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Abstract 

Voltage-controlled oscillators (VCOs) are critical components for signal 
generation in RF transceivers. Recently, there has been considerable interest in 
monolithic integration of inductance-capacitance (LC) tank oscillators for highly 
integrated RF transceivers. Technologies such as Si CMOS and Si/SiGe BiCMOS 
are of interest in light of the potential for integration with digital functions. However, 
in Si technologies, the Q of the inductor is usually the limiting factor. Traditionally, 
inductors have been incorporated as discrete components located off-chip, often as 
small surface-mount parts. Alternatively, some VCO designs have utilized bonding 
wires as hybrid inductors. While bonding wires can offer a relatively high Q, they 
also suffer from large variations in inductance value. 

In this thesis, the design and implementation of low phase noise fully integrated 
CMOS LC differential voltage-controlled oscillators is presented. The new circuit 
topology offers: (1) Resonator with enhanced quality factor; and (2) Reduction of 
noise up-conversion coefficient. The proposed design is verified experimentally by 
the fabrication of 1.5 GHz LC VCO circuits using 0.6 micron standard CMOS 
technology. The phase noise and frequency tuning performances of the oscillators are 
also shown for comparison. 
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摘要 

在無線電收發機內，電壓控制振還器是其中一個較爲重要的部分。近年， 

有關把電感電容差分電壓控制振盪器整合於單晶片無線電收發機上的硏究，弓丨 

起了極大關注。藉著利用互補金屬氧化物半導體或雙極互補金屬氧化物半導體 

技術，更可把振擾器與數位電路結合在一單晶片上。但是，在砂技術當中，電 

感器的Q値往往是一個限制。 

本論文將會講述有關如何利用薪新的共振器結構，設計出低相位雜訊的電 

感電容差分電壓控制振優器。這技術不但能提高共振器的Q値，並且能減少振 

擾器的嘈音上載指數。 

本論文所提出的電感電容差分電壓控制振擾器設計，是透過標準零點六微 

米互補金屬氧化物半導體技術的硏製下，電路運作在一千五百兆頻，並在相位 

雜訊和頻率調整的性能上作出分析及比較。 
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Chapter 1 Introduction 

Chapter 1 Introduction 

1.1 Motivation 
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Oscillators are used at various places in an RF transceiver system. Figure 1.1 

illustrates this with a block diagram of a superhet receiver. The local oscillator (LO) 

provides the mixer with a signal which is equal, in frequency, to the difference of the 

RF carrier and the intermediate frequency (IF). The LO is part of a phase locked loop 

(PLL), and uses a crystal oscillator as reference. 
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Chapter 1 Introduction 

The LO in RF transceivers is often implemented using an LC oscillator with 

lumped LC resonator which can be on-chip or off-chip. Piezoelectric material is used 

in SAW (Surface Acoustic Wave) oscillators, which offers excellent spectral purity 

and also very good long-term frequency stability. Another example of a very stable 

resonator is a dielectric resonator (DR). 

Recently, there has been considerable interest in monolithic integration of LC 

oscillators for highly integrated RF transceivers. Technologies such as Silicon CMOS 

and BiCMOS are of interest in light of the potential for integration with digital 

functions. In BiCMOS technologies, the bipolar device co-exists along with the 

MOS device on the same Si substrate. There are obvious advantages here: Since the 

RF system is usually implemented using bipolar transistors and the baseband 

subsystem is a complex digital CMOS system, the BiCMOS technology allows for 

the complete integration of a mobile communication system on a single chip. 

Disadvantages of BiCMOS technologies are the increased process cost compared to a 

simple CMOS process. Recent advances in CMOS technologies and in particular the 

continuous shrinkage in transistors' channel length, makes the MOS device 

comparable to the bipolar transistor in terms of speed of operation. 
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Chapter 1 Introduction 

It is well known that the output power spectrum of an oscillator features a peak 

at oscillation frequency cDq and tails in both sidebands, decreasing as the frequency 

offset a from cOq. Generally speaking, they are ascribed to the presence of noise 

sources in the circuit, and they are more precisely referred to as the oscillator phase 

noise. 

The noise performance of an oscillator are quantitatively assessed by defining a 

suitable signal to noise ratio, i.e. the single sideband-to-carrier ratio (SSCR). This 

figure is the ratio between the output noise power in a 1-Hz bandwidth at the 

frequency offset a from the carrier and the power of the carrier, and is usually 

expressed in dBc/Hz, i.e., decibels relative to the carrier. For instance the GSM 

standard asks for a SSCR of about -115dBc/Hz at lOOkHz form the carrier 

frequency. 

In realizing microwave oscillators, phase noise performance is usually the main 

concern. Suppose the receiver tunes to a weak desired signal in the presence of a 

strong interferer in an adjacent channel, as shown in Figure 1.2. If the local oscillator 

has large phase noise, the interfering signal will also be down-converted to almost 

the same intermediate frequency. The resulting interference will significantly degrade 
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Chapter 1 Introduction 

the dynamic range of the receiver. Note that a high Q resonator strongly reduces both 

the phase noise and power consumption of an oscillator. 

^ I n t e r f e r e r 
L O I W a n t e d j 

O u t p y t \ ^ | S i g n a l 

t ^ 
I 0 ) 

I 
I 55 —. _ 

Downconverted � 

Signals 

Figure 1.2 Reciprocal Mixing 

Conventionally, Resonant tanks in RF oscillators are usually implemented with 

high-quality discrete components located off-chip, often as small surface-mount parts. 

Alternatively, some oscillators have employed bonding wires as hybrid inductors. 

While bonding wires can offer a relatively high Q, they also suffer from large 

variation in inductance value. Monolithic inductors fabricated as single planar spirals 
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Chapter 1 Introduction 

are widely used on GaAs substrates with Qs in the range of 20-40. However, inductor 

Qs on standard Si substrates are much lower. The L of a monolithic inductor is 

defined solely by its geometry. Since modem photolithographic processes provide 

extremely tight geometric tolerances, monolithic inductors have very small variations 

in their performance. This is the main reason for the widespread efforts in the IC 

community to improve the quality of fully integrated inductors in silicon, especially 

in the last few years. 

In addition, flicker noise is upconverted to - shaped phase noise close to 

the carrier. When the oscillator is not carefully designed, flicker noise can deteriorate 

the phase noise at higher offset frequencies important for communication systems, 

e.g., 600kHz, by several dB. This is especially true in MOS VCO's because of the 

higher flicker noise of MOS transistors compared to bipolar transistors. It has been 

shown elsewhere that upconversion is highly dependent on the symmetry of the 

output waveform [21:. 

The aim of this work is to clarify how the noise sources of the electronic devices 

contribute to the output phase noise of the oscillator, thus giving some guidelines for 

the circuit optimization. 

5 



Chapter 1 Introduction 

1.2 Objective 

This research work is to investigate, both theoretically and experimentally, the 

design and optimization of low phase noise voltage-controlled oscillators fabricated 

using standard CMOS technology. New circuit topology is proposed which offers: (1) 

Resonator with enhanced quality factor; and (2) Reduction of noise up-conversion 

factor. This thesis is divided into seven chapters. Chapter 2 covers the background 

theories of oscillator design. In chapter 3, we introduce the fundamentals of the 

nonlinear analysis of the noise and we show that the nonlinear behavior of the 

transconductor causes a folding of the wide-band noise sources like the thermal noise 

of the transistor. Moreover, noise reduction techniques, particularly for the design of 

differential LC VCOs, are presented. Chapter 4 describes the CMOS technology 

adopted and addresses the issues of device modeling. Chapter 5 details the design 

and implementation of CMOS VCO circuits. Measured results such as phase noise 

and tuning characteristics are presented in chapter 6. Finally, chapter 7 concludes this 

thesis and provides recommendation for future work. 
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Chapter 2 Theory o f Oscillators 

Chapter 2 Theory of Oscillators 

2.1 Oscillator Design 

This chapter deals with the analysis and design of oscillators, or more 

specifically, the voltage controlled oscillators (VCOs). Beginning with a general 

study of oscillation in feedback systems, we introduce the LC differential oscillators 

along with methods of varying the frequency of oscillation. 

2.1.1 Loop-Gain Method 

An oscillator is considered as an amplifier with feedback in the loop gain 

method. Figure 2.1 shows the block diagram representation which consists of an 

ideal amplifier with gain A, in cascaded with frequency selective networks 

characterized by transfer function H](f) and H2(f). 

V.(S) Y , ~ ^ A ~ ^ H i ( s ) 卞 Vo(s) • 
> ^ 

H^Cs) < 

Figure 2.1 Block diagram of an amplifier with feedback 
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Chapter 2 Theory o f Oscillators 

The overall transfer function of the feedback amplifier is given by equation 2.3. 
Vois) ^ AXH,(S) 

V^s) l-AxH,(s)xH,(s) ( •) 

An oscillator is obtained when an output signal appears in the absence of an 

external input signal. This is possible only if the Barkhausen criteria[l] is satisfied: 

乂 X if 1(7•劝 X C/劝 I =1 

Phase [AxH,{jco)xH:(jco)] = 0 (2.4) 

It is the condition for steady state oscillation since it states that, at the frequency 

of oscillation, the signal must go around the loop with no attenuation and zero phase 

shift. In practice, due to the component tolerances and the non-linearity of the 

amplifier, the loop-gain value of the circuit must be greater than unity for startup of 

oscillation. Steady-state oscillation is reached when the signal amplitude is 

self-limited by the nonlinear nature of active devices. At this point, the loop-gain 

value equals unity and the Barkhausen criteria is met. 

2.1.2 Negative Resistance-Conductance Method 

At microwave frequencies, Gunn diodes and IMPATT diodes are examples of 

device which exhibit negative resistance. Since a positive resistance dissipates power, 

it is reasonable to assume that a device which exhibits negative resistance could be 
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Chapter 2 Theory o f Oscillators 

used to generate an RF signal. With a potentially unstable transistor, a negative 

resistance can effectively be created by terminating the device with an impedance 

designed to drive it into the unstable region[l]. When a resonator is connected to a 

network exhibiting negative resistance, oscillation builds up until limiting reduces 

the net resistance to zero. Referring to Figure 2.2, for oscillation to occur, we have 

R l + Rin = 0 and X l + Xin = 0 (2.5) 

> 

I I I 
Xt < X. i- ^ m 

R l R. L m 

Z l Z i n 

Figure 2.2 Negative Resistance Circuit 

In practice a value of Rl = |Rin / 3| is commonly used. During power on, any 

transient excitation or noise causes oscillation to build at frequency co�. As the 

9 



Chapter 2 Theory o f Oscillators 

current increases, the value of Rin becomes less negative until Rl + Rin = 0. The 

oscillator is now operating in a stable state. 

2.1,3 Crossed-Coupled Oscillator 

CMOS oscillators in today's technology are typically implemented as "ring 

oscillators" or “LC oscillators". As ring oscillators are very sensitive to noise in the 

switching thresholds and charging currents, it is a common practice to use LC 

oscillators for higher frequency stability and spectral purity. MOS differential 

voltage-controlled oscillator with integrated LC resonator[13], as shown in figure 2.4, 

are most widely used integrated oscillators in silicon ICs. 
^DD ^DD 

rTi 
^ bias 广 ^ bias 

山 t " W 山 

目 O 
a) 0) 
(a) (b) 

Figure 2.4 (a) NMOS VCO, (b) PMOS VCO 
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Chapter 2 Theory o f Oscillators 

The above VCO use cross-coupled FETs to generate negative resistance so as to 

compensate for the loss of the LC tank and start-up oscillation. The current source at 

the bottom is used for controlling the current flowing through the cross-coupled 

FETs. A pair of inductors and varactors constitutes the LC tank. Vbias is used to 

control the biasing voltage of varactors, producing different capacitance value, and 

therefore to tune the oscillating frequency of the VCO circuits. 

Consider another type of oscillator design, as shown in Figure 2.5, where an LC 

tank operates as the load. At resonance, the voltage gain should be equal to -gmiRp 

and jCpC0=l/(jLpC0). When the circuit is biased at a drain current Ii and small 

sinusoidal voltage at the resonance frequency is applied to the input. Vout should be 

an inverted sinusoid with an average value near VDD [31]. 

丁 ^DD 
A   —U 
m 

Figure 2.5 Common-source configuration with parallel tank as load 
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Chapter 2 Theory of Oscillators 

r- • 
U  

C p i L p 華 J C p 

mm m 

Figure 2.6 Two common-source configuration connected with positive feedback loop 

Suppose we place two circuit of Figure 2.5 in a cascade, as shown in 

Figure 2.6 [31]. Note that when {-gmjRp) X (-gmiRp) > 1, then oscillation will 

take place. The output waveform of Vx and Vy are differential in nature. 

Furthermore, at resonance, the total phase shift around the loop is zero because 

each stage contributes zero frequency -dependent phase shift, as illustrated in 

Figure 2.7. 

Ui� 
+90� +90� \ 

\ 90 ^ 90 \ 
^ 180。 

Figure 2.7 Phase characteristics of the circuit shown in Figure 2.5 
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Chapter 2 Theory o f Oscillators 

When we apply the supply voltage VDD to the cross-coupled oscillator, then 

Vx = VY = VDD, TWO transistors share the tail current Iss equally. When irgmiRp) 

X (-gm2Rp)�1, noise components at the resonance frequency are continually 

amplified by Mi and M2, allowing the oscillation to grow. The drain currents of 

both transistors vary according to the instantaneous value of Vx — Vy[3 1:. 

The oscillation amplitude will continue to grow until the voltage or current 

gain drops at the peaks. The voltage gain waveforms vary between zero and Vx 

- V y whereas current gain waveforms vary between zero and Iss, as shown in 

Figure 2.8. 

� … 

字 … y … … 
.妒,Xw*/ V 

ln^ 
t 

Figure 2.8 Transient response of Vx, Vy, Idi and Id2 

In analyzing this kind of oscillator, we can also merge two tanks into one, as 

shown in Figure 2.9. Note that the cross-coupled pair should provide a negative 

resistance of -Rp between nodes X and Y to enable oscillation. This resistance equals 
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Chapter 2 Theory o f Oscillators 

to —2 / gm [31]. That means it is necessary for Rp > 1 / gm so as to start oscillation. 
Cp/2 

Cp Cp 2Lp 
r H H i p l h n ~ ~ Lp Lp iiM̂'.-mJi 

厂 

Hp Hp • • 

^ W " � y Xn  
^^ Itj^l M ^ p i——^ ^ - H q M ^ 

I ” 4 ~ 
_ m 

Figure 2.9 Equivalent circuit of Figure 2.6 
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Chapter 3 Noise Theory of Oscillators 

The importance of oscillator phase noise in RF and other communication 

circuits has made it one of the most extensively studied subjects in electronics. 

Journal papers on the subject can be found from each of the last six decades. 

Experimentally, the qualitative behavior of phase noise has been well known. An 

oscillator's output power spectrum consists of a peak at the carrier frequency 

surrounded by a noise skirt symmetrical to the carrier frequency. Irrespective of the 

exact implementation, the noise skirt has the following characteristics: 

參 The noise spectral density is inversely proportional to the frequency offset from 

the carrier, except very close to the carrier frequency, where the influence of 

up-converted flicker noise dominates or the presence of the strong carrier begins 

to limit the measurement accuracy. 

參 The same noise manifests itself in the time domain as jitter around the 

oscillation's zero-crossing points, which can only be caused by noise in the 

phase of the oscillation rather than that super-imposed on its amplitude. 

Oscillator noise is therefore usually referred to as phase noise. 

15 



Chapter 3 Noise A nal ysis 

Today, RF oscillators are implemented with high-quality inductors and 

capacitors outside the chip containing the active devices. This is the main reason for 

the wide-spread efforts in the integrated circuit community to improve the quality of 

fully integrated inductors on silicon, especially in the last few years. Despite the 

avalanche of research papers, the quality factor Q of on-chip inductors at IGHz has 

hardly improved by a factor of two (from Q < 3 to Q < 6) in the last 10 years. 

Reported phase noise level, however, vary by as much as 20dB at lOOkHz offset. 

This underlines the fact that other factors than the Q of the tank also affect the 

oscillator phase noise strongly. 

In this chapter, we will review typical existing phase noise models of oscillators. 

Finally, phase noise reduction techniques based on a new oscillator circuit topology 

is presented. 

3.1 Origin of Noise Sources 

3.1.1 Flicker Noise 
One of the sources of noise associated with solid-state devices, the 

amplitude of which varies inversely with frequency. It is also referred to as 

1/f noise. The mathematical expression for flicker noise is [25]， 

16 



Chapter 3 Noise A nal ysis 

？ 处 2 

A _ = A / x 八 (3.1) 

A/ f W L C l 

where 

K is Flicker noise parameter, 

L and Ware the effective channel length and width respectively, 

gjn is the trans conductance of active device, 

Cox is the intrinsic gate oxide capacitance of the active device. 

For lower flicker noise generation, a large MOSFET device should be 

adopted since the gate capacitance of MOSFET smoothens the fluctuations 

in channel charge. The main drawback is the increased parasitic capacitance 

as the size of the device is enlarged. 

3.1.2 Thermal Noise 
In CMOS-type oscillator, the dominant thermal noise is contributed from 

the gate channel of FETs [25]. There are two mathematical expressions for 

channel thermal noise: 

17 



Chapter 3 Noise A nal ysis 

For long-channel device, 

¥ 
(3.2) 

For short-channel device, 

I 
nd _ 4/J bias 
A/ - EsatL 

where 

k = Boltzman Constant 

T = temperature in Kelvin 
7 = 0.67 (long-channel devices) 

=2.5 (short-channel devices) 

Ibias = drain current of the FET 

Esat = field strength 

3.1.3 Noise Model of Varactor 
Since a varactor can be modeled as a capacitor and a resistor connected in 

series [26], hence, the noise power can be described by, 

il 4kT 
丄 = — — （3.3) 

A/ i C 

where Ryar equals the effective resistance in series with the capacitor. 
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Chapter 3 Noise A nal ysis 

3.1.4 Noise Model of Spiral Inductor 
Spiral inductor can also be modeled as an inductor and a resistor connected 

in series [26] since the metal track of the spiral inductor introduces ohmic 

loss. The expression is shown below: 

I 二 ！ (3.4) A/ R, 

where Rl equals the equivalent series resistance of the spiral inductor. 

3.2 Derivation of Resonator 

The most common definitions of quality factor Q are: 

^ � Energy Stored 
I Q = Ik  ‘ Energy Dissipated per Cycle 
2. 2 手 

| H ( / o ) ) 

3dB / i \ 
7 i \ Q , Q)q 

^ A c o 

Figure 3.1 A definition of Q 
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Chapter 3 Noise A nal ysis 

3. For a simple LC shunt circuit (Figure 3.2): 

^ 2 dco, 

where cOo is the resonant frequency and O denotes the phase response of the 

circuit admittance. 
w(/①） 

2 CfCO 
0 = / H ( / c o ) 

Figure 3.2 Another definition of Q 

As shown in Figure 3.3(a), an inductor Lj placed in parallel with a capacitor C； 

resonates at a frequency cô ^̂  = V 扎 Ĉ  . We say the circuit has an infinite quality 

factor, Q. In practice, inductors (and capacitors) suffer from resistive components. 

For example, the series resistance of the metal wire used in the inductor can be 

modeled as shown in Fig. 3.3(b). We define the Q of the inductor as Ljco/ Rs. For 

this circuit, the reader can show that the equivalent impedance is given by 

7 , . � 2 Rl+L\co^ = (3.5) (1 - L^C^co ) + /v^Cj a? 

20 
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O 
？ 9 

秦 ~ 4 — 1 o  

" C , c C > t p g i f f , = : C p 
^ " s i [ _ „ 

{ > _ l l _ _ _ l _ l l丨__||_丨 ( > 

(a) (b) (c) 
Figure 3.3 (a) Ideal, (b) realistic LC tanks; and (c) equivalent circuit 

That is, the impedance does not go to infinity at any s 二 jco. We say the circuit 

has a finite Q. For a narrow frequency range, it is possible to convert the circuit to 

the parallel configuration of Figure 3.3(c). Recall that Ljco/Rs = g, a value typically 

greater than 3 for monolithic inductors. Thus, we have 

L p ^ k (3.6) 
2 2 

(3.7) 
Rs 

The insight gained from the parallel combination is that at -SJL^C^ , the 

tank reduces to a simple resistor; i.e., the phase difference between the voltage and 

current of the tank drops to zero. Note that the behavior is inductive for co < coi and 

capacitive for co > coi. 

The Q defined in the preceding sections is a characteristic of the resonant circuit 
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Chapter 3 Noise A nal ysis 

itself, in the absence of any loading effects caused by external circuitry, and so is 

called the unloaded Q. In practice, however, a resonant circuit is invariably coupled 

to other circuitry, which will always have the effect of lowering the overall Q of the 

circuit. 

3.3 Oscillator Phase Noise Model 

Any oscillator has noise sidebands at f requenciesof fse t from the carrier 

frequency. For increasing distance from the carrier the noise sidebands decay 

ultimately at 6dB/octave into the noise floor, as shown in Figure 3.4. 
Power 
(dBm) 

U r ^ m 
» 

fc fm 

Figure 3.4 Single resonator oscillator spectrum 

Thermal noise causes fluctuations in both amplitude and phase, usually denoted 

as AM noise and PM noise. However, all practical oscillators employ same form of 

amplitude limiting, as noted previously. Consequently, amplitude variations in real 
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oscillators are attenuated and phase fluctuations dominate. Additionally, we are often 

more interested in how large this noise in relative to the carrier, rather than its 

absolute value: 
( � Noise Power at A厂 offset with IHz Bandwidth 

丄{A/} = (3.8) Carrier Power 

3.3.1 Leeson's Model 

The most common phase noise model is proposed by Leeson [20]: 

丄(A/) = H + 1 x f - ^ + l l (3.9) 
2 C A Q \ ^ f ) U / J 

where 

Q is the quality factor of the resonator 

F is an empirical parameter of noise figure 

C is the output power of the oscillator 

fo is the oscillation frequency 

A/is the offset frequency 

fc is the flicker noise comer of the oscillator 

Equation (3.9) shows that the phase noise at a given offset improves as both the 
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carrier power and Q increase. Leeson's formula also includes the introduction of a 

factor F to account for the increased noise in the region, an extra term of 

unity(inside the brackets) to account for the noise floor, and a multiplicative factor to 

provide a behavior at small offset frequencies(Figure 3.5). 

L _ ) \ ^ 

——I 1 • 

h m ^ ^ l o g 她 

Lf ^ y 

Figure 3.5 Phase Noise versus offset frequency 

3.3.2 J. Cranincks and M. Steyaert Noise Model [25: 
J. Cranincks and M. Steyaert have developed a similar model for predicting the 

phase noise of oscillators. The expression is given by: 
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Z { A / } ^ 1 0 1 o g f 7 7 (3.10) 
^max / ^ VA/ y 

F is a term that includes the excess noise of the oscillator's negative resistance, 

Vmax is the differential output amplitude, and Reffis the LC-tank's effective resistance, 

which is mainly determined by the inductor. The inductor's series resistance must be 

reduced so as to lower the phase noise as well as the power consumption. For mass 

production, fully integrated spiral inductors on silicon substrates without extra 

post-processing steps are required. The quality of these inductors is limited by the 

parasitic effects, such as skin effect, eddy currents in the substrate. 
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3.3.3 Non-linear Analysis of Phase Noise 
I out 

^ j Jhp̂  J “17 / Vq 0.5 Z gm ~m 
L ！ I I J I 1 ！如••̂•'•P 
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(a) (b) 
Figure 3.6 (a) Single-ended equivalent circuit with the current noise source 

accounting for the additive noise; 
(b) The figure shows the I-V characteristics of the transconductor. 

Figure 3.6 shows a single-ended equivalent of the oscillator. It is well known 

that in the small signal regime the cross-coupled pair features a negative resistance 

equal to - 2 / gm, where gm is the transconductance of each transistor. The figure also 

shows the characteristic of the transconductor with the input and the output variables 

normalized to the thermal voltage Vt and to the tail current Ip, respectively. We 

denote with co�= 4 l C the central frequency of the bandpass loop filter, while 

the losses are represented by the equivalent conductance got in parallel to the tank. 

The self-sustaining oscillation occurs for co = co。，and if the differential pair is 

driven well beyond the input linear range, the transconductor output current 

resembles a square wave at o � . However, the harmonic component at cOo is the only 

component of the signal passing through the loop filter. If Q is high enough all the 
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Other harmonic components are cut-off. Therefore the transconductor transfer may be 

quantitatively characterized by introducing an effective transconductance gmeff, given 

by the ratio between the output current component at co�and the input voltage 

amplitude at the same frequency. If the amplitude of the voltage signal is small, the 

effective transconductance is coincident with the small signal parameter gm / 2 = Ip / 

4VT. AS the input amplitude AO increases beyond the input linear range, the effective 

transconductance decreases below gm / 2 and in the hard limiting regime, when the 

current output waveform is a square wave, it approaches the value gmeff = 2 IP / t t A � . 

Finally, we remind that the oscillation is self-sustaining when the loop gain at 

cOo is equal to one, i.e., gmeff 丨 got = 1. This means that the losses, got, are perfectly 

balanced by the transconductance of the positively fed back transconductor and the 

tank reduces to a parallel connection between the inductor and the capacitor. 

The noise spectral density of the output voltage, Snv, is usually estimated by 

representing the overall circuit noise with a current noise source Sni in parallel to the 

tank. This noise is usually referred to as additive noise. The current noise generator 

forces an impedance Z(co) given by the parallel of L and C. By taking a as the 

frequency offset from co。，for a «co。，we may write 
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| Z ( " �士 卜 击 （3.1丨） 

Thus, 

= ^ ^ = (3.12) 
(2acr 4 gotC Q a' 

Due to the sharp resonance of the LC network, the output spectrum shows tails 

decreasing from cOo as a^. 

A first contribution to Sni arises from the thermal noise 2kTg�t of the ohmic 

parasitics of the loop filter. In other terms, the equivalent conductance got appears not 

only into the quality factor of the filter, but it also accounts for the thermal noise due 

to the parasitic resistances of the tank. The noise of the transconductor may be 

instead represented by adding a current spectral density 2kTgotF, where F is a 

suitable noise factor. Therefore we have Sni = 2kTgot(l+F), the output voltage noise 

may be written as 
p ,、 I kT CO. 1 .. �� 

= - — 7 7 — ( 1 + ^ ) (3.13) 2 C Q a 
All the difficulty of the noise calculations is now hidden within F, the noise 

factor of the differential stage. 

For totally uncorrelated noise one half of the total noise power contributes to the 

AM and the other half gives a PM. If A � » 2 V T , the differential stage behaves as a 
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hard limiter and only the PM component is transmitted to the output. It follows that 

the noise power spectral density, must be divided by a factor 2, thus obtaining 
p ,、 I kT m 1 

(仅）= - ^ ( 1 + F ) (3.14) 
4 C Q a^ 

However, the nonlinear behavior of the stage has an impact larger than the 

simple introduction of the above factor 2. We will show in the following that 

intermodulations between the carrier and wide-band noise sources cause noise 

folding that increases the transconductor noise factor F. 
r —  

Vo(t)十 v ( 0 
L < ^ g ( t ) i I I o 

h(t)  
—H * 

Figure 3.7 Single-ended equivalent circuit 

The solution can be found analytically [23] when the transconductor behaves as 

a hard limiter. Each noise component, In, is delivered to the tank via the switching 

transconductor, i.e. multiplied by a square wave T(t) with a frequency cOq. We have 

f L l ^ j ^ t + 乞 (3 I5) 
Z n=—00 

where L is the generic noise tone, T(2n+” - / 7i(2n+l), and T(2n+i) = 丁-(2�+1). 
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turns out that the noise tones L and 1/, at frequency cOo 土 oc，are due to the noise 

components around the even harmonics of cOo, i.e. 2ncOo 士 ol Analytically we have 
-一 / n ( a ) / 2 -

m/2] �r(一 1) r � T ( - 3 ) … ] - a ) / 2 
/ 1 / 2 = r � r � … ^ n f o + a / 2 (3.16) 

• * » • M 

In reality the folding factor will depend on both the I(V) characteristic of the 

transconductor and its bandwidth. The transconductor output noise spectrum is 

obtained from the convolution between these delta functions and the wideband noise 

(Figure 3.8). The convolution gives rise to a noise folding, similar to what happens in 

sampled systems. 

i ‘ 

Q 0 Q Q , 
H M y ^ ^ ^ •出 

Co K 卜 0 /30)0 
S 中(0))水 / / / 

1 • � 

Sv(�)• \ 

V , , •� 
�� 20)� 3(Oo 
Figure 3.8 Evolution of noise 
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3.3.4 Flicker-Noise Upconversion Mechanism 
Compared to bipolar transistors, MOS transistor generates more flicker noise. In 

oscillator, flicker noise is upconverted to 7 / / ^ phase noise. Consequently, the 1 / f ^ 

phase noise will be much higher in MOS oscillators than in bipolar oscillators and 

becomes an effect that has to be taken into account. 

The mechanism of flicker-noise upconversion can be examined as follows. 

Flicker noise from the tail current source that enters the LC-tank will be upconverted 

due to the mixing action of the VCO circuit. Additionally, when the single 

differential oscillator circuit is unbalanced, the common-mode node of the current 

source will oscillate at twice the oscillator center frequency, 26；0, because the 

current source will be pulled every time one of the NMOS transistors switches on. 

Through channel length modulation, the noise of the trail current source is 

upconverted to 26；0- The upconverted noise enters the LC-tank and is mixed with the 

fundamental oscillator frequency, resulting in phase-noise sidebands at the oscillator 

frequency. Therefore, to minimize the upconversion of flicker noise from the tail 

current source, all even harmonics must be suppressed, meaning that the circuit must 

be as symmetric as possible. Odd harmonics have little importance for flicker-noise 

upconversion because they do not affect the symmetry, and noise at odd harmonics 
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does not result in sidebands around the fundamental frequency when mixed. Flicker 
0 • 

noise from the tail current source will be the main contributor to 7 / / phase noise. 

Flicker noise is correlated noise and can only exist in systems with memory. When 

transistors are ideally switched, all memory and consequently the flicker noise is 

removed. When the switching is not ideal, a small amount of the NMOS transistor 

flicker noise will be upconverted. 

In some oscillator designs, the main source of upconverted flicker noise is the 

current source. Therefore, a PMOS transistor was chosen for the tail current source 

because of its inherently lower flicker noise (approximately lOdB), compared to 

NMOS transistors. The area of the PMOS transistor is increased, by designing the 

transistor length larger than the minimum length, to further minimize the 

flicker-noise contribution. Additional circuit techniques have also been reported to 

further minimize the flicker-noise upconversion. A capacitance and a cascode 

transistor are added to the common-mode node of the tail current source to suppress 

all common-mode node variations. As a result, noise upconversion due to channel 

length modulation by higher (and especially the second) order harmonics is 

suppressed. 
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3.4 Phase Noise Reduction Techniques 

As mentioned previously, the phase noise associated with a VCO is determined by: 

(a) Q factor of the resonator 

(b) Q factor of the varactor diode 

(c) effective noise factor of the active devices used 

(d) power supply noise 

(e) external tuning voltage supply noise 

The noise contribution made by (d) and (e) can be minimized by careful choice 

of the power supplies. The phase noise of the VCO is therefore governed primarily 

by the overall Q of the circuit, and the noise up-conversion factor. 

3.4.1 Conventional Tank Circuit Structure 
As stated in the previous sections, the standard NMOS cross-coupled 

differential oscillators with symmetrical structure can be transformed into a 

single-sided equivalent circuit, as shown in Figure 3.9. Differential topologies are 

advantageous in integrated circuit because they offer common-mode rejection. 

Therefore, differential circuits are less susceptible to supply noise present in on-chip 

power rails. Differential VCO topologies also avoid the need for single-ended to 
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differential conversion circuitry for the LO drive of a Gilbert-cell mixer. 

^ 厂 Frequency -
/ \ Selective Network 

L I [ y “ 
^ i r t1 

Figure 3.9 Single-sided equivalent circuit 
The frequency-selective network can be transformed into an LC tank network 

with parallel loss only (Figure 3.10): 

1 — 1 丄 

(3.17) 

where t^/ "" „ 
Rl 

o - r a—1 

]l I I 
j Q y C ^ _ Rp’— 

cJ 4 cJ i—— 

Figure 3.10 The resonator of single-sided equivalent circuit 

Subsequently, the overall Q of the resonator can be derived as follows: 
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Yin = + — ^ 
风 Rp,total 

r ( 1 Y 
• (!) = tan"̂  coRp,諭I C,— ~ y t 

^ M _2/? r 

. ^ CO�̂̂ By using & 

• Ql = (^oRp,totalCr (3.18) 

3.4.2 Enhanced Q Tank Circuit Structure 
o—I 〇 

... 
/ 

j L, ( J C ) ̂  Rp,total ； ^ ^p,total 
I -、- [ 丨 

o—' o—' 

(a) (b) 

Figure 3.11 Two different frequency-selective networks 
Assuming that the two resonant circuits shown in Figure 3.11 exhibit the same 

resonant frequency, then the relationship between the element values is given by, 

去 (3.19) 

c 
(3.2。） 
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As a result, the loaded quality factor of circuit(b) can be derived as: 

V 1 1 1 
1 + — 7 - + - (3.21) 

丄 + 风 I 风 U 
j � Cr, 

f 
义 ‘ -1 D COCr� 1 = tan Rp,_i X - ^  

4 =议 + M c X � R p , _ i = f ^ l (3-22) 
��(0=0)� V^r' y 

Thus, 
仏 — 2 a 份 一 代 

Q)-CDg \ ^ y 

Since the value of Cr is always larger than CV and thus, the loaded Q of 

circuit(b) is always larger than the loaded Q of circuit(a). Subsequently, we can 

define the noise reduction factor (NRF) as, 

NRF = 舰 羅 • 卿 介 � 1 , 201og^ 
[Phase noise of circuit{b) J Q“ 

(3.23) 
c 
Cr' 

For illustration, the noise reduction performance of the proposed tank structure 

Cr C versus —^ is plotted in Fig 3.12. It indicates that a larger value of ~ - is C" C… 

desirable for better phase noise improvement. However, in practice, the adoption of a 
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smaller capacitance Cr，leads to a higher inductance value (Lf ) and inductor series 

resistance, which limits the highest attainable Q factor of the tank circuit. 

1 6 「 ： : 

i i z 1 4 - i ； i ^ . . . . . . . ^ ^  

“ - : . ; . . 
m 1 0 - -： ^ i ； 

I 丨 z 丨 
£ 8- —ŷ ..  
0 Z : : 丨 ： 

1 .........丨 ： 丨 ^ 
^ .... Z \ 

0 ^ ； r ： i 
-2 i i i i i 1 1.5 2 2.5 3 3.5 c/c, 

Figure 3.12 Predicted noise reduction performance of the proposed VCO Circuit 

3.4.3 Tank Circuit with parasitics 
Figure 3.13 shows the equivalent circuit of the modified tank circuit with 

parasitics such as inductor loss resistance Rl，and gate capacitance Cg of the FET. 
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O 1 — ~ ~ 

C^f 

考丄r - - Q ^^P,total 
J 

R与 

•�V^^ 
Figure 3.13 Enhanced Q resonant tank with parasitics 

The input admittance of the LC tank is given as, 
V 1 

+ + R” ] ‘ r 
jcoC^, 

- f 
7 L 历 人 • 一 及 P 舞 一 ⑴ 2 c 入 ) 

= - i 丄 � C A ——^  
Lr CO f � 1 丫 ） 

� + �K �- " ^ + R—Rl' 
_ I I ^ � J J _ 

By using the formula, 丄 2 dcO , the variation of Ql versus 

Cr is plotted in Figure 3.14. The results indicate that the noise reduction Cr, 

factor deteriorates as the unloaded Q value of the inductor decreases. 
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Figure 3.14 Noise Reduction Factor versus ~ — , as a function of unloaded inductor Q Cr' 

3.4.4 Reduction of Second-Harmonic Induced Up-converted 
Noise 

In section 5.3，we have discussed the transfer of the noise sources in a 

differential LC tuned oscillator. We have shown that the nonlinear operation of the 

transconductor stage has to be properly accounted for since it introduces spectrum 

folding. 

When an inductor is connected in series with the capacitor in the LC tank 
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(Figure 3.11), a transmission zero is introduced at a frequency given by, 

Therefore, for the suppression of the second harmonic component, we have, 

辰 = 2 " 。 （3.25) 

Combining equation (3.20) and (3.25), we get, 

r — — — 4 (3.26) 
I f — n — 7 " — 一 

1 - ^ o X C , 1 � 3 
4 

Figure 3.15 shows the plot of input impedance variations of circuit (a) and (b) as 

a function of normalized frequency. It can be seen from the diagram that a 

short-circuit is present at the second harmonic. 
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Chapter 4 CMOS Device Modeling 

At the dawn of its fifth decade, the semiconductor industry continues to grow at 

an amazing pace. High-speed and low-power CMOS integrated circuits (IC) are used 

in an ever expanding trend. Thus, a critical part of this technology is high-quality 

circuit design. In this project, all oscillators are implemented with AMS CUP 0.6 

micron process technology. These oscillators are fully integrated with planar spiral 

inductors. This chapter describes the corresponding technologies in designing the 

oscillator circuits, particularly the development of device model for FET, inductor as 

well as varactor in CMOS process. 

4.1 Device Modeling 

4.1.1 FET model 

Circuit simulator is an essential tool in designing integrated circuits. The 

accuracy of circuit simulation highly depends on the types of transistor model used. 

Reduction in transistor size continually complicates the device physics and makes 

device modeling more challenging and sophisticated. BSIM3v3 (BSIM stands for 

Berkeley Short-channel IGFET Model) was selected as the industrial MOSFET model 

by many leading companies in the semiconductor industry such as Cadence design 
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Systems, Hewlett Packard, Mentor Graphics, ...etc. It is a model developed by the 

BSIM Research Group in UC Berkeley. Details of this model can be found in the 

following website: http://www-device,eecs,berkeley,edu/^bsim3 

This model explicitly takes into account the effects of many physical and process 

variables for good device scalability and predictability. The short channel and narrow 

width effects as well as high-field effects are well modeled. The minimum channel 

length that can be modeled is 0.15 micron. 

The list below shows the typical SPICE circuit netlists of BSIM3v3 model. 
NMOS IPMOS 
*model = bsim3v3 *model — bsim3v3 
•Berkeley Spice Compatibility *Berkeley Spice Compatibility 
* Lmin= .35 Lmax= 20 Wmin二 .6 Wmax= 20 * Lmin= .35 Lmax= 20 Wmin= .6 Wmax二 20 
.model N1 NMOS .model P1 PMOS 
+Level= 8 +Level= 8 
+Tnom-27.0 +Tnom=27.0 
+Nch=2.498E+17 Tox=9E-09 Xj=1.00000E-07 +Nch= 3.533024E+17 Tox=9E-09 Xj=1.00000E-07 
+Lint=9.36e-8 Wint=1.47e-7 +Lint=6.23e-8 Wint=1.22e-7 
+VthO= .6322 Kl= .756 K2= -3.83e-2 K3= +Vth0=-.6732829 Kl= .8362093 K2=-8.606622E-02 
-2.612 K3 二 1.82 
+DvtO= 2.812 Dvtl= 0.462 Dvt2=-9.17e-2 +DvtO= 1.903801 Dvtl- .5333922 Dvt2=-. 1862677 
+Nlx=3.52291E-08 W0= 1.163e-6 +NIx= 1.28e-8 W0=2.1e-6 
+K3b= 2.233 +K3b= -0.24 Prwg=-0.001 Prwb=-0.323 
+Vsat= 86301.58 Ua= 6.47e-9 Ub= 4.23e-18 +Vsat= 103503.2 Ua= 1.39995E-09 Ub= l.e-19 
Uc=-4.706281E-ll Uc=-2.73e-ll 
+Rdsw= 650 U0= 388.3203 wr=l + Rdsw= 460 U0= 138.7609 
+A0=.3496967 Ags= 1 B0=0.546 Bl= 1 +A0= .4716551 Ags=0.12 
+ Dwg = -6.0E-09 Dwb = -3.56E-09 Prvvb = -.213 +Keta=-1.871516E-03 A1 二 .3417965 A2- 0.83 
+Keta=-3.605872E-02 Al= 2.778747E-02 A2= .9 +Vof!^-.074182 NFactor= 1.54389 
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+Vof^-6.735529E-02 NFactor= 1.139926 Cit=|Cit=-1.015667E-03 
1.622527E-04 +Cdsc= 8.937517E-04 
+Cdsc=-2.147181E-05 +Cdscb= 1.45e-4 Cdscd=1.04e-4 
+Cdscb=0 DvtOw= ODvt lw= 0 Dvt2w = 0 + Dvt0w=0.232 Dvtlw=4.5e6 Dvt2w=-0.0023 
+ Cdscd = OPrwg= 0 +EtaO= 6.024776E-02 Etab=-4.64593E-03 
+EtaO= 1.0281729E-02 Etab=-5.042203E-03 +Dsub= .23222404 
+Dsub=.31871233 +Pclm= .989 Pdiblcl= 2.07418E-02 Pdiblc2= 
+Pclm= 1.114846 Pdiblcl= 2.45357E-03 Pdiblc2= 1.33813E-3 
6.406289E-03 +Drout= .3222404 Pscbel= 118000 Pscbe2= lE-09 
+Drout= .31871233 Pscbel= 5000000 Pscbe2=+Pvag= 0 
5E-09 Pdiblcb = -.234 +ktl= -0.25 kt2= -0.032 prt=64.5 
+Pvag= 0 delta=0.01 +At= 33000 
+ W1= 0 Ww = -1.420242E-09 Wwl - 0 +Ute=-1.5 
+ Wln= OWwn= .2613948 LI = 1.300902E-10 +Ual= 4.312e-9 Ubl= 6.65e-19 U c l = 0 
+ Lw= OLwl= OLln= .316394 +Ktll=0 
+ Lwn= 0 
+ktl=-.3 kt2 二-.051 
+At= 22400 
+Ute=-1.48 
+Ual= 3.31E-10 Ubl= 2.61E-19 Ucl= -3.42e-10 
+Ktll=0 Prt=764.3 

Nowadays, as transistors were scaled to submicron dimensions, it became 

increasingly more difficult to introduce physically meaningftil equations that would 

be both accurate and computationally efficient. BSIM adopted a different approach: 

numerous empirical parameters were added in order to simplify the equations. A 

feature of BSIM is the addition of a simple equation to represent the geometry 

dependences of many device parameters. For example: 

P = P 
I W 
Leff 作 eJT 

where P � i s the value of empirical parameter of a long, wide transistor, 
ocp and pp are fitting factors. 
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BSIM model has three generations. Each generation has some special 

features. They are: 

BSIMvl: 

• Using approximately 50 parameters; 

• Dependence of mobility upon the vertical field includes the substrate 

voltage; 

• Currents in the weak and strong inversion regions are derived such that their 

values and first derivatives are continuous; 

• Simplify the drain current equations, new expressions are devised for 

velocity saturation, dependence of mobility upon the lateral field, and the 

saturation voltage. 

BSIMv2: 

• Using approximately 70 parameters; 

• Employs new expressions for mobility, drain current, and subthreshold 

conduction; 

• Suffers from large errors in the triode region for short, narrow transistors 
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BSIMv3: 

• Using approximately 180 parameters; 

• Returns to the physical principles of device operation while maintaining 

many of the useful features of BSIM and BSIM2. 

• Provides reasonable accuracy for subthreshold and strong inversion 

operation while still suffering from large errors in predicting the output 

impedance for short channel length FET. 

4.1.2 Layout of Interdigitated FET 

• In designing multi-finger FETs, as in figure 7.1(a), the overlapping of 

Drain/Source metal to gate poly will generate more parasitic loss. Figure 

4.1(b) shows a common practice to move the Drain/Source metal trace far 

apart from the gate poly, to get rid of parasitic capacitance. 
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“ ： ： 1 ； l ^ B ^ ^ ^ M 1 i 

(a) (b) 
Figure 4.1 Minimize gate poly-to-drain/source metal capacitance 

• Furthermore, for the proper operation of FETs in CMOS process, it is 

necessary to provide a substrate tap. In Figure 7.2 shows the example of 

adding substrate tap to NMOS and PMOS. In order to eliminate the bulk 

resistance of the FETs, extra substrate taps should be placed close to the 

FETs. 

D G s B SubsU-ate D ^ S B Substrate 
Z Tap Z Tap 

Llll ^ 
(a) (b) 

Figure 4.2(a) NMOS with substrate tap, (b) PMOS with substrate tap 
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Moreover, vias are needed to connect the source/drain diffusion region to the 

metal segment (Figure 4.3). As a rule of thumb, via are added at equal distance to 

reduce the internal resistance associated with the interconnect, as depicted in Figure 

4.4. 

" � …‘ V / >1 ^ > ^ 

Figure 4.3 Layout of Vias in Figure 4.4 ？onnection of segment and 
F E + S drain/source diffusion with 

(a) a via, (b) four vias 

4.1.3 Planar Inductor 

Recently, bonding wire is used as inductor in CMOS process due to its low series 

resistance. A typical use of bonding wire is to connect the bond pad on top of the 

wafer die to the lead of the package or to another bond pad. Unfortunately, these 

hybrid inductors suffer from large variations in inductance value due to manufacturing 

tolerances. 
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Monolithic inductors fabricated as simple spirals on Si substrate, are often 

associated with lower Q factor due to resistive loss and substrate loss. The inductance 

of a monolithic inductor is defined solely by its geometry. Since modem 

photolithographic processes provide extremely tight geometric tolerances, monolithic 

inductors have very small variations in their performance. There are many ways to 

layout a planar spiral inductor. The optimum structure is a circular spiral. This 

structure places the largest amount of conductors in the smallest possible area, 

reducing the series resistance of the spiral. This structure, however, is often not used 

because it is not supported by many mask generation systems. For the CMOS process 

used here, the standard square spiral structure are recommended, as shown in Figure 

4.5(a). 

''V隨 产 

f t m i ! ^ ^ ^ ^ 
(a) (b) 

Figure 4.5 Spiral Inductor Layout: (a)square and (b)octagonal. 

The total inductance value of the spiral can be computed by using Greenhouse's 

method [17]. Basically, the spiral square inductor is split up into sections consisting of 

straight conductors, and the self-inductance of the sections is calculated and summed. 
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4.1.4 Circuit Model of Planar Inductor 

The self-inductance for a straight conductor is, 

L ( G M d J 1 卜 J J (4.1) 

where L is the self-inductance in jiH, 1 is the conductor length in cm, 
m is the conductor permeability, and T is the frequency correction 
parameter. 

Geometric Mean Distance (GMD) is the distance between two 
infinitely thin imaginary filaments whose mutual inductance is equal to 
the mutual inductance between the two original conductors. The GMD is 
equal to 0.44705 times a side in the case of a square cross section. 

Arithmetic Mean Distance (AMD) is the average of all the distances 
between the points of one conductor and the points of another. For a 
single conductor, the arithmetic mean distance is the average of all 
possible distances within the cross section. 

If the top layer of metal is used for the layout of the spiral inductor, we can consider it 

as a thin-film inductor with rectangular cross section. Thus, equation(4.1) can be 

simplified as, 

L = 0.0021 In + 0 , 5 0 0 4 9 + ^ ^ ^ (4.2) 

L l a + b j 3 1」 

where a, b are the rectangular dimension of the cross section. The magnetic 
permeability m is 1, and the skin-depth phenomenon has little effect on thin film, T is 
an empirical parameter, which should be considered to have a value of 1 for 
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microwave frequencies. 
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Figure 4.6 Layout of a typical rectangular spiral inductor. 

There are several sources of loss in a spiral inductor. The most obvious loss 

mechanism is the series winding resistance. The interconnect metal used in most 

CMOS processes has typically been aluminum. Depending on the metalization 

thickness and particular aluminum alloy used, the sheet resistivity can be anywhere 

from 30-70 mQ / • . However, at higher frequencies, the resistance of the spiral 

increases due to the skin effect and "current crowding" at the comers of each turn. On 

the other hand, standard CMOS substrate losses ultimately remain the limiting factor, 

even when the conductivity of the spiral windings is no longer an issue. 

In an CMOS process, the windings of the spiral are separated from the substrate 

by a thin layer of Silicon dioxide. This creates capacitance between the spiral and the 

surface of the substrate. Thus, the heavily doped p-type substrate appears as a 
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grounded resister in series with this capacitance. 

There are also losses due to the magnetic field in the inductor structure. The 

magnetic field extends around the windings of the spiral and into the substrate. This 

field forces an image current to flow in the substrate. These currents can account for 

50% or more of the losses in a CMOS inductor. Use of non-standard high-resistivity 

Si substrates, or a post-process to etch the substrate away under the inductor, can 

minimize these losses. 

Cs 
I 1 Rs 

o - ^ — — n m n — ^ � 

Cox 丁 _ Cqx 

^ 及Si : J： C s i C s i 丄 及 S i ： ^ 

O ~ L J ~ O 

Figure 4.7 Lumped physical model of spiral inductor on Silicon 

A general circuit model for a monolithic inductor on a low-resistivity substrate is 
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shown in Figure 4.7 [15]. This model includes circuit elements that model the 

winding less as well as the substrate loss. The model parameters can be evaluated by 

the following equations: 

R = ^ P ^ _ _ _ , 

t O^meta! 
Q = 丄 x / x w x i (4.3) 2 t ox 

R s i = - � V " 
Z x w x G -

where 
Ls stands for spiral inductance 
Rs stands for series sheet resistance 
Cs represents the capacitance due to the overlaps between the spiral and the 

center-tap underpass 
Csi models the silicon substrate capacitance 
Rsi models the silicon substrate resistance 
n stands for number of turns of spiral trace 
p stands for metal resistivity, 
1 stands for total length of the spiral 
w stands for metal width 
8 stands for metal skin depth 
t stands for metal thickness 
toxmetai represents the thickness of the oxide insulator between the spiral and 
underpass 
tox represents the thickness of the oxide layer between the spiral and substrate. 
£os Stands for permittivity of the oxide 
Gsub stands for substrate conductance 
Csub stands for capacitance per unit area 
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4.1.5 Inductor Layout Consideration 

In order to minimize the parasitic loss of inductors, some precaution should be 

taken in constructing the layout of CMOS spiral inductors [3]: 

• Metal trace width should be limited: as the skin effect will reduce the current 

flow in the center of wide conductor. Thus, wide metal conductors are not 

efficient. 

• Minimize the number of turns: at high frequency, generation of eddy currents 

will deteriorate the overall quality factor of inductors. Since the innermost turns 

of the coil suffer from an enormous increase in resistance, while their 

contribution to the inductance value is minimal. 

• Area occupied by the spiral should be reduced: magnetic field generated by 

inductor induces currents in the substrate at high frequency, which cause a 

decrease in inductance value and extra resistive losses. Thus, large spirals are not 

efficient as the magnetic field of small coils penetrates less deep into the 

substrate. Large spiral inductor consumes too much substrate area and therefore, 

inductors with inductance value greater than lOnH is not recommanded. 
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4.1.6 CMOS RF Varactor 

There are many types of CMOS varactors, such as junction diode, MOS 

Varactor[10], Gated Varactor[ll] and Three-Terminal Varactor[12]. VCO's based on 

MOS varactors, a device readily available in any CMOS process, have been reported 

in the literature. 

In the standard CMOS process, junction diode is formed by providing p+ active 

area in an n-well. The junction diode is operated in reverse-bias mode, and therefore 

its junction capacitance can be made tunable by a voltage. The disadvantages of diode 

varactors are: 

• large wafer area is needed to provide higher capacitance value, 

• lack of high frequency model 

It is well known that an MOS transistor with drain, source, and bulk connected 

together realizes an MOS capacitor with capacitance value dependent on the voltage 

between the bulk and gate (Figure 4.8). The capacitance variation of a typical PMOS 

varactor as a function of VBG is illustrated in figure 4.9. 
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Figure 4.8 Cross-section area of PMOS varactor by connecting D，S and B together 

When VBG is negative and high enough to allow electrons to move freely, the 

concentration of surface majority carrier increases. In this case, the MOS varactor is 

said to be in deep accumulation, and the resulting capacitance is mainly composed of 

gate-body capacitance. In the accumulation region, no channel is induced between 

drain and source region. Thus, MOS capacitance is equal to the gate oxide 

capacitance: Cox = ! Ux, where S and tox are the transistor channel area and the 

oxide thickness, respectively. 

For V B G �| V T | , some free electrons are repelled from the channel region below 

the gate and pushed downward into the substrate. Depletion layer is formed under the 

gate oxide layer, and the MOS capacitance can be modeled as Cox in series with Cb//Ci. 

Cb accounts for the modulation of the depletion region, while Q is related to the 
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variation of the number of holes at the gate oxide interface. As the value of VBG 

increases, the depletion region widens and the capacitance is reduced further until it 

reaches its minimum. 

When VBG becomes very much larger than |VT|, more free holes are attracted into 

the channel region. As a result, an inversion layer with mobile holes is formed in the 

channel area. MOS capacitance equals the gate oxide capacitance Cox, as in the 

accumulation region. 
r A mos 

C C 

1 厂 
： V j 

i 
I • 
i : : 1 ； ； ^ V 

BG 

Accumulation Depletion Strong inversion 

Figure 4.9 Capacitance variation versus tuning voltage of typical PMOS varactor 

4.1.7 Parasitics of PMOS-type varactor 
It is well-known that the quality factor Q of the MOS varactor has a strong 

influence on the phase noise performance of VCOs. As a result, the layout design of 
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the PMOS varactor must be done with care as the parasitics are directly associated 

with the device geometry. In [19], the parasitic resistance of a PMOS varactor 

working in strong inversion is given by, 

(4.4) 

where W, L, and kp are the width, length, and gain factor of the PMOS transistor. 

Thus, it is seen that a transistor with large W/L ratio should be chosen in order to 

minimize Rmos (Figure 4.10). 
O 

mos 

Rd T ôx R^ 
Wv AV] 

去 T Csi 去 

Figure 4.10 Equivalent model of typical PMOS varactor 
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Chapter 5 Design and Implementation of 

Integrated CMOS VCO 

The Local Oscillator is one of the most fundamental blocks in a 

telecommunication transceiver. The voltage-controlled oscillator is an integral part of 

the LO, characterized by very stringent design requirements. Today, the VCO circuits 

are usually realized using one of the semiconductor technologies: GaAs, bipolar, 

BiCMOS, SiGe or CMOS. Recent advances in CMOS technology and in particular 

the continuous shrinkage in transistors' channel length, makes the MOS device 

comparable to the bipolar transistor in terms of the highest frequency of operation. 

This chapter deals with the design of CMOS LC oscillators by using two pairs of 

NMOS/PMOS transistors coupled in positive feedback [9]. 

5,1 1.5 GHz CMOS VCO Design 

5.1.1 Equivalent circuit model of differential LC VCO 

Figure 5.1 and 5.2 show the equivalent single-sided model of the differential LC 

VCO, equivalent model of the resonant tank circuit with all associated losses. The 

parameters are defined by, 
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厂 ^ Frequency -/ \ Selective Network 
\ l J C 

I •及P 

Figure 5.1 Single-sided equivalent circuit 

p = = C 
L 1 _ 及 " T ^ ^ ^ V r T ^ . total I C h 

辛及/ ^Rc 

(a) Y{(d) (b) 
Figure 5.2 (a) LC Tank including all parasitic loss 

(b) equivalent LC tank with all losses represented by parallel losses 

R ,= 1 
P 一 1 + 1 +丄 (5.1) 

代 ( G ' + i ) 凡 ( a ' + i ) Rp 

Yico)=风 + - V + ^ ^ + j � Cg 

f 02 ) 

J 

where Cg is the gate capacitance of the FET; C is the varactor capacitance. 
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Therefore, the frequency of oscillation can be approximated by: 

〜 丄 e g (5.2) 

5.1.2 Reference Oscillator Circuit 
LuF-Choke 

/ ^decou iling 

Spectrum Analyzer Vdd t Vod Spectrum Analyzer 

Z 丁 ( ^RF_Choke S 丁 \ 

M3 |<- — � < 一 M4 
^ 勺 

<7 ^  

+ 
Figure 5.3 Schematic of reference VCO design 

In the reference design, two NMOS transistors (Ml and M2) are coupled in 

positive feedback to provide a negative resistance. The on-chip spiral inductor and 

PMOS varactor (Lr and Cr) together forms a resonant tank. The oscillating frequency 

is made variable by using PMOS varactor with the drain, source and substrate all 

connected to the tuning voltage Vtuning, while the gate poly of the varactor is 

connected to the drain terminals of the NMOS transistor. 
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According to equation (5.2), with Lr = 3.2nH, the capacitance associated with 

the tank circuit must be set equal to 3.5pF in order to give an oscillation frequency of 

1.5GHz. This capacitance is mainly composed of the inductor-to-substrate 

capacitance (0.2pF), the gate-source capacitance of the NMOS transistor (IpF), and 

the capacitance of the PMOS transistor (2.3pF at zero bias). 

5.1.3 Proposed Oscillator Circuit 
^RFChoke 

4 6 4 / decou iling 
i ^ 

Spectrum Analyzer Vdd ^dd Spectrum Analyzer 

^ CdC_B丨ock Trl r < n Lr ^DC Block ；> 
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M3 fr- ~ M l I N ^ M4  <7 
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Figure 5.4 Schematic of proposed VCO design 
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(a) (b) Figure 5.5 Two different frequency-Selective Networks 
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Figure 5.5 shows the topology of the LC tank adopted in the reference and 

proposed VCO circuits. According to the formulas derived in chapter 3, the 

expression for the component values are simply, 

( 5 . 3 ) 

(C ) 
丄 广 Lr 7 ^ - 1 (5.4) 

Subsequently, 
C,. =^x2.3pF = L72pF (5.5) 

Hence, if the capacitance value of the PMOS varactor is set equal to 1.5pF, we 

obtain, 
f c ^ f 2 3x10—12 ) 

L. = L - 1 =3 .2x10" 'X - 二 1.70nH (5.6) 
r ) [l.SxlO-'' J 

5.1.4 Output buffer 
Note that the parasitics associated with the bond pads may affect the 

performance of the VCO circuits, or even preventing them from oscillation. It is a 

common practice to insert a common-source stage (M3 and M4) for output buffer, as 

depicted in Figure 5.6. 
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• R^outpiit Pad 

VCO RF output > — I V 

Figure 5.6 Common-source output buffer 

5.1.5 Biasing Circuitry 
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Figure 5.7 Biasing circuit of VCO circuits 

Figure 5.7 shows the biasing networks for the VCO circuits. The RF choke 

presents a high impedance to high frequency signal and a low impedance DC path. 

The decoupling capacitor provides a proper RF ground at the required frequency 

range. The function of CDC—BIOCIC is to prevent any DC voltage appearing at the output 
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from entering the measurement equipment. Surface-mount components of lOnH, 

lOjuF and 2.5pF are chosen for LRP CHOKE，Cdecoupiing and CDC—Block, respectively. 

5.2 Spiral Inductor Design 

It has been reported that the GreenHouse's Method is rather accurate in 

estimating the inductance value of the spiral inductor. Some computer-aided design 

tools are also available for solving the respective calculations. ASITIC [30] {Analysis 

of Si Inductors and Transformers for ICs), a CAD tool that can be used to optimize 

the design of spiral inductors, is adopted here. 
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众imi?^� I  Figure 5.8 Screenshot of CAD tool - ASITIC 

Figure 5.8 shows the screenshot of ASITIC. The required process parameters 

such as the layer thickness and the resistivity of the layer, are contained in a 
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technology file as input data, see Appendix B. Table 5.1 summaries the basic steps in 

creating the spiral inductor and extracting circuit model using ASITIC. 

Steps Action  
1 Use command "sq" to start create rectangular spiral inductor 
2 Type the name, inner dimension, no. of turn, metal width, metal-to-metal 

spacing, etc... of the spiral. 
3 Type "ind <SpiralName>" to ask for inductance of the spiral. (i.e. The value 

ofLs) 
4 Type "res <SpiralName>" to ask for total sheet resistance of the spiral. (i.e. 

The value of Rs) 
5 Type "geom. <SpiralName>" to ask for all dimensions of the spiral. ( i.e.  

Total length (I)  
Table 5.1 Procedure of spiral inductor design using ASITIC 

Once the dimensions of the spiral inductors are known, equation 4.3 can be used 

to calculate all element values in the lumped equivalent model of the spiral inductor. 

A matlab program is written for these calculations and the code is given in Appendix 

C. 

Based on the process parameter provided by the foundry, we can create a 

technology file suitable for use by ASITIC. For example, the dimensions of a square 

spiral inductor of 3.2nH are given below: 

• inner dimension = 180 micron 
• number of turns = 3 
• metal used = metal 3 
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• metal width = 12 micron 
• metal-to-metal spacing = 1.5 micron 

Then, by using the Matlab program, the parameter values in the equivalent 

inductor model are simply equal to: 
R =15.2Q 
C, = 2 1 . 0 / P 
C 似=140.2 广 
C,=nApF 
i?. =719.7Q 

o I 

5.3 Determination of W/L ratio of FET 

Assuming the cross-coupled FETs are symmetrical, we can calculate the 

transconductance as follows: 

— a 

= ( 5 . 7 ) 
八 p,total ^ , 

/ \ 
1 1 1 1 = ( 2 X - + + —— 
+1) ^eCe'+l) ^ J 

In many cases, the value of a is set between 1 to 2 so as to ensure start-up 

oscillation. Since the quality factor of CMOS varactors(>20) is usually much higher 
1 than spiral inductors, it is reasonable to assume that ~ « 0. 

现 2 + 1 ) 
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As a result, we have 
la 

At an oscillating frequency of 1.5 GHz, the unloaded quality factor of the spiral 

inductor is thus given by, 
2 ; rx (1 .5x l09 )x3 .2x l ( r9= i98 

力 15.2 

For safety reason, we set a = 1.5, which gives, 
� 2 x 1 . 5 M l � 

gm ^ ^——二 (5.10) 
“ 1 5 . 2 X (1.982+1) �� 

Subsequently, with Vdd = 1.5 V, the size of the NMOS transistor can be evaluated by, 
W GM 0.0401 … n 。 

一 = ^ T = ^ = 424.92 (s i n 
L ^C^AVos-V,) 1.18x10-4 x(1.5 —0.7) 

For L == 0.6|Lim, the width of the active device should be set equal to 2 5 0 j L i m . 

5.4 Varactor Design 

The physical dimensions of the PMOS varactor may be estimated from the 

lowest tuning capacitance value required in the VCO design. It is very difficult to 

determine the exact capacitance value of the varactor by using simple formulas, and 

therefore we will leave this calculation to the simulation program. 
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In the reference VCO design, the total tank capacitance required is 

approximately 3.5pF for an oscillation frequency of 1.5GHz. This capacitance 

consists of the spiral inductor to substrate capacitance (0.2pF), varactor capacitance 

and the parasitics of the FET. For NMOS transistor with a gate-length of 0.6|Lim and 

a gate-width of 250|Lim, the parasitic capacitance which consists of the gate-drain, 

drain-bulk and gate-source capacitances may be calculated by, 

CpET Parasitic = 250辦 x 4 _ / F /辦 
= \pF 

Consequently, the capacitance value of the varactor is simply, 

= 3.5pF-02pF-\pF (5.13) 
= 23pF 

By using the circuit simulator, the gate-width of the varactor is found to be 

250|Lim, based on the 0.6|im CMOS technology. 

Similarly, for the proposed VCO circuit, a capacitance value of 1.5pF is 

required which corresponds to a PMOS varactor with a gate-width of 150|im. 

5.5 Layout (Cadence) 

Cadence® is an electronic design automation (EDA) software technology that help to 

design and develop integrated circuits (ICs) and systems. In this work, Cadence® is 

employed to prepare the IC schematics and layout (Figure 5.9 and 5.10). This 
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software can also be used to do design rule check, and to generate the circuit netlist 

for further simulations. 
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Figure 5.9 Screenshot of Schematic of Cadence® 
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Figure 5.10 Screenshot of Layout of Cadence® 

In CMOS circuit design, dimensions in a layout are governed by "design rules", 

which is imposed by both lithography and processing capabilities of the technology. 

Thus, each foundry will have its own design rules for the designer, to guarantee 

proper fabrication. Some major design rules are listed below: 

• Minimum Width 

> For example, polysilicon width should not be less than 0.6^m for 0.6|am 

CMOS process technology. Otherwise, it may simply break or suffer from 
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a large local resistance. 

• Minimum Spacing 

> For example, the spacing between two polysilicon lines should not be less 

than 0.8|im, otherwise, they may be shorted. 

• Minimum Enclosure 

> For example, the n-well and the p+ implant should surround the transistor 

with margin larger than 0.8|Lim in order to guarantee the formation of 

PMOS transistor. 

• Minimum Extension 

> For example, gate polysilicon must have a minimum extension of Sjiim 

beyond the active area to ensure proper transistor action at the edge. 
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Figure 5.11 Layout of a transistor using multi-fingers 

Furthermore, for the design of wide transistors, "multfinger" structure (Figure 

5.11)，should be adopted to lower the internal resistance associated with the gate 

fingers. It is a common practice to set the gate resistance lies between 1/5 and 1/10 of 

1/gm，for low-noise applications. Gate resistance of FET can be calculated by, 
W R 

(5.14) 

where 

Wis total FET width, 

L is the channel length, 

Rsh is the polysilicon sheet resistance, 

N is number of gate fingers in FET 
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Therefore, for an FET of W/L ratio equals 250/0.6. The minimum number of 

gate fingers required may be calculated as, 

入丁�IW R^, ^sh c 
] l L 3 R g N L 3 “ 

n o 2 5 0 2 5 0 0 . 2 X —— 
= 飞 一 X ^ x 5 x 4 0 . 1 m 5 « 4 8 

11 0 . 6 3 

5.6 Circuit Simulation (SpectreRF) 

Spectre is an advanced circuit simulator that simulates analog and digital 

circuits at the differential equation level. The simulator uses improved algorithms 

that offer higher simulation speed and better convergence characteristics over SPICE. 

Besides the basic capabilities, the Spectre circuit simulator provides additional 

capabilities such as the efficient calculation of the operating point, transfer function, 

noise, and distortion of electronic circuits. Figure 5.12 illustrates the simulated 

transient response of the voltage-controlled oscillator designed. 
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Chapter 6 Experimental Verification 

6.1 Measurement Setup 

The designed VCO circuits were fabricated using tri-metal 0 . 6 j L i m CMOS process. 

For measurement purposes, the chip is mounted on top of a PCB and connected to 

the microstrip lines by using bondwires, as shown in Figure 6.3. 

.* 

Figure 6.1 Geometry of bondwire 

When the round bondwire is located above a ground plane, as shown in Figure 6.1, 

the self-inductance is governed by [31], 
2h 

L ^ 0.2 In — nH/mm (6.1) r 

which amounts to roughly 1 nH/mm for typical bond wires. The effective resistance 

per length of bondwire can be by calculated by [27]: 
R 1 
7 - — r ^ 厂 ( 6 . 2 ) I Lnr o G 
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Typically, the resistance of bondwire at IGHz is about 125mQ/mm. 

Figure 6.2 Diagram of bonding machine 

Bondwire 
Chip \ Ground 

m 

Figure 6.3 Mounting of IC on PCB substrate 

The printed circuit boards used in these experiments are made from 

double-sided FR4 material. One side of the board is used as the ground plane 

whereas the other side is used for mounting the die and the necessary external 

components, as depicted in Figure 6.4 and 6.5. 
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^^^H • I ^^^H Die of 
1 1 H ^ ^ B ^ VCO 

Rf o u t - ^ ^ M i W i M ^ I • ^ 广 

Ground 

Figure 6.4 Printed Circuit Board of the CMOS VCO 
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_ 

Figure 6.5 Constructed VCO circuit 

L RFChoke ^RF_Choke 
Tuning ~ " X 广 " W V T V ^ w ^ 
Voltage 9 C 二 h 滋 宁 Vdd 

Spectrum ^ ^ Spectrum 
Analyzer \ J V C O ^ J , / A n a l y z e r 

I � ^ Choked A/ /V li^RF Choke JUT^ 

^ ^DC_Block ra L DC-Block >  
^  

Figure 6.6 A complete measurement setup 

Figure 6.6 shows the complete measurement setup employed for testing the 

CMOS VCO circuits. In the diagram, a spectrum analyzer HP4396A is used to 

determine the output power, power spectrum, harmonic content and the frequency of 
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oscillation. All phase noise characterization were a performed with a dedicated 

VCO/PLL signal Test System (HP4352B), as shown in Figure 6.7. 

• H m H H H i a i l B B B H l 
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Figure 6.7 Phase noise measurement setup 
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6.2 Measurement results: Reference Oscillator Circuit 

6.2.1 Output Spectrum 
Frequency Spectrum of the standard LC Voltage-controlled Oscillator 
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Figure 6.8 Frequency spectrum of the reference VCO circuit 

Figure 6.8 shows the measured frequency spectrum of the reference LC 

differential CMOS voltage-controlled oscillator fabricated. The tuning voltage and 

supply voltage of the VCO are 0.85V and 1.5V, respectively. The circuit can deliver 

1.5dBm output power at an oscillating frequency of 1.525 GHz. Moreover, the power 

level of the second harmonic (3.05GHz) is approximately -17.2dBm. 
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6.2.2 Phase Noise Performance 

Phase Noise performance of Standard CMOS LC Voltage-Controlled Oscillator 
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Offset Frequency(Hz) Figure 6.9 Phase Noise spectrum of reference VCO circuit 

Figure 6.9 shows the measured phase noise spectrum of the reference VCO. 

When the VCO is operated at 1.525 GHz, the phase noise level of the circuit is found 

to be approximately -114dBc/Hz at offset frequency of 600kHz. The phase noise 

performance was achieved at a power consumption of roughly 15mA from a 1.5V 

power supply. 
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6.2.3 Tuning Characteristic 

Tuning Characteristic of Standard CMOS Voltage-Controlled Oscillator 
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Figure 6.10 Tuning characteristic of reference VCO circuit 

Figure 6.10 shows the frequency tuning characteristic of the reference VCO 

circuit. The oscillating frequency varies from 1.495GHz to 1.563GHz, cover a 

bandwidth of almost 70MHz, when the tuning voltage is changed from 0.5V to 2.5V. 

The poor tuning linearity of the VCO is mainly due to the nonlinear capacitance of 

the PMOS varactor, particularly when the device is driven from deep accumulation 

to deep depletion region. 
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6.2.4 Microphotograph 
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Figure 6.11 Microphotograph of the reference VCO Circuit 

Microphotograph of the VCO circuit is presented in Figure 6.11. The dimension 

of the circuit is measured to be 0.81 mm x 0.63 mm. These VCO circuits are realized 

using 0.6|Lim standard digital CMOS process with three metal layers. 
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6.3 Measurement results: Proposed Oscillator Circuit 

6.3.1 Output Spectrum 
Frequency Spectrum of the proposed LC Voltage- control led Oscil lator 
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Figure 6.12 Frequency spectrum of proposed VCO circuit 

Figure 6.12 shows the frequency spectrum of proposed LC differential CMOS 

voltage-controlled oscillator. The circuit delivers l.SdBm output power at an 

oscillating frequency of 1.525GHz. The tuning and supply voltages are set equal to 

0.85V and 1.5V, respectively. Moreover, the power level of the second harmonic 

(3.05GHz) is approximately-22.1 dBm. 

85 



Chapter 6 Experimental Results and Discussions 

6.3.2 Phase Noise Performance 
Phase Noise performance of Standard CMOS LC Voltage-Controlled Oscillator 
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Offset Frequency(Hz) Figure 6.13 Phase Noise spectrum of proposed VCO circuit 

Figure 6.13 shows the measured phase noise spectrum of the proposed VCO. 

The phase noise level of the circuit is measured to be approximately -123dBc/Hz at 

offset frequency of 600kHz, with an oscillation frequency of 1.525 GHz. 
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6.3.3 Tuning Characteristic 

Tuning Characteristic of Proposed CMOS Voltage-Controlled Oscillator 
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Figure 6.14 shows the frequency tuning characteristic of the proposed VCO 

circuit. The tuning range is 1.5235GHz to 1.5322GHz, for a tuning voltage of 0.5V 

to 2.5V. The poor tuning linearity of the VCO is mainly due to the nonlinear 

capacitance of the PMOS varactor, particularly when the device is driven from deep 

accumulation to deep depletion. 
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6.3.4 Microphotograph 
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Figure 6.15 Microphotograph of proposed VCO Circuit 

Microphotograph of the proposed VCO circuit is given in Figure 6.15. The 

physical size of the circuit is measured to be 0.92 mm x 0.71 mm. These VCO 

circuits are realized using 0.6^m standard digital CMOS process with three metal 

layers. 
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6.4 Performance Evaluation 

6.4.1 Phase Noise Performance 
Rhase Noise performance of two CMOS VCO with different c«nfiguration 
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Figure 6.16 shows the phase noise performance of the reference and proposed 

VCO 

circuits, at an oscillating frequency of 1.525 GHz. The measured phase noise 

levels of the reference and proposed VCO circuits are respectively, -114dBc/Hz 

and -123dBc/Hz, at offset frequency of 600kHz. The results indicate that the phase 

noise level is improved by 7-lOdB, over an offset frequency range from IkHz to 

600kHz. The phase noise spectrum of the proposed VCO exhibits a slope of roughly 30dB/dec, in the range from lOKHz to lOOKHz, and a slope of approximately 25 dB/dec in the range from lOOKHz to 600KHz. 
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6.4.2 Tuning Characteristic 
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Figure 6.17 Comparison of frequency tuning characteristics between the reference 
and proposed VCO circuit 

Figure 6.17 shows the frequency tuning characteristics of both the reference and 

proposed VCO circuits. We can see that the tuning range of the reference design is 

much wider than the proposed one, under the same operating voltage. Table 6.1 

summaries the measured characteristics of the reference and proposed VCO circuits, 

including phase noise, power consumption and tuning range. 
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Reference VCO Proposed VCO 
Supply Voltage (V) 1.5 
Power Consumption (mW) 22.5 22.5 
Tuning Range (GHz) — 1.495 - 1.563 1.523 - 1.532 
Phase Noise @600kHz ^^^ ^^^ 
offset frequency  
Second harmonic power . ^ 
(dBm) -忍 7 

Table 6.1 Summary of measurement results 

Moreover, the comparison between the phase noise performance of the 

proposed circuit and some of the published (Bi) CMOS VCO designs using 

integrated inductors (unless otherwise stated), are tabulated in Table 6.2 for 

reference. 

飞， Freq Phase Noise ^ ^ , , 
—r (GHz) (dBc/Hz)Technology 

2000 [32] 1.79 - 2.00 -125@600kHz ；严^ Three-mel^l;l=0.65— L J 19mA BiCMOS  
2000 [33] 1.10-1.45 -119@600kHz 二 0.35jLm CMOS (bond wire) 
2000 [34] 1.10-1.20 -126@600kHz 二 0.8jLm CMOS (bond wire) 
2001 [35] 1.00 - 1.20 -130@600kHz 巧、 Four-metal-layer 0.6_  3.7mA BiCMOS  
2002 [36] 1.69-1.96 -123@600kHz ,,0,35—CMOS  omA (discrete capacitor required) 
This Work 1.52- 1.53 123@600kHz Three-metal-layer 0.6jum CMOS 

Table 6.2 Comparison of published results 
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In summary, the improved phase noise of proposed voltage-controlled oscillator 

is mainly contributed by the following design methods: 

1. Enhanced effective quality factor of the modified resonant tank configuration. 

However, according to the derived results, the reduction in phase noise is 

limited by the Q factor of the additional inductor. 

2. The series-tuned LC tank exhibits low impedance at twice the fundamental 

oscillating frequency and strongly suppresses the amplitude of the second 

harmonic voltage. As a result, the up-conversion of noise due to spectrum 

folding is greatly reduced. 

3. The measurement results indicate that the frequency tuning ranges of the 

reference and proposed VCO topologies are roughly 3.4% and 0.5% 

respectively. The reasons for the narrow tuning range are due to the large 

parasitic capacitances associated with the tank circuit as well as the small 

capacitance tuning range of varactors. 

92 



Chapter 7 Conclusion and Future Work 

Chapter 7 Conclusion and Future Work 

7.1 Conclusion 

This thesis illustrates the design of monolithic CMOS voltage-controlled 

oscillator with low phase noise characteristics. These oscillators are fabricated using 

three-metal-layer 0.6^m CMOS process and integrated planar inductors. We also 

present the necessary information for the implementation of CMOS oscillator 

including the design of the NMOS transistors, inductors, and PMOS varactors. 

Furthermore, techniques to reduce phase noise in CMOS VCO circuits are proposed 

and validated experimentally. 

Two voltage-controlled oscillators have constructed and tested. The first 

one is a LC differential voltage-controlled oscillator using a simple LC tank topology. 

It operates at 1.5V supply voltage with a drain current of 15mA. It has a wide tuning 

range, from L495GHz to 1.564 GHz. The tuning sensitivity is 34.5MHz/Y The 

phase noise level is approximately -114dBc/Hz at 600kHz offset frequency. 

The second design is a LC differential voltage-controlled oscillator with a 

modified tank circuit. It also operates at 1.5V supply voltage with 15mA drain 
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current. It has a narrow tuning range from 1.523GHz to 1.533GHz. The tuning 

sensitivity is only 5MHz/V. However, the phase noise performance is better 

than -123dBc/Hz at 600kHz offset frequency. The measured phase noise exceeds the 

most stringent specification for DCS-1800 systems. 

7.2 Future Work 
In this research, the tri-metal 0 . 6 j L i m CMOS process is used for the fabrication 

of the oscillator circuits. However, 0.13|Lim CMOS process is now very popular in 

ASIC design and it is well known that CMOS device with shorter gate-length can 

operate at higher frequency. Thus, it is possible to design VCO circuits at even higher 

oscillating frequency for applications such as wireless LAN systems. Moreover, it is 

an advantage to use more metal layers to realize inductors with better quality factor 

and higher resonant frequency. Finally, new circuit topologies should be investigated 

to achieve both low phase noise performance as well as wide tuning range. 
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Appendix A 

Terms Definition 

I. Voltage Controlled Oscillator 
This is a kind of oscillator that the output frequency can be changed by 

applying a voltage to its tuning port. 

II. Frequency Drift with Temperature 
It is the frequency drift of the voltage-controlled oscillator with 

temperature at a fixed tuning voltage. It can be expressed as a relative 

percentage change per unit temperature, or as a frequency change per unit 

temperature. 

III. Center Frequency 
It can be d e f i n e d as the o u t p u t f r e q u e n c y tha t the o sc i l l a to r o u t p u t s 

m a x i m u m power . It u s u a l l y a b b r e v i a t e d as f � o r � �a n d the i r un i t s a rc H z 

and r a d ' s e c respec t ive ly . 
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IV. Tuning Range 
When you adjust the tuning voltage of oscillator, the center frequency will 

shift. Tuning range defines as the flill range of frequency shift by adjusting 

the tuning voltage. 

V. Tuning Sensitivity 
It defines as the change of output oscillating frequency per unit change of 

the tuning voltage. Its unit equals Hz/V. 

VI. Frequency Tuning Characteristic 
It defines as frequency versus tuning voltage performance for a given VCO. 

This is usually graphed as frequency versus voltage. 

VIL Output Power 
It defines as the fundamental sinusoidal frequency output of the oscillator 

measured into a 50 ohm load. 

VIIL Varactor Diode 
It is a type of diode operated in a reverse biased condition providing a 

102 



Appendix 

junction capacitance that is a function of the applied reverse bias voltage. 

We usually use it as a variable capacitor in voltage controlled oscillators. 

IX. Phase Locked Loop (PLL) 
It is a widely used feedback circuit in which the VCO frequency and phase 

is locked to the frequency and phase of a stable reference signal. 

XL Spurious Signal Responses 
Spurious frequencies are non-harmonically and unwanted signals present at 

the oscillator output. Spurious response is usually expressed in terms of 

dBc. 
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Appendix B 

Below shows the technology file that given in generic CMOS process, 
which is used in inductance-generation software — ASITIC: 
> Start of CMOS.tek < 

；Sample CMOS technology file 
<chip> 

chipx = 512 ； dimensions of the chip in x direction 
chipy = 512 ； dimensions of the chip in y direction 
fftx =128; x-fft size (must be a power of 2) 
ffty= 128; y-fft size 
TechFile = CMOS.tek 
TechPath = . 
freq =1.8 ； frequency of operation 

<layer> 0 ； p(-) bulk layer 
rho = 0.006 ； ohm-cm 
t = 350 ； microns 

eps= 11.9 
<layer> 1 ； Oxide Layer 

rho=le20 
t = 50 
eps = 3.9 

� m e t a l �0 
layer = 1 ； in oxide layer 
rsh = 65 ； sheet resistances 
t = 0.5 ； thickness 
d = 1.3 ； distance from bottom of layer 
name = ml 
color = yellow 

� m e t a l �1 
layer = 1 
rsh = 120 
t = 0.72 
d = 1.4 
name = ml 
color = LightSkyBluel 

� m e t a l �2 
layer = 1 rsh = 130 t = 0.65 d= 2.77 name = m3 color = red 

� m e t a l �3 

104 



Appendix 

layer = 1 
rsh = 60 
t = 0.94 
d = 4.07 
name = m4 
color = blue 

� m e t a l �4 
layer = 1 
rsh = 30 
t = 1 
d = 6 
name = m5 
color = grey 

<via> 0 ； metal 1 to metal 2 
top = 1 
bottom = 0 
r = 4 
width = .5 
space =1.1 
overplotl = .2 ； to metal 1 
overplot2 = .2 ； to metal 2 
name = vial 
color = purple 

<via> 1 ； metal 2 to metal 3 
top = 2 
bottom = 1 
r = 0.8 
width = .7 
space = 0.7 
overplotl = .2 ； to metal 1 
overplot2 : 1 ； to metal 2 
name = via2 
color = cyanl 

<via> 2 ； metal 3 to metal 4 
top = 3 
bottom = 2 
r = 0.8 
width = .7 
space = 0.7 
overplotl = .2 
overplot2 = .2 
name = via3 
color = white 

<via> 3 ； metal 3 to metal 4 
top = 4 bottom = 3 r = 4 
width = .4 space 二 1.2 overplotl = .2 overplot2 = .2 name = via4 color 二 yellow 

> The end ofCMOS.tek < 
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Appendix C 

Below shows the technology file that given in generic CMOS process, 
which is used in inductance-generation software - ASITIC: 
> Start of Inductor Parasitic.m < 

% Calculate parameters of equivalent L model 
clear all; 
% R—sheet for met3 only 
R_sheet=70e-3; 
resistivity_Sub= 14; 
Sub_thick=500e-6; 
for i = 1 : 100 

freq(i) = 0.4e9 + i * 0.02e9; 
end 
L_value=input('Please input L value(nH):，)； 
L_value=L_value/1 e9; 
inner=input('Please input Inner dimension(micron):'); 
inner=inner/le6; 
tums=input(Tlease input no. of turns:'); 
width=input(Tlease input metal width(micron): ’)； 
width=widthyie6; 
spacing二input(’Please input metal spacing(micron):'); 
spacing=spacing/l e6; 

length = 4 * turns * (inner + (turns - 0.5)*(spacing + width)); 
resistance—L = length * R—sheet / width; 
Rsub = resistivity_Sub * Sub_thick * length / width; 
% Rsub = 50 always 
CI = length * width * 20e-6 * 0.5; 
C2 = length * width * 20e-6 * 0.5; 
C3 二 0.085e-9 * length / (turns - 1); 
fprintf('\n\nR = %g ohm', resistance一L); 
电rintf(’\nCl 二 %g pF, CI * l e l 2 ) ; “ 
fprintfC\nC2 = %g pF，C2 * lel2); 
fiprintf('\nC12 - %g pF, C3 * lel2); 
fprintf('\nRsub = %g ohm', Rsub); 

> Start of Inductor_Parasitic.m < 
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