17 research outputs found

    Bidirectional Wireless Telemetry for High Channel Count Optogenetic Microsystems

    Full text link
    In the past few decades, there has been a significant progress in the development of wireless data transmission systems, from high data rate to ultra-low power applications, and from G-b per second to RFID systems. One specific area, in particular, is in wireless data transmission for implantable bio-medical applications. To understand how brain functions, neural scientists are in pursuit of high-channel count, high-density recordings for freely moving animals; yet wire tethering issue has put the mission on pause. Wireless data transmission can address this tethering problem, but there are still many challenges to be conquered. In this work, an ultra-low power ultra-wide band (UWB) transmitter with feedforward pulse generation scheme is proposed to resolve the long-existing problem in UWB transmitter. It provides a high-data rate capability to enable 1000 channels in broadband neural recording, assuming 10-bit resolution with a sampling rate of 20 kHz to accommodate both action potential (AP) and local field potential (LFP) recording, while remaining in ultra- low power consumption at 4.32 pJ/b. For the bi-directional communication between the wireless and recording/ stimulating module, a bit-wise time-division (B-TDD) duplex transceiver without cancellation scheme is presented. The receiver works at U-NII band (5.2GHz) and shares the same antenna with UWB transmitter. This significantly reduces the area consumption as well as power consumption for implantable systems. The system can support uplink at 200 Mbps for 1000 recording channels and downlink at 10 Mbps for 36 stimulation channels. With a 3.7 Volt 25mAh rechargeable battery, the system should be able to operate more than 1.5 hours straight for both recording and stimulation, assuming 1 LED channel with 100 µA, 10% duty-cycled stimulating current. The B-TDD transceiver is integrated with a dedicated recording/ stimulation optogenetic IC chip to demonstrate as a complete wireless system for implantable broadband optogenetic neural modulation and recording. The fully integrated system is less than 5 gram, which is suitable for rodent experiments.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155242/1/yujulin_1.pd

    Design and Implementation of a Low‐Power Wireless Respiration Monitoring Sensor

    Get PDF
    Wireless devices for monitoring of respiration activities can play a major role in advancing modern home-based health care applications. Existing methods for respiration monitoring require special algorithms and high precision filters to eliminate noise and other motion artifacts. These necessitate additional power consuming circuitry for further signal conditioning. This dissertation is particularly focused on a novel approach of respiration monitoring based on a PVDF-based pyroelectric transducer. Low-power, low-noise, and fully integrated charge amplifiers are designed to serve as the front-end amplifier of the sensor to efficiently convert the charge generated by the transducer into a proportional voltage signal. To transmit the respiration data wirelessly, a lowpower transmitter design is crucial. This energy constraint motivates the exploration of the design of a duty-cycled transmitter, where the radio is designed to be turned off most of the time and turned on only for a short duration of time. Due to its inherent duty-cycled nature, impulse radio ultra-wideband (IR-UWB) transmitter is an ideal candidate for the implementation of a duty-cycled radio. To achieve better energy efficiency and longer battery lifetime a low-power low-complexity OOK (on-off keying) based impulse radio ultra-wideband (IR-UWB) transmitter is designed and implemented using standard CMOS process. Initial simulation and test results exhibit a promising advancement towards the development of an energy-efficient wireless sensor for monitoring of respiration activities

    State of the art in chip-to-chip interconnects

    Get PDF
    This thesis presents a study of short-range links for chips mounted in the same package, on printed circuit boards or interposers. Implemented in CMOS technology between 7 and 250 nm, with links that operate at a data rate between 0,4 and 112 Gb/s/pin and with energy efficiencies from 0,3 to 67,7 pJ/bit. The links operate on channels with an attenuation lower than 50 dB. A comparison is made with graphical representations between the different articles that shows the correlation between the different essential metrics of chip-to-chip interconnects, as well as its evolution over the last 20 years.Esta tesis presenta un estudio de enlaces de corto alcance para chips montados en un mismo paquete, en placas de circuito impreso o intercaladores. Implementado en tecnología CMOS entre 7 y 250 nm, con enlaces que operan a una velocidad de datos entre 0,4 y 112 Gb/s/pin y con eficiencias energéticas de 0,3 a 67,7 pJ/bit. Los enlaces operan en canales con una atenuación inferior a 50 dB. Se realiza una comparación con representaciones gráficas entre los diferentes artículos que muestra la correlación entre las distintas métricas esenciales de las interconexiones chip a chip, así como su evolución en los últimos 20 años.Aquesta tesi presenta un estudi d'enllaços de curt abast per a xips muntats en el mateix paquet, en plaques de circuits impresos o interposers. Implementat en tecnologia CMOS entre 7 i 250 nm, amb enllaços que funcionen a una velocitat de dades entre 0,4 i 112 Gb/s/pin i amb eficiències energètiques de 0,3 a 67,7 pJ/bit. Els enllaços funcionen en canals amb una atenuació inferior a 50 dB. Es fa una comparació amb representacions gràfiques entre els diferents articles que mostra la correlació entre les diferents mètriques essencials d'interconnexions xip a xip, així com la seva evolució en els darrers 20 anys

    Design exploration and measurement benchmark of integrated-circuits based on graphene field-effect-transistors : towards wireless nanotransceivers

    Get PDF
    This doctoral thesis approaches the design requirements for future high / ultra-high data rate (from 100 Mbps to 100 Gbps) nanotransceivers (nanoTRx) applied to wireless nanonetworks which imply short/ultra-short distance ranges (3 cm ¿ 3 m). It explores graphene field-effect-transistors (GFET), by simulation against measurement benchmarks, as a potential solution for implementing large-signal high-frequency circuits, by virtue of graphene¿s one-atom thickness and high carrier-mobility extraordinary properties. Finally, the thesis discusses the challenges faced by GFETs, such as zero-bandgap and high metal-graphene contact-resistance, to be able to propose improvements for achieving the initial proposed goals. Chemical-Vapour-Deposition (CVD) GFET fabrication is considered, which is very promising for large-scale manufacturing (CMOS process compatible), and for that fast-computing large-signal compact modeling for complex circuit design is analysed in depth and optimized, and consequently a set of diverse large-signal static and dynamic GFET circuits are simulated and benchmarked against available measurements assessing the accuracy of the proposed models and deriving scaling prospects. An optimization of the current-to-voltage (I-V) characteristic of a GFET compact model, based upon drift-diffusion carrier transport, is presented. The improved accuracy at the Dirac point extends the model usability for GFETs when scaling parameters such as voltage supply (Vdd), gate length (L), dielectric thickness (tox) and carrier mobility (¿) for large-signal design exploration in circuits. The model accuracy is demonstrated through parameters fitting to measurements taken from CVD GFETs fabricated in the University of Siegen and Technical University of Milan. The script has been written in a standard behavioural language (Verilog-A), and extensively run in a commercial analog circuit simulator (Cadence environment) demonstrating its robustness. Besides a simple capacitance-to-voltage model (C-V), a small-signal parasitic capacitance model fitted to dynamic measurements for self-aligned CVD GFETs available in the literature is added, enabling to forecast maximum-frequency-of-oscillation (fmax) trends for future scaling. A design-oriented characterization of complementary inverter circuits (INV) based on GFETs is presented as well. Our proposed compact model is benchmarked at the circuit level against another compact model based on a virtual-source approach. Furthermore, a benchmark between simulations and measurements of already fabricated CVD GFET INVs is performed, and performance trends when scaling are derived. The same process is repeated for a more complex circuit, namely GFET ring-oscillators (RO). The transient regime simulations yield performance metrics in terms of oscillation frequency (fosc) and dynamic voltage range (¿Vosc), and consequently, against these metrics, a comprehensive design space exploration covering as input design variables parameters as tox, L, and Vdd is carried out. Being aware of the lack of voltage amplification shown by existing GFETs, the design exploration of a cascode amplifier (CAS) targeted to increase voltage gain (Av) by decreasing its output conductance (go) is presented. GFET CAS are simulated to provide design guidelines, they are accordingly fabricated and consequently measured. Performance metrics are provided in terms of go, transconductance (gm) and hence Av. Against these metrics, a quantitative comparison between CAS and GFETs is performed and conclusions are derived. Finally, conclusions on GFETs suitability for future nanoTRX are elaborated. The derived publications come from international collaborations with the Royal Institute of Technology (KTH) in Sweden from 2012 to 2014, and the University of Siegen in Germany from 2014 to 2016.Esta tesis doctoral trata de identificar los requisitos de diseño para nano-ransceptores (nanoTRx) con datos de alta velocidad (de 100 Mbps a 100 Gbps) aplicados a nano-redes inal ámbricas que implican rangos de alcance cortos u ultra-cortos (3 cm - 3 m ); explora FETs de grafeno (GFET), mediante simulaciones y mediciones, como una solución potencial para la implementación de circuitos de alta frecuencia de gran señal, gracias a las extraordinarias propiedades del grafeno como su espesor de un solo átomo y sus portadores de alta movilidad; y finalmente, se discuten los desafíos a los que se enfrentan los GFETs, como la falta de banda prohibida y la alta resistencia de contacto, para lograr proponer alternativas y poder alcanzar los objetivos iniciales propuestos. Las publicaciones derivadas provienen de Colaboraciones internacionales con el KTH en Suecia de 2012 a 2014, y la UniSiegen en Alemania de 2014 a 2016. Se introducen la técnica CVD como un proceso de fabricación de GFETs a gran escala, compatible con tecnología CMOS, muy prometedor; y el modelado compacto de gran señal y computación veloz para el diseño de circuitos complejos es optimizados y analizado en profundidad, Consecuentemente circuitos de gran señal (estáticos y dinámicos) basados en GFET son simulados y comparados con las mediciones disponibles para evaluar la precisi ón de los modelos propuestos y derivar prospecciones de escalado. Se propone una optimización de la característica corriente-voltaje (I-V) de un modelo compacto GFET, basado en el transporte de portadores difusi ón-deriva. La precisión mejorada en el punto de Dirac extiende la usabilidad del modelo para GFETs cuando se dimensionan parámetros para la exploración en diseños de circuitos de gran señal, tales como el voltaje de alimentación (Vdd), la longitud de puerta (L), el espesor diel éctrico (tOX) y la movilidad de portadores (U). La precisión del modelo se demuestra a través de parámetros que se ajustan a mediciones tomadas a partir de CVD GFETs fabricados en la UniSiegen y en el PoliMi. El programa se ha escrito en Verilog-A y se ejecuta extensivamente en un simulador de circuitos anal ógico comercial donde se demuestra su robustez. Además, se lleva a cabo la parametrización de un modelo capacidad-voltaje (C-V) que se ajusta a las mediciones de alta frecuencia de CVD GFETs disponibles en la literatura científica, lo que permite la predicción de la fMAX para el escalado de futuros GFETs. También se presenta una caracterización orientada al diseño de circuitos inversores complementarios (INV) basados en GFETs. Nuestro modelo compacto propuesto se compara a nivel de circuito con otro modelo compacto basado en fuentevirtual. A continuación, se lleva a cabo una comparación a nivel circuito entre las simulaciones y las medidas de INVs ya fabricados basados en CVD GFET, y se obtienen las tendencias de comportamiento al escalarlos. Se repite el mismo proceso para un circuito más complejo, los llamados osciladores-en-anillo GFET (RO). Las simulaciones basadas en transitorios producen métricas de rendimiento en términos de frecuencia de oscilación (fosc) y rango dinámico de voltaje (Vosc), por lo tanto, contra estas métricas, se lleva a cabo una exploración exhaustiva de diseño que abarca Parámetros de variables de diseño como tOX, L y Vdd. Al ser conscientes de la falta de amplificación de voltaje mostrada por los GFETs existentes, se presenta la exploración de diseño de un amplificador cascodo (CAS) diseñado para incrementar la amplificación de voltaje (Av) disminuyendo su conductancia de salida (go). Los GFET CAS son simulados para proporcionar guías de diseño, luego fabricadas y finalmente medidas. Se proporcionan métricas de rendimiento en términos de go, gm, y consecuentemente Av. Frente a estas métricas, se realiza una comparación cuantitativa entre CAS y GFETs y se derivan las conclusiones. Finalmente, se elaboran las conclusiones sobre la idoneidad de los GFET para futuros nanoTR

    High-capacity Optical Wireless Communication by Directed Narrow Beams

    Get PDF

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Wireless Chip-Scale Communications for Neural Network Accelerators

    Get PDF
    Wireless on-chip communications have been proposed as a complement to conventional Network-on-Chip (NoC) paradigms in manycore processors. In massively parallel architectures, the fast broadcast and reconfigurability capabilities of the wireless plane open the door to new scalable and adaptive architectures with significant impact on a plethora of fields. This thesis aims to explore such impact in the all-pervasive field of AI accelerators, designing and evaluating new accelerators augmented with wireless on-chip communication.The last decade has witnessed an explosive growth in the use of Deep Neural Networks in fields such as computer vision, natural language processing, medicine or economics. Their achievements in accuracy across so many relevant and different applications exhibit the enormous potential of this disruptive technology. However, this unprecedented performance is closely tied with the fact that their new designs contain much deeper and bigger layer sets, forcing them to manage millions - and in some cases even billions - of parameters. This comes at a high computational and communication cost at the processor level, which has prompted the development of new hardware aimed at handling such large computing expense more efficiently, the so called \acrlong{dnn} accelerators. This work explores the potential of enhancing the performance of these accelerators by introducing Wireless Networks-on-Chip in their design, a novel interconnect paradigm proposed by the research community to overcome some of the communication challenges that manycore systems face. Specifically, both on-chip and off-chip wireless interconnect implementations have been studied and evaluated. In the off-chip case, a theoretical improvement of 13X in the runtime has been achieved, but at the expense of some area and power overheads.La última década ha sido testigo de un inmenso crecimiento en el uso de Deep Neural Networks en campos como la visión artificial, procesamiento de lenguaje natural, medicina o economía. Haber conseguido estos resultados sin precedentes en aplicaciones tan relevantes y variadas muestra el enorme potencial de esta tecnología tan disruptiva. Sin embargo, estos logros van muy ligados al hecho de que los nuevos diseños contienen muchas más capas y más profundas, lo que se traduce en millones - y en algunos casos billones - de parámetros. Esto supone un gran coste computacional y de comunicación a nivel de procesador, lo que ha impulsado el desarrollo de nuevo hardware que permita gestionar tal coste de manera más eficiente, los llamados aceleradores de Deep Neural Networks. Este proyecto explora la potencial mejora en rendimiento de estos aceleradores mediante la introducción de Wireless Newtorks-on-Chip en su diseño, un nuevo paradigma de interconexiones propuesto por la comunidad científica para superar algunos de los problemas de comunicación que sistemas manycore deben afrontar. Específicamente, implementaciones tanto on-chip como off-chip se han estudiado y evaluado. Se ha conseguido una mejora teórica de 13X en el runtime, pero con algunos costes añadidos de área y potencia.La darrera dècada ha estat testimoni d'un immens creixement en l'ús de Deep Neural Networks en camps com la visió artificial, processament de llenguatge natural, medicina o economia. Haver aconseguit aquests resultats sense precedents en aplicacions tan rellevants i variades mostra l?enorme potencial d?aquesta tecnologia tan disruptiva. No obstant, aquests èxits van molt lligats al fet de que els nous dissenys contenen moltes més capes i més profundes, cosa que es tradueix en milions - i en alguns casos bilions - de paràmetres. Això suposa un gran cost computacional i de comunicació a nivell de processador, cosa que ha impulsat el desenvolupament de nou hardware que permetin gestionar tal cost de manera més eficient, els anomenats acceleradors de Deep Neural Networks. Aquest projecte explora la potencial millora en rendiment d'aquests acceleradors mitjançant la introducció de Wireless Newtorks-on-Chip al seu disseny, un nou paradigma d'interconnexions proposat per la comunitat científica per a superar alguns dels problemes de comunicació que sistemes manycore han d'afrontar. Específicament, implementacions tant on-chip com off-chip s'han estudiat i evaluat. En el cas off-chip, s'ha aconseguit una millora teòrica de 13X al runtime però amb alguns costos afegits d'àrea i potència

    Range Information Systems Management (RISM) Phase 1 Report

    Get PDF
    RISM investigated alternative approaches, technologies, and communication network architectures to facilitate building the Spaceports and Ranges of the future. RISM started by document most existing US ranges and their capabilities. In parallel, RISM obtained inputs from the following: 1) NASA and NASA-contractor engineers and managers, and; 2) Aerospace leaders from Government, Academia, and Industry, participating through the Space Based Range Distributed System Working Group (SBRDSWG), many of whom are also; 3) Members of the Advanced Range Technology Working Group (ARTWG) subgroups, and; 4) Members of the Advanced Spaceport Technology Working Group (ASTWG). These diverse inputs helped to envision advanced technologies for implementing future Ranges and Range systems that builds on today s cabled and wireless legacy infrastructures while seamlessly integrating both today s emerging and tomorrow s building-block communication techniques. The fundamental key is to envision a transition to a Space Based Range Distributed Subsystem. The enabling concept is to identify the specific needs of Range users that can be solved through applying emerging communication tec

    Design and Characterization of an Inductor and a Low-Noise Amplifier inMonolithic Integrated Circuit Technology for Wideband Operation

    Get PDF
    Пасивна индуктивна компонента и нискошумни појачавач у технологији монолитних интегрисаних кола за широкопојасне примјене пројектовани су, фабриковани и карактерисани. Приликом пројектовања индуктора изабрана је топологија меандар, а осим софтверских алата за пројектовање интегрисаних кола, кориштен је и симулатор електромагнетског поља. Осим карактеризације основних параметара, пажња је посвећена и анализи процесних и температурских варијација. Спроведена је механичка карактеризација материјала од којег се састоји заштитни слој фабрикованог интегрисаног кола. Нискошумни појачавач пројектован је као први степен пријемника широкопојасне технологије, а карактеризацијом је потврђена успјешност поступка.Pasivna induktivna komponenta i niskošumni pojačavač u tehnologiji monolitnih integrisanih kola za širokopojasne primjene projektovani su, fabrikovani i karakterisani. Prilikom projektovanja induktora izabrana je topologija meandar, a osim softverskih alata za projektovanje integrisanih kola, korišten je i simulator elektromagnetskog polja. Osim karakterizacije osnovnih parametara, pažnja je posvećena i analizi procesnih i temperaturskih varijacija. Sprovedena je mehanička karakterizacija materijala od kojeg se sastoji zaštitni sloj fabrikovanog integrisanog kola. Niskošumni pojačavač projektovan je kao prvi stepen prijemnika širokopojasne tehnologije, a karakterizacijom je potvrđena uspješnost postupka.A passive inductive component and a low-noise amplifier are designed, fabricated in standard monolithic CMOS technology and characterized, both intended for wideband operation. For the design of the inductor, meander topology is chosen. Along with the integrated circuit design tools, electromagnetic field simulator is used. Besides the standard parameter characterization, special attention is dedicated to the analysis of process and temperature variations. Furthermore, mechanical characterization of the material that comprises the protection layer has been undertaken. Low-noise amplifier is designed as the first stage of an ultra wideband receiver and the results show that the circuit is successfully designed

    Improving the Performance of Wireless LANs

    Get PDF
    This book quantifies the key factors of WLAN performance and describes methods for improvement. It provides theoretical background and empirical results for the optimum planning and deployment of indoor WLAN systems, explaining the fundamentals while supplying guidelines for design, modeling, and performance evaluation. It discusses environmental effects on WLAN systems, protocol redesign for routing and MAC, and traffic distribution; examines emerging and future network technologies; and includes radio propagation and site measurements, simulations for various network design scenarios, numerous illustrations, practical examples, and learning aids
    corecore