29 research outputs found

    Non-gyrator type active inductors

    Get PDF
    Modern CMOS radio frequency (RF) Receivers have enabled efficient and increasing applications. The main requirement is to have system in a single chip, in order to minimize area and cost. For the purpose it is required the development of inductorless circuits for the key blocks of an RF receiver. Examples of this key blocks are RC oscillators, RF band pass filters, and Low Noise Amplifiers. The present dissertation presents an inductorless wideband MOSFET-only RF Non-Gyrator Type of Active Inductors with low area, low cost, and very low power, capable of covering the whole WMTS, and ISM, band and intended for biomedical applications. The proposed circuit is based on a floating capacitor connected between two controlled current sources. The first current source, which is controlled by the circuit input voltage, has two objectives: supply current to the capacitor (2) and develop a voltage with 90º degrees in regard to the first current. The capacitor controls the second current source. The addition of one transistor compensates the capacitive parcel of the input current, in order to become purely inductive. This model, based on Active Inductors (AI) takes advantage of the 130 MOS technology to optimize the control of the quality factor. In this sense, the proposed AIs can behave as a parallel RLC Oscillator, and examples of realizations for 662 MHz to 4.1 GHz range are given. A 1.2 V power source, supply the circuit with 56.4 W at the maximum oscillation frequency. With this results, it is possible to confirm the proposed objectives, in order to have a functional Active Inductor as a key block in RF transceivers

    Tunable integrated radio frequency active resonators.

    Get PDF
    Los avances en las comunicaciones celulares y su difundido uso han impulsado a los fabricantes de transceptores de radiofrecuencia a integrar sus productos y a disminuir el número de componentes fuera del chip. Además, la proliferación de diferentes estándares para sistemas de radiofrecuencia motiva la realización de diseños flexibles en los que un mismo circuito puede ser utilizado para diferentes esquemas de comunicación. En este contexto, los inductores activos constituyen una herramienta atractiva para la configuración del hardware en tiempo real. Un inductor activo es un circuito sin inductores cuya impedancia vista de pequeña señal, en uno de sus puertos, es inductiva. Generalmente ocupa mucho menos área que su equivalente pasivo y ofrece posibilidad de sintonización. Las principales desventajas son el rango lineal limitado, el consumo de energía adicional y el ruido generado por el circuito. En esta tesis los resonadores activos –construidos con inductores activos– son presentados en varios niveles. Partiendo de la motivación, la necesidad del girador como núcleo del resonador activo se convierte en algo natural. A partir de una definición generalizada del girador, pasando por el concepto de resonador activo ideal, este trabajo desarrolla el modelo de resonador activo perfecto como un primer paso, que incorpora la conductancia de salida de los transconductores, y un modelo de resonador activo completo como una aproximación más precisa que también tiene en cuenta los efectos capacitivos de entrada-salida de los dispositivos. En el desarrollo del modelo se introdujeron definiciones clave y se obtuvieron algunos resultados novedosos. Este trabajo propone un factor de calidad del girador y muestra su relevancia en los diseños de resonadores activos (AR); limita, bajo ciertos supuestos, el máximo factor de calidad que el resonador activo puede alcanzar. También se analizan las relaciones de compromiso entre el ruido, la linealidad y el consumo de energía, y se contrastan con simulaciones. El modelo de resonador activo perfecto ha demostrado ser muy potente para diseñar, analizar y comparar cualitativamente arquitecturas de resonadores activos, mientras que el modelo más completo brinda resultados precisos para realizar análisis computacional. Por último, una de las arquitecturas estándar se probó en un diseño global de un amplificador de bajo ruido (LNA), colocándolo como etapa de entrada, proporcionando una red de adaptación sintonizable. Se demostró que los resultados del modelo siguen siendo válidos en este diseño completo que incorpora el transistor del LNA y las fuentes de corriente reales.The progress in cellular communications and its spread applications have propelledmanufacturers of transceivers to integrate their products and decrease the number ofoff-chip components. Also, the proliferation of different standards of radio frequencysystems motivates flexible designs in which the same circuit could be suitable for dif-ferent communication schemes. In this context, active inductors become an attractivetool for real-time hardware customization.An active inductor is an inductorless circuit whose small signal impedance, atone of its ports, is inductive. Generally, it occupies much less area than its passivecounterpart, and offers tunability. The principal disadvantages are the limited linearrange, the additional power consumption and the noise generated by the circuit.In this thesis, active resonators—built with active inductors—were presented inseveral levels. Starting from the motivation, the need of the gyrator as the activeresonator core becomes natural. From a generalized gyrator definition, passing throughtheideal active resonatorconcept, this work develops theperfect active resonator modelas a first step model which incorporates the output conductance of transconductors,and acomplete active resonator modelas a more accurate approach which also takesinto account the input-output capacitive effects of the devices.In the model development, key definitions were introduced, and some novel resultswere achieved. This work proposes agyrator quality factorand proves its relevance inthe active resonator (AR) designs; it limits, under certain assumptions, the maximumactive resonator quality factor that can be achieved. The trade-offs between noise,linearity and power consumption are also analysed and contrasted with simulations.Theperfect active resonator modelproved to be very powerful to design, analyseand compare qualitatively active resonator architectures, while the more completemodel gives accurately results when performing computational analysis.Finally, one of the standard architectures was proven in an overall design of a lownoise amplifier (LNA) as its input stage, providing a tunable matching network. It isshown that the model results are still valid in this complete design that incorporatesthe LNA core transistor and real current sources.Beca de Maestría ANI

    Analysis and design of wideband voltage controlled oscillators using self-oscillating active inductors.

    Get PDF
    Voltage controlled oscillators (VCOs) are essential components of RF circuits used in transmitters and receivers as sources of carrier waves with variable frequencies. This, together with a rapid development of microelectronic circuits, led to an extensive research on integrated implementations of the oscillator circuits. One of the known approaches to oscillator design employs resonators with active inductors electronic circuits simulating the behavior of passive inductors using only transistors and capacitors. Such resonators occupy only a fraction of the silicon area necessary for a passive inductor, and thus allow to use chip area more eectively. The downsides of the active inductor approach include: power consumption and noise introduced by transistors. This thesis presents a new approach to active inductor oscillator design using selfoscillating active inductor circuits. The instability necessary to start oscillations is provided by the use of a passive RC network rather than a power consuming external circuit employed in the standard oscillator approach. As a result, total power consumption of the oscillator is improved. Although, some of the active inductors with RC circuits has been reported in the literature, there has been no attempt to utilise this technique in wideband voltage controlled oscillator design. For this reason, the dissertation presents a thorough investigation of self-oscillating active inductor circuits, providing a new set of design rules and related trade-os. This includes: a complete small signal model of the oscillator, sensitivity analysis, large signal behavior of the circuit and phase noise model. The presented theory is conrmed by extensive simulations of wideband CMOS VCO circuit for various temperatures and process variations. The obtained results prove that active inductor oscillator performance is obtained without the use of standard active compensation circuits. Finally, the concept of self-oscillating active inductor has been employed to simple and fast OOK (On-Off Keying) transmitter showing energy eciency comparable to the state of the art implementations reported in the literature

    Monolithic active resonator filters for high frequencies

    Get PDF
    This doctoral thesis deals with monolithic active resonators and their use in high-frequency filters. The emphasis has been put on noise and distortion properties of active resonators, as these are crucial in potential applications. Two active resonator types are considered: passive LC resonators with active negative resistance compensation, and gyrator-based active inductor resonators. An introduction to the theory of passive resonators is given, and the basic quality factor and noise characteristics are discussed in detail. Filter structures based on parallel resonators are studied and techniques for frequency tuning briefly introduced. Based on a three-port equivalent, different negative resistor structures suitable for integration are categorized, and their fundamental small-signal and tuning properties derived. The noise properties of the topologies are analyzed and compared. The Volterra-series method is applied in the distortion estimations for each negative resistor type. Practical examples of integrated negative resistor are given with realistic measured data. High-Q active inductors based on integrated high-frequency gyrators are analyzed using the total loop phase shift as an essential parameter. Theoretical limitations of high-frequency performance and tuning are found. Noise and distortion properties are assessed in the same manner as with negative resistors to give grounds for direct comparisons. Practical issues of monolithic active inductor resonators are tackled and realized topologies with measured results are presented. Active resonator filters employing either of the resonator types are discussed. Their noise and distortion performance derived from the respective resonator results is calculated. Automated tuning techniques are briefly discussed. Exemplary designs are presented with measured data. The two realized active resonator filters with negative resistance resonators operate in the 3 – 4 GHz region with 1.1% and 12% relative bandwidths, 400-MHz tuning ranges, and 19-dB and 11-dB noise figures respectively. The DC power consumption is a low 15 mW per resonator. The active inductor filter has a center frequency of 2.4 GHz with almost 1-GHz tuning range. The noise figure is a high 30 dB as estimated by the theory. System considerations show that active filters cannot directly replace passive filters in traditional radio architectures due to their relatively poor performance, but as a new potential application, an LO signal generation system for direct-conversion transmitters with a monolithic band-pass filter is presented. Both GaAs and Si-BiCMOS realizations show the feasibility of the concept. With the comparable quality factors of 415 and 300 and approximately the same –1-dB output compression points of –20 dBm, the BiCMOS topology consumes only a fraction of DC power but still gives more than 80 dBc mirror rejection thanks to its dual-mixer topology.reviewe

    IMPLEMENTATION OF CMOS RF CIRCUITS WITH OCTAVE & MULTI-OCTAVE BANDWIDTH FOR PHASED ARRAY ANTENNAS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Novel Approaches in RF/Analog CMOS Spectrum Sensing and Its Applications

    Get PDF
    Real time spectrum sensing refers to searching for possible signals at a specific time and location, which is applicable to cognitive radio (CR) for primary signal detection and ultra-wideband (UWB) radio for interferer detection. There are several approaches for spectrum sensing. Choosing a proper method for spectrum sensing necessitates evaluating several trade-offs among sensing time, accuracy, power consumption and simplicity of implementation. In this dissertation several approaches for spectrum sensing along with the applications to CR and UWB receivers are presented. A novel simple spectrum sensing technique for detecting weak primary signals with negative signal-to-noise ratio (SNR) is proposed, which is called quasi-cyclostationary feature detection (QCFD) technique. Moreover, a simple, reliable, and fast real-time spectrum sensing technique based on phasers, which are dispersive delay structures (DDSs), is proposed. Lastly, a UWB receiver robust to the narrowband (NB) blockers, in the vicinity of UWB frequency, is presented. To increase the robustness of the UWB receiver towards interferers, a dynamic blocker detector, utilizing a phaser-based real time spectrum sensing technique, is employed. The proposed spectrum sensing methods provide the best solutions for the intended applications, considering the trade-offs, compared to the state-of-the-art CMOS spectrum sensors

    High Performance Tunable Active Inductors For Microwave Circuits

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2016Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2016RF uygulamalarında enduktif karakteristiğe önemli ölçüde ihtiyaç duyulmaktadır; bunlar, özellikle filtreler, düşük gürültülü yükselteçler (LNA, low noise amplifiers), gerilim kontrollü osilatörler (VCO, voltage controlled oscillators), pek çok farklı türde yükselteç için band genişliği iyileştirilmesi, faz kaydırıcılar, güç bölücüler ve eşleştirme (matching) devreleri vb. uygulamalardır. Pasif sarmal çip-içi CMOS endüktansların eksik yönleri ayrıntılı olarak literatürde tartışılmıştır. Bu tür endüktanslar düşük değer katsayısı (quality factor), düşük öz-rezonans frekansı (SRF, self-resonance frequency), sabit ve düşük değerli endüktans ve geniş bir silikon (silicon) alanı gerektirmeleri gibi istenmeyen özelliklere sahiptirler. Diğer yandan, MOS transistorlar kullanılarak sentezlenen CMOS aktif endüktansların, pasif sarmal eşdeğer yapıları ile karşılaştırıldığında pek çok çekici karakteristik özellik sunabildikleri gösterilmiştir. Bunlar; geniş bir bölgede ayarlanabilir öz-rezonans frekansı başarımı, geniş bir bölgede ayarlanabilir endüktans başarımı, geniş bir bölgede ayarlanabilir değer katsayısı başarımı, CMOS teknolojileri ile tümüyle gerçeklenebilme ve az alan kaplama gibi karakteristik özellikleri olarak ortaya konulmaktadır. Literatürde jiratör-C (GC) prensibi, topolojisi, karakterizasyonu ve uygulamaları ayrıntılı olarak ele alınmaktadır. İşlemsel geçiş-iletkenliği kuvvetlendiricisi (OTA, operational transconductance amplifier) ile gerçeklenen GC devreleri, RF uygulamaları için oldukça uygundur. Bu özellik, GC yapılarının söz konusu yapı kullanılarak en az sayıda aktif eleman ile gerçeklenebilmesinden kaynaklanmaktadır. Gerek topraklı (grounded) gerekse yüzen (floating) aktif endüktansların GC devreleri ile gerçeklenebildiği gösterilmiştir. Aktif endüktansların başarımlarının nicel olarak ölçülmesi amacıyla, çok sayıda ölçüt ortaya konulmuştur. Bu ölçütler frekans çalışma aralığı, endüktans ayarlanabilirliği, değer katsayısı, gürültü ve güç tüketimi gibi temel özellikleri içerirler. CMOS transistorların parazitik bileşenlerinden dolayı tasarlanan aktif endüktanslar belirli bir frekans bölgesinde endüktif davranış gösterirler. Alt frekans sınırı, GC devrelerinin sıfır frekansı ile belirlenirken; üst frekans sınırı ise öz-rezonans frekansı ile belirlenir. Aktif endüktansların pasif sarmal eşdeğer yapılarına göre en önemli üstünlüklerinden biri de; endüktanslarının geniş bir değer aralığıunda ayarlanabilir olmasıdır. GC aktif endüktansların endüktans değeri, transistorların geçiş-iletkenliklerinin ya da MOS varaktörlerle gerçeklenen yük kapasitanslarının değiştirilmesi ile ayarlanabilir. Literatürde, GC topolojisine dayalı pek çok CMOS AI (active inductor) devresi bildirilmiştir. Bunların tümü, farklı teknikler kullanılarak yüksek başarımlı AI yapıları oluşturmayı amaçlamışlardır. Bu tezde, bunlardan güncel olan bazı GAI (grounded AI) ve FAI (floating AI) yapıları gözden geçirilmiştir. Bunlardan bazıları, değer katsayısını (QF) iyileştirmek amacıyla, AI kaybını telafi etmek için negatif direnç kullanmışlardır. GC yapıları RF uygulamaları için tasarlandıklarında en az sayıda transistor kullanımı çok kritiktir. Çünkü bu durum AI öz-rezonans frekansının artmasına yardımcı olur. AI’ler, kazanç artırma amacıyla LNA’lerde geniş kullanım alanı bulabilmektedirler. Diğer taraftan, AI yapılarının en önemli dezvantajlarından biri gürültü başarımının pasif endüktanslara nispeten yüksek olmasıdır. Literatürde bu dezavantajı gidermek amacıyla teklif edilen yaklaşımlardan biri dejenerasyon direncinin bulunduğu bir geribesleme katı kullanılarak girişe gelen gürültü katkısını azaltmayı amaçlamıştır. Literatürde teklif edilen tekniklerin amacı, parazitik bileşenlerin etkisini azaltmak ya da tümüyle ortadan kaldırmaktır. Bu tezde, ileri devre teknikleri kullanılarak, yeni topraklı (grounded) ve yüzen (floting) AI yapıları tasarlanmıştır. AI giriş ve çıkış düğümlerine ait iletkenlikleri azaltmak için çoklu-düzenlenmiş kaskod (multi-regulated cascode, MRC) katları QF değerini iyileştirme amacıyla kullanılmaktadır. MRC katı PMOS transistorlarıyla oluşturulmuştur. PMOS transistor kullanımı, • ikinci kat kutuplamasını ayarlayabilmek amacıyla, giriş transistor boyutunun mümkün olduğunca azaltılmasını, • ana AC işaret yolundaki transistor sayısının azaltılmasını, sağlamaktadır. Tezde sunulan teorik analiz ve serim sonrası benzetim sonuçları, MRC katı kullanımının AI özelliklerine yaptığı etkiyi göstermektedir. Elde edilen sonuçlar bu katların AI tasarımında yüksek QF elde edilmesini imkan tanıdığını ortaya koynaktadır. Literatürde, iki ana AI başarım karakteristiği olan SRF ve QF başarımlarının iyileştirmesi için çok sayıda çalışma bulunmaktadır. Bu tezde, birbirlerini etkilemeksizin SRF ve QF başarımlarının ayarlanabilmesi özelliğine sahip bir AI’ın tasarımı ve benzetgimi yapılmıştır. Kaskod ve RC geribesleme yapıları yeni AI tasarımında kullanılmıştır. Daha önce de tartışıldığı üzere, AI karakterizasyonu açısından giriş transistoru çok önemlidir. Girişi transistorunun kaskodlanması, ilk jiratörün geçiş-iletkenliğinin ve giriş parazitik kapasitansının birbirinden bağımsız olarak ayarlanması gibi önemli ve kullanışlı bir özelliği beraberinde getirir. Bunun yanısıra, endüktansın değeri diğer transistorun iletkenliği ile ayarlanabilir. AI parazitik seri-rezistansını yok etmek amacıyla kullanılan RC geribeslemesi, QF iyileştirmesini sağlayabilmektedir. Kaskod transistorların kutuplama koşulu bir diyot-bağlı transistor ile sağlandığından; önerilen yapı proses, gerilim ve sıcaklık değişimleri açısından kararlı ve yüksek başarımlıdır. AI yapılarında karşılaşılan düşük gürültü başarımı, AI’ların LNA gibi RF uygulamalarda kullanımını sınırlamaktadır. Bir AI’ın ana gürültü kaynağı giriş transistorudur. Düşük gürültülü AI elde etmek için, giriş transistoru yeterince büyük boyutlu olarak tasarlanmalıdır. Ne var ki, büyük boyutlu böyle bir transistor, düşük bir SRF ve dolayısıyla sınırlı bir endüktif bandı beraberinde getirir. Bu tezde, düşük gürültülü ve az kayıplı uygun bir AI, düşük gürültü gerektiren RF uygulamaları için sunulmuştur. Teklif edilen AI devresindeki tüm transistorların ortak-kaynak (common-source, CS) yapısında kullanılması, düşük iletkenliğe sahip düğümlerin dolayısıyla yüksek QF değerine sahip bir AI’ın elde edilmesine olanak sağlamaktadır. AI gürültüsünü azaltmak için, sırasıyla P-tipi MOS transistorlar ve ileri-besleme yolu yapısı (feed-forward path, FFP) kullanılmaktadır. Bilindiği gibi, sensörler çok çeşitli fiziksel büyüklüklerin eletrik mühendisiliği alanına taşınmasını sağlamaktadır. Çok geniş kullanım alanı bulan sensör tiplerinden biri kapasitif mikro algılıyıcılardır. Kapasitif mikro algılayıcılar mekanik hareketleri küçük kapasitans değişimlerine çevirirler. Micro algılayıcıdaki kapasitans değişimi femto-Farad mertebesinde olup algılamayı zorlaştırmaktadır. Diğer yandan, küçük bir kapasitans değişimini yüksek bir empedans değişimine çevirebilmeleri dolayısıyla, GC topolojilerinin kapasitif algılayıcılarda kullanılabileceğini söylemek mümkündür. Bu tezde, bu düşünceden yola çıkılarak, kesit duyarlılığını yok etme yeteneğine sahip yeni bir 3-eksen ivme-ölçer tasarlanmıştır. Yapının, her eksendeki ivmeyi bağımsız olarak algılayabilmesi için, algılayıcı elektrodları uygun olarak yerleştirilmiştir. Daha sonra, bir kapasitif algılayıcıdaki çok küçük kapasitans değişimlerini algılayabilmek için yeni bir GC yapısı teklif edilmiştir. Önerilen yapıda, çalışma frekansı aralığı ve ölçekleme çarpanı, kutuplama akımlarının ayarlanması suretiyle birbirini etkilemeksizin ayarlanabilmektedir. Ayrıca, önerilen yapıda, parazitik bileşenlerin etkisini yok etmek için RC geribesleme ve kaskod yapılar kullanılmaktadır. Son olarak, bu tezde sunulan AI’ların çok amaçlı özellikte olduğunu göstermek amacıyla, 3 ve 6. dereceden geniş bantlı mikrodalga filtrelerde kullanılmaları ele alınmıştır. İlki 3. dereceden bir Chebyshev alçak geçiren filtredir. Basitleştirilmiş gerçel frekans tekniği (SRFT, simplified real frequency technique) ile tasarlanan ikincisi ise, 6. dereceden bir Chebyshev band geçiren filtredir. Filtrelerin benzetimle elde edilmiş frekans yanıtları, bu tezde sunulan AI’ların literatürdeki yapılara güçlü birer alternatif olduklarını ortaya koymaktadır.There is critical need for inductive characteristics in RF applications, especially in filters, LNA, VCO, bandwidth-enhancement in many kinds of amplifiers, phase shifters, power divider and matching networks. The drawbacks of using passive and spiral inductors in CMOS process are discussed in the literature. It is shown that these kind of inductors suffer from a low quality factor, a low self-resonant frequency, a low and fixed inductance value and the need for a large silicon area. Furthermore, it is shown in the literature that CMOS Active Inductors (AIs), which are synthesized using MOS transistors, offer a number of attractive characteristics as compared with their spiral counterparts. These characteristics include a low silicon consumption, a large and tunable self-resonant frequency, a large and tunable inductance, a large and tunable quality factor, and fully realizable in digital CMOS technologies. Then principles, topologies, characterizations and implementation of the Gyrator-C (GC) network is discussed in-depth. The GC networks, which are implemented by operational transconductance amplifier, are suitable for RF application. This property arises from their minimum usage of active elements. It is shown that both grounded and floating active inductors can be implemented by GC networks. To provide a quantitative measure of the performance of AIs, a number of figure-of-merits have been introduced in the thesis. These figure-of-merits include frequency range, inductance tunability, quality factor, noise and power consumption. Due to parasitic components of CMOS transistors, designed AIs have inductive behavior in a specified frequency range. The low frequency bound is set by the frequency of the zero of the gyrator-C networks while the upper frequency bound is set by Self-Resonance Frequency (SRF). One of the key advantages of active inductors over their spiral counterparts is the large tunability of their inductance. The inductance of GC AIs can be tuned by varying either the transconductances of the transconductors or the load capacitance, which is implemented by MOS varactor. Based on GC topology, there are many reported CMOS AI circuits in literature. All of them have tried to invent high performance AI by using different techniques. Some of recent proposed Grounded AI (GAI) and Floating AI (FAI) circuits are reviewed in the thesis. Some of them use negative resistor to compensate the loss of AI for QF enhancement. Some others try to use minimum number of transistors in order to increase the self-resonance frequency of AI for RF applications. In some applications, AIs are used in LNA circuits for gain boosting purpose. In that applications, designers have tried to cancel the noise of AI by using a feedback stage with a degeneration resistor to reduce the noise contribution to the input. The main aim of all the techniques is to cancel or reduce the effects of parasitic components. In the thesis, four new grounded and floating AIs are designed by using advanced circuit techniques. The first one, Multi Regulated Cascode (MRC) stages are employed for lowering conductance in input and output nodes of AI. Thus, Q performance is improved. Since these stages are used only for increasing impedance of input/output nodes, they are made up of PMOS transistors in order to: • minimize the input transistor as small as possible in order to adjust second stage biasing, • decrease the number of transistors in main path of AC signal Theoretical analysis and post-layout simulation results shows the effectiveness of using MRC stages usage in properties of AI. High Q symmetric floating version of low loss inductor is also designed by utilizing MRC stages. Designers do their best to improve SRF and QF, two main characteristics in term of AI performance. An AI with ability to adjust its SRF and QF without affecting each other is designed and simulated as a third. The cascoding and RC feedback structures are used in the new design of AI. As it discussed before, input transistor is very important regarding to AI characterizations. Cascoding input transistor gives the ability to adjust the first gyrator’s transconductance and input parasitic capacitance independently which it results in adjusting the self-resonance frequency and quality factor separately. Due to our best knowledge from literature reviewing, it is first time that the properties of an inductor can be adjusted independently. Furthermore, the inductance value can be adjusted by other transistor’s transconductances. Also, the RC feedback is utilized to cancel the parasitic series-resistance of AI which results in QF enhancement. Since, bias condition of cascoding transistors is provided by a diode-connected transistor, the proposed structure is robust in terms of performance over variation in process, voltage and temperature. The Noise of designed AIs has limited the use of them in RF applications such as LNAs. The main noise source of an AI is its input transistor. In order to have low noise AI, the input transistor should be designed large enough. But it leads to low SRF which limited the inductive frequency band. As a fourth active inductor design, a low-noise and low-loss AI is presented suitable for RF low noise applications. Utilizing all transistors in Common Sourse (CS) configuration on the AI circuit leads to low conductance nodes which causes the AI to have high Q. P-type MOS transistors and Feed-Forward Path (FFP) are employed to decrease noise of the AI, respectively. The GC topologies can convert a low capacitance variation to high impedance changing which makes it a good choice for capacitive sensors. The capacitive based micro sensors convert mechanical signals to small capacitance variation. The capacitance variation in micro sensor is in the range of femto-Farads which makes it difficult to sense. Thus, the GC topologies can be used in capacitive sensors in order to sense small capacitive variations. In the thesis, this technique is used in a new accelerometer sensor. It is first time that a gyrator-C network is employed as an interface circuit for capacitive change detection in micro sensors. The new accelerometer structure is designed by using with ability to cancel cross section sensitivity. The sensor’s electrodes are located in such a way that enables the structure to detect acceleration in 3-axis independently. Embedding all 3-axis detecting electrodes in a single proof mass and ability to detect acceleration orientation are salient features of the proposed sensor. Consequently, a new GC configuration for sensing very small capacitance changes in a capacitive sensor is presented in the thesis. In the proposed configuration, the operating frequency range and scaling factor can be adjusted without affecting each other by tuning the bias currents of utilized gyrators. In addition, the proposed configuration employs RC feedback together with the cascoding technique to cancel the effect of the parasitic components in order to get accurate scaling from gyrator-C network. Finally, in order to show versatility of designed AIs, they are used in designed third and sixth order broadband microwave filters. The first one is a third order Chebyshev low pass filter. The second one, which is designed by using simplified real frequency technique is a sixth order Chebyshev band pass filter. The simulated frequency response of filters prove the workability of the designed AIs.DoktoraPh

    CIRCUIT MODULES FOR BROADBAND CMOS SIX-PORT SYSTEMS

    Get PDF
    This dissertation investigates four circuit modules used in a CMOS integrated six-port measurement system. The first circuit module is a wideband power source generator, which can be implemented with a voltage controlled ring oscillator. The second circuit module is a low-power 0.5 GHz - 20.5 GHz power detector with an embedded amplifier and a wideband quasi T-coil matching network. The third circuit module is a six-port circuit, which can be implemented with distributed or lumped- lement techniques. The fourth circuit module is the phase sifter used as calibration loads. The theoretical analysis, circuit design, simulated or experimental verifications of each circuit module are also included
    corecore