179 research outputs found

    Reducing MOSFET 1/f Noise and Power Consumption by "Switched Biasing"

    Get PDF
    Switched biasing is proposed as a technique for reducing the 1/f noise in MOSFET's. Conventional techniques, such as chopping or correlated double sampling, reduce the effect of 1/f noise in electronic circuits, whereas the switched biasing technique reduces the 1/f noise itself. Whereas noise reduction techniques generally lead to more power consumption, switched biasing can reduce the power consumption. It exploits an intriguing physical effect: cycling a MOS transistor from strong inversion to accumulation reduces its intrinsic 1/f noise. As the 1/f noise is reduced at its physical roots, high frequency circuits, in which 1/f noise is being upconverted, can also benefit. This is demonstrated by applying switched biasing in a 0.8 ¿m CMOS sawtooth oscillator. By periodically switching off the bias currents, during time intervals that they are not contributing to the circuit operation, a reduction of the 1/f noise induced phase noise by more than 8 dB is achieved, while the power consumption is also reduced by 30

    RF CMOS Oscillators for Modern Wireless Applications

    Get PDF
    While mobile phones enjoy the largest production volume ever of any consumer electronics products, the demands they place on radio-frequency (RF) transceivers are particularly aggressive, especially on integration with digital processors, low area, low power consumption, while being robust against process-voltage-temperature variations. Since mobile terminals inherently operate on batteries, their power budget is severely constrained. To keep up with the ever increasing data-rate, an ever-decreasing power per bit is required to maintain the battery lifetime. The RF oscillator is the second most power-hungry block of a wireless radio (after power amplifiers). Consequently, any power reduction in an RF oscillator will greatly benefit the overall power efficiency of the cellular transceiver. Moreover, the RF oscillators' purity limits the transceiver performance. The oscillator's phase noise results in power leakage into adjacent channels in a transmit mode and reciprocal mixing in a receive mode. On the other hand, the multi-standard and multi-band transceivers that are now trending demand wide tuning range oscillators. However, broadening the oscillator’s tuning range is usually at the expense of die area (cost) or phase noise. The main goal of this book is to bring forth the exciting and innovative RF oscillator structures that demonstrate better phase noise performance, lower cost, and higher power efficiency than currently achievable. Technical topics discussed in RF CMOS Oscillators for Modern Wireless Applications include: Design and analysis of low phase-noise class-F oscillators Analyze a technique to reduce 1/f noise up-conversion in the oscillators Design and analysis of low power/low voltage oscillators Wide tuning range oscillators Reliability study of RF oscillators in nanoscale CMO

    RF CMOS Oscillators for Modern Wireless Applications

    Get PDF
    While mobile phones enjoy the largest production volume ever of any consumer electronics products, the demands they place on radio-frequency (RF) transceivers are particularly aggressive, especially on integration with digital processors, low area, low power consumption, while being robust against process-voltage-temperature variations. Since mobile terminals inherently operate on batteries, their power budget is severely constrained. To keep up with the ever increasing data-rate, an ever-decreasing power per bit is required to maintain the battery lifetime. The RF oscillator is the second most power-hungry block of a wireless radio (after power amplifiers). Consequently, any power reduction in an RF oscillator will greatly benefit the overall power efficiency of the cellular transceiver. Moreover, the RF oscillators' purity limits the transceiver performance. The oscillator's phase noise results in power leakage into adjacent channels in a transmit mode and reciprocal mixing in a receive mode. On the other hand, the multi-standard and multi-band transceivers that are now trending demand wide tuning range oscillators. However, broadening the oscillator’s tuning range is usually at the expense of die area (cost) or phase noise. The main goal of this book is to bring forth the exciting and innovative RF oscillator structures that demonstrate better phase noise performance, lower cost, and higher power efficiency than currently achievable. Technical topics discussed in RF CMOS Oscillators for Modern Wireless Applications include: Design and analysis of low phase-noise class-F oscillators Analyze a technique to reduce 1/f noise up-conversion in the oscillators Design and analysis of low power/low voltage oscillators Wide tuning range oscillators Reliability study of RF oscillators in nanoscale CMO

    Reduction of 1/f Noise in MOSFETS by Switched Bias Techniques

    Get PDF
    Switched Biasing is presented as a technique for reducing the 1/f noise in MOSFETS. It exploits an intriguing physical effect: cycling a MOS transistor from strong inversion to accumulation reduces its 1/f noise!! The history of the discovery of the effect and the main experimental results obtained so far will be reviewed

    On the phase-noise and phase-error performances of multiphase LC CMOS VCOs

    Get PDF

    Design Of A 2.4 Ghz Low Power Lc Vco In Umc 0.18u Technology

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2007Bu çalışmada, Bluetooth uygulamalarında kullanılmak üzere 2.45GHz merkez frekansında çalışan, frekans ayarlaması 2.2GHz ile 2.7GHz arasında değişen, düşük güç (2mW) tüketimi sağlayan bir LC GKO (VCO) tasarlanmıştır. Faz gürültüsünü minimize etmek maksadıyla 4 bit anahtarlamalı IMOS dizisinden yararlanılmıştır. Ayrıca frekansın ince ayarı için kapasite kuplajlı diyot varaktör devresi eklenmiştir. Bu frekans ayarlama tekniğinin faz gürültüsüne etkisi en kötü hal için 50kHz ofsette yaklaşık olarak 2dBc/Hz olup yüksek ofsetlerde yok denecek kadar azdır. Devrenin kaba kontrol gerilimleri 1.4V ve 0V olup, ince ayar gerilimi ise 0.5V ile 1.4V arasındadır. Besleme geriliminin 1.4V olduğu dikkate alındığında devre yüksek entegrasyon olanağı sunmaktadır. Faz gürültüsü 50kHz ofsette -88.6dBc/Hz ile -94.36dBc/Hz arasında olup 3MHz ofsette ise -128.3dBc/Hz ile -130.5dBc/Hz değerlerine ulaşmaktadır.Bu devreye ek olarak daha düşük gerilimli farklı topolojiler aynı akım akıtacak şekilde tasarlanmış ve tezin aynı zamanda ISM bandında çalışan düşük güç sarfiyatı isteyen uygulamalarda gerekli olacak bir GKO ihtiyacı için karşılaştırmalı bir çalışma olması sağlanmıştır.In this study, a low power LC VCO which operates at a center frequency of 2.45GHz over the range between 2.2GHz and 2.7GHz is designed for Bluetooth applications. The oscillator consumes 2mW at a supply voltage of 1.4V. To minimize the phase noise generated by the varactor through AM-PM conversion, 4bits SCA varactor is implemented by employing IMOS varactors. For fine tuning of frequency, a capacitor coupled diode varactor structure is designed. The effect of this overall varactor structure on the phase noise is around 2dBc/Hz at 50kHz offset for the worst case whereas it is negligble at high offsets. The coarse control tuning voltage values are 0V and 1.4V and the fine tuning control voltage varies from 0.5V to 1.4V. Hence, a high integration is achieved by keeping the external voltage at power supply voltage. The phase noise is between -88.6dBc/Hz and -94.36dBc/Hz at 50kHz offset, and between -128.3dBc/Hz and -130.5dBc/Hz at 3MHz offset. In addition to this, several circuits enabling lower supply voltage are simulated by keeping the same current in order to constitute a comparative study for low power applications which do not require stringent phase noise specification at 2.4GHz.Yüksek LisansM.Sc

    Low-Frequency Noise Phenomena in Switched MOSFETs

    Get PDF
    In small-area MOSFETs widely used in analog and RF circuit design, low-frequency (LF) noise behavior is increasingly dominated by single-electron effects. In this paper, the authors review the limitations of current compact noise models which do not model such single-electron effects. The authors present measurement results that illustrate typical LF noise behavior in small-area MOSFETs, and a model based on Shockley-Read-Hall statistics to explain the behavior. Finally, the authors treat practical examples that illustrate the relevance of these effects to analog circuit design. To the analog circuit designer, awareness of these single-electron noise phenomena is crucial if optimal circuits are to be designed, especially since the effects can aid in low-noise circuit design if used properly, while they may be detrimental to performance if inadvertently applie

    Design and implementation of fully integrated low-voltage low-noise CMOS VCO.

    Get PDF
    Yip Kim-fung.Thesis (M.Phil.)--Chinese University of Hong Kong, 2002.Includes bibliographical references (leaves 95-100).Abstracts in English and Chinese.Abstract --- p.IAcknowledgement --- p.IIITable of Contents --- p.IVChapter Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Motivation --- p.1Chapter 1.2 --- Objective --- p.6Chapter Chapter 2 --- Theory of Oscillators --- p.7Chapter 2.1 --- Oscillator Design --- p.7Chapter 2.1.1 --- Loop-Gain Method --- p.7Chapter 2.1.2 --- Negative Resistance-Conductance Method --- p.8Chapter 2.1.3 --- Crossed-Coupled Oscillator --- p.10Chapter Chapter 3 --- Noise Analysis --- p.15Chapter 3.1 --- Origin of Noise Sources --- p.16Chapter 3.1.1 --- Flicker Noise --- p.16Chapter 3.1.2 --- Thermal Noise --- p.17Chapter 3.1.3 --- Noise Model of Varactor --- p.18Chapter 3.1.4 --- Noise Model of Spiral Inductor --- p.19Chapter 3.2 --- Derivation of Resonator --- p.19Chapter 3.3 --- Phase Noise Model --- p.22Chapter 3.3.1 --- Leeson's Model --- p.23Chapter 3.3.2 --- Phase Noise Model defined by J. Cranincks and M Steyaert --- p.24Chapter 3.3.3 --- Non-linear Analysis of Phase Noise --- p.26Chapter 3.3.4 --- Flicker-Noise Upconversion Mechanism --- p.31Chapter 3.4 --- Phase Noise Reduction Techniques --- p.33Chapter 3.4.1 --- Conventional Tank Circuit Structure --- p.33Chapter 3.4.2 --- Enhanced Q tank circuit Structure --- p.35Chapter 3.4.3 --- Tank Circuit with parasitics --- p.37Chapter 3.4.4 --- Reduction of Up-converted Noise --- p.39Chapter Chapter 4 --- CMOS Technology and Device Modeling --- p.42Chapter 4.1 --- Device Modeling --- p.42Chapter 4.1.1 --- FET model --- p.42Chapter 4.1.2 --- Layout of Interdigitated FET --- p.46Chapter 4.1.3 --- Planar Inductor --- p.48Chapter 4.1.4 --- Circuit Model of Planar Inductor --- p.50Chapter 4.1.5 --- Inductor Layout Consideration --- p.54Chapter 4.1.6 --- CMOS RF Varactor --- p.55Chapter 4.1.7 --- Parasitics of PMOS-type varactor --- p.57Chapter Chapter 5 --- Design of Integrated CMOS VCOs --- p.59Chapter 5.1 --- 1.5GHz CMOS VCO Design --- p.59Chapter 5.1.1 --- Equivalent circuit model of differential LC VCO --- p.59Chapter 5.1.2 --- Reference Oscillator Circuit --- p.61Chapter 5.1.3 --- Proposed Oscillator Circuit --- p.62Chapter 5.1.4 --- Output buffer --- p.63Chapter 5.1.5 --- Biasing Circuitry --- p.64Chapter 5.2 --- Spiral Inductor Design --- p.65Chapter 5.3 --- Determination of W/L ratio of FET --- p.67Chapter 5.4 --- Varactor Design --- p.68Chapter 5.5 --- Layout (Cadence) --- p.69Chapter 5.6 --- Circuit Simulation (SpectreRF) --- p.74Chapter Chapter 6 --- Experimental Results and Discussion --- p.76Chapter 6.1 --- Measurement Setup --- p.76Chapter 6.2 --- Measurement results: Reference Oscillator Circuit --- p.81Chapter 6.2.1 --- Output Spectrum --- p.81Chapter 6.2.2 --- Phase Noise Performance --- p.82Chapter 6.2.3 --- Tuning Characteristic --- p.83Chapter 6.2.4 --- Microphotograph --- p.84Chapter 6.3 --- Measurement results: Proposed Oscillator Circuit --- p.85Chapter 6.3.1 --- Output Spectrum --- p.85Chapter 6.3.2 --- Phase Noise Performance --- p.86Chapter 6.3.3 --- Tuning Characteristic --- p.87Chapter 6.3.4 --- Microphotograph --- p.88Chapter 6.4 --- Comparison of Measured Results --- p.89Chapter 6.4.1 --- Phase Noise Performance --- p.89Chapter 6.4.2 --- Tuning Characteristic --- p.90Chapter Chapter 7 --- Conclusion and Future Work --- p.93Chapter 7.1 --- Conclusion --- p.93Chapter 7.2 --- Future Work --- p.94References --- p.95Author's Publication --- p.100Appendix A --- p.101Appendix B --- p.104Appendix C --- p.10

    Radio-frequency integrated-circuit design for CMOS single-chip UWB systems

    Get PDF
    Low cost, a high-integrated capability, and low-power consumption are the basic requirements for ultra wide band (UWB) system design in order for the system to be adopted in various commercial electronic devices in the near future. Thus, the highly integrated transceiver is trended to be manufactured by companies using the latest silicon based complimentary metal-oxide-silicon (CMOS) processes. In this dissertation, several new structural designs are proposed, which provide solutions for some crucial RF blocks in CMOS for UWB for commercial applications. In this dissertation, there is a discussion of the development, as well as an illustration, of a fully-integrated ultra-broadband transmit/receive (T/R) switch which uses nMOS transistors with deep n-well in a standard 0.18-μm CMOS process. The new CMOS T/R switch exploits patterned-ground-shield on-chip inductors together with MOSFET’s parasitic capacitances in order to synthesize artificial transmission lines which result in low insertion loss over an extremely wide bandwidth. Within DC-10 GHz, 10-18 GHz, and 18-20 GHz, the developed CMOS T/R switch exhibits insertion loss of less than 0.7, 1.0 and 2.5 dB and isolation between 32-60 dB, 25-32 dB, and 25-27 dB, respectively. The measured 1-dB power compression point and input third-order intercept point reach as high as 26.2 and 41 dBm, respectively. Further, there is a discussion and demonstration of a tunable Carrier-based Time-gated UWB transmitter in this dissertation which uses a broadband multiplier, a novel fully integrated single pole single throw (SPST) switch designed by the CMOS process, where a tunable instantaneous bandwidth from 500 MHz to 4 GHz is exhibited by adjusting the width of the base band impulses in time domain. The SPST switch utilizes the synthetic transmission line concept and multiple reflections technique in order to realize a flat insertion loss less than 1.5 dB from 3.1 GHz to 10.6 GHz and an extremely high isolation of more than 45 dB within this frequency range. A fully integrated complementary LC voltage control oscillator (VCO), designed with a tunable buffer, operates from 4.6 GHz to 5.9 GHz. The measurement results demonstrate that the integrated VCO has a very low phase noise of –117 dBc/ Hz at 1 MHz offset. The fully integrated VCO achieves a very high figure of merit (FOM) of 183.5 using standard CMOS process while consuming 4 mA DC current

    Techniques for Wideband All Digital Polar Transmission

    Get PDF
    abstract: Modern Communication systems are progressively moving towards all-digital transmitters (ADTs) due to their high efficiency and potentially large frequency range. While significant work has been done on individual blocks within the ADT, there are few to no full systems designs at this point in time. The goal of this work is to provide a set of multiple novel block architectures which will allow for greater cohesion between the various ADT blocks. Furthermore, the design of these architectures are expected to focus on the practicalities of system design, such as regulatory compliance, which here to date has largely been neglected by the academic community. Amongst these techniques are a novel upconverted phase modulation, polyphase harmonic cancellation, and process voltage and temperature (PVT) invariant Delta Sigma phase interpolation. It will be shown in this work that the implementation of the aforementioned architectures allows ADTs to be designed with state of the art size, power, and accuracy levels, all while maintaining PVT insensitivity. Due to the significant performance enhancement over previously published works, this work presents the first feasible ADT architecture suitable for widespread commercial deployment.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    corecore