45 research outputs found

    CMOS Wide Tuning Gilbert Mixer with Controllable IF Bandwidth in Upcoming RF Front End for Multi-Band Multi-Standard Applications

    Get PDF
    The current global system for mobile communications, wireless local area, Bluetooth, and ultra-wideband demands a multi-band/multi-standard RF front end that can access all the available bandwidth specifications. Trade-offs occur between power consumption, noise figure, and linearity in CMOS Gilbert mixer wide tuning designs. Besides, it is preferable to have a constant IF bandwidth for different gain settings as the bandwidth varies with the load impedance when an RF receiver is tuned to a higher frequency. My dissertation consists of three parts. First, a tunable constant IF bandwidth Gilbert mixer is introduced for multi-band standard wireless applications such as 802.11 a/b/g WLAN and 802.16a WMAN, followed by a design synthesis approach to optimize the mixer to meet the design center frequency range, constant IF bandwidth, and power. A synthesized Gilbert mixer with effective prototype inductors, designed in 180 nm CMOS process, is presented in this dissertation with the tunability of 200 MHz IF, a constant IF bandwidth of 50 MHz, a conversion gain of 13.75 dB, a noise figure of 2.9dB, 1-dB compression point of -15.19 dBm, IIP3 of -5.8 dBm, and a power of 9 mW. Next, mixer inductor loss and equivalent electronic circuit analysis are presented to optimize the approach to offset center frequency and bandwidth inaccuracy due to the inductance loss between the actual and ideal prototype inductor. The proposed tunable Gilbert mixer simulations present a tunable IF of 177.8 MHz, an IF bandwidth of 87.57 MHz, a conversion gain of 7.4 dB, a noise figure of 3.14 dB, 1-dB compression point of -17.1 dBm, and IIP3 of -19.8 dBm. Last, a CMOS integrated wide frequency span CMOS low noise amplifier is integrated with the tunable Gilbert mixer to achieve a 27.68 dB conversion gain, a 3.47 dB low noise figure, -14.6 dBm 1-dB compression point, and -18.6 dBm IIP3

    Low-power CMOS front-ends for wireless personal area networks

    Get PDF
    The potential of implementing subthreshold radio frequency circuits in deep sub-micron CMOS technology was investigated for developing low-power front-ends for wireless personal area network (WPAN) applications. It was found that the higher transconductance to bias current ratio in weak inversion could be exploited in developing low-power wireless front-ends, if circuit techniques are employed to mitigate the higher device noise in subthreshold region. The first fully integrated subthreshold low noise amplifier was demonstrated in the GHz frequency range requiring only 260 μW of power consumption. Novel subthreshold variable gain stages and down-conversion mixers were developed. A 2.4 GHz receiver, consuming 540 μW of power, was implemented using a new subthreshold mixer by replacing the conventional active low noise amplifier by a series-resonant passive network that provides both input matching and voltage amplification. The first fully monolithic subthreshold CMOS receiver was also implemented with integrated subthreshold quadrature LO (Local Oscillator) chain for 2.4 GHz WPAN applications. Subthreshold operation, passive voltage amplification, and various low-power circuit techniques such as current reuse, stacking, and differential cross coupling were combined to lower the total power consumption to 2.6 mW. Extremely compact resistive feedback CMOS low noise amplifiers were presented as a cost-effective alternative to narrow band LNAs using high-Q inductors. Techniques to improve linearity and reduce power consumption were presented. The combination of high linearity, low noise figure, high broadband gain, extremely small die area and low power consumption made the proposed LNA architecture a compelling choice for many wireless applications.Ph.D.Committee Chair: Laskar, Joy; Committee Member: Chakraborty, Sudipto; Committee Member: Chang, Jae Joon; Committee Member: Divan, Deepakraj; Committee Member: Kornegay, Kevin; Committee Member: Tentzeris, Emmanoui

    Design and characterization of downconversion mixers and the on-chip calibration techniques for monolithic direct conversion radio receivers

    Get PDF
    This thesis consists of eight publications and an overview of the research topic, which is also a summary of the work. The research described in this thesis is focused on the design of downconversion mixers and direct conversion radio receivers for UTRA/FDD WCDMA and GSM standards. The main interest of the work is in the 1-3 GHz frequency range and in the Silicon and Silicon-Germanium BiCMOS technologies. The RF front-end, and especially the mixer, limits the performance of direct conversion architecture. The most stringent problems are involved in the second-order distortion in mixers to which special attention has been given. The work introduces calibration techniques to overcome these problems. Some design considerations for front-end radio receivers are also given through a mixer-centric approach. The work summarizes the design of several downconversion mixers. Three of the implemented mixers are integrated as the downconversion stages of larger direct conversion receiver chips. One is realized together with the LNA as an RF front-end. Also, some stand-alone structures have been characterized. Two of the mixers that are integrated together with whole analog receivers include calibration structures to improve the second-order intermodulation rejection. A theoretical mismatch analysis of the second-order distortion in the mixers is also presented in this thesis. It gives a comprehensive illustration of the second-order distortion in mixers. It also gives the relationships between the dc-offsets and high IIP2. In addition, circuit and layout techniques to improve the LO-to-RF isolation are discussed. The presented work provides insight into how the mixer immunity against the second-order distortion can be improved. The implemented calibration structures show promising performance. On the basis of these results, several methods of detecting the distortion on-chip and the possibilities of integrating the automatic on-chip calibration procedures to produce a repeatable and well-predictable receiver IIP2 are presented.reviewe

    Configurable circuits and their impact on multi-standard RF front-end architectures

    Get PDF
    This thesis studies configurable circuits and their impact on multi-standard RF front-end architectures. In particular, low-voltage low-power linear LNA and mixer topologies suitable for implementation in multi-standard front-ends are subject of the investigation. With respect to frequency and bandwidth, multi-standard front-ends can be implemented using either tunable or wideband LNA and mixer topologies. Based on the type of the LNA and mixer(s), multi-standard receiver RF front-ends can be divided into three groups. They can be (tunable) narrow-band, wide-band or combined. The advantages and disadvantages of the different multi-standard receiver RF front-ends have been discussed in detail. The partitioning between off-chip selectivity, on-chip selectivity provided by the LNA and mixer, linearity, power consumption and occupied chip area in each multi-standard RF front-end group are thoroughly investigated. A Figure of Merit (FOM) for the multi-standard receiver RF front-end has been introduced. Based on this FOM the most suitable multi-standard RF front-end group in terms of cost-effectiveness can be selected. In order to determine which multi-standard RF front-end group is the most cost-effective for a practical application, a GSM850/E-GSM/DCS/PCS/Bluetooth/WLANa/b/g multi-standard receiver RF front-end is chosen as a demonstrator. These standards are the most frequently used standards in wireless communication, and this combination of standards allows to users almost "anytime-anywhere" voice and data transfer. In order to verify these results, three demonstrators have been defined, designed and implemented, two wideband RF front-end circuits in 90nm CMOS and 65nm CMOS, and one combined multi-standard RF front-end circuit in 65nm CMOS. The proposed multi-standard demonstrators have been compared with the state-of the art narrow-band, wide-band and combined multi-standard RF front-ends. On the proposed multi-standard RF front-ends and the state-of the art multi-standard RF front-ends the proposed FOM have been applied. The comparison shows that the combined multi-standard RF front-end group is the most cost effective multi-standard group for this application

    Low-noise amplifiers for integrated multi-mode direct-conversion receivers

    Get PDF
    The evolution of wireless telecommunication systems during the last decade has been rapid. During this time the design driver has shifted towards fast data applications instead of speech. In addition, the different systems may have a limited coverage, for example, limited to urban areas only. Thus, it has become important for a mobile terminal to be able to use different wireless systems, depending on the application chosen and the location of the terminal. The choice of receiver architecture affects the performance, size, and cost of the receiver. The superheterodyne receiver has hitherto been the dominant radio architecture, because of its good sensitivity and selectivity. However, superheterodyne receivers require expensive filters, which, with the existing technologies, cannot be integrated on the same chip as the receiver. Therefore, architectures using a minimum number of external components, such as direct conversion, have become popular. In addition, compared to the superheterodyne architecture, the direct-conversion architecture has benefits when multi-mode receivers, which are described in this thesis, are being designed. In this thesis, the limitations placed on the analog receiver by different system specifications are introduced. The estimations for the LNA specifications are derived from these specifications. In addition, the limitations imposed by different types of receiver architectures are described. The inductively-degenerated LNA is the basis for all the experimental circuits. The different components for this configuration are analyzed and compared to other commonly-used configurations in order to justify the use of an inductively-degenerated LNA. Furthermore, the design issues concerning the LNA-mixer interface in direct-conversion receivers are analyzed. Without knowing these limitations, it becomes difficult to understand the choices made in the experimental circuits. One of the key parts of this thesis describes the design and implementation of a single-chip multi-mode LNA, which is one of the key blocks in multi-mode receivers. The multi-mode structures in this thesis were developed for a direct-conversion receiver where only one system is activated at a time. The LNA interfaces to a pre-select filter and mixers and the different LNA components are analyzed in detail. Furthermore, the design issues related to possible interference from additional systems on single-chip receivers are analyzed and demonstrated. A typical receiver includes variable gain, which can be implemented both in the analog baseband and/or in the RF. If the variable gain is implemented in the RF parts, it is typically placed in the LNA or in a separate gain control stage. Several methods that can be used to implement a variable gain in the LNA are introduced and compared to each other. Furthermore, several of these methods are included in the experimental circuits. The last part of this thesis concentrates on four experimental circuits, which are described in this thesis. The first two chips describe an RF front-end and a direct-conversion receiver for WCDMA applications. The whole receiver demonstrates that it is possible to implement A/D converters on the same chip as sensitive RF blocks without significantly degrading receiver performance. The other two chips describe an RF front-end for WCDMA and GSM900 applications and a direct-conversion receiver for GSM900, DCS1800, PCS1900 and WCDMA systems. These ICs demonstrate the usability of the circuit structure developed and presented in this thesis. The chip area in the last multi-mode receiver is not significantly increased compared to corresponding single-system receivers.reviewe

    Broadband RF Front-End Design for Multi-Standard Receiver with High-Linearity and Low-Noise Techniques

    Get PDF
    Future wireless communication devices must support multiple standards and features on a single-chip. The trend towards software-defined radio requires flexible and efficient RF building blocks which justifies the adoption of broadband receiver front-ends in modern and future communication systems. The broadband receiver front-end significantly reduces cost, area, pins, and power, and can process several signal channels simultaneously. This research is mainly focused on the analysis and realization of the broadband receiver architecture and its various building blocks (LNA, Active Balun-LNA, Mixer, and trans-impedance amplifier) for multi-standard applications. In the design of the mobile DTV tuner, a direct-conversion receiver architecture is adopted achieving low power, low cost, and high dynamic-range for DVB-H standard. The tuner integrates a single-ended RF variable gain amplifier (RFVGA), a current-mode passive mixer, and a combination of continuous and discrete-time baseband filter with built-in anti-aliasing. The proposed RFVGA achieves high dynamic-range and gain-insensitive input impedance matching performance. The current-mode passive mixer achieves high gain, low noise, and high linearity with low power supplies. A wideband common-gate LNA is presented that overcomes the fundamental trade-off between power and noise match without compromising its stability. The proposed architecture can achieve the minimum noise figure over the previously reported feedback amplifiers in common-gate configuration. The proposed architecture achieves broadband impedance matching, low noise, large gain, enhanced linearity, and wide bandwidth concurrently by employing an efficient and reliable dual negative-feedback. For the wideband Inductorless Balun-LNA, active single-to-differential architecture has been proposed without using any passive inductor on-chip which occupies a lot of silicon area. The proposed Balun-LNA features lower power, wider bandwidth, and better gain and phase balance than previously reported architectures of the same kind. A surface acoustic wave (SAW)-less direct conversion receiver targeted for multistandard applications is proposed and fabricated with TSMC 0.13?m complementary metal-oxide-semiconductor (CMOS) technology. The target is to design a wideband SAW-less direct coversion receiver with a single low noise transconductor and current-mode passive mixer with trans-impedance amplifier utilizing feed-forward compensation. The innovations in the circuit and architecture improves the receiver dynamic range enabling highly linear direct-conversion CMOS front-end for a multi-standard receiver

    Frequency Translation loops for RF filtering-Theory and Design

    Get PDF
    Modern wireless transceivers are required to operate over a wide range of frequencies in order to support the multitude of currently available wireless standards. Wideband operation also enables future systems that aim for better utilization of the available spectrum through dynamic allocation. As such, co-existence problems like harmonic mixing and phase noise become a main concern. In particular, dealing with interfer- ence scenarios is crucial since they directly translate to higher linearity requirements in a receiver. With CMOS driving the consumer electronics market due to low cost and high level of integration demands, the continued increase in speed, mainly intended for digital applications, oers new possibilities for RF design to improve the linearity of front-end receivers. Furthermore, the readily available switches in CMOS have proven to be a viable alternative to traditional active mixers for frequency translation due to their high linearity, low flicker noise, and, most recently recognized, their impedance transformation properties. In this thesis, frequency translation feedback loops employing passive mixers are explored as a means to relax the linearity requirements in a front-end receiver by providing channel selectivity as early as possible in the receiver chain. The proposed receiver architecture employing such loop addresses some of the most common prob- lems of integrated RF lters, while maintaining their inherent tunability. Through a simplied and intuitive analysis, the operation of the receiver is first examined and the design parameters aecting the lter characteristics, such as band- width and stop-band rejection, are determined. A systematic procedure for analyzing the linearity of the receiver reveals the possibility of LNA distortion canceling, which decouples the trade-o between noise, linearity and harmonic radiation. Next, a detailed analysis of frequency translation loops using passive mixers is developed. Only highly simplied analysis of such loops is commonly available in literature. The analysis is based on an iterative procedure to address the complexity introduced by the presence of LO harmonics in the loop and the lack of reverse isolation in the mixers, and results in highly accurate expressions for the harmonic and noise transfer functions of the system. Compared to the alternative of applying general LPTV theory, the procedure developed oers more intuition into the operation of the system and only requires the knowledge of basic Fourier analysis. The solution is shown to be capable of predicting trade-os arising due to harmonic mixing and loop stability requirements, and is therefore useful for both system design and optimization. Finally, as a proof of concept, a chip prototype is designed in a standard 65nm CMOS process. The design occupies +12dBm. As such, the work presented in this thesis aims to provide a highly-integrated means for programmable RF channel selection in wideband receivers. The topic oers several possibilities for further research, either in terms of extending the viability of the system, for example by providing higher order ltering, or by improving performance, such as noise

    Ultra high data rate CMOS FEs

    Get PDF
    The availability of numerous mm-wave frequency bands for wireless communication has motived the exploration of multi-band and multi-mode integrated components and systems in the main stream CMOS technology. This opportunity has faced the RF designer with the transition between schematic and layout. Modeling the performance of circuits after layout and taking into account the parasitic effects resulting from the layout are two issues that are more important and influential at high frequency design. Performaning measurements using on-wafer probing at 60GHz has its own complexities. The very short wave-length of the signals at mm-wave frequencies makes the measurements very sensitiv to the effective length and bending of the interfaces. This paper presents different 60GHz corner blocks, e.g. Low Noise Amplifier, Zero IF mixer, Phase-Locked Loop, A Dual-Mode Mm-Wave Injection-Locked Frequency Divider and an active transformed power amplifiers implemented in CMOS technologies. These results emphasize the feasibility of the realization 60GHZ integrated components and systems in the main stream CMOS technology

    CMOS radio frequency circuits for short-range direct-conversion receivers

    Get PDF
    The research described in this thesis is focused on the design and implementation of radio frequency (RF) circuits for direct-conversion receivers. The main interest is in RF front-end circuits, which contain low-noise amplifiers, downconversion mixers, and quadrature local oscillator signal generation circuits. Three RF front-end circuits were fabricated in a short-channel CMOS process and experimental results are presented. A low-noise amplifier (LNA) is typically the first amplifying block in the receiver. A large number of LNAs have been reported in the literature. In this thesis, wideband LNA structures are of particular interest. The most common and relevant LNA topologies are analyzed in detail in the frequency domain and theoretical limitations are found. New LNA structures are presented and a comparison to the ones found in the literature is made. In this work, LNAs are implemented with downconversion mixers as RF front-ends. The designed mixers are based on the commonly used Gilbert cell. Different mixer implementation alternatives are presented and the design of the interface between the LNA and the downconversion mixer is discussed. In this work, the quadrature local oscillator signal is generated either by using frequency dividers or polyphase filters (PPF). Different possibilities for implementing frequency dividers are briefly described. Polyphase filters were already introduced by the 1970s and integrated circuit (IC) realizations to generate quadrature signals have been published since the mid-1990s. Although several publications where the performance of the PPFs has been studied either by theoretical calculations or simulations can be found in the literature, none of them covers all the relevant design parameters. In this thesis, the theory behind the PPFs is developed such that all the relevant design parameters needed in the practical circuit design have been calculated and presented with closed-form equations whenever possible. Although the main focus was on twoand three-stage PPFs, which are the most common ones encountered in practical ICs, the presented calculation methods can be extended to analyze the performance of multistage PPFs as well. The main application targets of the circuits presented in this thesis are the short-range wireless sensor system and ultrawideband (UWB). Sensors are capable of monitoring temperature, pressure, humidity, or acceleration, for example. The amount of transferred data is typically small and therefore a modest bit rate, less than 1 Mbps, is adequate. The sensor system applied in this thesis operates at 2.4-GHz ISM band (Industrial, Scientific, and Medical). Since the sensors must be able to operate independently for several years, extremely low power consumption is required. In sensor radios, the receiver current consumption is dominated by the blocks and elements operating at the RF. Therefore, the target was to develop circuits that can offer satisfactory performance with a current consumption level that is small compared to other receivers targeted for common cellular systems. On the other hand, there is a growing need for applications that can offer an extremely high data rate. UWB is one example of such a system. At the moment, it can offer data rates of up to 480 Mbps. There is a frequency spectrum allocated for UWB systems between 3.1 and 10.6 GHz. The UWB band is further divided into several narrower band groups (BG), each occupying a bandwidth of approximately 1.6 GHz. In this work, a direct-conversion RF front-end is designed for a dual-band UWB receiver, which operates in band groups BG1 and BG3, i.e. at 3.1 – 4.8 GHz and 6.3 – 7.9 GHz frequency areas, respectively. Clearly, an extremely wide bandwidth combined with a high operational frequency poses challenges for circuit design. The operational bandwidths and the interfaces between the circuit blocks need to be optimized to cover the wanted frequency areas. In addition, the wideband functionality should be achieved without using a number of on-chip inductors in order to minimize the die area, and yet the power consumption should be kept as small as possible. The characteristics of the two main target applications are quite different from each other with regard to power consumption, bandwidth, and operational frequency requirements. A common factor for both is their short, i.e. less than 10 meters, range. Although the circuits presented in this thesis are targeted on the two main applications mentioned above, they can be utilized in other kind of wireless communication systems as well. The performance of three experimental circuits was verified with measurements and the results are presented in this work. Two of them have been a part of a whole receiver including baseband amplifiers and filters and analog-to-digital converters. Experimental circuits were fabricated in a 0.13-µm CMOS process. In addition, this thesis includes design examples where new circuit ideas and implementation possibilities are introduced by using 0.13-µm and 65-nm CMOS processes. Furthermore, part of the theory presented in this thesis is validated with design examples in which actual IC component models are used.Tässä väitöskirjassa esitetty tutkimus keskittyy suoramuunnosvastaanottimen radiotaajuudella (radio frequency, RF) toimivien piirien suunnitteluun ja toteuttamiseen. Työ keskittyy vähäkohinaiseen vahvistimeen (low-noise amplifier, LNA), alassekoittajaan ja kvadratuurisen paikallisoskillaattorisignaalin tuottavaan piiriin. Työssä toteutettiin kolme RF-etupäätä erittäin kapean viivanleveyden CMOS-prosessilla, ja niiden kokeelliset tulokset esitetään. Vähäkohinainen vahvistin on yleensä ensimmäinen vahvistava lohko vastaanottimessa. Useita erilaisia vähäkohinaisia vahvistimia on esitetty kirjallisuudessa. Tämän työn kohteena ovat eritoten laajakaistaiset LNA-rakenteet. Tässä työssä analysoidaan taajuustasossa yleisimmät ja oleellisimmat LNA-topologiat. Lisäksi uusia LNA-rakenteita on esitetty tässä työssä ja niitä on verrattu muihin kirjallisuudessa esitettyihin piireihin. Tässä työssä LNA:t on toteutettu yhdessä alassekoittimen kanssa muodostaen RF-etupään. Työssä suunnitellut alassekoittimet perustuvat yleisesti käytettyyn Gilbertin soluun. Erilaisia sekoittajan suunnitteluvaihtoehtoja ja LNA:n ja alassekoittimen välisen rajapinnan toteutustapoja on esitetty. Tässä työssä kvadratuurinen paikallisoskillaattorisignaali on muodostettu joko käyttämällä taajuusjakajia tai monivaihesuodattimia. Erilaisia taajuusjakajia ja niiden toteutustapoja käsitellään yleisellä tasolla. Monivaihesuodatinta, joka on alunperin kehitetty jo 1970-luvulla, on käytetty integroiduissa piireissä kvadratuurisignaalin tuottamiseen 1990-luvun puolivälistä lähtien. Kirjallisuudesta löytyy lukuisia artikkeleita, joissa monivaihesuodattimen toimintaa on käsitelty teoreettisesti laskien ja simuloinnein. Kuitenkaan kaikkia sen suunnitteluparametreja ei tähän mennessä ole käsitelty. Tässä työssä monivaihesuodattimen teoriaa on kehitetty edelleen siten, että käytännön piirisuunnittelussa tarvittavat oleelliset parametrit on analysoitu ja suunnitteluyhtälöt on esitetty suljetussa muodossa aina kuin mahdollista. Vaikka työssä on keskitytty yleisimpiin eli kaksi- ja kolmiasteisiin monivaihesuodattimiin, on työssä esitetty menetelmät, joilla laskentaa voidaan jatkaa aina useampiasteisiin suodattimiin asti. Työssä esiteltyjen piirien pääkohteina ovat lyhyen kantaman sensoriradio ja erittäin laajakaistainen järjestelmä (ultrawideband, UWB). Sensoreilla voidaan tarkkailla esimerkiksi ympäristön lämpötilaa, kosteutta, painetta tai kiihtyvyyttä. Siirrettävän tiedon määrä on tyypillisesti vähäistä, jolloin pieni tiedonsiirtonopeus, alle 1 megabitti sekunnissa, on välttävä. Tämän työn kohteena oleva sensoriradiojärjestelmä toimii kapealla kaistalla 2,4 gigahertsin ISM-taajuusalueella (Industrial, Scientific, and Medical). Koska sensorien tavoitteena on toimia itsenäisesti ilman pariston vaihtoa useita vuosia, täytyy niiden kuluttaman virran olla erittäin vähäistä. Sensoriradiossa vastaanottimen tehonkulutuksen kannalta määräävässä asemassa ovat radiotaajuudella toimivat piirit. Tavoitteena oli tutkia ja kehittää piirirakenteita, joilla päästään tyydyttävään suorituskykyyn tehonkulutuksella, joka on vähäinen verrattuna muiden tavallisten langattomien tiedonsiirtojärjestelmien radiovastaanottimiin. Toisaalta viime aikoina on kasvanut tarvetta myös järjestelmille, jotka kykenevät tarjoamaan erittäin korkean tiedonsiirtonopeuden. UWB on esimerkki tällaisesta järjestelmästä. Tällä hetkellä se tarjoaa tiedonsiirtonopeuksia aina 480 megabittiin sekunnissa. UWB:lle on varattu taajuusalueita 3,1 ja 10,6 gigahertsin taajuuksien välillä. Kyseinen kaista on edelleen jaettu pienempiin taajuusryhmiin (band group, BG), joiden kaistanleveys on noin 1,6 gigahertsiä. Tässä työssä on toteutettu RF-etupää radiovastaanottimeen, joka pystyy toimimaan BG1:llä ja BG3:lla eli taajuusalueilla 3,1 - 4,7 GHz ja 6,3 - 7,9 GHz. Erittäin suuri kaistanleveys yhdistettynä korkeaan toimintataajuuteen tekee radiotaajuuspiirien suunnittelusta haasteellista. Piirirakenteiden toimintakaistat ja piirien väliset rajapinnat tulee optimoida riittävän laajoiksi käyttämättä kuitenkaan liian montaa piille integroitua kelaa piirin pinta-alan minimoimiseksi, ja lisäksi piirit tulisi toteuttaa mahdollisimman alhaisella tehonkulutuksella. Työssä esiteltyjen piirien kaksi pääkohdetta ovat hyvin erityyppisiä, mitä tulee tehonkulutus-, kaistanleveys- ja toimintataajuusvaatimuksiin. Yhteistä molemmille on lyhyt, alle 10 metrin kantama. Vaikka tässä työssä esitellyt piirit onkin kohdennettu kahteen pääsovelluskohteeseen, voidaan esitettyjä piirejä käyttää myös muiden tiedonsiirtojärjestelmien piirien suunnitteluun. Tässä työssä esitetään mittaustuloksineen yhteensä kolme kokeellista piiriä yllämainittuihin järjestelmiin. Kaksi ensimmäistä kokeellista piiriä muodostaa kokonaisen radiovastaanottimen yhdessä analogisten kantataajuusosien ja analogia-digitaali-muuntimien kanssa. Esitetyt kokeelliset piirit on toteutettu käyttäen 0,13 µm:n viivanleveyden CMOS-tekniikkaa. Näiden lisäksi työ pitää sisällään piirisuunnitteluesimerkkejä, joissa esitetään ideoita ja mahdollisuuksia käyttäen 0,13 µm:n ja 65 nm:n viivanleveyden omaavia CMOS-tekniikoita. Lisäksi piirisuunnitteluesimerkein havainnollistetaan työssä esitetyn teorian paikkansapitävyyttä käyttämällä oikeita komponenttimalleja.reviewe
    corecore