342 research outputs found

    A radiation-hard dual-channel 12-bit 40 MS/s ADC prototype for the ATLAS liquid argon calorimeter readout electronics upgrade at the CERN LHC

    Full text link
    The readout electronics upgrade for the ATLAS Liquid Argon Calorimeters at the CERN Large Hadron Collider requires a radiation-hard ADC. The design of a radiation-hard dual-channel 12-bit 40 MS/s pipeline ADC for this use is presented. The design consists of two pipeline A/D channels each with four Multiplying Digital-to-Analog Converters followed by 8-bit Successive-Approximation-Register analog-to-digital converters. The custom design, fabricated in a commercial 130 nm CMOS process, shows a performance of 67.9 dB SNDR at 10 MHz for a single channel at 40 MS/s, with a latency of 87.5 ns (to first bit read out), while its total power consumption is 50 mW/channel. The chip uses two power supply voltages: 1.2 and 2.5 V. The sensitivity to single event effects during irradiation is measured and determined to meet the system requirements

    Digital Background Self-Calibration Technique for Compensating Transition Offsets in Reference-less Flash ADCs

    Get PDF
    This Dissertation focusses on proving that background calibration using adaptive algorithms are low-cost, stable and effective methods for obtaining high accuracy in flash A/D converters. An integrated reference-less 3-bit flash ADC circuit has been successfully designed and taped out in UMC 180 nm CMOS technology in order to prove the efficiency of our proposed background calibration. References for ADC transitions have been virtually implemented built-in in the comparators dynamic-latch topology by a controlled mismatch added to each comparator input front-end. An external very simple DAC block (calibration bank) allows control the quantity of mismatch added in each comparator front-end and, therefore, compensate the offset of its effective transition with respect to the nominal value. In order to assist to the estimation of the offset of the prototype comparators, an auxiliary A/D converter with higher resolution and lower conversion speed than the flash ADC is used: a 6-bit capacitive-DAC SAR type. Special care in synchronization of analogue sampling instant in both ADCs has been taken into account. In this thesis, a criterion to identify the optimum parameters of the flash ADC design with adaptive background calibration has been set. With this criterion, the best choice for dynamic latch architecture, calibration bank resolution and flash ADC resolution are selected. The performance of the calibration algorithm have been tested, providing great programmability to the digital processor that implements the algorithm, allowing to choose the algorithm limits, accuracy and quantization errors in the arithmetic. Further, systematic controlled offset can be forced in the comparators of the flash ADC in order to have a more exhaustive test of calibration

    Design of Energy-Efficient A/D Converters with Partial Embedded Equalization for High-Speed Wireline Receiver Applications

    Get PDF
    As the data rates of wireline communication links increases, channel impairments such as skin effect, dielectric loss, fiber dispersion, reflections and cross-talk become more pronounced. This warrants more interest in analog-to-digital converter (ADC)-based serial link receivers, as they allow for more complex and flexible back-end digital signal processing (DSP) relative to binary or mixed-signal receivers. Utilizing this back-end DSP allows for complex digital equalization and more bandwidth-efficient modulation schemes, while also displaying reduced process/voltage/temperature (PVT) sensitivity. Furthermore, these architectures offer straightforward design translation and can directly leverage the area and power scaling offered by new CMOS technology nodes. However, the power consumption of the ADC front-end and subsequent digital signal processing is a major issue. Embedding partial equalization inside the front-end ADC can potentially result in lowering the complexity of back-end DSP and/or decreasing the ADC resolution requirement, which results in a more energy-effcient receiver. This dissertation presents efficient implementations for multi-GS/s time-interleaved ADCs with partial embedded equalization. First prototype details a 6b 1.6GS/s ADC with a novel embedded redundant-cycle 1-tap DFE structure in 90nm CMOS. The other two prototypes explain more complex 6b 10GS/s ADCs with efficiently embedded feed-forward equalization (FFE) and decision feedback equalization (DFE) in 65nm CMOS. Leveraging a time-interleaved successive approximation ADC architecture, new structures for embedded DFE and FFE are proposed with low power/area overhead. Measurement results over FR4 channels verify the effectiveness of proposed embedded equalization schemes. The comparison of fabricated prototypes against state-of-the-art general-purpose ADCs at similar speed/resolution range shows comparable performances, while the proposed architectures include embedded equalization as well

    Design techniques for high-performance current-steering digital-to-analog converters

    Get PDF
    Digital-to-Analog Converter (DAC) is a crucial building block limiting the accuracy and speed of many signal processing and telecommunication systems. To achieve high speed and high resolution, the current-steering architecture is almost exclusively used. Three important issues for current-steering DAC design are addressed in this dissertation. In a current-steering DAC design, it is essential that a designer determine the minimum required current source accuracy to overcome random current mismatch and achieve high linearity with guaranteed yield. Simple formulas are derived that clearly exhibit the relationship between the standard deviation of unit current sources, the bits of resolution, the INL/DNL, and the soft yield of DAC arrays. It is shown that these formulas are very effective for optimizing the DAC segmentation so as to achieve high performance and high yield with minimal area and power consumption. To overcome random mismatch effects without any trimming, the current source array of a high-accuracy DAC is usually rather large, causing the gradient errors in these arrays to become significant. How gradient errors affect the DAC linearity and how to compensate for them through switching sequence optimization is analyzed in the second part of this dissertation. To overcome technology barriers, relax the requirements on layout and reduce the sensitivities of DACs to process, temperature and aging, calibration is emerging as an attractive solution for the next-generation high-performance DACs, especially as process feature size keeps shrinking and supply voltage is reduced correspondingly. A new foreground calibration technique suitable for low-voltage environment is presented in the third part of this dissertation. It can effectively compensate for current source mismatches, and achieve high linearity with small die size and low power consumption. The dynamic performance of the DAC is also improved due to the dramatic reduction of parasitic effects. To demonstrate this technique, a 14-bit prototype was designed and fabricated in a 0.13u digital CMOS process. It is the first 14-bit CMOS DAC ever reported that operates with a single 1.5V power supply, occupies an active area less than 0.1mm2, and requires only 16.7mW at 100MHz sampling rate, but still maintains state-of-art linearity and speed

    A Radiation-Hard Dual Channel 4-bit Pipeline for a 12-bit 40 MS/s ADC Prototype with extended Dynamic Range for the ATLAS Liquid Argon Calorimeter Readout Electronics Upgrade at the CERN LHC

    Full text link
    The design of a radiation-hard dual channel 12-bit 40 MS/s pipeline ADC with extended dynamic range is presented, for use in the readout electronics upgrade for the ATLAS Liquid Argon Calorimeters at the CERN Large Hadron Collider. The design consists of two pipeline A/D channels with four Multiplying Digital-to-Analog Converters with nominal 12-bit resolution each. The design, fabricated in the IBM 130 nm CMOS process, shows a performance of 68 dB SNDR at 18 MHz for a single channel at 40 MS/s while consuming 55 mW/channel from a 2.5 V supply, and exhibits no performance degradation after irradiation. Various gain selection algorithms to achieve the extended dynamic range are implemented and tested.Comment: 22 pages, 22 figures, accepted by JINS

    Design of AD converter with low supply voltage in CMOS technology

    Get PDF
    Tato diplomová práce se zabývá návrhem 12 bitového řetězového A/D převodníku. Součástí návrhu bylo vytvořit referenční model převodníku v prostředí Matlab a determinovat faktory, které negativně ovlivňují výsledek konverze. S využitím nabytých poznatků navrhnout řetězový převodník na transistorové úrovni v prostředí Cadence. V teoretické části jsou shrnuty základy A/D převodu a dále jsou představeny nejčastěji používané architektury A/D převodníků. V dalších částech je popsán a diskutován vliv neidealit na vlastnosti řetězových převodníků. Praktická část se již věnuje popisu základních charakteristik řetězových převodníků a dokazuje funkci modelu. Z výsledků modelové struktury byly stanoveny reálné parametry, které byly dále využity v procesu tvorby návrhu v CMOS technologii TSMC 0,18m s nízkým napájecím napětím.This master thesis is dedicated to the design of 12-bit pipeline ADC. The part of the design was to create a reference model ADC in the Matlab environment and to determine factors that negatively affect the results of the conversion. Based on experiences gained in the mathematical model, the pipeline ADC on the transistor level was designed in the Cadence environment. The theoretical part summarizes the fundamentals of A / D conversion and introduces the most commonly used architecture of A / D converters. Furthermore, the influence of non-idealities on the conversion process is described and discussed. The practical part is dedicated to description of ADC’s model basic characteristics and confirms the model functionality. From the results of the model structure the real parameters were determined and used in the design process in CMOS technology TSMC 0,18m with low power supply.

    A Low-Power, Reconfigurable, Pipelined ADC with Automatic Adaptation for Implantable Bioimpedance Applications

    Get PDF
    Biomedical monitoring systems that observe various physiological parameters or electrochemical reactions typically cannot expect signals with fixed amplitude or frequency as signal properties can vary greatly even among similar biosignals. Furthermore, advancements in biomedical research have resulted in more elaborate biosignal monitoring schemes which allow the continuous acquisition of important patient information. Conventional ADCs with a fixed resolution and sampling rate are not able to adapt to signals with a wide range of variation. As a result, reconfigurable analog-to-digital converters (ADC) have become increasingly more attractive for implantable biosensor systems. These converters are able to change their operable resolution, sampling rate, or both in order convert changing signals with increased power efficiency. Traditionally, biomedical sensing applications were limited to low frequencies. Therefore, much of the research on ADCs for biomedical applications focused on minimizing power consumption with smaller bias currents resulting in low sampling rates. However, recently bioimpedance monitoring has become more popular because of its healthcare possibilities. Bioimpedance monitoring involves injecting an AC current into a biosample and measuring the corresponding voltage drop. The frequency of the injected current greatly affects the amplitude and phase of the voltage drop as biological tissue is comprised of resistive and capacitive elements. For this reason, a full spectrum of measurements from 100 Hz to 10-100 MHz is required to gain a full understanding of the impedance. For this type of implantable biomedical application, the typical low power, low sampling rate analog-to-digital converter is insufficient. A different optimization of power and performance must be achieved. Since SAR ADC power consumption scales heavily with sampling rate, the converters that sample fast enough to be attractive for bioimpedance monitoring do not have a figure-of-merit that is comparable to the slower converters. Therefore, an auto-adapting, reconfigurable pipelined analog-to-digital converter is proposed. The converter can operate with either 8 or 10 bits of resolution and with a sampling rate of 0.1 or 20 MS/s. Additionally, the resolution and sampling rate are automatically determined by the converter itself based on the input signal. This way, power efficiency is increased for input signals of varying frequency and amplitude
    corecore