption.
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Figure 2.12: Power consumption of controller core circuits in Fig. 2.10(a) and Fig. 2.11(a).

2.4.3 Transient simulations

Fig. 2.13 shows the simulated waveforms during start-up of a rectifier with the proposed com-

parators and controllers. INMOS shows the current through the NMOS power transistor, MNL. The

calibration feedback loop makes offset control voltage, V C_ON and V C_OFF, converge to proper

voltage for accurate on/off-switching, respectively, eliminating reverse current.

2.4.4 Comparison with a Current Mode Switched-Offset Comparator

We use an active diode of Fig. 2.9(a) to compare the proposed comparator with the cur-

rent mode counterpart. For fair comparisons, each simulation uses the same circuits except the

switched-offset comparator in Fig. 2.9(a). The proposed switch controller is used in the simula-

tions. For the switched-offset comparator, two different comparators of Fig. 2.7 and Fig. 2.5(d)

are used. They have the same push-pull core transistors, M 1-M 6, and the same bias current, IB.

Fig. 2.14 shows simulated power consumptions of two comparators and two offset calibration
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Figure 2.13: Simulation waveforms during start-up with RL = 500 Ω

circuits, PCMP+CAL_2X, power consumptions of two comparators, PCMP_2X, PCEs, and VCRs of the

rectifiers with different loading RL, which is implemented with 5-V devices of 0.35 µm CMOS

process. To avoid exaggerated comparisons, it is necessary to assess if the simulated rectifier

with current mode comparators is reasonably designed. The simulated rectifier with current mode

comparators consumes PCMP+CAL_2X of 1.16 mW at V REC = 3.3 V and 500 Ω loading. A similar

rectifier [37] designed with 3.3-V devices of 0.35 µm CMOS process has PCMP+CAL_2X of 0.77

mW at V REC = 3.29 V and 500 Ω loading. Since PCMP+CAL_2X is mainly dissipated by digital logic
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Figure 2.14: Simulated PCMP+CAL_2X, PCMP_2X, PCE, and VCR of the rectifiers with voltage/current
mode (VM/CM) switched-offset comparators.

circuits and comparators, the CMOS scaling theory [46] is used to account for the technology

difference. 30% shrinking from 0.5 µm to 0.35 µm reduces power consumption of digital circuits

under the same supply voltage by 30%. Based on this, PCMP+CAL_2X of 0.77 mW is scaled to 1.1

mW, which approximates 1.16 mW of the simulation. Therefore, the above design comparisons

are not exaggerated.

At V REC = 5 V, PCMP_2X reductions of 65%, 69%, and 73%, equivalent to PCMP+CAL_2X reduc-

tions of 30%, 35%, and 41%, improve PCEs by 2.6%, 1.6%, and 0.9% for RL = 1 kΩ, 500 Ω, and

200 Ω, respectively. PCMP_2X of the proposed comparator increases 2.1-fold for 500 Ω loading and

V REC = 2.7-5 V, whereas that of the current mode counterpart increases 3.0-fold. VCR of the rec-

tifier using the proposed comparator decreases for RL = 200 Ω and V REC ≤ 3 V because the total
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Figure 2.15: Simulated power loss distribution under different V REC and loading conditions

capacitance at the drain of M 9 in Fig. 2.7 limits the offset voltage injection speed, delaying the

on-switching. Increasing the comparator bias current enhances VCR, but lowers light-load PCE.

Advanced CMOS process can relax this design trade-off thanks to reduced drain capacitance.

Fig. 2.15 shows power loss breakdown of the active rectifier under different V REC and load-

ing conditions. Regardless of loading conditions, the rectifiers with the voltage mode switched-

offset comparators and the current mode switched-offset comparators have similar conduction loss,

PCOND_VM and PCOND_CM, and switching loss, PSW_VM and PSW_CM. While PCOND_VM and PCOND_CM

are dominant for RL = 200 Ω, PCMP+CAL_2X_VM and PCMP+CAL_2X_CM are dominant for RL = 1 kΩ.

For RL = 500 Ω, PCMP+CAL_2X_CM becomes dominant power loss in the rectifier with the current

mode comparators, whereas PCMP+CAL_2X_VM is still smaller than PCOND_VM. Therefore, reduction

of PCMP+CAL_2X is critical to light-load efficiency enhancement.

2.4.5 PVT variations

Fig. 2.16 shows simulated PCEs and VCRs of the rectifier with the proposed comparator and

500Ω loading under different PVT corners. Since human body temperature does not change much,

large temperature variation is not a great concern to IMDs. The simulated temperature range is well
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Figure 2.16: PVT variation simulations with RL = 500 Ω

beyond the typical temperature range of IMDs [11].

2.5 Effects of Technology Scaling on Power Loss

It is necessary to understand how technology scaling affects power loss not to compare rectifier

performances without considering technology. While advanced CMOS technology potentially pro-

vides low on-resistance, low switching loss, and high-density on-chip capacitors, device reliability

becomes an issue in high-voltage applications like IMDs. Since all the advanced CMOS technol-

ogy does not provide high-voltage device options to designers, high-voltage rectifier design imple-

mented with standard low-voltage devices has been investigated to overcome this hurdle [36, 47].

Stacking low-voltage devices is a well-known solution to high-voltage rectifiers as well as high-

voltage DC-DC converters. However, design/layout complexity significantly increases, whereas

PCE even decreases in consideration of efficiency of a necessary DC-DC converter [36]. There-

fore, high-voltage applications prefer implementation with high-voltage devices in finer CMOS

technology.

Conduction loss and VCR are closely related with on-resistance of the power transistors, which
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is given by

Ron =
1

βn · (V REC − V th,n)
+

1

βp · (V REC − |V th,p|)
(2.1)

where βn/p = µn/pCox,n/p(W/L)n/p. µn/p, Cox,n/p, and V th,n/p are the electron/hole mobility, gate

oxide capacitance per unit area, and threshold voltage of the NMOS/PMOS power transistor with

the aspect ratio of (W/L)n/p, respectively. For simplicity, we assume Cox,n = Cox,p = Cox and

Ln = Lp = Lmin. Lmin is the minimum channel length. Since the optimal size ratio of the PMOS

and NMOS transistors [48] for the minimum area is given by

(
W p

W n
)opt =

√
µn · (V REC − V th,n)

µp · (V REC − |V th,p|)
= γ, (2.2)

the optimal on-resistance is rewritten as

Ron,opt =
1 + γ

βn · (V REC − V th,n)
. (2.3)

For the same conduction loss, switching loss of one NMOS power transistor is given by

P sw,n = f oCox,nW nLnV REC
2

=
f o

µnRon,opt
· Lmin

2V REC(1 + γ)

1− V th,n/V REC
=

f o

µnRon,opt
· Sscaling (2.4)

where fo is the operating frequency. Using technology parameters [46], Fig. 2.17 shows that tech-

nology scaling significantly reduces switching loss. For example, in 0.35µm process, switching

loss of 5-V device implementation is 2.12-fold higher than that of 3.3-V device implementation

for the same on-resistance and V REC.

Technology scaling also reduces PCMP+CAL_2X. Analog power loss of feedback amplifiers and

sampling networks occupies only about 9% of PCMP+CAL_2X on average in this design under V REC =

2.7-5 V and RL = 500 Ω because low feedback loop bandwidth for stability allows for a low-power

amplifier [37]. Digital logic circuits for switch control occupy about 60% of PCMP+CAL_2X on aver-
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Figure 2.17: Scaling effect of technology and voltage on switching loss

age under the same conditions. According to the scaling theory [46], 30% shrinking from 0.5 µm

to 0.35 µm reduces power consumption of digital circuits under the same supply voltage by 30%.

Advanced CMOS technology further reduces comparator power loss which is 31% of PCMP+CAL_2X

on average under the same conditions. First, comparator output loads less capacitance due to re-

duced drain capacitance and buffer input capacitance. Second, comparator/buffer delay reduction

as well as rapid offset injection speed reduces the required amount of the offset voltage/current

in finer CMOS process. Therefore, a switched-offset comparator in advanced CMOS process can

work with lower power consumption over a wide range of V REC.

Fig. 2.18 shows power loss ratios normalized to switching loss, PCOND/PSW and

PCMP+CAL_2X/PSW, in the proposed rectifier under different output voltage and loading conditions.

Regardless of loading conditions, PCMP+CAL_2X/PSW does not change much over a wide range of
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Figure 2.18: Power loss ratios normalized to switching loss

V REC. This implies that digital power consumption dominates PCMP+CAL_2X like PSW. Therefore,

the scaling theory can be used to compare power consumptions of comparators and control circuits

among the rectifier designs implemented with different CMOS technology.

2.6 Measurement Results

The proposed rectifier was fabricated with 5-V devices (Lmin = 0.5 µm) of TSMC 2P4M 0.35

µm CMOS process to support high voltage, and packaged in QFN48. A chip micrograph is shown

in Fig. 2.19. The active area of the rectifier is 1.87 mm2 (2.10 mm× 0.89 mm), or 0.38 mm2 (0.89

mm× 0.43 mm) if the on-chip output capacitor CO (= 1.7 nF) is excluded. CO is made of MOM

and MOS capacitors, which are stacked to maximize capacitance density. CAC is the on-chip input

capacitance of 25 pF.

Fig. 2.20 shows the measurement setup, which is similar to [33]. A Tektronix TDS3054 os-

cilloscope and active differential probes are used for measurements. A class-D PA is implemented
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Figure 2.19: Chip micrograph of the implemented rectifier.

for a PTU with discrete components.

Fig. 2.21(a) shows PCB spiral coils for a PTU and a PRU. The primary coil is a 10-turn coil

with the outer diameter of 3 cm. Measured inductance and quality factor at 13.56 MHz are 2.19

µH and 90, respectively. The secondary coil is a 4-turn coil with the outer diameter of 1.5 cm.

Its inductance and quality factor at 13.56 MHz are 0.48 µH and 55, respectively. Fig. 2.21(b)

shows the measured AC input and rectified output waveforms of the proposed rectifier with 500 Ω

loading. It is known that suboptimal active diode switching makes the input AC voltage rugged

due to Ldi/dt noise [37] in combination with the inductance of bonding wires and package pins.

The input AC voltage in this work is not rugged thanks to accurate on/off-switching by offset cal-

ibration. However, ringing of the input voltage is observed due to parasitic inductance of bonding

wires and interconnect [39], which deteriorates PCE and VCR. The segment with increased V REC

confirms on/off-switching moments of the active diode.

Fig. 2.22 shows measured and simulated PCEs and VCRs. For measurements with RL = 200

Ω, 500 Ω, and 1 kΩ, peak (PCE, VCR) are (89.0%, 90.1%), (86.1%, 92.7%), and (79.6%, 96.1%),
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Figure 2.21: (a) Coils and (b) measured rectifier waveforms with V REC = 3.75 V and RL = 500 Ω .

respectively. For simulations with RL = 200 Ω, 500 Ω, and 1 kΩ, peak (PCE, VCR) are (92.4%,

93.4%), (91.3%, 96.3%), and (87.3%, 97.6%), respectively.

Table 2.2 compares the proposed rectifier with prior works in similar technology whose maxi-

mum output powers, POUT_MAX, are larger than 30 mW. As discussed in Section. 2.5, low-voltage
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Figure 2.22: Measured and simulated PCEs and VCRs.

devices with short feature length have lower switching loss for the same on-resistance. For ex-

ample, 5-V NMOS in 0.35µm CMOS technology has 2-fold and 4-fold switching loss in com-

parison with 3.3-V NMOS in 0.35µm CMOS and 2.5-V NMOS in 0.25µm CMOS, respectively.

In addition, power loss from comparators and control circuits is scaled down in advanced CMOS

technology. However, low-voltage devices are inadequate for high-voltage applications because of

device reliability, additional design complexity, and lower PCE. Therefore, blind PCE comparison

without technology consideration is misleading.

This work uses 5-V devices only to support high voltage, and outperforms rectifiers with similar

input ranges and feature length (0.5µm). Thanks to comparator power reduction shown in Fig.

2.14, PCMP+CAL_2X in this work is 3.9% lower than that of [37] for V REC = 3.3 V and RL = 500 Ω,

despite the fact that this work uses 5-V devices. PCMP+CAL_2X_SCALED for 30% shrinking from 0.5µm

to 0.35µm under the same V REC is 32.7% lower than that of [37]. In comparison with comparators

in similar technology [39], PCMP_2X is reduced by about 34% and 60% for V REC = 3.3 V and 3.9
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Table 2.2: 13.56 MHz Acitve Rectifier Comparison

Technology

This
Work

0.35 µm

5-V Devicesa.

Input range

Output cap.

POUT_MAX

VCR at RL=500 Ω

2.9-5.4 V

Switched-offset 
comparator type

Offset compensation

VMb.

On/Off

Output VREC range

Frequency [MHz] 13.56 13.5613.56 13.56

b.VM=Voltage mode. c.CM=Current mode.

2.7-5 V
(RL=500 Ω)

1.7 nF On-chip

126.7 mW

90.1-92.7 %

84.6-86.1 %

a.Minimum channel length (Lmin)=0.5 µm.

PCE
85.8-89.0 %

ΔVCR/ ΔVREC at 
RL=500 Ω [%/V]

1.13 1.06 4.29 3.57

RL=500 Ω
RL=200 Ω

Output range [V]

Output range 
at RL=500 Ω [V]

0.5 µm 

[40]
ISSCC, 2012

3.2-5 V

2 µF Off-chip

37 mW

77-86 %

73-77
d.

%

2.5-4.3 V
(RL=500 Ω)

On/Off

CM
c.

0.5 µm 

[39]
TCAS1, 2011

3.3-5 V

10 µF Off-chip

30.42 mW

76-81 %

68-80.2 %

2.5-3.9 V
(RL=500 Ω)

On/Off

CM
c.

N/A N/A

0.35 µm

[37]
JSSC, 2016

1.8-3.6 V

2 nF On-chip

64.8 mW

90.4-92.4 %

89.1-91.4 %

CM
c.

1.45-3.33 V
(RL=500 Ω)

On/Off

[38]
ISSCC, 2013

0.35 µm

1.5-4 V

1.27-3.6 V
(RL=500 Ω)

4 nF On-chip

32 mW

85-90 %

81-84.2
d.

%

Off

CM
c.

88.6-90.5 % N/A

d.Compared with a full wave rectifier structure. f.VREC=3.3 V, RL=500 Ω.

h.Off-chip offset control.

Simulated
PCMP_2X

e.
N/AN/A 0.38 mW N/A0.25 mW

Simulated PCMP+CAL_2X
f. 0.77 mWN/A N/A

h. N/A0.74 mW

PCMP+CAL_2X_SCALED
g. 0.77 mWN/A N/A0.52 mW

g.PCMP+CAL_2X_SCALED=PCMP+CAL_2X×S. S=0.7 for 0.5µm-to-0.35µm scaling under the same VREC.

0.31 mW 0.77 mW
VREC=3.3 V

VREC=3.9 V

N/A
h.

N/AN/A N/A

e.RL=500 Ω.

Note: Shaded cells denote high voltage application.

V, respectively. Regarding PCE, this work targets the peak PCE at the maximum output power,

whereas the rectifier in [37] targets it at 500 ohm loading. The measured peak PCE of this work

is 2.4% less than that of [37]. This is because high-voltage devices have larger switching loss, and

parasitic inductance of bonding wires and interconnect further deteriorates PCE in this work.

2.7 Conclusion

This chapter presents a voltage mode switched-offset comparator and a dynamic logic-based

switch controller for a 13.56 MHz CMOS active rectifier. The proposed low-power circuit tech-

niques reduce power loss of switched-offset comparators and offset/delay calibration circuits which

emerges as one of the major power loss components in advanced CMOS active rectifiers. To gener-
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ate continuously adjustable input-referred offset voltage, the proposed comparator reuses the bias

current instead of injecting extra offset current into the common-gate push-pull comparator core

circuit, thereby reducing comparator power loss. The proposed switch controller reduces power

overhead that NOR-based SR latches and edge detectors cause due to large capacitance of digital

logic gates and short-circuit power by a slow transition of the rectifier input voltage. Moreover,

effects of technology scaling on power loss are studied. The presented rectifier is implemented

with 5-V devices in 0.35 µm CMOS to support high voltage for low-power applications such as

IMDs. It achieves a peak PCE of 89.0%, a peak VCR of 90.1%, and a maximum output power of

126.7 mW for RL = 200 Ω.
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3. DESIGN OF A CC-CV LINEAR CHARGER FOR ENERGY-CONSTRAINED

LOW-POWER APPLICATIONS*

3.1 Battery Chargers

As discussed in Chapter 1, charging a Li-ion battery needs precise regulation for battery health

and safety. There are two popular types of battery chargers: a switching charger and a linear

charger. Although a switching charger is highly power-efficient, it tends to be bulky and expensive

due to an external inductor, causing electromagnetic interference (EMI) issues [49,50]. In contrast,

a linear charger has the advantage of ripple-free, compact, on-chip implementation [11, 15]. Its

efficiency is affected by V DS drop of a power transistor and quiescent current (IQ). The V DS drop

can be compensated by adaptive supply control schemes [12, 51, 52]. However, even though low

IQ design becomes increasingly important in the energy-constrained low-power applications, fast

battery charging with low IQ is still challenging due to multiple amplifiers for feedback regulation

loops. The following section discusses a fast linear battery charger for low-power applications.

3.2 CC-CV Linear Charger for Energy-Constrained Low-Power Applications

A battery-powered system has widely expanded its applications to implantable medical devices

(IMDs) and energy harvesting systems [1]. A constant current (CC)-constant voltage (CV) linear

charger is popular for fast, stable, and ripple-free charging as well as compact implementation in

the applications [11, 15], whereas a switching charger tends to be bulky and expensive due to an

inductor, causing electromagnetic interference issues [10]. These energy-constrained low-power

applications raise new challenges to linear charger design because even sub-mW power saving can

be useful.

The CC-CV linear charger has three charging phases, i.e., a trickle-current (TC) phase, a CC

phase, and a CV phase. Since CC regulation inherently conflicts with CV regulation, a seamless

*©2018 IEEE. Parts of this chapter are reprinted, with permission, from "A Unified Amplifier-Based CC-CV
Linear Charger for Energy-Constrained Low-Power Applications", by Kyoohyun Noh, Minglei Zhang, and Edgar
Sánchez-Sinencio, IEEE Trans. Circuits Syst. II, Exp. Briefs, July 2018.
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CC-CV transition has long been a research goal in linear charger design. One of the solutions to the

seamless CC-CV transition is a comparator-based transition, which selectively turns on a constant

current source for the TC/CC phases or a variable current source for the CV phase [12, 14]. This

transition requires multiple amplifiers for current source implementation and regulation. Moreover,

oscillatory battery voltage [13] and spike battery charging current [14] are well-known design

issues during the CC-CV transition.

To resolve these design issues, studies have preferentially used an analog transition method

rather than digital. A diode-based transition [51], a smooth control circuit (SCC)-based transition

[13, 53], and a subthreshold operational transconductance amplifier (OTA)-based transition [11]

are reported. However, diode/SCC-based transitions require multiple amplifiers for regulation and

additional bias current for the diodes and SCC. The subthreshold OTA-based transition suffers from

low-speed linear settling for the CV phase, consuming extra current of cascaded current mirrors

for large current gain.

This chapter proposes a unified amplifier-based linear lithium-ion (Li-ion) battery charger to

achieve the seamless CC-CV transition, quiescent current (IQ) reduction by sharing the bias cur-

rent, and high unity-gain loop bandwidth (f unity) for fast regulation. The rest of this paper is

organized as follows. Section 3.3 presents circuit implementation of the proposed battery charger.

Section 3.4 analyzes the stability of the charger. Measurement results are presented in Section 3.5,

and the conclusions are drawn in Section 3.6.

3.3 Unified Amplifier-Based Linear Charger

Fig. 3.1 presents the simplified architecture of the proposed charger. The proposed unified

amplifier merges amplifiers for CC/CV regulation, and removes the diodes or the SCC. It has three

differential input ports, which individually handle CC regulation (CA), CV regulation (VA), and

the seamless transition (SA). ISET is reference current, and IBAT is battery charging current. A

hysteresis comparator, CMPTC, changes a current mirror ratio to generate charging current, ITC
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Figure 3.1: Simplified architecture of the unified amplifier-based charger.

and ICC, during the TC/CC phase. Depending on V BAT_TC (= 5
14

· V BAT), IBAT is given by

IBAT =


S/(1 + T ) · V FB_CA/RSET in the TC phase,

S · V FB_CA/RSET in the CC phase.
(3.1)

where S and T are the sizing ratios of MCH and MTCS to MCS, respectively. Here, S and T are set

to 1000 and 10, respectively.

The voltage divider, DIV, uses a string of 14 diode-connected PMOS devices to reduce static

power consumption and the area. In the CV phase, the whole charging process is terminated by a

hysteresis comparator, CMPTERM, when IBAT is less than 7.5% of ICC [15]. A bandgap reference

[54] with 5-bit trimmable resistors generates voltages for each regulation and termination on-chip,

which are 1.2 V for V REF, 0.9 V for V REF_SA, and 0.12 V for V REF_TERM.

Fig. 3.2 shows the unified amplifier and its operations in the whole charging process. CA, VA,

and SA share IBIAS, and current-steering at SA makes a smooth CC-CV transition. The unified

amplifier has a balanced differential pair (CA) and two unbalanced differential pairs (VA and SA).

The unbalanced pairs are critical to implement tail current sharing and accurate CV regulation. We

define the deep CC phase to distinguish it from the CC phase due to their different transistor oper-
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Figure 3.2: Unified amplifier and its operations in (a) the TC/deep CC phase, (b) the CC phase, (c)
the CC-CV transition phase, and (d) the CV phase.

ations. Greyed transistors denote cut-off transistors. To understand transistor operations, it should

be noted that V IM_CA and V IM_VA are connected to V REF, and V IM_SA is connected to V REF_SA. As

shown in Fig. 3.1, V IP_CA, V IP_VA, and V IP_SA are connected to V FB_CA, V FB_VA (= 2
7
· V BAT), and

V FB_SA (= 3
14

· V BAT), respectively. In the TC phase and the deep CC phase, low V BAT makes

transistors for VA turn off, as shown in Fig. 3.2(a). Increasing V BAT starts to make a portion of
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the IBIAS flow into MIP_SA, as shown in Fig. 3.2(b). However, V BAT is not high enough to turn on

MIP_VA in this phase. Hence, the equivalent input-referred offset voltage of CA due to the output

offset current from VA increases slowly as V BAT increases. This offset voltage is acceptable be-

cause ICC does not require high accuracy [10]. As V BAT becomes high enough to turn on MIP_VA

like Fig. 3.2(c), both CA and VA are in the linear operation region. Increasing V BAT reduces the

equivalent input offset voltage of CA, and finally changes its polarity. As a result, the CC reg-

ulation loop forces V IP_CA (= V FB_CA) to decrease. In Fig. 3.2(d), MIP_CA is finally turned off,

which disables CC regulation and enables CV regulation. The current through MIM_CA offsets the

unbalanced differential pair of VA, making voltages at V IP_VA and V IM_VA almost the same in the

CV phase.

To determine the size ratios of the unbalanced differential pairs, M and N , we assume that

V IP_SA = V IM_SA and V IP_VA = V IM_VA in Fig. 3.2(d) at the battery’s fully charged voltage.

Normalized output currents, I1/IBIAS and I2/IBIAS, in Fig. 3.2(d) are calculated as

I1/IBIAS = M/(M + 1) ·N/(N + 1),

I2/IBIAS = 1/(M + 1) +M/(M + 1)/(N + 1). (3.2)

Therefore, the following condition from (I1 − I2)/IBIAS = 0 should be satisfied to prevent unified

amplifier saturation.

(M − 1) · (N − 1) = 2. (3.3)

Fig. 3.3 shows a contour plot of (I1 − I2)/IBIAS with respect to M and N and layouts of

SA and VA at the design point. W(MX) denotes the width of the MOSFET MX. While a small

fractional part of N increases layout complexity, small M makes (I1 − I2)/IBIAS sensitive to M ’s

variation. Therefore, we set M and N to 4 and 5/3, respectively. SA and VA are laid out with large

devices in a common centroid way. Device variation affects the input-referred offset voltage of the

unified amplifier, which deteriorates accuracy of fully charged battery voltage. Reference voltage
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Figure 3.3: Contour plot of (I1−I2)/IBIAS in the CV phase and layouts of SA and VA at the design
point.

trimming can compensate for it.

Fig. 3.4 shows transient simulation waveforms of the proposed charger with IBIAS = 20 µA and

RSET = 48 kΩ. Battery capacitance, CBAT, and the internal resistance, RBAT, depend on battery

capacity. For example, an 80-mAh battery has the maximum RBAT of 460 mΩ at 50% state-of-

charge (SOC) [55]. Moreover, an 8-mAh battery is reported with CBAT and RBAT of 26 F and 1

Ω, respectively [11]. We assume RBAT = 1Ω and CBAT = 10mF to capture waveforms in the

oscilloscope measurement [13]. For small RBAT like 200 mΩ, charging waveforms are similar.

Normalized currents (INORM) describe behavior of CA, VA, and SA. The normalized tail currents

of CA and VA are defined as

IT_CA_NORM = IT_CA/IBIAS, IT_VA_NORM = IT_VA/IBIAS. (3.4)

Here, IT_CA and IT_VA are the raw tail currents of CA and VA, respectively. Also, the normalized
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Figure 3.4: Transient charging waveforms with CBAT = 10mF and RBAT = 1Ω.

output differential currents of CA and VA are defined as

IOD_CA_NORM = (ID_MIP_CA − ID_MIM_CA)/IT_CA,

IOD_VA_NORM = (ID_MIP_VA − ID_MIM_VA)/IT_VA. (3.5)

Here, ID_MX denotes the drain current of the MOSFET MX. Waveforms in Fig. 3.4 agree well with

the operations shown in Fig. 3.2. IOD_CA_NORM and IOD_VA_NORM are perturbed during the TC-deep

CC transition because turning off MSW_TC in Fig. 3.1 drops V FB_CA. However, fast regulation

stabilizes it quickly.
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Figure 3.5: Simplified circuit diagram for the stability analysis.

3.4 Stability

Fig. 3.5 shows a simplified circuit diagram for the following stability analysis. Transcon-

ductance and output resistance of the MOSFET Mk are defined as gmk and rok. ACA(s), AVA(s),

ASA(s), and AMA(s) denote gain of CA, VA, SA, and MA, respectively. CA, VA, and SA have the

same output pole at −1/Coutrout due to the gate capacitance of the power transistor and the output

resistance of the unified amplifier. This pole forms the first non-dominant pole of the loop gain.

MA’s high-frequency pole is ignored.

Loop gain T k(s) corresponding to a loop Lk is given by

T 1(s) ≈ −A0 · (RSET/ro1) · ACA(s),

T 2(s) ≈ −T 1(s) · α · (1 + s/zbat)/(1 + s/pd),

T 3(s) ≈ −A0βSAASA(s) · δ · (1 + s/zbat)/(1 + s/pd),

T 4(s) ≈ A0βSAASA(s) · (1 + s/zbat)/(1 + s/pd), (3.6)

where A0 = gm1ro1 = gm2ro2, α = 1 − 1/AMA(s), zbat = 1/(CBATRBAT), pd = 1/(CBATro2),

and βSA = V FB_SA/V BAT (= 3/14). Moreover, δ is defined as βVAAVA(s)/(βSAASA(s)) where
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βVA = V FB_VA/V BAT(= 2/7). δ is bias-dependent and larger than one. Note that the input polarity

notation of SA in Fig. 3.5 is for tail current steering, not for SA’s small signal gain. As shown in

Fig. 3.2, SA has a negative gain.

In the TC phase and the deep CC phase, L1 and L2 are effective. Therefore, the combined loop

gain is calculated as

T TC(s) ≈ −A0 · (RSET/ro1) ·
ACA(s)

AMA(s)
· 1 + sAMA(s)/pd

1 + s/pd
. (3.7)

In the CC phase, L1, L2, and L4 are effective. The combined loop gain in this phase is calculated

as

T CC(s) ≈ A0βSAASA(s) ·
1− s(RSET/ro1) · γ/pd

1 + s/pd
. (3.8)

where γ = ACA(s)/(βSAASA(s)) ≫ 1. γ is bias-dependent but first-order frequency-independent

because CA and SA have the same output pole. γ decreases in the CC phase due to tail current

steering. Moreover, βSA and SA’s low transconductance make γ larger than one. The effect of

high-gain positive feedback at low frequencies is discussed later.

All the feedback loops are active in the CC-CV phase. The combined loop gain is given by

T CC-CV(s) ≈ −A0βSAASA(s) · (δ − 1)

· 1 + s(RSET/ro1) · γ/(δ − 1)/pd

1 + s/pd
. (3.9)

The zero frequency in the CC-CV phase increases in comparison with that in the CC phase as does

the DC gain. δ increases in this phase because AVA increases due to tail current steering.

L3 and L4 are active in the CV phase. The combined loop gain is calculated as

T CV(s) ≈ −A0βSAASA(s) · (δ − 1) · 1 + s/zbat

1 + s/pd
. (3.10)
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Figure 3.6: Loop gain simulations (a) with CBAT = 10mF and RBAT = 1Ω, and (b) with CBAT =
10mF and RBAT = 0.2Ω.

As compared with the CC-CV phase, the DC gain is maintained in the CV phase, whereas the zero

frequency increases.

Fig. 3.6 presents a loop gain simulation with different RBAT for each charging phase, which

agrees well with the above analysis. In an experiment with a real battery, larger CBAT lowers both

pd and zbat, which does not affect f unity much.

High-gain positive feedback at low frequencies in the CC phase gives a low-frequency RHP

pole and a high-frequency LHP pole to the closed-loop system. From (3.8), the closed-loop RHP
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pole location can be approximated to

pclosed,RHP ≈ pd/{(RSET/ro1) · γ}, (3.11)

which is the same as the RHP zero location of T CC(s) because high-gain feedback makes the

closed-loop pole move from the open-loop pole location to the open-loop zero location in the root

locus analysis.

Bounded CC phase duration limits the effect of the above RHP pole. A pessimistic estimate

for the CC phase duration can be calculated as

tCC ≈ CBAT∆V CC/(S · V REF/RSET). (3.12)

Here, the ∆V CC is a battery voltage change in the CC phase, and S is the size ratio of the power

transistor. Therefore, the effect of the RHP pole is given by

epclosed,RHP·tCC |pessimistic ≈ e
∆V CC
V REF·γ ≈ 1. (3.13)

Here, the worst case ∆V CC is about 0.5 V from Fig. 3.4, and the other parameter values are

V REF = 1.2V, RSET = 48 kΩ, and ro1 = S · ro2 = 55 kΩ. The factor γ varies. However, it is much

larger than one. This can be confirmed from the simulations in Fig. 3.6(a), where a ratio of the

dominant pole frequency to the zero frequency is much larger than one in the CC phase. Therefore,

the effect of the RHP pole in the CC phase is negligible.

The closed-loop dominant pole locus in Fig. 3.7 is found by using the loop gain simulation

data in MATLAB. Fig. 3.7 verifies that the bounded CC phase duration limits the effect of the

closed-loop RHP pole. As predicted by the root locus analysis, high loop gain makes the closed-

loop dominant pole close to the open-loop zero location which moves across the jω axis of the

s-plane twice during the whole charging process.

To test the stability, Fig. 3.8 compares battery voltage and current (V BAT and IBAT) under
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Figure 3.7: Closed-loop dominant pole locus (a) with CBAT = 10mF and RBAT = 1Ω, and (b) with
CBAT = 10mF and RBAT = 0.2Ω.

CBAT=10 mF
RBAT=1 Ω

Figure 3.8: Power supply step response simulation with CBAT = 10mF and RBAT = 1Ω.

nominal supply voltage V DD with those (V BAT_step and IBAT_step) when the supply voltage steps

up by 100 mV (V DD_step). A spiked current occurs when the supply voltage steps up. However,

fast regulation recovers it quickly. Spiky battery voltage differences are also observed temporarily

when the supply voltage steps up, or the charging process ends. Battery voltage difference starts
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Figure 3.9: Chip micrograph of the battery charger circuit.

to increase slightly after the step disturbance in the CC phase. However, it is negligible, and there

is virtually no difference between final voltages.

3.5 Measurement Results

The proposed charger is fabricated in TSMC 2P4M 0.35µm CMOS process. A die micro-

graph is shown in Fig. 3.9. The active area of the battery charger is 2.09 mm2 (1.44 mm× 1.45

mm). However, the core blocks occupy a small portion of the total area. The power transistor, the

unified amplifier, the MA, and the divider occupy 0.189 mm2 (0.43 mm× 0.44 mm), 0.04 mm2

(0.20 mm× 0.20 mm), 0.0054 mm2 (0.09 mm× 0.06 mm), and 0.076 mm2 (0.20 mm× 0.38 mm),

respectively. Since the area for reference, bias, and control was not optimized due to an irrelevant

design at the bottom left corner of Fig. 3.9, there is room for improvement. Also, a state-of-the-art

voltage reference circuit can reduce its area down to 0.0025 mm2 [56]. Therefore, the total area

can be enhanced significantly without the irrelevant design.

The supply voltage and the fully charged battery voltage are set to 4.4 V and 4.2 V, respectively.

Moreover, threshold voltage for the TC-CC transition, V TC-CC, is set to 2.66 V. To observe the

whole charging process within a short space of time, we use CBAT of 10 mF and RBAT of 1Ω to

emulate a Li-ion battery [11, 13]. Charging currents, ITC and ICC, are set to 2.273 mA and 25
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Figure 3.10: Charging waveforms with CBAT = 10 mF and RBAT = 1 Ω.

mA. Fig. 3.10 shows one shot capture of the charging waveforms by Tektronix TDS3054. A top

waveform and a middle waveform displays V BAT and V FB_CA in Fig. 3.1, respectively. V TERM is a

termination flag signal, which is set when IBAT is less than 0.075 · ICC. Since ITC and ICC are set

by the current mirror ratio according to (3.1), V FB_CA maintains its level when the charger enters

the CC phase from the TC phase. However, V FB_CA decays exponentially in the CV phase, which

means IBAT also decays in the same fashion. The measured waveforms show a smooth CC-CV

transition.

Fig. 3.11 shows the measured results of battery current, battery voltage, and charger efficiency

with a commercial battery, Renata rechargeable 80-mAh Li-ion polymer battery. Its fully charged

voltage, nominal voltage, and cut-off voltage are 4.2 V, 3.7 V, and 3 V, respectively [55]. Although

this battery has a 3-V cut-off voltage, there is no problem with verifying a smooth CC-CV transition

of the proposed charger. The maximum charging current error was 5.5% of 25 mA, and the final

battery voltage was 4.208 V, which is about 0.2% error of 4.2 V. Regarding charger efficiency

defined as V BAT · IBAT/{V DD · (IQ + IBAT)}, peak/average charger efficiencies were 94% and 88%,

respectively.
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Figure 3.11: Measured battery current, battery voltage, and charger efficiency with an 80-mAh
Li-ion polymer battery.

Table 3.1 compares the proposed charger with chargers described in previous works. Direct

comparisons among them are not easy because ICC depends on applications, and different chargers

reported different charging rates or no charging rates in their experiments. Although the charger

proposed in [11] achieves good average efficiency, its low f unity of the feedback loop gain makes

linear settling of the OTA slow in the CV phase, which is not adequate for fast charging. In

contrast, f unitys of [53] and this work in the CC-CV/CV phases are high because they are relatively

independent of battery capacitance. However, this work uses a single amplifier for CC-CV control,

while [53] uses multiple amplifiers. Consequently, our work achieves high peak/average charger

efficiencies with reduced IQ under fixed power supply voltage.

3.6 Conclusion

We presented and experimentally verified the unified amplifier-based CC-CV linear charger

for energy-constrained low-power applications. The proposed charger achieves the seamless CC-

CV transition with lower IQ because its unique structure using current steering shares one tail

current source among stacked differential pairs for regulation and the transition unlike conventional
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Table 3.1: Linear Li-Ion Battery Charger Comparison
This [52] [53]A. [12] [11]

Work TPEL, 2017 TCAS2, 2017 TIE, 2015 TBCAS, 2011

Technology 0.35um 0.35um 0.13um 0.18um 0.5um
CMOS CMOS BCD 6V CMOS CMOS

Supply Voltage [V] 4.4 Max 5.7 5 4.7 4.3
AdaptiveB.

Charging Modes TC-CC-CV TC-CC-CV TC-CC-CV TC-CC-CV TC-CC-CV

CC-CV
control circuits

Unified
amplifier

CA+VA
+diode

CA+VA
+SCCC.

Comparators
+Variable

current source
1 OTA

+ current gain

ICC [mA] 25 500 495 450 2.8
Charging rate [C] 0.31 N/A 0.66 N/A 0.35

Peak efficiency [%] 94 88.3 83.9 83 N/A
Avg. efficiency [%] 88 N/A N/A 79 89.7

funity of
the loop gain [Hz]

2M(CC-CV)
14kD./10kE.(CV) N/A 0.3MF.(CC-CV)

N/A(CV) N/A
N/A(CC-CV)
175uE.(CV)

Max IQ for CC-
CV control [uA] 58G. N/A N/A N/A 102H.

A.With built-in resistance compensation B.Integrated buck converter C.SCC: Smooth Control
Circuit
D.CBAT=10 mF, RBAT=1Ω E.CBAT=26 F, RBAT=1Ω F.CBAT=infinity, RBAT=N/A
G.ISET(25 uA) + Unified amp. IBIAS(20 uA) + Unified amp. bias circuits (13 uA)
H.OTA bias current (0.25 uA) + 3-stage current gain block (101.625 uA). Assume each stage’s
current gain is the same (224001/3≈28)

linear chargers. High f unity of the feedback loop gain enables fast regulation, and avoids slow

linear settling for the CC-CV/CV phases. A peak charger efficiency of 94% and average charger

efficiency of 88% are achieved with an 80-mAh Li-ion polymer battery.
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4. DESIGN OF A SUBRANGING PIPELINED-SAR ADC USING A

TEMPERATURE-INSENSITIVE TIME-BASED AMPLIFIER*

4.1 SAR ADC and Pipelined ADC

For low-to-moderate resolution data conversion, a successive approximation register (SAR)

analog-to-digital converter (ADC) [57–59] benefits from dynamic operation and no need for high-

gain amplifiers as the feature size of CMOS technology scales down, thereby resulting in the best

energy efficiency. However, the energy efficiency of a SAR ADC is degraded in high resolution

and high speed [60–63] design because of a strict noise requirement for comparator design and an

inherent serial conversion process.

To overcome the problem, a pipeline technique [64, 65] can play a continuing role for high

speed and high resolution conversion. In the design space of moderate-to-high speed and reso-

lution, a pipelined ADC has been a dominant ADC architecture. Each pipeline stage is conven-

tionally based on a capacitor array multiplying DAC (MDAC) [66]. However, the MDAC requires

a high-gain high-speed OTA for accuracy and speed, which is power-consuming and difficult to

design in advanced CMOS technology. Increasing the stage resolution relaxes the MDAC accu-

racy requirement, but this strategy leads to increase in power consumption of a conventional flash

sub-ADC.

4.2 A Hybrid Architecture: Pipelined SAR

For high speed and high resolution applications, a pipelined SAR ADC [67–75] is a promising

architecture which combines two moderate resolution SAR ADCs with an inter-stage residue am-

plifier. Compared with a conventional pipeline ADC, this architecture allows a higher first-stage

resolution to improve linearity while it avoids a front-end sample-and-hold amplifier. This is be-

cause signal sampling, SAR operations, and residue holding are made on the same CDAC array.

*©2017 IEEE. Parts of this chapter are reprinted, with permission, from "A 0.8-1.2 V 10-50 MS/s 13-bit Sub-
ranging Pipelined-SAR ADC Using a Temperature-Insensitive Time-Based Amplifier", by Minglei, Zhang, Kyoohyun
Noh, Xiaohua Fan, and Edgar Sánchez-Sinencio, IEEE J. Solid-State Circuits, November 2017.
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Compared with a conventional high resolution SAR ADC, a stage redundancy of the pipelined-

SAR ADC significantly relaxes a comparator noise requirement and the pipelined operation breaks

the speed bottleneck of a conventional SAR ADC. Furthermore, noise and linearity requirements

of the second stage can be mitigated dramatically as well because of inter-stage gain.

While the pipelined-SAR architecture features the aforementioned benefits, it encounters a few

design challenges. First, it still requires a high-gain high-speed amplifier to enable precise large

inter-stage gain after a large number of bits are resolved in the first stage. A conventional tele-

scopic OTA-based switched-capacitor (SC) residue amplifier [67–69] is power hungry and tech-

nology scaling-unfriendly with limited output swing and long settling time. As an alternative, a

ring amplifier-based SC residue amplifier [72] has the advantage of energy-efficient slew-based

charging as well as a nearly rail-to-rail output swing. However, it has an inherent stability issue

due to its ring operation and requires high threshold voltage devices additionally to accomplish

high gain. A dynamic amplifier [73–77] is also attractive to a pipelined-SAR ADC because it op-

erates as a time-domain integrator with the benefit of noise filtering [73] and an inherent dynamic

feature. However, its open loop nature makes it sensitive to process, supply voltage, and tempera-

ture (PVT). Therefore, background calibration [73, 75] is essential to achieve accurate inter-stage

gain. Second, the linearity requirement of the first-stage CDAC must satisfy that of the whole ADC

regardless of the resolution of the first-stage SAR ADC because DAC errors are reflected into resid-

ual voltage and cannot be corrected by digital error correction. Digital calibration [70, 73] can be

used to eliminate a mismatch error but increases design complexity. In this regard, high linearity

switching algorithms [72, 78] are attractive because they usually accomplish both low switching

energy and high linearity simultaneously.

In this chapter, we explore a 13-bit subranging pipelined-SAR ADC with a temperature-insensitive

time-based residue amplifier. First, this work improves the accuracy and energy efficiency of

the CDAC in the first-stage SAR ADC through the SAR-assisted subranging floating capacitor

switching algorithm. Second, a 32× technology scaling-friendly time-based residue amplifier is

presented to overcome the issues of PVT variation and small inter-stage gain in conventional dy-
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namic amplifier through time information. Third, this work also presents a pre-window technique

adopted by the asynchronous SAR control logic to accelerate SAR logic operation. With the tech-

niques presented above, the prototype ADC achieves Walden FoMs of 4.0-11.3 fJ/conversion-step

with a Nyquist frequency input at 10-to-50 MS/s in a scalable power supply voltage range of 0.8-

to-1.2 V.

This chapter is organized as follows. Section 4.3 presents the architecture of the prototype

ADC. Section 4.4 shows how the SAR-assisted subranging floating capacitor switching improves

both linearity and switching energy. Section 4.5 describes the principle and implementation of the

temperature-insensitive time-based residue amplifier. Section 4.6 discusses the pre-window-based

asynchronous SAR logic. Section 4.7 presents the measurement results. Finally, conclusions are

drawn in Section 4.8.

4.3 ADC Architecture

The overall ADC architecture is described in Fig. 4.1(a). Each 7-bit first stage and second stage

SAR ADC is connected by a 32× time-based residue amplifier with one inter-stage redundancy

bit. In the 7-bit first-stage SAR ADC, the first four most significant bits (MSBs) are resolved by

a subranging stage [57], which is a 4-bit SAR ADC. One redundancy bit is inserted between the

subranging stage and the first stage to cover the mismatch between them. The subranging archi-

tecture in [57] sets the capacitors in the first stage after the subranging stage completely finishes

bit decisions, which slows down the comparison cycling loop of the total SAR ADC. However,

the subranging floating capacitor architecture in our work (detailed in the Section 4.4.3) sets the

partial floating capacitors in the first-stage SAR ADC immediately after the corresponding deci-

sion bit from the subranging stage is acquired. Moreover, compared with the big and small DAC

architecture [71–73], the subranging operation in our work has lower comparator energy consump-

tion because the first four bits are acquired by a low resolution comparator while maintaining the

benefits of high energy efficiency, high linearity, and a fast SAR bit cycling loop. Bottom plate

input sampling is adopted in the subranging stage and the first stage to avoid the gain error caused

by parasitic capacitance on the top plate of CDAC and comparator input, and at the same time, it
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(a)

(b)

Figure 4.1: (a) Block diagram and (b) timing diagram of the subranging pipelined-SAR ADC at
50MS/s.(Actual implementation is fully differential)

enhances the accuracy of sampling process.

The 32× time-based residue amplifier shown in Fig. 4.1(a) consists of a dynamic integrator-

based voltage-to-time converter (VTC) and a charge pump-based time-to-voltage converter (TVC).

The residue voltage stored in the first-stage CDAC is converted to time difference ∆t by a dynamic

integrator [76] and a zero-crossing detector. The time difference is restored to voltage information

by a phase detector (PD) and a charge pump [79]. The gain sensitivity to temperature and supply

voltage variations is compensated by a time-based two-step conversion, which will be discussed

in Section 4.5. The output current of the charge pump is integrated on the top plate of the 7-bit

second-stage SAR ADC’s CDAC to minimize parasitic capacitor charging. Half-full scale range

design [70] is adopted in the second-stage SAR ADC to relax the gain of the residue amplifier from

64× to 32× for linearity considerations.
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Figure 4.2: First-stage CDAC output voltage during sampling, subranging, and first-stage conver-
sion at 50 MS/s.

Fig. 4.1(b) shows the timing diagram of the overall ADC. The ADC requires a 30% duty

cycle external clock ϕS for sampling, and all the other comparison clocks and control signals are

asynchronously generated on chip. For example, when the pipelined-SAR ADC works at 50 MS/s

with a 1.2 V power supply, the first-stage SAR ADC spends 6.0 ns for input sampling and 6.5 ns

for the subranging-stage operation (2.2 ns) and first-stage CDAC setup. The remaining 7.5 ns is

used for residual amplification and the system margin. The second-stage SAR ADC spends 8.5

ns for data conversion. Fig. 4.2 shows the differential output voltage of CDAC in the first stage.

The settling time of the first three capacitors in the first stage is significantly relaxed because of the

subranging operation. The detailed switching procedure is addressed in the Section 4.4.3.

4.4 SAR-Assisted Subranging Floating Capacitor Switching Technique in the First Stage

An energy-efficient and highly linear CDAC is essential in high resolution and low power

pipelined-SAR ADC design. This section explains how the subranging floating capacitor switch-
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(a)

(b)

Figure 4.3: (a) V CM-based switching and (b) partial floating capacitor switching energy consump-
tion for a 3-bit CDAC (V REF = 2V CM). (V ip and V in are the output voltages of CDAC.)

ing technique improves linearity and reduces switching energy in the first-stage SAR ADC.

4.4.1 Review of energy saving of the partial floating capacitor switching technique

The partial floating capacitor switching technique in [80] reduces switching energy consump-

tion by interchanging the switching order of the largest capacitor with the second largest one.

Fig. 4.3 shows an example of a 3-bit CDAC switching energy consumption of the VCM-based

switching technique [81, 82] and the partial floating capacitor switching technique. To illustrate

an energy saving at each decision step, the decision steps of the first two bits "10" are considered

here. In comparison with the V CM-based switching technique, the partial floating capacitor switch-

ing technique can save switching energy through two approaches. First, the largest capacitor is

made floating when the second bit is determined. This avoids additional charging to the largest ca-

pacitor and leads to a 50% energy savings in comparison with the V CM-based switching technique

(from 0.50CVREF
2 to 0.25CVREF

2 in Fig. 4.3). Second, when the first bit decision is different from

the second bit decision, the floating capacitors are reconnected to V CM, and this results in an 80%

reduction of switching energy in comparison with the V CM-based switching (from 0.625CVREF
2 to

0.125CVREF
2 in Fig. 4.3).
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4.4.2 Linearity Analysis of the partial floating capacitor switching technique

In this section, we address the INL characteristic of the partial floating technique and the effect

of parasitic capacitors on the linearity of the CDAC. The partial floating technique reduces INL

error (not mentioned in [80]) because V CM is utilized as a reconstruction reference to the MSB

capacitor between 1/4 V FS and 3/4 V FS. As explained in [81, 82], the worst case INL for an N-bit

V CM-based switching CDAC is expected to occur at the mid-scale code, and its value is

σ[INLmax]VCM-based =
√
2N−2 · σ0

C0
[LSB] (4.1)

where σ0 is the standard deviation of the unit capacitor C0. For the partial floating capacitor array,

the worst case INL occurs at 1/4 V FS and 3/4 V FS, which is

σ[INLmax]partial floating-based =

√
3

2
·
√
2N−2 · σ0

C0
[LSB] (4.2)

This value is the same as the INL error at 1/4 V FS and 3/4 V FS of the V CM-based switching because

they have the same switching sequence from 0 to 1/4 V FS and from 3/4 V FS to V FS. So, the partial

floating technique relaxes the matching requirement between the unit capacitors by a factor of

2/
√
3 in comparison with the V CM-based switching.

However, the top and bottom plate parasitic capacitance deteriorates the performance of the

partial floating-based SAR ADC. Depending on whether the largest capacitor is floating or not,

the weight of parasitic capacitance to the CDAC varies, and this generates a non-binary scaled

voltage step during bit cycling. Fig. 4.4 models how large the top and bottom plate parasitic

capacitance affects the SNDR of a 13-bit pipelined-SAR ADC with a 7-bit partial floating-based

first-stage SAR ADC. Through MATLAB modeling, 2% top and bottom plate parasitic capacitance

decreases the ENOB of the 13-bit ADC to around 10 bit. Therefore, the partial floating capacitor

switching technique is not suitable for high-resolution ADCs, and the SAR-assisted subranging

floating capacitor switching technique is presented in our work to solve the aforementioned issues.
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Figure 4.4: SNDR degradation of a 13-bit pipelined-SAR ADC with a 7-bit partial floating-based
first-stage SAR ADC, owing to capacitor array’s top and bottom parasitic capacitance.

Figure 4.5: SAR-assisted subranging floating operation in the 7-bit first-stage SAR ADC.

4.4.3 SAR-assisted subranging floating capacitor switching technique

From the energy saving approaches in Section 4.4.1, more switching energy can be saved when

more capacitors are used by the partial floating technique. However, this results in more decision

errors because more non-binary scaled voltage steps appear. In Fig. 4.5, in order to skip the

decision errors from the floating capacitors, a 4-bit subranging CDAC, which samples the input

signal simultaneously with the first-stage CDAC, is employed to resolve the first four bits. With

the help of these 4 bits, the first-stage CDAC array resolves the remaining 4 bits (one redundancy

bit is included) and generates residue voltage to be transferred to a residue amplifier. Fig. 4.6(a)
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Figure 4.6: (a) Capacitor array of the first-stage 7-bit SAR ADC with SAR-assisted subranging
floating technique. (b) Its switching algorithm. (Actual implementation is fully differential.)

shows the capacitor array details of the first-stage 7-bit SAR ADC with the subranging floating

technique. The first three largest capacitors (64C1, 32C1, 16C1) use the partial floating technique

to save switching energy and reduce INL error. Fig. 4.6(a) shows the switching algorithm of the

first-stage CDAC. After sampling, the first three capacitors are made floating, and are set by the

data stream from the subranging stage one by one. After all the capacitors are solidly connected,
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Figure 4.7: Seven-bit first-stage switching energy comparison versus output code.

the comparator in the first stage reaches the redundancy bit to set 8C1. Then, 4C1 is split into

2C1, C1 and C1 like a split capacitor array in [83] to further improve CDAC linearity. Splitting

capacitors like this enables to employ the same control logic structure that the partial floating and

redundancy capacitors employ.

Fig. 4.7 shows theoretical 7-bit CDAC switching energy of the SAR-assisted subranging float-

ing capacitor switching. This switching energy includes energy consumption of both the first-stage

CDAC and the subranging CDAC with a same unit capacitance. As compared with the VCM-based

switching, the subranging floating technique consumes 57.1% less switching energy on average.

Since the three largest capacitors are partially floating in the subranging floating technique, smaller

INL error can be achieved when VCM is used as the reconstruction reference voltage. Fig. 4.8

shows behavioral 5000 Monte Carlo RMS INL simulation results under the assumption of 0.3%

one sigma unit capacitor mismatch in the subranging and the first-stage CDAC. The simulation

shows that the maximum RMS INL of the subranging floating technique is 41% lower than that

of the VCM-based switching technique. In Fig. 4.9, 5000 Monte Carlo simulations in MATLAB

show ENOB improvement as a result of the subranging floating technique. Here, the other blocks

are assumed to be ideal. The horizontal axis denotes a standard deviation of the unit capacitor

percent mismatch in the subranging stage and the first stage. For a 1% mismatch, the subranging

floating capacitor switching technique improves the mean value of ENOB by 0.8 bit in comparison
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Figure 4.8: Seven-bit first-stage linearity comparison due to CDAC mismatch.

Figure 4.9: ENOB improvement by SAR-assisted subranging floating capacitor switching tech-
nique.

with the V CM-based switching scheme.

4.5 Temperature-Insensitive Time-Based Residue Amplifier

4.5.1 Review of Conventional Inter-Stage Residue Amplifiers

In a pipelined-SAR ADC with an M-bit first-stage, the inter-stage residue amplifier needs a

gain of 2M-1 to finish the residual amplification while there is no extra input swing attenuation in

the second-stage SAR ADC [67]. An OTA-based feedback amplifier [67–69] achieves an accurate

inter-stage gain through the ratio of capacitance. However, it is not friendly to technology scaling

due to low intrinsic gain. Moreover, with certain settling time, a smaller feedback factor β (≈21-M)
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Figure 4.10: Circuit diagram and timing diagram of a conventional dynamic amplifier.

for a higher inter-stage gain requires the OTA to have larger transconductance for the same set-

tling error, which translates to increase in static power consumption [67]. On the other hand, an

inter-stage gain less than 2M-1 increases the total sampling capacitance of the second-stage SAR

ADC due to the extra capacitors for the input swing attenuation, and in turn increases the load

capacitance of the OTA [69].

A dynamic amplifier is attractive to a pipelined-SAR ADC because of its zero static power and

noise filtering features [73–77]. Fig. 4.10 shows the circuit and timing diagram of a single-stage

dynamic amplifier [76]. The voltage amplification is done by the clock-controlled charging and

discharging operations to the load capacitors. The dynamic amplifier exhibits a transfer function

of an integrator, and provides the best separation of a sampled-data input signal and thermal noise

[73]. The gain of the single-stage dynamic amplifier is given by [76]

GainDynamic Amplifier =
gm

Id
· (V DD − V CM) (4.3)

where gm/Id is the ratio of the transconductance and drain current of the input transistors (M3 and

M4). From (4.3), the dynamic amplifier faces two critical challenges when it is used as a residue
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Figure 4.11: Temperature-insensitive time-based residue amplifier.

amplifier: One is that its gain is sensitive to PVT variations, and another is that the gain is limited

to a small value inherently due to the limitations of supply voltage and gm/Id. A temperature-

insensitive time-based residue amplifier is introduced in the following to solve the above chal-

lenges, while maintaining the merits of the conventional dynamic amplifier.

4.5.2 Operating principle of the time-based residue amplifier

The presented residue amplifier finishes its residue transfer through time-domain information

as shown in Fig. 4.11. The residue voltage stored in the first-stage SAR ADC is converted to

time difference by a VTC which consists of a dynamic integrator for noise filtering [73] and a zero

crossing detector (ZCD) for time delay generation. The time difference is converted to the output

voltage of the residue amplifier by a TVC which consists of a PD and a charge pump [79]. The

ZCD in Fig. 4.11 contains a dynamic pre-amplifier and a dynamic inverter for power efficient full

dynamic operation. The load capacitors of the dynamic amplifier use capacitor arrays which have

the same capacitance and structure as those of the sampling capacitor arrays in the second-stage

SAR ADC to eliminate the inter-stage gain’s dependence on the capacitance (CA and CS). The 4-bit

resistor DAC for VTUNE, the 3-bit logic for MD4 transistor size tuning, and the SWC switches at the

output of the dynamic integrator are used for initial settings for different power supply modes and

process corner correction. Fig. 4.12 shows the timing diagram of the time-based residue amplifier.

61



Figure 4.12: Timing diagram of the time-based residue amplifier.

When CK is low, the output node voltage (V N and V P) of the dynamic integrator is reset to V DD

and the output node voltage (V ON and V OP) of the charge pump is reset to common mode voltage

V CM. At the rising edge of CK, V N and V P start to be discharged at different rates based on the

input residue voltage and the output of the ZCD (tdP and tdN), which becomes high after V N and

V P cross V CM, respectively. Control signals of the charge pump (UP and DN) are generated by

the PD, and TON is used for dead zone elimination. According to UP and DN signals, the charge

pump injects current into the CDAC in the second-stage SAR ADC, and it develops the output

voltage of the residue amplifier. The residue amplification is done through the above discharging

and charging operation, which is reminiscent of a dual-slope ADC [84]. The ZCD’s offset voltage

and the input transistor’s (MD1) offset voltage in Fig. 4.11 can be translated to the equivalent input

offset voltage of the residue amplifier. If the total input offset voltage of the residue amplifier is

less than the inter-stage redundancy voltage range (8.82 mV), the performance of the ADC is not

affected. The offset voltage of the ZCD in this work is attenuated by the dynamic integrator gain,

whereas that of the ZCD in a ZCD-based ADC [85] is not. The effect of signal-dependent delay of

the ZCD is also minimized because of a similar discharging slope across the small input range of
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Figure 4.13: Schematic of the charge pump in the residue amplifier.

the dynamic integrator in Fig. 4.11.

Fig. 4.13 shows the schematic of the charge pump in the residue amplifier [79]. Replica

branches (UP and DN switches) are used for current stabilization when both UP and DN are low.

A mismatch between PMOS and NMOS current will cause the output common mode voltage of

the charge pump to change. However, this is not critical because the V CM-based switching is

adopted in the second-stage SAR ADC. Furthermore, the mismatch between UP current sources

(two transistors of MC4 in Fig. 4.13) brings different voltage gains when the input voltage polarity

of the residue amplifier is different. According to our simulations, the ENOB of the ADC is higher

than 11.5 bit with a mismatch of 30% between the UP current sources, which is easy to satisfy.

The gain of the time-based residue amplifier is determined by the gain of VTC and TVC, which

are controlled by V TUNE in Fig. 4.11 and the resistor R in Fig. 4.13, respectively. The gain of the
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Figure 4.14: Temperature compensation concept.

time-based residue amplifier is given by

GainTime-based amp = 2 · ICP ·
gm, MD1

Id, MD1
2
· (V DD − V CM) (4.4)

where gm, MD1 and IMD1 are the transconductance and drain current of MD1 in Fig. 4.11, respec-

tively, ICP is the drain current of MC1 in Fig. 4.13. Compared with (4.3) and (4.4), the time-based

residue amplifier is easy to achieve 32× gain. Furthermore, the total transfer time of the time-based

residue amplifier has a relation with the sampling capacitance CS in the second stage. Hence, the

time-based residue amplifier is technology scaling-friendly in terms of speed because the metal-

oxide-metal (MOM) capacitor CS is also technology scaling-friendly.

4.5.3 Temperature compensation in the time-based residue amplifier

The temperature compensation is done by a VTC with a negative temperature coefficient (TC)

and a TVC with a positive TC. For simplicity, we model the negative TC and positive TC with a

linear equation in Fig. 4.14. The detailed derivation procedure of the TC of the VTC and TVC is

given in the Appendix B.1. Through equations (B.1), (B.5), (B.6) and (B.8) in the Appendix B.1,

all the coefficients in Fig. 4.14 can be obtained. From (B.5), the negative TC of VTC increases as

V TUNE increases (because V OV, MD1 increases) in Fig. 4.11. From (B.8), the positive TC of TVC
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Figure 4.15: Simulation result of the temperature compensation process.

decreases as R increases in Fig. 4.13. Therefore, the temperature compensation can be done by

tuning V TUNE in Fig. 4.11 and R in Fig. 4.13. Fig. 4.15 shows the simulation results of the

conversion factors of the VTC and the TVC at a 1.2 V power supply and the TT corner. When

the temperature varies from -40 °C to 85 °C, the gain of the residue amplifier changes only 0.6%

from 33.1× to 33.3× (bigger than 32× to compensate the top plate parasitic capacitance in the

first-stage CDAC). From equations (B.9) and (B.10) in the Appendix B.1, the time-based residue

amplifier can also tolerate some degree of supply voltage variation in the same principle shown in

Fig. 4.14 through a negative voltage coefficient (VC) in (B.9) and a positive VC in (B.10). Fig.

4.16 shows the simulation result of the residue amplifier gain versus power supply voltage variation

(1.2 V is nominal supply voltage) at the TT corner. With ±10% power supply voltage variation,

gain of the residue amplifier changes 4.2% from 31.9× to 33.3×.

The equations (B.5), (B.8), (B.9), and (B.10) in the Appendix B.1 show that TC and VC of the

VTC have the same trends as those of the TVC, respectively. Moreover, they are governed by the

same design variables, and can be tuned by V TUNE and R. The design point of the residue amplifier

in this work is determined mainly by temperature compensation, while power supply sensitivity is

reasonably minimized. Table 4.1 summarizes the simulation results of the gain variations of the
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Figure 4.16: Simulation result of the residue amplifier gain versus power supply voltage variation.

Table 4.1: Residue Amplifier Gain Variations With PVT Variations (-40°C to 85°C)

Corners SS SF TT FS FF
1.32 V Supply 31.7-32.9 31.7-33.0 32.0-33.1 32.5-33.6 32.5-33.5
1.20 V Supply 33.1-33.3 33.1-33.3 33.1-33.3 33.1-33.3 33.1-33.3
1.08 V Supply 32.1-32.7 32.2-32.7 31.7-31.9 31.5-31.7 31.5-31.7

residue amplifier at different process corners and different power supplies when the temperature

varies from -40 °C to 85 °C. Different trimming block settings are used for different process corners

to cover the process variations

4.5.4 Noise and linearity of the time-based residue amplifier

According to the analysis in the Appendix B.2, the input-referred noise of the presented time-

based residue amplifier in Fig. 4.11 is given by

v2i,noise =
4kTγ

CA
· IMD1

gm,MD1(V DD − V CM)
. (4.5)
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Table 4.2: Noise Breakdown of the Pipelined-SAR ADC
Total

Noise [V2]
Quantization
Noise [V2]

Sampling
Noise [V2]

Residue Amp.
Noise [V2]

2nd Comparator
Noise [V2]

1.11e-8 6.35e-9 2.60e-9 2.03e-9 0.12e-9

Figure 4.17: Simulated THD of the residue amplifier versus temperature.

The noise in (4.5) is same with the noise of a conventional dynamic amplifier [73], so the presented

time-based residue amplifier is also a low-noise solution due to the noise filtering feature. Table 4.2

shows the simulated noise breakdown of the pipeline-SAR ADC. Our time-based residue amplifier

occupies only 18% of the total noise power of the ADC. Fig. 4.17 shows the simulated THD

of the residue amplifier versus temperature under 1.2 V power supply and TT corner. The input

signal of the residue amplifier is an 11 MHz stair-case sinusoidal signal with a voltage swing of

17.65 mVpp,diff (maximum residue voltage swing) and it is generated by an ideal DAC clocked at

50 MHz. From Fig. 4.17, the linearity of the time-based residue amplifier is sufficient to resolve

the 7 bits in the second stage.

4.6 Pre-window Asynchronous Control Logic

In high resolution SAR ADC design, a large CDAC for a strict matching requirement makes a

DAC settling time longer. Moreover, the comparison results always suffer further delays in order

to set the control logic for a CDAC as shown in Fig. 4.18(a) [86]. Therefore, a DAC settling time
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(a)

(b)

Figure 4.18: (a) Conventional SAR logic. (b) Subranging stage’s pre-window SAR logic.

requirement is getting harder to achieve in high-speed high-resolution SAR ADC design. Fig. 4.18

shows the comparison between conventional SAR logic [86] and the presented pre-window-based

SAR logic. Fig. 4.18(b) shows an example of the pre-window technique used in the subranging

stage. In a similar way, it can apply to the first stage and the second stage as well. In the pre-

window-based SAR logic, a window (WINi) is enabled for the comparator output before it is

clocked. With assistance from WINi, comparison results are used by the corresponding switched

control blocks without extra delay. In Fig. 4.18 the pre-window-based SAR logic saves the delay
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Figure 4.19: Die microphotograph of pipelined-SAR ADC.

time of the phase generator t2, which is usually considerable in high resolution SAR ADC because

the delay cells are always inserted into the asynchronous loop in order to relax the CDAC set up

time. The pre-window signal, WINi is generated through a TSPC DFF-based shift register chain.

4.7 Measurement Results

The prototype pipelined-SAR ADC was fabricated in an 1P8M 130 nm CMOS process. A die

photo is shown in Fig. 19. The active area of the ADC is 0.22 mm2, and most of the active area

is occupied by the CDAC in both the first stage and second stage. The unit capacitance of the

first-stage SAR ADC is 22 fF. Moreover, both the CDAC of the second-stage SAR ADC and the

load capacitor of the dynamic integrator in the residue amplifier use the same unit capacitance, 1.8

fF. All of the unit capacitor is a custom-designed encapsulated MOM capacitor [86]. The designed

pipelined-SAR ADC has three operation modes supporting different power supply voltages (1.2

V, 1.0 V and 0.8 V) with different maximum conversion speeds (50 MS/s, 30 MS/s and 10 MS/s,

respectively). As there is no integrated reference buffer on chip, V DD and GND are used as the

high reference and low reference voltage, respectively to simplify the measurement. Large on-chip

bypass capacitors are used to stabilize the reference voltages. Foreground calibration is used for the

temperature compensation configuration of the open-loop residue amplifier at in different operation

modes with a DC input signal of V CM. The calibration flow is as follows: First, configuring the
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Figure 4.20: Measured DNL and INL errors.

residue amplifier in Fig. 11 with the default settings which are from simulations; then changing the

current of the charge pump by changing adjusting the resistor R in Fig. 13 to make the output code

of the ADC 4096 (mid-scale code of a 13-bit ADC) under 25 oC. Second, putting the measured

ADC under -40 °C and 85 °C, and capturing its output code simultaneously; if the output code is

within a range of [4094 to 4098], the calibration is done; if not, changing V TUNE in Fig. 4.11 and

R in Fig. 4.13 according to the temperature compensation analysis in Section 4.5.3 to make the

output code of the ADC in the range of [4094 to 4098] under -40 °C and 85 °C.

Fig. 4.20 shows the measured DNL and INL errors under 50 MS/s conversion rate. The DNL

is within -0.60/ +0.50 LSB and the INL is within -1.68/ +1.71 LSB with assistance from the highly

linear SAR-assisted subranging floating capacitor switching scheme and a large CDAC array used

in the first-stage SAR ADC. Fig. 4.21 shows the measured FFT spectrums at different modes

with Nyquist frequency input signals. The ADC achieves 69.1 dB SNDR and 80.7 dB SFDR at

50 MS/s under 1.2 V power supply, 71.0 dB SNDR and 80.0 dB SFDR at 30 MS/s under 1.0

V power supply, and 71.2 dB SNDR and 81.5 dB SFDR at 10 MS/s under 0.8 V power supply.
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Figure 4.21: Measured FFT from 66536 data output with Nyquist input signals at 1.2-, 1-, and
0.8-V power supplies.

The designed pipelined-SAR ADC has a very low noise floor thanks to the noise filtering benefit

from the residue amplifier. Fig. 4.22 summarizes the measured SNDR and SFDR versus input

frequencies at different operation modes. The performance drops in the high input frequencies due

to sampling bandwidth limitation by the resistance in ADC test input paths, including the sampling

switches, the ESD protection resistors and the routing resistors.

The robustness of the presented pipelined-SAR ADC against temperature and power supply

variation is also measured in Fig. 4.23 and Fig. 4.24. Since the sampling performance of ADC is
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Figure 4.22: Measured SFDR and SNDR versus input frequency at different power supply voltages
and sampling rates.

strongly related with its ambient temperature and power supply voltage, the measurements in Fig.

4.23 and Fig. 4.24 were performed at low conversion rates to evaluate the residue amplifier gain

variation versus ambient temperature and power supply voltage by minimizing the performance

deterioration from sampling. The ADC has a higher than 68.5 dB measured SNDR and a higher

than 76.5 dB measured SFDR over a -40 °C to 85 °C temperature range at all operating modes in

Fig. 23. If temperature ranges from -25 °C to 65 °C, SNDR is higher than 70.1 dB, and SFDR

is higher than 78.2 dB at all operating modes. This verifies that the temperature compensation

presented in Section 4.5 is valid. More than 66.0 dB measured SNDR and more than 80.9 dB

measured SFDR can be obtained within ±10% power supply variation of the whole pipelined-

SAR ADC at all operating modes in Fig. 4.24. If measured within ±5% power supply variation,

SNDR is higher than 68.9 dB, and SFDR is higher than 81.4 dB at all operating modes. Fig. 4.25

shows the power consumption breakdown of the presented pipelined-SAR ADC at 1.2 V power

supply and 50 MS/s conversion rate with a Nyquist frequency input. The total measured power
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Figure 4.23: Measured SFDR and SNDR versus temperature of ADC with 2.05-MHz input signals.

Figure 4.24: Measured SFDR and SNDR versus ±10% power supply variation of ADC with 2.05-
MHz input signals.

is 1.32 mW. Only 26.1% of the total power is consumed by the time-based residue amplifier, and

this is much smaller than that of a closed-loop residue amplifier design [67–69]. The other power

consumption percentages include 46.1% for the subranging and first stage, 19.2% for the second

stage, and 8.6% for the clock generator.
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Figure 4.25: Pipelined-SAR ADC power consumption breakdown (1.2-V power supply and 50
MS/s).

Table 4.3 summarizes the performance of the pipelined-SAR ADC at different operating modes.

The full-scale differential input signal range is 16/17 of 2×V DD due to the redundancy capacitor in

the first stage. The performance of the pipelined-SAR ADC keeps similar at down-scaled power

supply voltages, even leading to better FoMs at 0.8 V and 1.0 V power supply. The Walden FoM

with 2.05 MHz input signal is from 3.9 to 8.5 fJ/conversion-step, and 4.0 to 11.3 fJ/conversion-

step with a Nyquist frequency input. Table 4.4 shows a comparison between the prototype ADC

and other pipelined-SAR ADCs. To our best knowledge, among the pipelined-SAR ADC with

an open-loop residue amplifier, this work is the only one that achieves high gain and background

calibration-free operation simultaneously under ambient temperature and power supply variation.

This work also shows an attractive power supply scaling feature with competitive energy efficiency,

even though it is implemented in a relatively old technology. With a 0.8 V power supply and a 10

MS/s conversion rate, the 4.0 fJ/conversion-step is the best reported FoM to date for an ADC with

more than 70 dB measured SNDR and more than 10 MS/s conversion rate.
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Table 4.3: Pipelined-SAR ADC Performance Summary

Resolution 13 bits

Technology 130 nm 1P8M CMOS

Active Area 0.22 mm2

DNL -0.60/+0.50 LSB

INL -1.68/+1.71 LSB

Power Supply 1.2 V 1.0 V 0.8 V

Sampling Rate 50 MS/s 30 MS/s 10 MS/s

Input Range 2.26 Vp-p,diff 1.88 Vp-p,diff 1.51 Vp-p,diff

SNDR @ 2.05 MHz input 71.6 dB 71.4 dB 71.5 dB

SFDR @ 2.05 MHz input 84.6 dB 81.9 dB 82.0 dB

SNDR @ Nyquist input 69.1 dB 71.0 dB 71.2 dB

SFDR @ Nyquist input 80.7 dB 80.0 dB 81.5 dB

Total Power 1.32 mW 0.56 mW 0.12 mW

FoM @ 2.05 MHz input 8.5 fJ/conv. step 6.1 fJ/conv. step 3.9 fJ/conv. step

FoM @ Nyquist input 11.3 fJ/conv. step 6.4 fJ/conv. step 4.0 fJ/conv. step

4.8 Conclusion

This chapter introduces a subranging pipelined-SAR ADC employing a new CDAC switching

algorithm and a new residue amplifier. The presented SAR-assisted subranging floating capacitor

switching algorithm reduces the CDAC switching energy and improves its linearity by utilizing

a subranging stage which also breaks the speed bottleneck in the first-stage SAR ADC. The pre-

sented temperature-insensitive time-based residue amplifier solves the PVT variation issue in the
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Table 4.4: Comparison with State-of-art Pipelined-SAR ADC Designs

This Work
[67]

SOVC
2010

[68]
ISSCC
2012

[73]
ISSCC
2014

[75]
SOVC
2014

[72]
ISSCC
2015

[87]
ISSCC
2017

Technology 130 nm 65 nm 130 nm 28 nm 28 nm 65 nm 65 nm

Resolution [bits] 13 12 14 14 14 13 12

Active Area [mm2] 0.22 0.16 0.24 0.137 0.35 0.054 0.08

Interleaving No No No 2X 2X No No

DNL [LSB] 0.60 0.75 0.89 - - 0.58 0.67

INL [LSB] 1.71 1.50 3.52 - - 0.96 0.8

Residue Amplifier
Structure

Open-loop Time-based Closed-loop Telescopic Open-loop Dynamic
Closed-

loop
Ring

Open-loop
Dynamic

Residue Amplifier
PVT-Stabilized

Yes Yes Digital Calibration Yes Yes

Power Supply [V] 1.2 1.0 0.8 1.3 1.2 1.0 0.9 1.2 1.3

ADC FS [Vp-p,diff] 2.26 1.88 1.51 2.0 2.0 1.4 - 2.4 -

Sampling Rate [MS/s] 50 30 10 50 30 80 200 50 330

SNDR @ Nyq. [dB] 69.1 71.0 71.2 64.4 70.4 66.0 65.0 70.9 63.5

SFDR @ Nyq. [dB] 80.7 80.0 81.5 75.0 79.6 74.0 - 84.6 76.5

Total Power [mW] 1.32 0.56 0.12 3.5 2.54 1.5 2.3 1.0 6.23

FoM @ Nyq.
[fJ/conv.step] 11.3 6.4 4.0 51.8 31.3 11.5 7.9 6.9 15.4

open-loop residue amplifier. This time-based residue amplifier also shows power supply voltage

scalability. The pre-window asynchronous control logic is used to extend the settling time of the

CDAC array. With the aforementioned three techniques, the prototype ADC achieves 69.1 dB

SNDR and 80.7 dB SFDR for a Nyquist frequency input sampled at 50 MS/s and consumes 1.32

mW. With a power supply range of 0.8-to-1.2 V and 10-to-50 MS/s conversion rate, this ADC

achieves Walden FoMs from 4.0 to 11.3 fJ/conversion-step.
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5. A TEMPERATURE COMPENSATION TECHNIQUE FOR A DYNAMIC AMPLIFIER IN

PIPELINED-SAR ADCS*

5.1 Dynamic Amplifiers

In electronic circuit design, the word "dynamic" implies storing charges in a capacitor. For

example, a memory cell of a dynamic random access memory (DRAM) stores charges into the cell

capacitor, thereby storing digital bit information, whereas a static random access memory (SRAM)

stores digital information into a latch. Moreover, dynamic logic circuits utilize pre-charging or

post-charging to capacitors to enhance speed and remove static power consumption [46]. In appli-

cations to analog circuits, a dynamic current mirror [88] is used to mirror the current without static

bias current consumption. On the same line, a dynamic amplifier uses pre-charging to amplify the

input signal without static bias current consumption.

A dynamic amplifier uses pre-charging to set the bias condition of the amplifier without static

bias current consumption. Elimination of the static bias current makes a dynamic amplifier a good

candidate for a low-power amplifier. Moreover, a dynamic amplifier is inherently fit into dis-

crete time applications because dynamic circuit operation requires a pre-charging or post-charging

phase. However, there are some caveats for dynamic amplifier design. First of all, designers should

take care of capacitive coupling from other noisy signals because all the analog information of a

dynamic amplifier is stored in capacitors. Moreover, gate leakage current of transistors in advanced

CMOS technology can destroy the stored information, or requires to use large storage capacitors,

which leads to low speed and increase in power and area.

Fig. 5.1 shows an example of a dynamic amplifier [89]. Operating points of the amplifier are

set when ϕ is high, and the input signal is amplified when ϕ is low. Dynamic biasing makes the

amplifier less sensitive to threshold and power supply variations.

*©2018 IEEE. Parts of this chapter are reprinted, with permission, from "A Temperature Compensation Technique
for a Dynamic Amplifier in Pipelined-SAR ADCs", by Minglei, Zhang, Kyoohyun Noh, Xiaohua Fan, and Edgar
Sánchez-Sinencio, IEEE Solid-State Circuits Lett., January 2018.
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Figure 5.1: An example of a dynamic amplifier.

5.2 Dynamic Amplifiers in Pipelined-SAR ADCs

For high-speed and high-resolution applications, a pipelined-successive approximation register

(SAR) analog-to-digital converter (ADC) [20, 67, 68, 72, 73, 75, 87] shows better energy efficiency

than conventional pipeline and SAR ADCs [60, 64]. While the pipelined-SAR ADC can have a

high first-stage resolution to enhance linearity, design of a precise high-gain residue amplifier is

still challenging. A conventional operational transconductance amplifier-based closed-loop residue

amplifier [67, 68] is not only power-hungry due to stringent requirements of settling speed and

accuracy, but also adverse to technology scaling due to low intrinsic transistor gain in nanometer

CMOS. A ring amplifier-based residue amplifier [72] benefits from slew-based charging and near

rail-to-rail output swing. However, its ring operation brings an inherent stability issue, and the

multi-stage structure limits its maximum conversion speed.

Recently, a dynamic amplifiers [73,75,76,87,90] has become an attractive approach to energy-

efficient residue amplification in the pipelined-SAR ADC because it benefits from noise filtering

and dynamic power features [73]. However, gain of the dynamic amplifier is sensitive to pro-

cess, supply voltage, and temperature (PVT) variations due to its open-loop operation. One way
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to compensate for the PVT-sensitive gain is digital background calibration [73, 75] which usually

suffers from long convergence time and design complexity. The other is an analog compensation

approach utilizing PVT- dependent integration time for the dynamic amplifier [87]. However, it

needs a static power-consuming amplifier, and the inherent mismatch between the dynamic ampli-

fier and the static amplifier limits its compensation effect.

Usually, the process variation can be corrected through foreground calibration, and the sup-

ply voltage variation is reasonably minimized by a supply voltage regulator in the pipelined-SAR

ADC. In this work, we explore a temperature-compensated dynamic amplifier. While a time-based

residue amplifier in [20] achieves temperature-insensitive high gain (32×), it requires a higher de-

sign complexity than a conventional dynamic amplifier due to time-domain conversion. Here, we

propose a temperature-insensitive dynamic amplifier with moderate gain (12×) but lower design

complexity. The proposed dynamic amplifier employs a temperature-dependent common-mode

(CM) detector, which has a fully dynamic operation and simple configuration. The prototype

single-stage dynamic amplifier achieves 2.1% gain variation across -20 °C to 85 °C with the pro-

posed technique.

This chapter is organized as follows. Section 5.3 shows how the gain variation of the residue

amplifier affects the performance of the pipelined-SAR ADC. Section 5.4 illustrates the principle

and implementation of the temperature-compensated dynamic amplifier. Section 5.5 reports the

measurement results, and Section 5.6 concludes this work.

5.3 Residue Gain Variation in Pipelined-SAR ADCs

Fig. 5.2 shows a 12-bit pipelined-SAR ADC. A 6-bit first-stage SAR ADC and a 7-bit second-

stage SAR ADC are connected by a dynamic amplifier with a gain of 12. An attenuation capacitor

Ca in the second-stage SAR ADC is used to relax the gain of the dynamic amplifier from 32 to

12. Both the first stage and the second stage adopt bottom-plate input sampling to enhance the

sampling accuracy. A V CM-based switching technique [82] is adopted in both stages to maintain

the constant CM voltage of the capacitive DAC. The pipeline timing diagram in Fig. 5.2(b) is

similar to [73] and [20].
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(a)

(b)

Figure 5.2: (a) Block and (b) timing diagram of a 12-bit pipelined-SAR ADC with a dynamic
residue amplifier(single-ended version shown here).

To investigate how the gain of the dynamic amplifier affects the performance of the 12-bit

pipelined-SAR ADC, we modeled the whole ADC of Fig. 5.2 in MATLAB with ideal first-stage

and second-stage SAR ADCs. Fig. 5.3 shows the simulated SNDR versus the residue gain in

the pipelined-SAR ADC. The residue gain should be within a range of 11.6 to 12.4 to achieve an

SNDR greater than 66.5 dB.

5.4 Temperature-Compensated Dynamic Amplifier

5.4.1 Review of Conventional Dynamic Amplifier

A dynamic amplifier assists a pipelined-SAR ADC to realize fully dynamic operation, which

is attractive to frequency-scalable applications. Fig. 5.4 shows the circuit and timing diagram of

a conventional single-stage dynamic amplifier [76]. When CLK is low, the output node voltages

(V ON and V OP) of the dynamic amplifier are reset to V DD. At the rising edge of CLK, V ON and

V OP start to be discharged at different rates based on the input differential voltages. When the CM

voltage of V ON and V OP crosses V DET (threshold voltage of the CM detector), the CM detector is

triggered, and SW becomes low to cut off the capacitors CL from the discharging branches. Sub-
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Figure 5.3: SNDR versus residue gain of the 12-bit pipelined-SAR ADC.

sequently, the output voltage V ON and V OP are maintained. The gain of the single-stage dynamic

amplifier is given by [76]

Gain =
gm

Id
· (V DD − V DET) (5.1)

where gm/Id is the transconductance efficiency of the input transistors (M1 and M2). From (5.1),

the gain of the dynamic amplifier relates to a temperature-sensitive term gm/Id. To achieve a

temperature-insensitive gain, a temperature-dependent CM detector is presented in this work to

make the V DDV DET term in (5.1) offset the temperature variation of the gm/Id term.

5.4.2 Temperature-Compensated Dynamic Amplifier

Fig. 5.5 shows the circuit and timing diagram of the temperature-compensated dynamic ampli-

fier with a zero-crossing detector (ZCD)-based CM detector. Unlike a conventional inverter-based

CM detector [76], the ZCD-based CM detector has a temperature-dependent threshold voltage,

V DET. To achieve a temperature- insensitive gain, the principle of multiplication-based tempera-

ture compensation [20] is adopted herein. Temperature dependence of gm/Id and V DD −V DET can
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(a) (b)

Figure 5.4: (a) Circuit and (b) timing diagram of a conventional dynamic amplifier.

(a) (b)

Figure 5.5: (a) Circuit and (b) timing diagram of the temperature-compensated dynamic amplifier.

be modeled as TCgm/Id × (T −T 0)+(gm/Id)T 0 and TCV DD−V DET × (T −T 0)+(V DD−V DET)T 0,

respectively. Here, TCX is the temperature coefficient (TC) of X, and T0 is 25 °C. The linear tem-

perature dependence of the dynamic amplifier gain can be removed, if the TCs of the gm/Id and

the V DD − V DET have different polarities, and their ratio has a certain value.

M1 and M6 in Fig. 5.5 are in the saturation region and linear region, respectively. Assuming

square law devices for analyses, the TC of gm/Id is given by

TCgm/Id =
∂(gm/Id)M1

∂T
≈ α

2
· V OV,M6

V 3
OV,M1

· ∂V TH,M1

∂T
< 0. (5.2)
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where α = 2× (W/L)M6/(W/L)M1 in Fig. 5.5. V OV, M1 and V TH, M1 are the overdrive voltage and

the threshold voltage of M1, respectively. V OV, M6 is the overdrive voltage of M6. According to

(5.2), gm/Id has a negative TC because of a negative TC of V TH, M1 [20], and its value varies with

V BIAS in Fig. 5.5. In order to compensate for the negative TC of (5.2), a temperature-dependent

voltage V DET is introduced in Fig. 5.5. The TC of V DD − V DET is given by

TCVDD-VDET =
∂(V DD − V DET)

∂T
≈ 3× (

V OV,M7

2KM7
· ∂KM7

∂T
− ∂V TH,M7

∂T
) > 0. (5.3)

where KM7 = 1
2
× µnCox(W/L)M7. V OV, M7 and V TH,M7 are the over-drive voltage and threshold

voltage of M7, respectively. Stacking of M7, M8, and M9 reduces V OV, M7, making the TC of

V DD −V DET positive [20]. The TC of V DD −V DET can be changed by the resistor R in Fig. 5.5 (by

changing V OV, M7). The detailed derivations of (5.2) and (5.3) can refer to [20]. By multiplying the

gm/Id and the V DD − V DET, a condition to remove linear temperature dependence of the dynamic

amplifier gain is given by

TCgm/Id

TCVDD-VDET

≈ − (gm/Id)M1,T0

(V DD − V DET)T0

. (5.4)

Equation (5.4) can be satisfied by tuning both resistor arrays in Fig. 5.5. Fig. 5.6 shows the

simulation results of the temperature compensation effect at a 1.2-V power supply and the TT

corner. The TC of gm/Id is negative, and the TC of V DDV DET is positive as shown in Fig. 5.6.

When temperature varies from -20 °C to 85 °C, the gain of the dynamic amplifier changes from

11.78 to 12.25 with the proposed temperature compensation technique. The bias voltage V BIAS and

resistor R in Fig. 5.5 are programmable to cover supply voltage variations and different process

corners. In Fig. 5.7, the gain of the dynamic amplifier is within a range of 11.70 to 12.32 with

different process corners (TT, FF, SS, FS, and SF), and supply voltages (1.15 V, 1.2 V, and 1.25 V)

across a temperature range of -20 °C to 85 °C.

With a noise filtering feature [73], the simulated input-referred noise of the dynamic amplifier

is 1.5 nV2 with a load capacitor CL of 250 fF in Fig. 5.5. Fig. 5.8 shows the simulated total
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Figure 5.6: Simulation results of the temperature compensation.

Figure 5.7: Simulation results of the dynamic amplifier gain versus temperature with different
supply voltages (1.2 V ± 0.05 V) and process corners (TT, FF, SS, FS, and SF).

harmonic distortion (THD), amplification time, and the output CM voltage of the dynamic ampli-

fier under 1.2-V power supply, TT corner, and an 11-MHz stair-case sinusoidal input signal with a

voltage swing of 37.5 mVpp, diff (maximum residue voltage of the first-stage SAR ADC in Fig. 5.2).
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Figure 5.8: Simulated THD, amplification time, and output CM voltage of the dynamic amplifier
versus temperature.

The linearity of the temperature-compensated dynamic amplifier is sufficient for the 7-bit second-

stage SAR ADC. The gain of the dynamic amplifier is within the range of 11.6 to 12.4 across -20

°C to 85 °C with an input CM voltage range of 300 mV to 700 mV. The output CM voltage of

the dynamic amplifier varies with temperature as shown in Fig. 5.8 because of the temperature-

dependent CM detector. However, the output CM voltage variation has no significant effect on the

ADC performance because the second-stage SAR ADC adopts the fully differential V CM-based

switching scheme, which is insensitive to the input CM voltage [82], and the temperature variation

is a slow process. The output CM voltage in Fig. 5.8 is less than the V DET in Fig. 5.6 because of

the time delay of the ZCD.

5.4.3 Zero-Crossing Detector

The ZCD [91] in the temperature-dependent CM detector consists of a single-stage pre-amplifier,

a dynamic inverter, and a normal inverter as shown in Fig. 5.9. The pre-amplifier is cut off after the

amplification process of the dynamic amplifier for energy efficiency, and its timing information is

shown in Fig. 5.5(b). The temperature- dependent offset of the ZCD is much less than V DD−V DET,

so it does not affect the temperature compensation process significantly.
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Figure 5.9: Schematic of the ZCD.

5.5 Measurement Results

The prototype temperature-compensated dynamic amplifier was fabricated in a 1P8M 130 nm

CMOS process. Fig. 5.10 shows a die photograph and its corresponding layout. The active area

of the dynamic amplifier with output buffers is 0.0135 mm2. Fig. 5.11 shows the measurement

setup including on-chip output buffers and off-chip transformers. The direct path is measured to

eliminate the effect of the output buffers on the gain of the dynamic amplifier. The output buffer

is comprised of a pseudo-differential PMOS source follower pair that is terminated with the off-

chip transformer to mitigate the effects of pads and bonding wires. The center taps of the output

transformers are supplied with 2.5 V for high linearity by increasing the source-to-gate voltage of

the PMOS source followers.

Gain of the proposed dynamic amplifier was measured with the 500 kHz 50 mVpp, diff sinusoidal

input and 1.2-V power supply voltage at the conversion rate of 50 MS/s. The transformer band-

width should be much higher than the conversion rate to avoid high frequency attenuation because

the output voltage waveform of the dynamic amplifier is a pulse-amplitude modulation signal.

For accurate gain measurements, we measured input attenuation by the transformer T 1 with the

connecting cable and output attenuation by the output buffer and the following transformer with

the connecting cable. Measured input and output attenuation are 2.5 dB and 9.9 dB at 500 kHz,
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Figure 5.10: Die microphotograph and its corresponding layout.

Figure 5.11: Measurement setup.

respectively. The peak output and input voltages are used to evaluate the gain of the dynamic am-

plifier. Fig. 11 shows the measured output transient waveforms of the dynamic amplifier at CLK

and VO_A. Measured gain and amplification time of the dynamic amplifier are 12.2 and 3.7 ns,

respectively as shown in Fig. 5.12.

To evaluate the linearity of the dynamic amplifier, the gain versus input swing (after T 1) is

measured in Fig. 5.13. The gain of the dynamic amplifier is larger than 11.6 when the input swing

(after T 1) is less than 80 mVpp,diff. The simulated SNDR of the pipelined-SAR ADC in Fig. 5.2
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Figure 5.12: Measured output transient waveforms of the dynamic amplifier after the transformer
T 2 at 50 MS/s.

with the ideal SAR ADCs and the measured gain profile in Fig. 5.13 is 73.5 dB. Fig. 5.14 shows

the measured temperature compensation effect of the dynamic amplifier with three chips. The

presented temperature compensation technique reduces the gain range from [10.85 to 13.50] to

[11.75 to 12.21], resulting in reduced maximum gain variation from 12.5% to 2.1% across -20 °C

to 85 °C.

The total power of the dynamic amplifier is 0.11 mW except the output buffers at 1.2-V power

supply and 50-MHz clock. The temperature-dependent CM detector consumes 31.8% of the total

power, which is dynamic power and scalable with the needed conversion speed. Table 5.1 shows

a comparison among [20, 87], and the prototype dynamic amplifier. Compared with our former

temperature- insensitive time-based amplifier [20], the prototype dynamic amplifier eliminates the

complicated time-domain operation and is more suitable for the energy-efficient applications. The

prototype dynamic amplifier achieves a higher gain than [87] with a similar gain variation over a

wider temperature range. Fully dynamic operation makes this work superior to [87] in terms of a

power-to-conversion-speed ratio and power overhead of the compensation circuit.
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Figure 5.13: Measured dynamic amplifier gain versus input swing.

Figure 5.14: Measured dynamic amplifier gain versus temperature.
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Table 5.1: Performance Comparison

[87] [20] This work

Technology (nm) 65 130 130

Supply Voltage (V) 1.3 1.2 1.2

Gain (V/V) 5 32 12

Temperature Range (°C) [-5 to 85] [-40 to 85] [-20 to 85]
|∆Gain|/Gain

Temperature Range
(%/°C) 0.017 0.0025* 0.020

Power/Speed (W/Hz) 3.33×10−12 6.90×10−12 2.20×10−12

Power Percent of Compensation Circuits (%) 49.1 -** 31.8
*Simulation result without process and supply voltage variatons.
** [20] is not a dynamic amplifier. There is no separate compensation circuit.

5.6 Conclusion

This chapter presents a temperature compensation technique for a dynamic amplifier. The pro-

posed temperature-dependent ZCD-based CM detector reduced the gain variation of the dynamic

amplifier from 12.5% to 2.1% across the temperature range of -20 °C to 85 °C.
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6. CONCLUSIONS

6.1 Summary

Since portable or implantable devices operate in the energy-constrained environment, their

low-power operations in combination with efficiently sourcing energy to them are key problems

to extend device life. This research discusses two essential functions of a PRU in the energy-

constrained environment, which are power management and signal processing.

From a power management perspective, the most critical two circuit blocks are a front-end

rectifier and a battery charger. The front-end CMOS active rectifier converts transmitted AC power

into DC power. High PCE is required to reduce power loss during the power transfer, and high

VCR is required for the rectifier to enable low-voltage operations. The proposed rectifier in Chap-

ter 2 adopts novel low-power comparators for active diodes and dynamic logic-based feedback

controllers to further reduce power consumption from active diodes and control logic circuits.

Consequently, high PCE and VCR are maintained, while robust operations to PVT variations are

achieved.

The linear battery charger stores the converted DC power into a battery. Since even small

power saving can be enough to run the low-power PRU, a battery charger with low IQ is desir-

able. Chapter 3 introduces a unified amplifier-based linear battery charger and analyzes stability

of the proposed charger. In contrast to conventional chargers, the proposed charger adopts a single

amplifier that utilizes current-steering for the CC-CV transition, which results in low IQ.

From a signal processing perspective, an ADC is one of the most important circuit blocks in

the PRU. It can be used to sense environmental changes such as temperature change and humidity

change, while it can be used for wireless communication among other near PRUs as well. Hence,

an energy-efficient ADC is essential in the energy-constrained environment. Recently a hybrid

architecture, a pipelind-SAR ADC, emerged to achieve moderate-to-high speeds and resolutions

with decent energy efficiency. A conventional OTA-based residue amplifier of the pipelined-SAR
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ADC consumes more power and its design difficulty increases in advanced CMOS technology. To

overcome these hurdles, a dynamic amplifier is investigated. However, PVT variation of its gain

is critical. Chapter 4 and Chapter 5 discusses temperature compensation techniques of dynamic

amplifier’s gain. Chapter 4 introduces a temperature-insensitive time-based residue amplifier. It

consists of a VTC and a TVC. Their temperature coefficients have different polarities, and the

multiplication-based temperature compensation removes the overall gain’s linear dependence on

temperature. Additionally, high gain is achieved by cascading a VTC and a TVC. In contrast, Chap-

ter 5 introduces a simpler temperature compensation technique using a conventional dynamic am-

plifier. A temperature-dependent common-mode detector in this compensation technique achieves

temperature-insensitiveness, using the same multiplication-based compensation principle. How-

ever, gain is still determined by a conventional dynamic amplifier.

6.2 Future Work

6.2.1 Trends of wireless power transfer

End-to-end efficiency of a magnetically coupled WPT system is significantly affected by dis-

tance and coil orientation between a PTU and a PRU, and a coupling coefficient between a TX

coil and a RX coil is a parameter that includes the effects of distance and orientation. Moreover,

load resistance affects PCE significantly because light-load efficiency is mainly degraded by ex-

cessive switching power of the power transistors. To achieve stable power transfer, regulating

rectifiers were proposed [45, 92, 93], and a load-sensing scheme was combined with a regulat-

ing rectifier [93]. However, these works did not adopt offset-calibrated active diodes. Therefore,

higher PCE and VCR are expected if offset-calibrated active diodes are combined with regulat-

ing rectifiers. Moreover, different load-sensing schemes, different active diode feedback control

loops [42], bidirectional wireless power transfer [94], and GaN-based power transistors for TX and

RX [42, 95] can be explored further.
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6.2.2 Trends of battery chargers

A switching battery charger is another popular battery charger architecture. It utilizes an in-

ductor, and its fundamental operation is similar to an inductor-based switching DC-DC converter.

Conventionally, this charger also adopts multiple feedback loops to achieve CC-CV regulation.

Unified amplifier-based regulation can apply to this type of charger to reduce IQ. Moreover, moni-

toring and compensation of battery’s built-in resistance [50,53,96] and different charging methods

such as pulse charging optimization [97] and sinusoidal charging [98] can be explored further.

6.2.3 Trends of low-power high-speed ADCs

As a sampling frequency approaches technology limit, power consumption of a high-speed

ADC increases dramatically, whereas power consumption of the ADC is linearly proportional

to the sampling frequency when the sampling frequency is much lower than technology limit.

To overcome this speed-power bottleneck, a time-interleaving scheme can be used. Therefore,

time-interleaved pipelined-SAR or SAR ADCs for hundreds MS/s-to-GS/s can be explored with a

careful consideration of channel mismatches [73, 99, 100].

Dynamic or digital amplifier techniques still have room for further exploration [87, 90, 101,

102]. In particular, linearity enhancement and PVT-stabilization are emerging topics. In this dis-

sertation, we assumed that foreground calibration calibrates process variation of a dynamic ampli-

fier. For future work, background calibration techniques can be explored in combination with a

time-interleaving scheme to achieve low-power high-speed operations.
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APPENDIX A

ANALYSIS OF CMOS ACTIVE RECTIFIER POWER CONVERSION EFFICIENCY

Power conversion efficiency (PCE) is a key figure-of-merit of a rectifier. PCE of a CMOS active

rectifier was analyzed comprehensively in the previous works [39, 48]. Here, we derive compact

closed-form equations for conduction loss and switching loss as functions of a duty ratio. To sim-

plify the analysis, we assume that i) the rectifier input voltage is sinusoidal, ii) the rectified output

voltage is constant, and iii) an active diode is switched at right on/off timings. These assumptions

are valid if heavy load does not distort the input waveform much, the output capacitance is large,

and offset/delay calibration works properly.

Fig. A.1 shows the simplified voltage waveform for the PCE analysis. Conduction time, TON,

and duty ratio, D, can be expressed as

TON = T − 2

ω0

· sin−1(V CR)

D = 1− 2

π
· sin−1(V CR) (A.1)

AC

REC

ON

Figure A.1: Simplified rectifier input waveform.
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where ω0 is the input carrier angular frequency and T =
1

2f0
. VCR is defined as V REC/V AC.

Therefore, VCR is given by

V CR = sin(
π

2
(1−D)) = cos(

π

2
·D) (A.2)

From the average load current equation,

IL,avg =
V R

RL
=

2

T

∫ T/2

t0

V AC sin(ω0t)− V R

RSW
dt (A.3)

RSW

RL

=
2

π
·
√
1− V CR2

V CR
−D =

2

π
· tan (π

2
·D)−D (A.4)

where RL is the load resistance and RSW is the total on-resistance, Ron, p + Ron, n, of the power

transistors along the current path. From this resistance ratio, we can obtain the power ratio of

P COND/P LOAD as a function of the duty ratio.

P COND =
2

T

∫ T/2

t0

(V AC sin(ω0t)− V REC)
2

RSW
dt

=
2

T
· V REC

2

RL
· RL

RSW

∫ T/2

t0

(
sin(ω0t)

V CR
− 1)2dt

=
2

T
· P LOAD · RL

RSW

∫ T/2

t0

(
sin(ω0t)

V CR
− 1)2dt (A.5)

P COND

P LOAD
=

πD

4
·
tan2(

π

2
·D)− 6

πD
· tan(π

2
·D) + 3

tan (
π

2
·D)− π

2
·D

(A.6)

Interestingly, (A.6) reveals that the conduction loss ratio is independent of the output DC voltage

and physical constants relevant to the technology.

On the other hand, switching loss ratio is given by

P SW

P LOAD
=

πf0Cgate,n,unitRon, n,unit

α · (tan (π
2
·D)− π

2
·D)

(A.7)
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Figure A.2: (a) Loss ratio vs. Duty ratio and (b) PCE vs. Duty ratio

where f0 is the input carrier frequency, Cgate,n,unit and Ron, n,unit are the unit gate capacitance and

the unit on resistance of the NMOS power transistor, and α is Ron,n/RSW. We can observe that the

switching loss ratio is a function of a duty ratio and technology-dependent constants. P CMP and

P CTRL are mixed with static power consumption and dynamic power consumption. Therefore, they

can be modeled by

P CMP + P CTRL = V RECIBIAS,equiv + f0CequivV
2

REC (A.8)

where IBIAS,equiv is equivalent current for static power consumption modeling an Cequiv is equiva-

lent capacitance for dynamic power consumption modeling. Therefore, the loss ratio of compara-

tors and control circuits is given by

P CMP + P CTRL

P LOAD
=

π

2
·
RSW · (

IBIAS,equiv

V REC
+ f0Cequiv)

tan (
π

2
·D)− π

2
·D

(A.9)

Fig. A.2(a) shows each loss ratio, assuming unit transistors are W P/LP = 175µm/0.5 µm and

WN/LN = 75µm/0.5µm in TSMC 350-nm 5-V devices. Technology parameters are assumed

to be Cgate,n,unit = 112.5 pF, Ron, n, unit = 41.13Ω, α = 0.36, V REC = 3.6V, IBIAS,equiv = 10µA,
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Cequiv = 1 pF, and RSW = 1.13Ω. As expected, switching loss dominates total loss in low duty

ratio region and conduction loss does in low-to-medium duty ratio region. The corresponding PCE

is plotted in Fig. A.2(b) and the optimal duty ratio is found between 0.2 and 0.25 for the above

technology parameters.

While the above example shows loss ratios and the PCEs with respect to duty ratios, the equa-

tion (A.4) reveals that RSW is a monotonically increasing function of D under the constant RL.

Therefore, a large duty ratio corresponds to large RSW, vice versa. Note that RSW is a function of

transistor widths and V REC. Therefore, there exists the optimal area of a rectifier to maximize PCE

under certain RL and V REC. Adaptive power transistor sizing utilizes this property to maintain high

PCE over a wide range of RL.
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APPENDIX B

TEMPERATURE COMPENSATION AND NOISE ANALYSIS

OF THE TIME-BASED RESIDUE AMPLIFIER

B.1 Temperature compensation analysis of the time-based residue amplifier

The conversion factor of the VTC in Fig. 4.11 and Fig. 4.12 is given by

FVTC =
∆t

V res,diff
≈ gm,MD1

I2MD1
· (V DD − V CM) · CA

=
2(V DD − V CM) · CA

KMD1 · V 3
OV,MD1

(B.1)

where KMD1 = 1/2× µn ×Cox × (W/L)MD1. V OV, MD1 is the overdrive voltage of MD1. CA is the

output capacitance of dynamic integrator (assume the SWC switch is off in Fig. 4.11). The TC of

(B.1) is given by

∂FVTC

∂T
= −2(V DD − V CM) · CA

KMD1 · V 3
OV,MD1

· ( 1

KMD1
· ∂KMD1

∂T
+

3

VOV,MD1
· ∂VOV,MD1

∂T
) (B.2)

MD1 is biased in the saturation region, and MD4 is in the triode region in Fig. 4.11. The current

passing MD4 is given by

2 ·KMD1 · V 2
OV,MD1 = KMD4 · (VOV,MD4 −

1

2
· V DS,MD4) · V DS,MD4 (B.3)

where KMD4 = µn ×Cox × (W/L)MD4. VOV, MD4 and VDS, MD4 are the overdrive voltage and drain-

to-source voltage of MD4, respectively. Taking a derivative to (B.3) with respect to temperature to

get the TC of VOV, MD1, the result is

∂V OV,MD1

∂T
= − α · V OV,MD4

α · (V OV,MD4 − V DS,MD4) + 4 · V OV,MD1
· ∂V TH,MD1

∂T
= β · ∂V TH,MD1

∂T
. (B.4)
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where α is KMD4/KMD1, which is temperature insensitive, and VTH, MD1 is the threshold voltage of

MD1 with negative TC [103]. The resulting β is negative. When deriving (B.4), body effect of

MD1 is neglected. Therefore, the TC of the conversion factor of the VTC is given by

∂FVTC

∂T
= −2(V DD − V CM) · CA

KMD1 · V 3
OV,MD1

· ( 1

KMD1
· ∂KMD1

∂T
+

3β

VOV,MD1
· ∂VTH,MD1

∂T
) (B.5)

MD1 in Fig. 4.11 is biased with VOV, MD1 smaller than 100 mV to make the TC of VTH, MD1 dominant

in (B.5). Therefore, FVTC has a negative TC.

On the other hand, the conversion factor of the TVC in Fig. 4.11 and Fig. 4.13 is given by

F TVC =
V out,diff

∆t
=

2 · ICP

CS
=

2 ·KMC1 · V OV,MC1
2

CS

=
2 ·KMC1

CS
· (V DD − ICP

γ
·R− V TH,MC1)

2 (B.6)

where KMC1 = 1/2×µn×Cox×(W/L)MC1. ICP is the drain current of MC1. γ is the current mirror

factor between MC1 and MC0. VTH, MC1 and VOV, MC1 are the threshold voltage and the overdrive

voltage of MC1, respectively. CS is the total sampling capacitance in the second-stage SAR ADC.

The TC of (B.6) is given by

∂F TVC

∂T
=

− γ
R
· 2
CS

γ·V OV,MC1
2·ICP·R

+ 1
· (∂V TH,MC1

∂T
− V OV,MC1

2 ·KMC1
· ∂KMC1

∂T
) (B.7)

As ICP × R = γ × (V DD − V GS, MC1), where V GS, MC1 is the gate-to-source voltage of MC1.

Therefore, the TC of conversion factor of the TVC is simplified as

∂F TVC

∂T
≈ − 2 · γ

R · CS
· (∂V TH,MC1

∂T
− V OV,MC1

2 ·KMC1
· ∂KMC1

∂T
) (B.8)

MC1 is biased with VOV, MC1, which is about 120 mV to make the TC of VTH, MC1 (negative TC

[103]) dominant in (B.8). Here, thermal variation of R is ignored. Therefore, F TVC has a positive

TC.
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Similarly, using the same derivation procedure of the temperature variation analysis, (B.9) and

(B.10) show the supply voltage coefficient of VTC and TVC, respectively.

∂FVTC

∂V DD
=

CA

KMD1 · V 3
OV,MD1

· (1− 3 · δ · V DD

V OV,MD1
· ∂V TUNE

∂V DD
) (B.9)

∂F TVC

∂V DD
=

4

CS
·

V DD − V TH,MC1 −
ICP·R

γ

1
KMC1

+ 2R
γ
· (V DD − V TH,MC1 −

ICP·R
γ

)

=
4

CS
· V OV,MC1

1
KMC1

+ 2R
γ
· V OV,MC1

(B.10)

where δ = β × (V DS, MD4/V OV, MD4), β is the factor in (B.4). When deriving (B.9), we assume

V DD = 2 × V CM. Under the same bias conditions, (B.9) and (B.10) have a negative VC and a

positive VC, respectively.

B.2 Noise analysis of the time-based residue amplifier

The noise of the time-based residue amplifier consists of noise from the VTC and TVC. For

the stochastic zero-crossing delay variables tdP and tdN in Fig. 4.11 and Fig. 4.12, their delay

difference variance due to circuit noise is given by

σ2
tdP−tdN

= σ2
tdP

+ σ2
tdP

− 2 · COV [tdP , tdN ] (B.11)

Since tdP and tdN are correlated due to the same noise sources, calculation of their covariance,

COV [tdP , tdN ], is complex. For simplicity, the worst case output noise power of the VTC is given

by

(σ2
tdP−tdN

)WORST = (σtdP + σtdN )
2 (B.12)

The zero-crossing delay variance is affected by three terms which are windowed integrals of ther-

mal noise, initial integrated thermal noise (kT/C), and noise from a ZCD [104]. The jitter deriva-

112



tion for an inverter-based ring oscillator in [104] is still applicable to our noise analysis. According

to [104], the time delay variance is given by

σ2
tdP

=
tdP0

2I2MD1,P

· S iP,noise +
kTCA

I2MD1,P

+
C2

Av
2
i,noise−ZCD

I2MD1,P

(B.13)

σ2
tdN

=
tdN0

2I2MD1,N

· S iN,noise +
kTCA

I2MD1,N

+
C2

Av
2
i,noise−ZCD

I2MD1,N

(B.14)

S iP,noise = S iN,noise = 2kTγgm,MD1 + kTgds0,MD4 (B.15)

tdP0 =
CA(V DD − V CM)

IMD1,P

(B.16)

tdN0 =
CA(V DD − V CM)

IMD1,N

(B.17)

where S iP,noise and S iN,noise are noise power spectral densities due to MD1 and MD4 at VP and VN

in Fig. 4.11 before zero-crossing occurs, respectively. The last two terms of (B.13) and (B.14)

are much less than the first term, and the second term of (B.15) is much less than the first term.

Because of a small input voltage (the difference between IMD1,P and IMD1,N is small), the input-

referred noise of the time-based residue amplifier due to the VTC in the worst case is given by

v2i,noise−V TC =
(σtdP + σtdN )

2

F 2
VTC

≈ 4kTγ

CA
· IMD1

gm,MD1(V DD − V CM)
. (B.18)

The output noise of the TVC is given by [79]

v2o,noise−TV C =
4kTγ

2C2
A

· (gm,MC1 + gm,MC4) · TON (B.19)
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where TON is the time used for dead zone elimination in Fig. 4.12. According to (B.1) and (B.19),

the input-referred noise of the time-based residue amplifier due to the TVC is given by

v2i,noise−TV C = v2i,noise−V TC · I3MD1 · TON · (gm,MC1 + gm,MC4)

8 · I2CP · CA · (V DD − V CM) · gm,MD1
(B.20)

Since TON is much less than the integration time (tdP and tdN ) of the dynamic integrator, the

noise in (B.20) is much less than the noise in (B.18). Therefore, the input-referred noise of the

time-based residue amplifier in Fig. 4.11 is dominated by the noise from the VTC.
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