138 research outputs found

    Techniques for Wideband All Digital Polar Transmission

    Get PDF
    abstract: Modern Communication systems are progressively moving towards all-digital transmitters (ADTs) due to their high efficiency and potentially large frequency range. While significant work has been done on individual blocks within the ADT, there are few to no full systems designs at this point in time. The goal of this work is to provide a set of multiple novel block architectures which will allow for greater cohesion between the various ADT blocks. Furthermore, the design of these architectures are expected to focus on the practicalities of system design, such as regulatory compliance, which here to date has largely been neglected by the academic community. Amongst these techniques are a novel upconverted phase modulation, polyphase harmonic cancellation, and process voltage and temperature (PVT) invariant Delta Sigma phase interpolation. It will be shown in this work that the implementation of the aforementioned architectures allows ADTs to be designed with state of the art size, power, and accuracy levels, all while maintaining PVT insensitivity. Due to the significant performance enhancement over previously published works, this work presents the first feasible ADT architecture suitable for widespread commercial deployment.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    CMOS Data Converters for Closed-Loop mmWave Transmitters

    Get PDF
    With the increased amount of data consumed in mobile communication systems, new solutions for the infrastructure are needed. Massive multiple input multiple output (MIMO) is seen as a key enabler for providing this increased capacity. With the use of a large number of transmitters, the cost of each transmitter must be low. Closed-loop transmitters, featuring high-speed data converters is a promising option for achieving this reduced unit cost.In this thesis, both digital-to-analog (D/A) and analog-to-digital (A/D) converters suitable for wideband operation in millimeter wave (mmWave) massive MIMO transmitters are demonstrated. A 2 76 bit radio frequency digital-to-analog converter (RF-DAC)-based in-phase quadrature (IQ) modulator is demonstrated as a compact building block, that to a large extent realizes the transmit path in a closed-loop mmWave transmitter. The evaluation of an successive-approximation register (SAR) analog-to-digital converter (ADC) is also presented in this thesis. Methods for connecting simulated and measured performance has been studied in order to achieve a better understanding about the alternating comparator topology.These contributions show great potential for enabling closed-loop mmWave transmitters for massive MIMO transmitter realizations

    A Bang-Bang All-Digital PLL for Frequency Synthesis

    Get PDF
    abstract: Phase locked loops are an integral part of any electronic system that requires a clock signal and find use in a broad range of applications such as clock and data recovery circuits for high speed serial I/O and frequency synthesizers for RF transceivers and ADCs. Traditionally, PLLs have been primarily analog in nature and since the development of the charge pump PLL, they have almost exclusively been analog. Recently, however, much research has been focused on ADPLLs because of their scalability, flexibility and higher noise immunity. This research investigates some of the latest all-digital PLL architectures and discusses the qualities and tradeoffs of each. A highly flexible and scalable all-digital PLL based frequency synthesizer is implemented in 180 nm CMOS process. This implementation makes use of a binary phase detector, also commonly called a bang-bang phase detector, which has potential of use in high-speed, sub-micron processes due to the simplicity of the phase detector which can be implemented with a simple D flip flop. Due to the nonlinearity introduced by the phase detector, there are certain performance limitations. This architecture incorporates a separate frequency control loop which can alleviate some of these limitations, such as lock range and acquisition time.Dissertation/ThesisM.S. Electrical Engineering 201

    45-nm SOI CMOS Bluetooth Electrochemical Sensor for Continuous Glucose Monitoring

    Get PDF
    Due to increasing rates of diabetes, non-invasive glucose monitoring systems will become critical to improving health outcomes for an increasing patient population. Bluetooth integration for such a system has been previously unattainable due to the prohibitive energy consumption. However, enabling Bluetooth allows for widespread adoption due to the ubiquity of Bluetooth-enabled mobile devices. The objective of this thesis is to demonstrate the feasibility of a Bluetooth-based energy-harvesting glucose sensor for contact-lens integration using 45~nm silicon-on-insulator (SOI) complementary metal-oxide-semiconductor (CMOS) technology. The proposed glucose monitoring system includes a Bluetooth transmitter implemented as a two-point closed loop PLL modulator, a sensor potentiostat, and a 1st-order incremental delta-sigma analog-to-digital converter (IADC). This work details the complete system design including derivation of top-level specifications such as glucose sensing range, Bluetooth protocol timing, energy consumption, and circuit specifications such as carrier frequency range, output power, phase-noise performance, stability, resolution, signal-to-noise ratio, and power consumption. Three test chips were designed to prototype the system, and two of these were experimentally verified. Chip 1 includes a partial implementation of a phase-locked-loop (PLL) which includes a voltage-controlled-oscillator (VCO), frequency divider, and phase-frequency detector (PFD). Chip 2 includes the design of the sensor potentiostat and IADC. Finally, Chip 3 combines the circuitry of Chip 1 and Chip 2, along with a charge-pump, loop-filter and power amplifier to complete the system. Chip 1 DC power consumption was measured to be 204.8~μ\muW, while oscillating at 2.441 GHz with an output power PoutP_{out} of -35.8 dBm, phase noise at 1 MHz offset L(1 MHz)L(1\text{ MHz}) of -108.5 dBc/Hz, and an oscillator figure of merit (FOM) of 183.44dB. Chip 2 achieves a total DC power consumption of 5.75~μ\muW. The system has a dynamic range of 0.15~nA -- 100~nA at 10-bit resolution. The integral non-linearity (INL) and differential non-linearity (DNL) of the IADC were measured to be -6~LSB/±\pm0.3~LSB respectively with a conversion time of 65.56~ms. This work achieves the best duty-cycled DC power consumption compared to similar glucose monitoring systems, while providing sufficient performance and range using Bluetooth

    Ring-oscillator with multiple transconductors for linear analog-to-digital conversion

    Get PDF
    This paper proposes a new circuit-based approach to mitigate nonlinearity in open-loop ring-oscillator-based analog-to-digital converters (ADCs). The approach consists of driving a current-controlled oscillator (CCO) with several transconductors connected in parallel with different bias conditions. The current injected into the oscillator can then be properly sized to linearize the oscillator, performing the inverse current-to-frequency function. To evaluate the approach, a circuit example has been designed in a 65-nm CMOS process, leading to a more than 3-ENOB enhancement in simulation for a high-swing differential input voltage signal of 800-mVpp, with considerable less complex design and lower power and expected area in comparison to state-of-the-art circuit based solutions. The architecture has also been checked against PVT and mismatch variations, proving to be highly robust, requiring only very simple calibration techniques. The solution is especially suitable for high-bandwidth (tens of MHz) medium-resolution applications (10–12 ENOBs), such as 5G or Internet-of-Things (IoT) devices.This research was funded by Project TEC2017-82653-R, Spain

    Efficient Continuous-Time Sigma-Delta Converters for High Frequency Applications

    Full text link
    Over the years Continuous-Time (CT) Sigma-Delta (ΣΔ) modulators have received a lot of attention due to their ability to efficiently digitize a variety of signals, and suitability for many different applications. Because of their tolerance to component mismatch, the easy to drive input structure, as well as intrinsic anti-aliasing filtering and noise shaping abilities, CTΣΔ modulators have become one of the most popular data-converter type for high dynamic range and moderate/wide bandwidth. This trend is the result of faster CMOS technologies along with design innovations such as better architectures and faster amplifiers. In other words, CTΣΔ modulators are starting to offer the best of both worlds, with high resolution and high bandwidth. This dissertation focuses on the bandwidth and resolution of CTΣΔ modulators. The goal of this research is to use the noise shaping benefits of CTΣΔ modulators for different wireless applications, while achieving high resolution and/or wide bandwidth. For this purpose, this research focuses on two different application areas that demand speed and resolution. These are a low-noise high-resolution time-to-digital converter (TDC), ideal for digital phase lock loops (PLL), and a very high-speed, wide-bandwidth CTΣΔ modulator for wireless communication. The first part of this dissertation presents a new noise shaping time-to-digital converter, based on a CTΣΔ modulator. This is intended to reduce the in-band phase noise of a high frequency digital phase lock loop (PLL) without reducing its loop bandwidth. To prove the effectiveness of the proposed TDC, 30GHz and a 40GHz fractional-N digital PLL are designed as a signal sources for a 240GHz FMCW radar system. Both prototypes are fabricated in a 65nm CMOS process. The standalone TDC achieves 81dB dynamic range and 13.2 equivalent number of bits (ENOB) with 176fs integrated-rms noise from 1MHz bandwidth. The in-band phase noise of the 30GHz digital fractional-N PLL is measured as -87dBc/Hz at a 100kHz offset which is equivalent to -212.6dBc/Hz2 normalized in-band phase noise. The second part of this dissertation focuses on high-speed (GS/s) CTΣΔ modulators for wireless communication, and introduces a new time-interleaved reference data weighted averaging (TI-RDWA) architecture suitable for GS/s CTΣΔ modulators. This new architecture shapes the digital-to-analog converter (DAC) mismatch effects in a CTΣΔ modulator at GS/s operating speeds. It allows us to use smaller DAC unit sizes to reduce area and power consumption for the same bandwidth. The prototype 5GS/s CTΣΔ modulator with TI-RDWA is fabricated in 40nm CMOS and it achieves 156MHz bandwidth, 70dB dynamic range, 84dB SFDR and a Schreier FoM of 158.3dB.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138763/1/bdayanik_1.pd

    High-Bandwidth Voltage-Controlled Oscillator based architectures for Analog-to-Digital Conversion

    Get PDF
    The purpose of this thesis is the proposal and implementation of data conversion open-loop architectures based on voltage-controlled oscillators (VCOs) built with ring oscillators (RO-based ADCs), suitable for highly digital designs, scalable to the newest complementary metal-oxide-semiconductor (CMOS) nodes. The scaling of the design technologies into the nanometer range imposes the reduction of the supply voltage towards small and power-efficient architectures, leading to lower voltage overhead of the transistors. Additionally, phenomena like a lower intrinsic gain, inherent noise, and parasitic effects (mismatch between devices and PVT variations) make the design of classic structures for ADCs more challenging. In recent years, time-encoded A/D conversion has gained relevant popularity due to the possibility of being implemented with mostly digital structures. Within this trend, VCOs designed with ring oscillator based topologies have emerged as promising candidates for the conception of new digitization techniques. RO-based data converters show excellent scalability and sensitivity, apart from some other desirable properties, such as inherent quantization noise shaping and implicit anti-aliasing filtering. However, their nonlinearity and the limited time delay achievable in a simple NOT gate drastically limits the resolution of the converter, especially if we focus on wide-band A/D conversion. This thesis proposes new ways to alleviate these issues. Firstly, circuit-based techniques to compensate for the nonlinearity of the ring oscillator are proposed and compared to equivalent state-of-the-art solutions. The proposals are designed and simulated in a 65-nm CMOS node for open-loop RO-based ADC architectures. One of the techniques is also validated experimentally through a prototype. Secondly, new ways to artificially increase the effective oscillation frequency are introduced and validated by simulations. Finally, new approaches to shape the quantization noise and filter the output spectrum of a RO-based ADC are proposed theoretically. In particular, a quadrature RO-based band-pass ADC and a power-efficient Nyquist A/D converter are proposed and validated by simulations. All the techniques proposed in this work are especially devoted for highbandwidth applications, such as Internet-of-Things (IoT) nodes or maximally digital radio receivers. Nevertheless, their field of application is not restricted to them, and could be extended to others like biomedical instrumentation or sensing.El propósito de esta tesis doctoral es la propuesta y la implementación de arquitecturas de conversión de datos basadas en osciladores en anillos, compatibles con diseños mayoritariamente digitales, escalables en los procesos CMOS de fabricación más modernos donde las estructuras digitales se ven favorecidas. La miniaturización de las tecnologías CMOS de diseño lleva consigo la reducción de la tensión de alimentación para el desarrollo de arquitecturas pequeñas y eficientes en potencia. Esto reduce significativamente la disponibilidad de tensión para saturar transistores, lo que añadido a una ganancia cada vez menor de los mismos, ruido y efectos parásitos como el “mismatch” y las variaciones de proceso, tensión y temperatura han llevado a que sea cada vez más complejo el diseño de estructuras analógicas eficientes. Durante los últimos años la conversión A/D basada en codificación temporal ha ganado gran popularidad dado que permite la implementación de estructuras mayoritariamente digitales. Como parte de esta evolución, los osciladores controlados por tensión diseñados con topologías de oscilador en anillo han surgido como un candidato prometedor para la concepción de nuevas técnicas de digitalización. Los convertidores de datos basados en osciladores en anillo son extremadamente sensibles (variación de frecuencia con respecto a la señal de entrada) así como escalables, además de otras propiedades muy atractivas, como el conformado espectral de ruido de cuantificación y el filtrado “anti-aliasing”. Sin embargo, su respuesta no lineal y el limitado tiempo de retraso alcanzable por una compuerta NOT restringen la resolución del conversor, especialmente para conversión A/D en aplicaciones de elevado ancho de banda. Esta tesis doctoral propone nuevas técnicas para aliviar este tipo de problemas. En primer lugar, se proponen técnicas basadas en circuito para compensar el efecto de la no linealidad en los osciladores en anillo, y se comparan con soluciones equivalentes ya publicadas. Las propuestas se diseñan y simulan en tecnología CMOS de 65 nm para arquitecturas en lazo abierto. Una de estas técnicas presentadas es también validada experimentalmente a través de un prototipo. En segundo lugar, se introducen y validan por simulación varias formas de incrementar artificialmente la frecuencia de oscilación efectiva. Para finalizar, se proponen teóricamente dos enfoques para configurar nuevas formas de conformación del ruido de cuantificación y filtrado del espectro de salida de los datos digitales. En particular, son propuestos y validados por simulación un ADC pasobanda en cuadratura de fase y un ADC de Nyquist de gran eficiencia en potencia. Todas las técnicas propuestas en este trabajo están destinadas especialmente para aplicaciones de alto ancho de banda, tales como módulos para el Internet de las cosas o receptores de radiofrecuencia mayoritariamente digitales. A pesar de ello, son extrapolables también a otros campos como el de la instrumentación biomédica o el de la medición de señales mediante sensores.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Juan Pablo Alegre Pérez.- Secretario: Celia López Ongil.- Vocal: Fernando Cardes Garcí

    Digitally Controlled Oscillator for mm-Wave Frequencies

    Get PDF
    In the fifth generation of mobile communication, 5G, frequencies above 30 GHz, so-called millimeter-wave (mm-wave) frequencies are expected to play a prominent role. For the synthesis of these frequencies, the all-digital phase locked loop (ADPLL) has recently gained much attention. A core component of the ADPLL is the digitally controlled oscillator (DCO), an oscillator that tunes the frequency discretely. For good performance, the frequency steps must be made very small, while the total tuning range must be large. This thesis covers several coarse- and fine-tuning techniques for DCOs operating at mm-wave frequencies. Three previously not published fine-tuning schemes are presented: The first one tunes the second harmonic, which will, due to the Groszkowski effect, tune the fundamental tone. The second one is a current-modulation scheme, which utilizes the weak current-dependence of the capacitance of a transistor to tune the frequency. In the third one, a digital-to-analog converter (DAC) is connected to the bulk of the differential pair and tunes the frequency by setting the bulk voltage. The advantages and disadvantages of the presented tuning schemes are discussed and compared with previously reported fine-tuning schemes. Two oscillators were implemented at 86 GHz. Both oscillator use the same oscillator core and hence have the same power consumption and tuning range, 14.1 mW and 13.9%. A phase noise of -89.7 dBc/Hz and -111.4 dBc/Hz at 1 MHz and 10 MHz offset, respectively, were achieved, corresponding to a Figure-of-Merit of -178.5 dBc/Hz. The first oscillator is fine-tuned using a combination of a transformer-based fine-tuning and the current modulation scheme presented here. The achieved frequency resolution is 55 kHz, but can easily be made finer. The second oscillator utilizes the bulk bias technique to achieve its fine tuning. The fine-tuning resolution is here dependent on the resolution of the DAC; a 100μV resolution corresponds to a resolution of 50 kHz.n 2011, the global monthly mobile data usage was 0.5 exabytes, or 500 million gigabytes. In 2016, this number had increased to 7 exabytes, an increase by a factor 14 in just five years, and there are no signs of this trend slowing down. To meet the demands of the ever increasing data usage, engineers have begun to investigate the possibility to use significantly higher frequencies, 30 GHz or higher, for mobile communication than what is used today, which is 3 GHz or below. To be able to transmit and receive data at these high frequency, an oscillator capable of operating at these frequencies are required. An oscillator is an electrical circuit that generates an alternating current (a current that first goes one way, and then the other) at a specific frequency. Below is an example to illustrate to function and importance of the oscillator: Imagine driving a car and listening to the radio. Suddenly, a horrendous song starts playing from the radio, so you instantly tune to another station and find some great, smooth jazz. Satisfied, you lean back and drive on. But what exactly happened when you "tuned to another station"? What you really did was changing the frequency of the oscillator, which can be found in the radio receiver of the car. The radio receiver filters out all frequencies, except for the frequency of the local oscillator. So by setting the frequency of the local oscillator to the frequency of the desired radio channel, only this radio channel will reach the speakers of the car. Thus, the oscillator must be able to vary its frequency to any frequency that a radio station can transmit on. While an old car radio may seem like a simple example, the very same principle is used in mobile communication, even at frequencies above 30 GHz. The oscillator is also used in the same way when transmitting signals, so that the signals are transmitted on the correct frequency. The design of the local oscillator is a hot topic among radio engineers. A poorly designed oscillator will ruin the performance of the whole receiver or transmitter. This thesis covers the design of a special type of oscillators, called digital controlled oscillators or DCO, operating at 30 GHz or higher. The frequency of these oscillators are determined by a digital word (ones and zeros), instead of using an analog voltage, which is traditionally used. Digital control results in greater flexibility and higher noise-resilience, but it also means that the frequency can’t be changed continuously, but rather in discrete steps. This discrete behavior will cause noise in the receiver. To minimize this noise, the frequency steps should be minimized. In this thesis, we have proposed a DCO design, operating at 85.5 GHz, which can be tuned almost 7 % in either direction. To our knowledge, no other DCO operates at such high frequencies. In the proposed oscillators the frequency steps are only 55 kHz apart, which is so small that its effect on the radio receiver can, with a good conscience, be ignored. This is achieved with a novel technique that makes tiny, tiny changes in the current that passes through the oscillator

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields
    corecore