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ABSTRACT

Real time spectrum sensing refers to searching for possible signals at a specific time

and location, which is applicable to cognitive radio (CR) for primary signal detection and

ultra-wideband (UWB) radio for interferer detection. There are several approaches for

spectrum sensing. Choosing a proper method for spectrum sensing necessitates evaluating

several trade-offs among sensing time, accuracy, power consumption and simplicity of

implementation.

In this dissertation several approaches for spectrum sensing along with the applications

to CR and UWB receivers are presented. A novel simple spectrum sensing technique

for detecting weak primary signals with negative signal-to-noise ratio (SNR) is proposed,

which is called quasi-cyclostationary feature detection (QCFD) technique. Moreover, a

simple, reliable, and fast real-time spectrum sensing technique based on phasers, which

are dispersive delay structures (DDSs), is proposed. Lastly, a UWB receiver robust to the

narrowband (NB) blockers, in the vicinity of UWB frequency, is presented. To increase the

robustness of the UWB receiver towards interferers, a dynamic blocker detector, utilizing

a phaser-based real time spectrum sensing technique, is employed. The proposed spectrum

sensing methods provide the best solutions for the intended applications, considering the

trade-offs, compared to the state-of-the-art CMOS spectrum sensors.
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1. INTRODUCTION AND LITERATURE REVIEW∗

Current congestion of radio devices in the radio spectrum necessitates intelligent use

of wireless channels to improve performance of wireless communications via reusing the

licensed bands, while primary users are inactive. Spectrum sensing which is the process

of detecting signals has a significant role for future usage of frequency bands. Using

spectrum sensing for signal or blocker detection enables more efficient use of the currently

assigned radio spectrum. For instance, cognitive radio (CR) devices use spectrum sensing

for detecting unoccupied licensed frequency bands at a specific time and location [1].

Ultra-wideband (UWB) devices can also employ spectrum sensing for interferer detection.

1.1 Spectrum sensing in cognitive radio devices

CR devices are smart secondary users that detect “white space”, which are frequency

bands that are not being used by primary users at a specific time and location, through dy-

namic spectrum access (DSA) (see Fig. 1.1). They use spectrum sensing methods for white

space detection to operate on these empty bands on a non-interfering basis [1, 2]. IEEE

802.22 is a standard on Wireless Regional Area Networks (WRANs) which operate in low

population density areas to provide broadband access to data networks [1]. According to

Federal Communications Commission (FCC), due to some restrictions [3], unlicensed use

of white space, by WRAN systems, is allowed only for VHF/UHF TV broadcast bands

(54-862 MHz) as low population density areas. CR devices operate in two modes [1];

sensing mode, in which no data is sent by the cognitive transmitter, however the spectrum

sensor and part of the cognitive receiver (depending on the spectrum sensor structure) are

active, and transmission mode, in which data is transmitted from cognitive transmitter

∗ c©2015 IEEE. Part of this chapter is reprinted with permission from P. Sepidband and K. Entesari,
“A CMOS spectrum sensor based on quasi-cyclostationary feature detection for cognitive radios,” IEEE
Transactions on Microwave Theory and Techniques, vol. 63, no. 12, pp. 4098-4109, Dec. 2015.
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White space

Power

Time

Spectrum occupied 
by primary users

Frequency

DSA

Figure 1.1: Concept of white space for CR devices.

and received by cognitive receiver, but spectrum sensing part is inactive. It is desired to

minimize sensing time to increase data transmission time.

Spectrum sensing is the process of finding white spaces for CRs. The job of a spec-

trum sensor is detecting primary signals for a CR user. When a secondary user selects an

empty primary user band, the band can be reclaimed by a primary user and it is also shared

with other secondary users that selected the same band [1]. Spectrum sensing has differ-

ent approaches considering trade-offs among sensing time, accuracy, power consumption

and simplicity of implementation [2, 4]. One approach is non-cooperative or transmitter

detection which refers to detection based on information sent from a primary transmitter

to only one CR user [4]. Transmitter detection itself can be classified into three groups

[4, 5]: 1) matched filter detection, 2) energy detection (ED) [6], and 3) cyclostationary

feature detection (CFD) [7]. Matched filter detection, is based on correlating the unknown

signal with a filter whose impulse response is the mirror and time shifted version of a ref-

erence signal. This filter maximizes the signal to noise ratio (see Fig. 1.2a). This method

needs a preliminary knowledge of the primary user signal (reference signal) and should be

implemented in discrete time domain. The realization of this filter in continues time do-

main is difficult [8]. ED measures the energy of the signal and compares it to a threshold

2
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Figure 1.2: Basic block diagram for a; (a) matched filter detection technique, and (b) ED
technique.

to determine if there is any primary user in the selected channel. This method is rather

fast but cannot guarantee if a channel is empty for low signal to noise ratios (SNRs). For

this method first a channel should be selected using filters, then a squarer and an integra-

tor are used to find the energy of the signal (see Fig. 1.2b). CFD refers to a method in

which received signals are coupled with periodic signals to make built-in periodicity and

hence has the ability to differentiate between noise and modulated signal and achieve high

accuracy. This is a complex and time consuming method, and can be used for those chan-

nels that have been already considered empty by ED method to reduce the sensing time.

This method is further discussed in Chapter 2. Detectors based on any of the methods

mentioned above can be realized either in digital or analog domains. Digital approaches

commonly use a fast Fourier transform (FFT) block and they need a high bandwidth (BW)

analog-to-digital converter (ADC). So while they can be more accurate (not necessarily),

area, complexity, power consumption, and sensing time are increased. As a result, analog

approaches are more preferable.
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There have been quite a few circuit-level implementation of analog spectrum sensors

for CRs reported in the literature [9, 10, 11], all use ED method and hence have the prob-

lem of low sensitivity. One structure is a digitally-assisted implementation in which digital

windows are used instead of bulky tunable filters to select the channel and calculate the

energy by correlation-integration to the received RF signal after down-conversion to base-

band (BB) and is called multi-resolution spectrum sensing (MRSS) [9]. The decision

making for the existence of the signal is performed in digital domain. The main issue with

this approach is although multiplying by a window increases the signal to noise ratio, it

doesn’t act as a channel select filter. Windowing selects all channels with higher signal

to noise ratio, it doesn’t reject any of them. This means not only the desired channel has

higher SNR but the non-desired channels have higher SNR without any rejection, so it does

not increase the maximum interference to noise ratio (INRmax), which is the highest level

of the signal in the adjacent channels to the level of noise that can be rejected by the detec-

tor. A more advanced MRSS technique is explored in [10] and is called spread spectrum

technique. This technique correlates the received RF signal (using a mixer and an integra-

tor) with a spread signal created by a synthesizer and is matched to the input signal. This

makes a non-perfect autocorrelation (energy) of the input RF signal. The other implemen-

tation uses an adder-merged low-pass filter (LPF) followed by two cascaded second-order

tunable low-pass BB filters to select the channel BW [11]. The second-order BB filters

consist of four circuit units arranged in parallel and operate at optimized noise and power

consumption in accordance with the desired signal level by changing the number of active

circuit units. This method is based on a received signal strength indicator (RSSI) circuit;

rectifiers and limiters are used as a squarer, and an RC filter is used as an integrator. The

decision is made in digital unit. While this architecture covers frequencies from 30 MHz

to 2.4 GHz, it can only be used as an interferer detector for frequencies above 862 MHz.

It achieves higher sensitivity compared to [9] but still doesn’t cover negative SNRs.
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In Chapter 2, a CMOS analog spectrum sensor for a CR receiver is presented based

on both energy and feature detection methods to compromise between these two methods

and use the advantage of both while eliminating their downsides.

1.2 Real-time spectrum sensors

Conventional analog integrated spectrum sensing blocks use ED techniques [9, 11, 10,

12] and quasi-cyclostationary feature detection (QCFD) technique [13] for signal detec-

tion. The former calculates energy of the incoming signal and compares it to a threshold

while the latter takes advantage of CFD techniques for eliminating the effect of input noise

in decision making. Both methods are implemented after frequency down-conversion of

the incoming RF signal to BB, which may introduce several non-linearity terms to the

original signal and fill more white spaces. Impact of down-conversion on the accuracy of

white space detection is studied in [14]. Besides, conventional real-time spectrum sen-

sors usually require use of a wideband, fast-sweeping frequency synthesizer [9, 12, 15]

or a wideband ADC [16, 17] along with the down-converter and spectrum sensing block,

which both are complex and power hungry.

For a real-time spectrum sensor, all the channels in a frequency band need to be de-

tected in a specific time (sensing time). As mentioned earlier, in a CR transceiver, this

sensing time needs to be minimized so that the data transmission time can be maximized.

Sensing process should be performed periodically to ensure accuracy of detected white

space and avoid interfering with primary users.

An analog discrete real-time spectrum sensor is implemented in [18] which uses a dis-

persive delay structure (DDS), or “phaser”, to separate channels with different frequencies

in time domain. This is performed by assigning different delays to different frequencies

in a time-limited modulated signal. Fig. 1.3 shows the basic architecture of this spectrum

sensor. The phaser in [18] is an all-pass filter (APF) realized with an off-chip transmission
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Figure 1.3: Principle of a phaser-based real-time spectrum sensor.

line with a stepped group-delay (GD) characteristic (as shown in Fig. 1.3) creating a spe-

cific delay for each frequency channel. The incoming modulated signal is time-limited by

multiplication with a Gaussian pulse and then passes through the phaser for conversion of

frequency difference to time difference and is finally converted to “1”-“0” pattern by an

envelope detector and a Schmitt trigger, indicating the presence and absence of the signal

in the corresponding channel. The reason for using Gaussian pulse instead of rectangular

is to make the transitions smoother and reduce sideband power. A Gaussian pulse has also

a Gaussian shape in frequency domain and achieves a small time-BW product as follows:

∆tG∆ωG =
σ√
2
× 1√

2σ
=

1

2
(1.1)

where σ is the standard deviation of the Gaussian pulse. BW of the Gaussian pulse

6



(∆ωG = 1√
2σ

) should be smaller than the frequency steps of the phaser.

Phaser-based spectrum sensors are simple, wideband, fast, and don’t require frequency

down-conversion and wideband synthesizer and operate at RF frequency. Time-frequency

resolution of the conventional phasers, which is the GD difference for two consecutive

channels, is determined by their GD slope in a GD vs. frequency response. However,

these phasers cannot be realized on-chip for frequencies less than a few gigahertz due to

large transmission lines used in these topologies. Other applications of phasers can be

found in [19].

Using the idea of analog spectrum sensing with phasers which employ GD character-

istics of a filter, a CMOS integrated real-time spectrum sensor is proposed, which utilizes

a practical on-chip phaser, suitable for CR applications [20]. The proposed real-time spec-

trum sensing method simplifies measuring in a more realistic environment when more than

one channel is occupied and employs a simple tunable filter with band-pass (BP) magni-

tude and GD response as a phaser. Chapter 3 discusses the proposed method and feasibility

of on-chip phasers. The integrated spectrum sensor functionality with a decision circuit is

also evaluated.

1.3 UWB receivers

According to FCC, a signal with a BW of greater than 500 MHz is considered as

UWB [21]. Multi-Band Orthogonal Frequency Division Multiplexing (MB-OFDM) sys-

tems provide high-speed, short-range wireless communication over 3.1-10.6 GHz spec-

trum with fourteen 528 MHz sub-bands and support data rates of 53.3-480 Mbps [22, 23].

The FCC power spectral density emission limit for UWB transmitters is -41.3 dBm/MHz

to minimize the interference with narrow-band (NB) systems operating at the same fre-

quency band. The standard assumes a noise figure (NF) of 6.6 dB for the UWB receiver

to achieve a sensitivity of -80.8 dBm (for data rate of 53.3 Mbps) to -70.4 dBm (for data
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INT1 (fINT1 (MHz)) INT2 (fINT2 (MHz)) PINT1/PINT2 (dBm) IIP3 (dBm)

UMTS (1900) 802.11b/g (2440) -23/-20 1.7

WiMAX (3500) 802.11b/g (2440) -20/-20 0.6

GSM (450) UMTS (1900) -25/-23 0.5

GSM (450) DCS (1800) -25/-22 -1.6

Table 1.1: Out-of-Band IIP3 Requirements for the First UWB Band Group

INT1 (fINT1 (MHz)) INT2 (fINT2 (MHz)) PINT1/PINT2 (dBm) IIP2 (dBm)

DCS (1800) DCS (1800) -22/-22 22.4

UMTS (1900) UMTS (1900) -23/-23 26.6

UMTS (1900) 802.11b/g (2440) -23/-20 23.6

802.11b/g (2440) 802.11b/g (2440) -20/-20 23.6

HiperLAN2 (5480) GSM (780) -18/-30 16.3

HiperLAN2 (5480) DCS (1800) -18/-22 24.3

HiperLAN2 (5480) UMTS (1900) -18/-23 26.4

HiperLAN2 (5710) 802.11b/g (2440) -18/-20 26.4

Table 1.2: Out-of-Band IIP2 Requirements for the First UWB Band Group

rate of 480 Mbps).

UWB devices need to function properly in the vicinity of strong NB systems. These

NB interferers can saturate the UWB systems, causing desensitization and compression of

the receiver. Besides, the second and third order intermodulation products (IM2 and IM3)

of these blockers can fall within the UWB frequency band. Usually an off-chip band-pass

filter (BPF) is placed after the antenna in the receiver path to select the desired UWB

frequency band and attenuate out-of-band blockers, relaxing the linearity requirement of

the receiver to some degree.

Table 1.1 and 1.2 show the out-of-band third-order input intercept point (OB-IIP3) and
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out-of-band second order input intercept point (OB-IIP2) requirements for the strictest

cases in the first UWB group (3.1-4.8 GHz), when the data rate is at its highest (480

Mbps) [24]. For each interferer in Table 1.1 and 1.2 and also for the UWB signal, the

received power is considered to be at an antenna located at 1 m distance from a transmitter,

transmitting the maximum allowable power (assuming a free space model for the path

loss). Maximum power of the received UWB signal within 3.1-10.6 GHz band is -30

dBm. For the values in Table 1.1 and 1.2, it is also assumed an off-chip RF BPF [25]

is employed after the antenna to attenuate the blockers outside the UWB band (3.1-10.6

GHz). The amount of each blocker power, after its attenuation by the RF filter, is also

mentioned in these tables. On the other hand, the in-band IIP3, coming from two adjacent

UWB channels, is much more relaxed, requiring a minimum IIP3 of only -18 dBm [24].

In addition to using off-chip BPFs, several techniques have been used to improve the

UWB system robustness towards interferers including using on-chip tunable BPFs, and

notch filters. Tunable BPFs enhance linearity by dividing the entire band to smaller sub-

bands, alleviating the interferer issues associated with UWB systems [26, 27]. Better

out-of-band linearity performance is obtained by increasing the number of smaller sub-

bands, which requires using higher Q filters. Notch filters improve OB-IIP3 and OB-IIP2

by rejecting the blockers. Location of notch frequencies can be set to the possible locations

of the blockers, which are known (see Table 1.1 and 1.2). Notch filters used in [28, 29]

reject the interferers in 5-6 GHz frequency band using passive on-chip components. In

addition to the large area, these filters suffer from low Q leading to low rejection and some

attenuation in the desired band. Besides, they just target interferes in a specific band.

Using on-chip high-Q BP or notch filters surpasses using low-Q ones in terms of out-

of-band linearity performance, requiring active configurations. Active high-Q filters oc-

cupy less area compared to passive ones at the cost of more power consumption. Using

active, high-Q, tunable BPFs for the entire band is not practical due to large power con-
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sumption. Since the possible location of blockers is known, less number of notch filters

is required, making them more practical compared to BPFs. In [30], a dual-band high-Q

CMOS active notch filter is used, rejecting blockers at 2.4 GHz and 5.2 GHz. However,

it doesn’t provide any flexibility regarding the location of the blockers and rejects two

blockers at two fixed points. To add some flexibility in using high-Q notch filters and re-

duce the total number of required filters, tunable notch filters can be employed. However,

for using tunable notch filters a dynamic system detecting the location of blockers at a

specific time is required. A tunable CMOS notch filter for 5-6 GHz blockers is employed

in [31], which rejects the strongest blocker in this band, assuming that the largest one is

mostly responsible for the deterioration of the linearity performance [32]. Location of the

strongest blocker in [31] is obtained by observing the response of a tunable RF BPF, with-

out implementing the actual energy detector. Using a tunable notch filter and knowing the

exact location of the blocker eliminates the need of having several active, high-Q notch

filters, making this structure more efficient in terms of noise and power consumption. This

technique doesn’t address non-linearity issues from blockers which are located in other

frequency bands including 802.11b/g.

In Chapter 4, a receiver front-end (RFE) plus BB filters, for MB-OFDM UWB radios

operating in the first band group is proposed, utilizing three tunable active notch filters,

for interferer rejection [33]. Each filter is associated with a specific frequency band cor-

responding to the possible interferer locations (2.35-2.75 GHz, 5.1-5.5 GHz, and 5.5-5.9

GHz). The locations of interferes are determined using a phaser-based spectrum sensor

[20], which is more suitable for interferer detection than conventional spectrum sensing

techniques [9, 10, 11, 12, 13]. The reason behind this is the elimination of frequency

down-conversion in phaser-based spectrum sensors. Using mixers for down-converting

strong blockers can lead to compression and desensitization of the system and its elimina-

tion improves linearity and reduces false detection.
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Figure 1.4: Conceptual block diagram of the proposed system.

Fig. 1.4 shows the conceptual block diagram of the proposed system. The entire system

works as follows; first the blocker detector is activated, while the receiver is deactivated,

and the input signal is directed to the detection path. Then the frequency locations of

up to three simultaneous blockers are reported to the notch filters of the receiver, which

reject the blockers in the receiving path, when the receiver is activated and the detector is

disconnected.
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2. QUASI-CYCLOSTATIONARY FEATURE DETECTION∗

The objective of this chapter is to find the best solution for detecting weak primary

signals in DVB-T band. The ultimate goal is detecting signals with negative SNR, while

keeping the method simple and fast, as both sensitivity and sensing time are the key pa-

rameters in designing spectrum sensors for CR applications. The proposed QCFD method

in this chapter is based on CFD techniques, which are very accurate, while avoiding their

slow characteristic.

2.1 Basic idea

2.1.1 Cyclostationary feature

A signal is called to have first order periodicity if it is periodic with a specific period;

x(t) = a cos(2παt+ θ) is periodic with period of 1/α. The power spectral density (PSD)

of this signal has components at frequency of α, so detection of this signal based on its

spectrum is easy. A signal is called to have second order periodicity or is cyclostationary

when its autocorrelation is a periodic function of t with a period corresponding to carrier

frequency [7, 34, 35]. Autocorrelation of x(t), Rx (t, τ), is given by:

Rx (t, τ) = E
(
x
(
t+

τ

2

)
x
(
t− τ

2

)∗)
(2.1)

Where τ is the time shift between two correlated signals. The Fourier coefficient of

autocorrelation function of x(t) which is called cyclic autocorrelation with the cyclic fre-

∗ c©2015 IEEE. Part of this chapter is reprinted with permission from P. Sepidband and K. Entesari,
“A CMOS spectrum sensor based on quasi-cyclostationary feature detection for cognitive radios,” IEEE
Transactions on Microwave Theory and Techniques, vol. 63, no. 12, pp. 4098-4109, Dec. 2015.
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quency of α, Rα
x(τ), is defined as [7, 34, 35]:

Rα
x(τ) = lim

T→∞

1

T

∫
T

x(t+
τ

2
)x(t− τ

2
)∗e−j2παtdt (2.2)

Fourier transform of a cyclic autocorrelation is called spectral correlation function (SCF)

which for a cyclostationary signal has components at frequency of α, and can be used for

detection of the signal:

Sαx (f) = F{Rα
x(τ)} =

∫ +∞

−∞
Rα
x(τ)e−j2πfτdτ (2.3)

Modulated signals are cyclostationary processes while noise is not, so SCF of modulated

signals has components at frequency of α while SCF of noise is zero [7, 34, 35]. This is

the idea behind CFD which can detect signals with low SNRs:

Sαy (f) = Sαx (f) + Sαw(f) = Sαx (f), α 6= 0 (2.4)

Where x denotes pure signal, w is white noise and y is signal with noise. Energy detector

operates on SCF for α = 0, thus noise uncertainty limits the detection, while feature

detector operates on SCF for α 6= 0, where noise has no components so detection of

low SNR signals is possible. Using FFT in CFD, all possible values of α for different

frequencies can be considered. For a modulated signal x(t) with modulation frequency

of fc, α is a non-zero integer factor of fc (α = mfc,m = 1, 2, ...) [7, 34, 35]. From (2)

and (3), CFD for a single frequency of α can be shown using block diagram of Fig. 2.1

[34, 35]. The smoothening filter is used to obtain a substantial reduction in random effects

which results in a better SCF. Note that Fig. 2.1 is the continues time realization of the

CFD method. Discrete time realization requires the use of FFT [35].
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Figure 2.1: Basic block diagram for a CFD technique.

2.1.2 DVB-T signals and QCFD technique

Digital Video Broadcasting-Terrestrial (DVB-T) is a standard for the broadcast trans-

mission of digital terrestrial television which uses Orthogonal Frequency-Division Mul-

tiplexing (OFDM) modulation [36]. Here the primary signal is assumed to be a DVB-T

signal. For a BB DVB-T signal with OFDM modulation, each sub-carrier is modulated

using one of B/QPSK, 16/64/256QAM modulations. In an OFDM symbol, orthogonality

of the sub-carriers destroys cyclostationary feature of OFDM signals [37], so α cannot

be easily an integer factor of fc. Cyclic prefix (CP), which is inserted at the beginning

of each OFDM symbol interval as a guard interval, and is the copy of the last part of the

symbol (see Fig. 2.2), creates cyclostationary feature and protects DVB-T signal against

inter-symbol interference (ISI) [37]. In Fig. 2.2, ∆ is the timing duration of the CP, and TU

is the symbol part duration, and TS = TU +∆ is the total symbol duration. Considering the

cyclostationary feature created by CP, the cyclic frequencies of the received signal cyclic

autocorrelation are defined as: (α = m/TS,m = 1, 2, ...) [38].

The pilot carriers aid the receiver in reception, demodulation, and decoding of the re-
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Figure 2.2: CP in an OFDM symbol.

ceived signal [37]. Two types of pilots are included in an OFDM DVB-T signal: scattered

pilots and continual pilots. The scattered pilots are uniformly spaced among the carriers

in any given symbol, while, the continual pilots occupy the same carrier consistently from

symbol to symbol. The location of all pilots is defined by the DVB-T standard [1, 36].

Fig. 2.3 illustrates the pilot spacing for a DVB-T OFDM frame where (k = 0, ..., Kmax)

represent carriers and (l = 0, ..., 67) represent symbols. Cyclostationary feature also exists

between each two pilots. Cyclic frequency of the cyclic autocorrelation between each two

pilots is defined as: (α = ∆k/TU) [38, 39], where ∆k, indicates the difference between

each two pilots in each symbol. For a DVB-T signal, as shown in Fig. 2.3, scattered pilots

are repeated every twelve carrier in any given symbol so (α = 12m/TU ,m = 1, 2, ...).

Cyclostationary feature created by scattered pilots is stronger than the one created by

CP [39]. So here α is chosen based on the scattered pilots. Autocorrelation of the input

signal plus noise is the sum of autocorrelations of the data, pilots, and noise, and cross-

correlations of the pilots, pilots and data, and signal and noise:

Ry (t, τ) = ACD + ACP + ACn + CCP + CCP,D + CCx,n (2.5)

Where AC denotes the autocorrelation, CC denotes the cross-correlation, P is for pilots,

D is for data, n is noise, x is pure signal, and y is signal plus noise. Cyclic autocorrelation
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Figure 2.3: Pilot spacing for a DVB-T OFDM frame.

created by scattered pilots can be added constructively to create a strong cyclic autocor-

relation. Table 2.1 shows the specifications of DVB-T OFDM symbols for two different

modes; 2K and 8K. From this table scattered pilots are repeated in each symbol with a

frequency of 10 kHz for 8K mode and 40 kHz for 2K mode. So α can be a factor of 10

kHz or 40 kHz for 8K or 2K mode, within the channel BW, respectively. Simulation of

the system in Fig. 2.1 using SystemVue software (version 2013.08) shows that peaking of

SCF at frequency of α for a BB DVB-T signal at different acceptable values of α does not

change, which makes sense because the SCF of the signal is based on correlation between

different carriers (see (2), (3), and (5)) and the peaking does not change with changing α

which represents the location of the peaks. So there is no need to evaluate cyclic autocor-

relation for different acceptable values of α if only the value of the SCF peak at α is of

concern. Note that here the value of α is chosen based on the position of the scattered pi-
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Parameter 8K mode 2K mode
Number of carriers K 6817 1705
Value of carrier number Kmin 0 0
Value of carrier number Kmax 6816 1704
Symbol part duration TU (µs) 1194.6 298.6
Carrier spacing 1/TU (kHz) 0.837054 3.348214
Scatter pilots repeating
frequency 12/TU (kHz)

10 40

Spacing between carriers
Kmin&Kmax

(K−1)
TU

(MHz)
5.71 5.71

CP 1
4

1
8

1
16

1
32

1
4

1
8

1
16

1
32

CP duration ∆ (µs) 298.6 149.3 74.6 37.3 74.6 37.3 18.6 9.3
Symbol duration TS (µs) 1493.3 1344 1269.3 1232 373.3 336 317.3 308

Table 2.1: Specifications of OFDM Symbol for Different Modes
Note: Values in italics are approximate values.

lots in the OFDM DVB-T signal and is different if other features of the DVB-T signal such

as position of continual pilots or CP is considered or if a different signal with a different

modulation is employed.

In an actual feature detector, in which features of an unknown signal including its

modulation, needs to be extracted, different values of α need to be considered. But here,

only the presence of the OFDM DVB-T signal with the purpose of achieving weak signal

detection (not feature extraction) is considered. If there is a peaking at f = α, the signal

exists and if not the signal does not exist or is lower than the achievable SNR of the

detector. This detector can be converted to a conventional energy detector if α=0, which

doesn’t reject SCF of noise. This method can be implemented in analog domain and

doesn’t require an FFT and hence is much easier and faster compared to CFD itself, while

it is more accurate than ED. It also doesn’t need an ADC. We call this method quasi-

cyclostationary feature detection or QCFD.
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Figure 2.4: Block diagram of a CR receiver with QCF detector.

2.1.3 QCF detector architecture

Fig. 2.4 shows the block diagram of a CR receiver with QCF detector located after

down-converter. As shown in Fig. 2.4, in transmission mode, the entire receiver is active

and QCF detector is inactive, while, in sensing mode, the low-noise amplifier (LNA) and

mixers work as well as the detector. The output of the detector passes through a voltage

gain amplifier for amplification to a desired level, then using an envelope detector and a

comparator as in [40] a “1”-“0” pattern can be obtained which indicates whether the signal

exists or not. In order to implement a QCF detector, the CFD structure shown in Fig. 2.1

needs to be employed to build the autocorrelation function of a signal, but here there is

no need to change α so the implementation of the entire system is much easier. Since the

goal is to implement the system in analog domain, the multiplication of the signals given

by Fig. 2.1 has to be expanded. Here, y(t) is a BB quadrature signal (y(t) = I + jQ). So,

the output signal of Mixer3, z(t) in Fig. 2.1, after expanding the multiplications of the
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complex signals is given by:

z(t) =

[(I cos(παt) +Q sin(παt)) + j(Q cos(παt)− I sin(παt))]×

[(I cos(παt)−Q sin(παt))− j(Q cos(παt) + I sin(παt))] (2.6)

Due to the similarities in the spectrum of real and imaginary parts of z(t), one of them is

enough in analog detection of the incoming signal. As a result, only the real part of the

output is considered here. The real part of this expression is:

Real{z(t)} =

[(I cos(παt) +Q sin(παt))︸ ︷︷ ︸
A

× (I cos(παt)−Q sin(παt))︸ ︷︷ ︸
B

]+

[(Q cos(παt)− I sin(παt))︸ ︷︷ ︸
C

× (Q cos(παt) + I sin(παt))︸ ︷︷ ︸
D

] (2.7)

and the imaginary part is:

Imag{z(t)} =

[(Q cos(παt)− I sin(παt))× (I cos(παt)−Q sin(παt))]−

[(I cos(παt) +Q sin(παt))× (Q cos(παt) + I sin(παt))] (2.8)

The term, Real{z(t)}, can be represented by the system shown in Fig. 2.5 which can be

implemented using integrated anaolg blocks. As shown in Fig. 2.5, two mixers are required

to make each “A”, “B”, “C”, and “D” expressions in (2.7), which can be shared for “A”

and “B” expressions (MixerI and MixerII), and for “C” and “D” expressions (MixerIII

andMixerIV ), if voltage signals are added/subtracted rather than current signals. Another
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Figure 2.5: Realization of Real{z(t)} from Fig. 2.1.

two mixers (MixerV and MixerV I) are required to make “AB+CD”.

2.2 Circuit implementation

Fig. 2.6 is one possible analog implementation of the QCF detector system shown in

Fig. 2.5 (including the smoothening filter and integrator) which is used here. Operational

amplifier-RC (Op-amp-RC) structure is used for input LPF and passive mixers are used for

multiplication. In Fig. 2.6, transimpedance amplifiers (TIAs) are part of the passive mixers

(Gm-Switch-TIA) which are also used as adders/subtracters. TIA5 with RC feedback

has also the role of integrator, which is required by the original system in Fig. 2.1. The

imaginary part can be created by adding another TIA as adder. The LO frequency of the

first four switch-pairs is α/2.
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Figure 2.6: Proposed system implementation of the QCF detector.

Noise, linearity and power consumption are the key features in designing each block.

For a typical spectrum sensor, noise limits the accuracy and linearity limits the dynamic

range (DR) [5]. Low noise feature is required by the detector to detect low level signals

and high linearity is required to detect high level signals without saturation. However,

a saturated detector still indicates that a signal exists, so in a typical detector linearity is

of less concern compared to noise as long as the probability of false alarm (a scenario in

which the signal does not exist but the detector detects a signal) due to non-linearity is

bearable.

A strong out-of-band blocker may lead to false detection by the detector in the case
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of poor linearity, but it is not critical, because it is not a threat to primary users or the CR

receiver, as in this scenario neither the CR user is interfering with the primary users nor

the CR transceiver is working in a band close to a blocker. It only reduces the number

of empty channels. Although it is always desired to have out-of-band interferer detector

in addition to signal detector and remove out-of-band interferers for the CR system to

increase the number of white spaces.

As mentioned in the previous section, SCF of noise is zero for α 6= 0. This feature

relaxes the low noise characteristic of each block in QCF detector to some degree. So each

block of the QCF detector is designed to provide high enough linearity and low power

consumption. The following sub-sections discuss the transistor-level implementation of

each block.

2.2.1 Input filters

The detector is placed after the down-converter as shown in Fig. 2.4. This means

that a BB LPF with a BW equal to the down-converted channel BW, 4 MHz, (half of RF

channel BW) is required at the beginning of the detector to attenuate adjacent channels and

decrease false alarm probability. Note that this BB LPF in sensing mode is not the same

as receiver BB LPFs in transmission mode due to the fact that the detector BB LPF has a

fixed BW chosen based on primary signal channel BW, while the receiver BB LPFs in the

transmission mode, which are for secondary signals, are not based on the primary signal

channel BW. Here, five cascade first-order op-amp-RC LPFs, which compose a fifth order

LPF, are employed for each I and Q paths (LPF in Fig. 2.6) to remove the effect of adjacent

channels to some degree. BW of each BB active-RC LPF is around 22 MHz, which makes

a total BW of around 10 MHz to guarantee that the main channel is not attenuated much.

A fully differential folded-cascode op-amp is used in the filter [41] (U1 in Fig. 2.6).

U1 transistor-level implementation is shown in Fig. 2.7. A continuous common mode
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feedback (CMFB) circuit is adopted in order to suppress variations at the output common

mode and is used with four common source transistors (M1 to M4), as voltage controlled

resistors, operating in the linear region. A change in the tail current (M6) leads to the

adjustment of the bias currents when the DC of output voltage is different from the desired

one. There are two methods employed here to increase the gain; one is using the symmetric

output branch consisting of common gate transistors (M16 to M19) with cascode current

loads (M10, M11, M24, and M25), and the other is using common-source gain boosting

transistors (M12 to M15, and M20 to M23). Ten op-amps are used in the filter, five in

each I and Q paths, so power consumption is critical here. This structure can be designed

in a way to have low power consumption considering that M1, M2, M3, and M4 operate

in linear region and gain is high enough. Simulating this op-amp in 0.18-µm CMOS IBM

technology results in gain-BW (GBW) product of 170 MHz for a 20 pF load, and phase

margin (PM) of 72.4o. The whole filter section (including 10 U1 op-amps) only draws 4.3

mA from a 1 V power supply (Vdd’).

2.2.2 Mixers and adders/subtracters

Passive mixers are used in Fig. 2.6. They have the advantage of higher linearity com-

pared to active mixers [42]. Besides, ten mixers are required if active structures are em-

ployed, while this number is reduced to six (with two mixers sharing one TIA) using

passive structures. The reason behind this is that a passive structure can be easily modified

in a way to add voltage signals rather than current signals by introducing another resis-

tor at the output of switch-pair, compared to conventional current-driven passive mixers.

Adding voltage signals has the advantage of reusing the two mixers used for building each

expression in (2.7), reducing the total number of mixers. This simplifies the system and

reduces power consumption. This is clarified in Fig. 2.8 in which currents are added rather

than voltages in two active Gilbert cell mixers to make expression “A” in (2.7) and hence

23



M11M10M9
Vb1

M18 M19

M16 M17

M24 M25
Vb2

M15

M14

M13

M12

M21

M20

M23

M22

M1 M2
Vref-cm

M3 M4

M5 M6

M7 M8

Vdd’

Vin+ Vin-

Vb3

Vb4

Vout+
Vout-

Vdd’ Vdd’

Vdd’Vdd’

 

Figure 2.7: Op-amp structure of the LPF (U1 in Fig. 2.6, V dd′ = 1 V ).

mixers cannot be shared.

Transcoductance (Gm-Cell in Fig. 2.6) is a simple gm stage with active load (M7 and

M8) which uses a simple linearity improvement technique called derivative superposition

[43]; In this method, the third derivative of transcoductance of one transistor (G3) cancels

G3 of another transistor. To realize this approach, one transistor is in saturation region

(M1) with negative G3 and the other transistor (M2) is in deep-triode with positive G3.

A triode FET (M2) and a stacked FET (M5) are inserted in parallel with M1 as shown in

Fig. 2.6. The reason of using stacked FETs (M5 and M6) is driving gate and drain of M2

and M3 with opposite polarities and hence increasing their G3 (large variation rate of M2
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Figure 2.8: Adding currents of two active Gilbert cell mixers to make expression “A” in
(2.7).

and M3 drain current in deep-triode region). So there is no need to increase M2 and M3

size to have sufficient G3 to cancel G3 of M1 and M4. Using this method the linearity

improves by around 6dB compared to the conventional Gm (without M2, M3, M5, and

M6) while other specs did not change much because M2 works in triode region.

Using large size MOS switch-pair (Switch-Pair in Fig. 2.6) provides better linearity

performance, but with more switch parasitic capacitance which results in more noise [42].

By biasing switch transistors slightly into the OFF region, lower noise and higher IM2

performance will be achieved. NMOS transistors are selected here for their better trans-

mission performance.

The TIA converts the down-converted current into voltage. Normally a TIA is com-

posed of an op-amp with a resistor in negative feedback configuration. Here resistors

between switch-pairs and op-amps (R1 and R2) are also added. Using this approach, TIAs

also work as voltage adders/subtracters at the same time as shown in Fig. 2.6. An op-amp
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in the TIA at the output of the switch-pair in a conventional current-driven passive mixer

provides low impedance node at the switch-pair output [42]. Inserting the excess resistors

(R1 and R2) after the switch-pairs increases the output impedance of switch-pair, reducing

the effective Gm, so this resistor should be small compared to output resistance of Gm it-

self. Here the main role of op-amp is for addition/subtraction. TIA5 also works as a lossy

integrator with the capacitor C added in the feedback. The op-amp employed for each TIA

(U2 in Fig. 2.6) is shown in Fig. 2.9 and is a feedforward structure which can achieve high

unity GBW [44]. Because BW is not critical here the gain is increased to achieve better

linearity from op-amp. Another advantage of this structure is having a left half s-plane

zero which improves the PM of the op-amp which is critical here due to severe parasitic

capacitances of the succeeding blocks. This structure has drawback of high power con-

sumption and is not suitable for input LPFs. Note that U1, used for input LPF, cannot be

used here because there is no decoupling caps here to separate the DC bias from previous

blocks and U1 is too sensitive to input effects changing its bias. Although global feedback

offers tighter control, which is not needed here, it has compensation and latch-up issues,

so U2 uses local CMFB.

The mixer (Gm-switch-TIA) is simulated in 0.18-µm CMOS IBM technology. It

achieves NF of 33 dB to 15 dB, and relatively constant conversion gain (CG) of -1.7

dB for LO power of -30 dBm to -10 dBm, for input frequency changing from 100 kHz to

10 MHz and LO frequency of 1 MHz. Mixer IIP3 changes from 5.5 dBm to 10 dBm for

a LO frequency of 1 MHz in a two tone test in which RF1 and RF2 change from 100 kHz

to 10 MHz with 100 kHz separation (see Fig. 2.10). It also dissipates 4.8 mA from 1.8 V

voltage source. NF is high at this low frequency due to flicker noise but is bearable by the

system. U2 which is used in the mixer has a GBW of 1.35 GHz for a 3 pF load, and PM

of 60.3o. The whole Mixers, and adders/subtracters section (including U2 op-amps) draws

29.3 mA from a 1.8 V power supply (Vdd).
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Figure 2.9: Op-amp structure for the TIA of the mixer (U2 in Fig. 2.6, V dd = 1.8 V ).

2.3 Simulation results

The QCF detector is insensitive to input noise, this means increasing the input noise

power has no effects on the output of the detector. The only sources for noise are the com-

ponents building the detector. This advantage means that any sensitivity can be achievable

as long as enough amplification is applied to the input signal by the receiver (LNA and RF

mixers).

To see the effect of input noise rejection in simulation, an IQ BB DVB-T signal with

a power of -82 dBm is applied to the system, and a white noise source with different

noise amplitudes is added to the OFDM signal. The input BB IQ data has extracted from

SystemVue software, with the noise added in MATLAB, and the simulations are performed

in Cadence for 0.18-µm CMOS IBM technology. Fig. 2.11 shows the simulated input

power spectrum and the resulted SCF for signal power of -82 dBm and noise power of

-105 dBm, -91 dBm, and -77 dBm. As shown in Fig. 2.11 all inputs (with similar input
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Figure 2.10: Mixer simulation results; (a) NF vs. frequency, (b) CG vs. LO power for LO
frequency of 1MHz, (c) IIP3 vs. RF frequency in a two-tone test for a LO frequency of
1MHz.

signal and different noise values) result in similar SCFs and this confirms that the SCF of

input noise is zero. So any SNR is achievable as long as input noise level is changing.

Increasing the number of samples and simulation time reduces the variations seen in the

spectrum.

Fig. 2.12 shows the simulated detected output power (peak of SCF) vs. BB input
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power spectrum. As shown in Fig. 2.12 the minimum and the maximum detected input

signal powers are -106 dBm and -62 dBm, respectively, which results in a DR of 44 dB.

For signals higher than -62 dBm the detector saturates but it still indicates the presence of

the signal.

2.4 Fabrication and measurement

The QCF detector is fabricated using 0.18-µm CMOS IBM technology. The fabricated

IC microphotograph is shown in Fig. 2.13. The overall area and power consumption are

1.1 mm2 and 57 mW respectively.

Sensitivity and sensing time are two major features for a spectrum sensor. The QCF

spectrum sensor only needs to be tested for its sensitivity because of the fact that it works

in frequency domain, so timing issue is addressed properly here. The sensing time for the

entire RF band (54-862 MHz) is determined by the total switching times between each two

adjacent channel frequencies of the synthesizer used in the down converter of the receiver,

and the envelope detector and comparator in the decision circuit, which is too small (less

than a micro-second) compared to digital approaches and what is required by the standard

(which is in the order of milliseconds).

Testing QCF detector requires generating OFDM-modulated DVB-T signals with dif-

ferent SNRs. In order to generate a DVB-T signal, SystemVue software is used. Level

and center frequency of the signal is set by the software. The generated RF data from Sys-

temVue is then downloaded to a signal generator (Agilent E8267D PSG signal generator)

which creates noisy RF DVB-T signal and is followed by an off-chip IQ down-converter

(QD15A10 SigaTek) to create BB I/Q DVB-T signals with OFDM modulation. Here, the

input signal is an 8K mode BB DVB-T signal with 8 MHz channel spacing, CP of 1/8, and

64QAM sub-carrier modulation, so frequency of α can be a non-zero integer factor of 10

kHz within the channel BW (α = m.10kHz,m = 1, 2, ...). α is assumed to be 2 MHz,
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suitable for both 2K and 8K modes, and as a result fLO = α/2 is 1 MHz. The output

spectrum is obtained by a spectrum analyzer (SA) (Agilent E4446A PSA SA). Fig. 2.14

shows the measurement setup for the QCF detector.

The QCF detector checks the availability of the signal in the current down-converted

channel by the IQ down-converter, so in a real scenario with considering all channels in

the entire CR band (54-862 MHz), the position of the channel in the band is determined

by the synthesizer of the down-converter (the channel center frequency is the same as the

current LO frequency of the down-converter).

The option of changing noise level is not available in measurement when the RF signal

is directly downloaded to the signal generator from SystemVue. As a result, to evaluate

the input noise insensitivity of the QCF detector, some BB I/Q input data saved from

SystemVue, same as the ones used previously for simulation, with signal power of -82

dBm and different noise values (-105 dBm, -91 dBm, and -77 dBm), are sent to an arbitrary

wave generator (AWG) (Agilent N8241A) using MATLAB to create BB I/Q noisy DVB-T

signals, which all result in similar SCFs (see Fig. 2.15).

Note that the AWG amplifies the input signal based on its resolution, so this method

cannot be used for measuring the sensitivity. In other words, the AWG has a limited

resolution which results in a limited minimum input signal. So to determine the sensitivity,

RF data should be directly sent to the signal generator from SystemVue. Since the option

of changing noise source is not available, signal level is changed. The noise level at the

input spectrum is determined by the signal generator and the down-converter, while the

signal level is adjusted by the software. Positive SNR values of the input spectrum can

be easily calculated using the SA. To perform this task, the input spectrum is averaged

by the SA, therefore the difference between the level of the signal and noise is SNR (see

Fig. 2.16). This assumption is correct as long as the signal level is at least 10 times larger

than the noise level. When noise level is close to signal level, both signal and noise values
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should be considered in the channel BW. In this case the difference shown in Fig. 2.16 is

D = 10 log((S + N)/N), indicating the actual SNR is 10 log(10D/10 − 1). To achieve

accurate desirable negative SNR values, the signal level is adjusted by the software and

the value of D is monitored by the SA for D = 1 (SNR=-6 dB). Then, enough number

of attenuators are placed after the signal generator to precisely lower the signal level and

hence SNR, below -6 dB. Fig. 2.17 shows measured input power spectrum and the resulted

SCF for SNR=3 dB (D=5 dB), -15 dB, -24 dB, and -27 dB. Note that negative SNRs (lower

than SNR=-6 dB for D=1) do not generate distinguishable input power spectrum so only

one (SNR=-15 dB) is shown in Fig. 2.17b. As shown in Fig. 2.17e minimum detected

SNR is -24 dB and after this value only noise can be seen.

Fig. 2.18 shows detected output power (peak of SCF) in dBm vs. SNR at the input

of the QCF detector in dB. From Fig. 2.18, DR of the spectrum sensor is found to be 39

dB. Note that after SNR of 15 dB the SCF does not change but it still indicates the signal

exists. For Fig. 2.12 the input power in simulation can be converted to SNR considering the

signal generator and down-converter noise level, which results in minimum and maximum

simulated SNR of -26 dB and 18 dB respectively (compared to minimum and maximum

measured SNR of -24 dB and 15 dB respectively). Note that simulation is performed

before circuit parasitic extraction leading to better results compared to measurement.

In Fig. 2.19 the effect of adjacent channels on detected power is shown; an INR of

25 dB (at the input of the detector) is applied to an adjacent channel (signal level in the

adjacent channel is 25 dB higher than noise level) and the SCF is measured. Fig. 2.19

shows that if the input is located at the first adjacent channel, QCF detector detects a

signal with the same power as if the signal was in the original channel and that is a false

detection. The reason behind this is that the BW of the BB LPF (10 MHz) is greater

than the down-converted channel BW (4 MHz). Although even with a lower BW enough

rejection cannot be achieved with on-chip solutions. The level of the detected power is
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lower for next adjacent channels and there is no false detection if the signal is at the fourth

adjacent channel. An input LPF with higher rejection can reduce false alarm probability.

To check how α affects the SCF, it is changed for an SNR of 9 dB and the according

SCF is measured as shown in Fig. 2.20 for four different cases (α=0.1, 1, 2, and 3 MHz).

Fig. 2.21 shows α variations vs. detected power at frequency of α for SNR of 9 dB, which

shows detected power doesn’t change much within the channel BW (which is 4 MHz after

down-conversion). The variation of detected output power vs. α is due to the mixers and

output LPF frequency response variations within the BW.

As said before there is no need for an ADC for decision making, only an amplifier, an

envelope detector and a comparator are enough. The amplifier is to amplify the output to a

level detectable by the envelope detector. The reference voltage in the comparator should

be chosen based on the QCF detector output noise level. If the level of the signal at the

output of the envelope detector is more than the level of the noise, then the output of the

comparator is a “1”, otherwise it is a “0”. To evaluate the operation of the detector with

decision circuit, a decision circuit including instrumentation amplifier, envelop detector,

and comparator along with the detector chip is placed on a PCB board (see Fig. 2.22).

The amplifier is a high-speed instrumentation amplifier which consists of three op-

amps [two stages of ADA4817âĂŞ1 and ADA4817âĂŞ2 (Analog Devices)] with a total

gain of 46 dB, and also has the role of differential to single-ended converter.

Table 2.2 shows performance summary and comparison of this work with other spec-

trum sensors. The spectrum sensors in [9, 11] lower the detection BW to increase the

sensitivity. [45] uses a dual-mode detection technique (a software based approach after an

on-chip receiver), in which two modes are employed; one is ED (coarse detection) with a

short sensing time and the other is correlation detection (CD) (fine detection) with a high

sensitivity (-104 dBm). The detected SNR for [45] is still positive. To have a fair compar-

ison, minimum detected BB SNR is compared rather than the sensitivity, as the sensitivity
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Parameter This work [9] [11] [17] [45]
Detection BW (MHz) 8 0.025-0.8 0.2-30 200 6
SNRmin (dB) -24a/-15b >0 >0 -5 >0
INRmax (dB) 25c - - 30 -
Sensing Time (ms) - - - 50d 0.1e/1f

Realizationg A A&D A D Ah

Power Diss (mW) 57 180 30-44 7.4 28
CMOS Tech 0.18 µm 0.18 µm 90 nm 65 nm 65 nm

Table 2.2: Performance Summary and Comparison of the QCF Detector with Recently
Reported Spectrum Sensors
a Before decision circuit.
b After decision circuit.
c Within 32 MHz BW.
d Is 1 ms for INR of 20 dB.
e ED with 1 dB noise error.
f CD with 1 dB noise error.
g “A” stands for analog and “D” is digital.
h Spectrum sensing after down-conversion and BB filters is performed using a software.

depends on the detection BW, SA resolution BW (RBW), and gain of receiver which are

not similar in all works. This work achieves the best SNR with analog approach. As can be

seen in Table 2.2,[17] uses digital approaches for spectrum sensing, and doesn’t consume

much power compared to analog approaches. This is because[17] assumes the signal in

BB is already in digital domain and does not consider an ADC, which should have a high

power dissipation for a BW of 200 MHz. The op-amp U2 in Fig. 2.6 for the QCF detector

has the main contribution to the power consumption. Using op-amps with lower power

consumption in the mixers can lead to a major reduction in power consumption.

2.5 Conclusion

An integrated analog spectrum sensor has been described and fabricated in a 0.18-µm

CMOS technology, which detects weak signals without increasing sensing time or de-
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creasing the detection BW. It uses QCFD technique with analog realization and is designed

based on knowing features of the primary DVB-T signals. It doesn’t have the complexity

and timing penalty of the digital CFD methods (no FFT and no ADC), while preserving

their accuracy, reaching SNR of -24 dB for 8 MHz channel BW and DR of 39 dB.
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Figure 2.11: Simulated input power spectrum and SCF for signal power of -82 dBm and
different noise powers; (a) input power spectrum for noise power of -105 dBm, (b) SCF
for noise power of -105 dBm, (c) input power spectrum for noise power of -91 dBm, (d)
SCF for noise power of -91 dBm, (e) input power spectrum for noise power of -77 dBm,
and (f) SCF for noise power of -77 dBm.
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Figure 2.12: Simulated detected output power (peak of SCF) vs. input power.
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Figure 2.13: Die micrograph of the fabricated QCF detector.
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Figure 2.14: Measurement setup for the QCF detector.
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Figure 2.15: SCF for signal power of -82 dBm and noise power of; (a) -105 dBm, (b) -91
dBm, and (c) -77 dBm.
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Figure 2.16: SNR calculation through power spectrum.
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SNR=-27 dB
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Figure 2.17: Input power spectrum and SCF for different SNRs; (a) Input power spectrum
for SNR=3 dB, (b) Input power spectrum for SNR=-15 dB, (c) SCF for SNR=3 dB, (d)
SCF for SNR=-15dB, (e) SCF for SNR=-24 dB, and (f) SCF for SNR=-27 dB.
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Figure 2.18: Detected output power (peak of SCF) vs. SNR at the input of the QCF
detector.
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Figure 2.19: Detected power vs. channel number for INR of 25 dB (channel number=0 is
the main channel, channel number=1 is the first adjacent channel, and so on).
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(d)

Figure 2.20: SCF for SNR of 9 dB, for different frequencies of α; (a) α=100 kHz (b) α=1
MHz (c) α=2 MHz (d) α=3 MHz.

42



 (kHz)

2000 4000 6000 8000

D
e
te

c
te

d
 P

o
w

e
r 

(d
B

m
)

-110

-105

-100

-95

-90

-85

-80

-75

-70

 

Figure 2.21: Detected power vs. α for SNR of 9 dB.

 

Figure 2.22: PCB showing the QCF detector chip and the decision circuit composing of
instrumentation amplifier, envelope detector, and comparator with the reference volatage.
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Figure 2.23: Decision circuit and the corresponding parts on PCB.
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3. PHASER-BASED REAL-TIME SPECTRUM SENSORS∗

The objective is to seek a simple, wideband, fast, and reliable spectrum sensor. Hence,

the focus of this chapter is on finding a real-time spectrum sensing method, which has

all the mentioned features. Conventional real-time spectrum sensing techniques usually

require a wideband fast sweeping synthesizer or a wideband ADC in addition to the spec-

trum sensing block. Here, another objective is to find a real-time spectrum sensor, which

doesn’t require these extra circuitry, which is possible using phaser-based techniques.

3.1 Proposed architecture

As mentioned in Section 1.2, conventional phasers are APFs with linear or stepped

GD characteristic realized using transmission lines [19], so ideally the incoming time-

limited signal is delayed without any attenuation. Since each frequency in the signal

is delayed differently, the channels are discriminated in time domain. For a proper dis-

crimination, time-frequency resolution should be greater than the Gaussian pulse duration

(∆τi = τi+1 − τi ≥ T ), assuming an ideal stepped GD with no channel spreading, as

shown in Fig. 1.3. This is to avoid any overlap between two consecutive channels due to

temporal dispersion caused by the phaser.

Using conventional methods, to discriminate different channels in a frequency band,

each channel should have a specific GD, different from other channels, and time-frequency

resolution should be enough. A CMOS APF can be designed in a way to provide such GD.

A general second order APF has the frequency response of:

H(s) =
s2 − ω0

Q
s+ ω2

0

s2 + ω0

Q
s+ ω2

0

(3.1)

∗ c©2016 IEEE. Part of the data reported in this chapter is reprinted with permission from P. Sepidband
and K. Entesari, “A phaser-based real-time CMOS spectrum sensor for cognitive radios,” in IEEE Radio
Frequency Integrated Circuits Symposium (RFIC), pp. 274-277, May 2016.
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Where ω0 is the resonance angular frequency, and Q is the quality factor. The GD response

can be derived as:

τ(ω) = 2×
ω3

0

Q
+ ω0

Q
ω2

ω4
0 + ω2

0( 1
Q2 − 2)ω2 + ω4

(3.2)

It can be shown from (3.2) that the maximum GD happens at ω = ω0 for Q � 1√
2
.

Fig. 3.1 shows GD for different values of f0 and Q. To provide a specific GD for each

channel, different from other channels, f0 should be outside the desired frequency band.

It means the band of interest should be either below f0 or above f0 but not simultaneously

at both sides, to avoid similar GDs for two channels which prevents their discrimination

in time domain. The closer is the frequency of operation to f0, the more slope and hence

the more resolution is obtained. From Fig. 3.1, decreasing f0/Q enhances time-frequency

resolution (∆τ ), for a smaller frequency band near f0, however, it necessitates using a

longer Gaussian pulse (higher T ), which makes the condition, ∆τ ≥ T , harder to achieve.

For instance, consider Fig. 3.2 where f0 = 100 MHz and Q = 100, and the purpose is

separating two tones located above f0 with 1 MHz distance (f1=110 MHz and f2=111

MHz). From Fig. 3.2, time-frequency resolution, ∆τ , is around 0.3 ns from frequency of

110 MHz to 111 MHz, which is not enough for separating the two single tones, f1 and f2;

as mentioned earlier, BW of the Gaussian pulse (∆fG) plus BW of each channel (∆fch),

which is zero here, should be smaller than the frequency steps of the phaser (fstep):

∆fG + ∆fch ≤ fstep (3.3)

which for this example translates to: ∆fG ≤ 1 MHz. From (1.1), σ should be greater than

112.5 ns, leading to a T of at least 675 ns (assuming T can be approximated as: T ∼= 6σ),

so time-frequency resolution condition, ∆τ ≥ T , is not satisfied. Increasing order of filter

doesn’t sufficiently improve the resolution. Cascading N biquads results in addition of
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(a)

(b)

Figure 3.1: GD of a 2nd-order APF for (a) f0=100 MHz and Q=1, 10, 100, 1000, and (b)
Q=10 and f0=10 MHz, 100 MHz, 200 MHz, 300 MHz.

their phases which multiplies the resolution by N , if the biquads are similar.

One way to deal with this issue is using a loop technique, which is used in conventional

phasers [46] to improve time-frequency resolution, and requires a delay block added in

the feedback of a system consisted of a DDS unit and an amplifier as shown in Fig. 3.3.

This infinite loop enhances the GD slope; the channels are partially discriminated in time

domain, in each transition from the delay line. Gradually at a specific time, depending on
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Figure 3.2: GD of a 2nd-order APF for f0=100 MHz and Q=100 from 110 MHz to 111
MHz.

DDS Gain

Delay 
Line

OutputInput

Figure 3.3: Loop technique to increase time-frequency resolution.

the lowest GD slope in the frequency band, all channels get separated. The delay amount

of the delay line should be at least T −GDmin (neglecting time spreading in each channel

and assuming an ideal stepped GD characteristic for the DDS), to avoid any overlap, which

T is the Gaussian pulse duration, and GDmin is the minimum GD of the DDS unit.

One way to realize an on-chip delay line is employing a linear-phase APF, however,

considering the required delay, this method is not feasible. As an instance, consider the

previous example for separating two signals located at f1 = 110 MHz and f2 = 111

MHz. For T=676 ns, the delay line should have a delay of at least: 676 − 1.3 = 674.7

ns (see Fig. 3.2) to separate only two signals located at f1 and f2 neglecting spreading of
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Figure 3.4: GD response of a 10th order equiripple all-pass delay filter with 0.50 phase
error and fC of 100 MHz.

the original time-limited input. It can be shown that a 10th order equiripple all-pass delay

filter [47] with 0.50 phase error and fC of 100 MHz has a delay of only 13 ns (see Fig. 3.4),

which fC is the -3 dB cut-off frequency of the equivalent LPF frequency response. This

delay is still not sufficient for discriminating the two signals. Note that for this equiripple

all-pass delay filter, a lower fC (50 MHz) can still produce a constant GD (25 ns) at

f1 = 110 MHz and f2 = 111 MHz which is still not sufficient. Also using a linear GD

DDS for separating channels results in a significant temporal dispersion, requiring higher

values for the delay line. So there is no integrated solution for the delay block.

A filter with a narrow BP shape GD as in Fig. 3.1 can separate a single channel located

at f0 if the GD is sufficient. A second order BPF has a GD of half of a second order APF. If

the purpose is separating only one channel, BPF is superior to APF as both magnitude and

GD have BP shapes; BP GD participates in channel discrimination, while BP magnitude

rejects undesired channels. As mentioned earlier, the loop technique adds a desirable

delay using a delay block to enhance time-frequency resolution. Knowing this fact along

with the mentioned feature of a BPF, an alternative solution to add the desirable delay for
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Figure 3.5: Proposed phaser-based integrated spectrum sensor.

enhancing time-frequency resolution is proposed.

Fig. 3.5 shows the proposed real-time integrated spectrum sensor architecture. In this

architecture, a periodic Gaussian pulse, rather than a single one, is applied to the multiplier

providing a time-limited periodic signal, Vout,Mult1(t).

Vout,Mult1(t) =
∞∑
n=0

Vout,LNA(t)×G(t− t0 −
T

2
− nTG) (3.4)

where Vout,LNA(t) is the incoming signal after LNA, G(t) is a Gaussian pulse with a du-

ration of T , which is repeated with a period of TG and has the following form in time and

frequency domain:

G(t) =
AG

σ
√

2π
e

−t2
2σ2

F←→ AGe
−ω2σ2

2 (3.5)

where AG is the amplitude of the Gaussian pulse in frequency domain. The resulting

periodic time-limited signal is then applied to a phaser, which is a tunable BPF with BP

GD. The center frequency of this phaser is set to the center frequency of each channel

periodically with the period of TG, creating a separated channel in each period. TG should
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be chosen according to the required time-frequency resolution. Assuming that TG is long

enough and Vout,LNA(t) is composed of N single tones with a frequency separation of

∆ω, each with an amplitude of Ak, output of the phaser in frequency domain (VP (ω) =

F (Vout,Phaser(t)) in Fig. 3.5), when the center frequency of the BPF is set to ω0, is as

follows:

VP (ω) =
N−1∑
k=0

AkAGe
− (ω−ω0−k∆ω)2σ2

2 e−j(t0+T
2

)(ω−ω0−k∆ω)H(ω) (3.6)

where H(ω) is the transfer function of the phaser when the center is set to ω0 and for

n BPF biquads (phaser) has the following polar form:

H(ω) = |H(ω)|ejΦ(ω),

Φ(ω) = n
π

2
− n tan−1(

2Qω

ω0

±
√

4Q2 − 1) (3.7)

In the vicinity of ω0, phase of |H(ω)|, Φ(ω), can be approximated as:

Φ(ω) = n
π

2
− n tan−1(2Q±

√
4Q2 − 1)− 2nQ

ω0

(ω − ω0) (3.8)

By placing (3.8) in (3.6), VP (ω) can be approximated as:

VP (ω) =

|H(ω)|A0AGe
− (ω−ω0)2σ2

2 e
−j
(

(t0+T
2

+ 2nQ
ω0

)(ω−ω0)+Φ0

)
+

N−1∑
k=1

|H(ω)|AkAGe−
(ω−ω0−k∆ω)2σ2

2 e−j
(

(t0+T
2

)(ω−ω0−k∆ω)+Φk

)
(3.9)
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where Φk, k = 0, 1, ..., N − 1 is:

Φk = −nπ
2

+ n tan−1
(2Q(ω0 + k∆ω)

ω0

±
√

4Q2 − 1
)

(3.10)

Equation (3.9) indicates that when the center frequency of the BPF is set to ω0, in a time

duration of TG, the phaser will shift the main signal at ω0 in time domain with a value

of 2nQ/ω0, while attenuating other channels without creating any delay in them. Note

that the assumption of having single tones in each channel for the incoming signal is for

simplicity. The above conclusion still holds for wideband channels; however, the effective

BW of the signal at input of the phaser for each channel is the BW of that channel (∆ωch)

plus BW of the Gaussian pulse (∆ωG = 1/(
√

2σ)), rather than the ∆ωG alone in the

case of single tones. The frequency condition of (3.3) for the proposed phaser is a bit

more relaxed considering the reduction in the effective BW of each channel after passing

through the phaser, due to its BP shape. Considering the effect of TG on (3.9), Gaussian

shape signal at the frequency of ω0 will be replaced by several impulses sampling it with

a frequency of 1/TG.

This method is practical using on-chip solutions and can discriminate a wideband input

signal in time-domain, since the filter can be designed to have a sufficient GD in one

single channel at a time, and TG can be chosen as long as required. Channel spreading

has minimum effect on this design with a long enough TG. The output of the filter should

be multiplied by a delayed version of the Gaussian pulse train with the delay of average

GDs of all channels (for simplicity), to avoid undesirable channels in each period of TG.

This delayed Gaussian pulse train selects only the delayed part of the output signal in

each period (the desired channel), which is delayed by the GD response of the phaser, and

rejects the part that is not delayed and is attenuated by the BP frequency response of the

phaser (rest of the channels in the frequency band). To have a channel discrimination in
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a frequency band consisting of N channels, N pulses in the Gaussian pulse train and N

states for the filter are required, so the tuning process in the entire band takes N × TG.

The architecture in Fig. 3.5 functions properly provided that:

TG > T +GDMax (3.11)

GDmin ≥
T

2
(3.12)

Equation (3.11) is required to avoid any overlap between two states, while (3.12) is re-

quired to separate each channel in its own state (as shown in Fig. 3.5). These conditions are

replacements for time-frequency resolution condition in conventional phasers [18]. While

(3.11) is easy to achieve due to the term TG, (3.12) puts some constraints on the achievable

frequency resolution. From (3.11) and (3.12) and assuming T ≈ 6σ, ∆ωG = 1/(
√

2σ),

and ∆GD = GDMax −GDmin, the following conditions can be obtained:

TG > GDmin + ∆GD +
6√

2(∆ωG)
(3.13)

GDmin >
3√

2(∆ωG)
(3.14)

Equations (3.3) and (3.13) indicate that a lower sensing time (lower TG) requires a lower

GD with lower variation (lower GDmin and ∆GD) and a lower frequency resolution

(higher ∆ωstep). Also (3.3) and (3.14) indicate that a lower frequency resolution relaxes

the condition on minimum GD.

High GD variation also increases the chance of missed detection. To better understand

this, consider two extreme scenarios when GDavg is much smaller than GDMax and much

higher than GDmin (Fig. 3.6), which creates no overlap between the separated channel

(desired channel) and the delayed Gaussian pulse train, leading to missed detection. So
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Figure 3.6: Variation of GD leading to missed detection.

the following conditions apply to the phaser GD variation:

GDmin > GDavg − T, GDMax < GDavg + T (3.15)

From (3.15) and assuming T ≈ 6σ and ∆ωG = 1/(
√

2σ), following condition is con-

cluded for GD variation:
∆GD

GDavg

<
12√

2(∆ωG)(GDavg)
(3.16)

Equation (3.16) indicates that with a wider BW Gaussian pulse (lower frequency resolu-

tion), the condition on GD variation is stricter, meaning GD variation should be smaller.

The conditions stated in (3.13), (3.14), and (3.16) are plotted in Fig. 3.7, with valid

areas specified by small arrows. Fig. 3.7a indicates that for a ∆fG of 16 MHz, a min-
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imum GD of at least 21.1 ns is required. Assuming a GDmin of 50 ns, Fig. 3.7b plots

TG vs. Gaussian pulse BW, for different values of ∆GD. As suggested by Fig. 3.7b, for

phasers with low ∆fG and hence high frequency resolution, sensing time changes rapidly

with frequency resolution variation, while sensing time of lower resolution phasers tend to

change more with GD variations. For a ∆fG of 16 MHz and GDmin of 50 ns, TG should

be higher than 92.2-302.2 ns for a GD variation of 0-210 ns, which assuming an average

GD of 70 ns, this GD variation is within 0-300%. Fig. 3.7c, illustrates the valid areas for

GD variation vs. Gaussian pulse BW for different values of GDavg. It shows that for a 16

MHz Gaussian pulse BW and an average GD of 70 ns, up to 120% variation in GD is valid

to avoid missed detection.

To better understand the functionality of the proposed system consider a scenario

shown in Fig. 3.5 in which the spectrum sensor evaluates the occupancy of two consec-

utive channels (Ch1 and Ch2). The incoming signal is applied to “Multiplier 1” after

passing through the LNA, multiplied by the Gaussian pulse train, G(t), with period of TG,

creating a time-limited periodic signal, Vout,Mult1. Only two pulses inG(t) are required for

evaluating two consecutive channels, so only the first two time-limited signals in Vout,Mult1

are investigated. From time t0 to t0 + TG, the phaser has a BP frequency response at the

center frequency of the first channel, fCh1, with a GD of GD1. Since Ch1 is occupied, the

phaser shifts the signal at fCh1 in time-domain with a delay of GD1, attenuating the signal

at other channels without shifting them. Vout,Phaser from t0 to t0 + TG has two parts, one

from t0 to t0 +T , consisting of the attenuated signal with no delay, and one from t0 +GD1

to t0 +T +GD1, consisting of the delayed, unattenuated signal at fCh1, which means Ch1

is occupied. The same scenario is considered for the second channel; the phaser has a

BP frequency response at the center of the second channel, fCh2, and a GD of GD2, from

t0 + TG to t0 + 2TG. Vout,Phaser from t0 + TG to t0 + 2TG has only one part, consisting

of the attenuated signal, from t0 + TG to t0 + TG + T , which means Ch2 is unoccupied.
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Figure 3.7: Conditions stated in (a) (3.14), (b) (3.13) with different GD variations for
GDmin of 50 ns, and (c) (3.16) with different GDavg.

Multiplication of Vout,Phaser by a delayed Gaussian pulse train, GDelayed(t), with a delay

of average GDs of Ch1 and Ch2, GDavg, further rejects the undesired, attenuated sig-

nal. The result can be converted to a “1” and “0” for Ch1 and Ch2 respectively using an

envelope detector and a comparator.
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3.2 Circuit implementation

As shown in Fig. 3.5, the proposed structure is composed of an LNA, two multipliers,

a tunable BPF, and a digital circuitry. For an RF input signal, LNA is required to lower the

noise figure (NF) of the entire system. The first multiplier is for converting the RF signal

to a time-limited periodic signal. For better linearity performance, differential structures

are employed for the multipliers which necessitates use af a balun to convert the single-

ended input signal to a differential one. The tunable BPF plays the role of a phaser and the

second multiplier operates as a filter in time-domain which rejects the undesired channels

in each period for the proposed real-time spectrum sensor. The following sub-sections

further explain each block of the proposed spectrum sensor in transistor-level.

3.2.1 LNA

A balun noise and distortion canceling LNA [48] is employed in the proposed spectrum

sensor as shown in Fig. 3.8, which provides a differential signal at its output. It is a CG-

CS LNA where CG transistor, M1, provides the non-inverting path and CS transistor, M2,

along with the cascode transistor, M4, provide the inverting path for the main signal. The

inverted signal at the output of the inverting path is fed back to the gate of M1, boosting

its transconductance. The resulting differential output is then applied to a multiplier.

Simulation results show that gain of the LNA in Fig. 3.8 is 23 dB, and NF and IIP3

change within 2.8-4 dB and 0-5 dBm respectively for the frequency range of 57-354 MHz.

3.2.2 Multipliers

Fig. 3.9 shows the multiplier used in the proposed architecture which achieves simul-

taneous good noise and linearity performance [49]. In Fig. 3.9, M1 − 4 operate in the

linear region, while M5 − 8 operate in the saturation. Size of M5 − 8 should be chosen

at least three times of size of M1− 4 to make M5− 8 operate as source follower transis-
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Figure 3.8: Balun-LNA used for lowering NF of the proposed spectrum sensor.

tors, providing a multiplication of the signals applied to the gate of M1 − 4 and M5 − 8

at the output of the multiplier [49]. The output of the balun-LNA is applied to the gates

of M1 − 4, while the Gaussian pulse train is applied to the gates of M5 − 8, resulting a

Gaussian shape periodic signal at the output of the multiplier (see Fig. 3.5).

Same structure is used for the second multiplier which multiplies the signal at the

output of the phaser with a delayed version of the Gaussian pulse train.

3.2.3 Phaser

As mentioned earlier, a tunable BPF operates as a phaser in the proposed architecture.

An active operational transconductance amplifier-C (OTA-C) biquad filter is preferred here

based on the frequency of operation, 57-354 MHz. The structure shown in Fig. 3.10 [50] is

a biquad OTA-C BPF, where ω0, Q, and GD at the center frequency (GD0) can be written

based on the filter parameters as:

ω0 =

√
Gm1Gm2

C1C2

(3.17)
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Figure 3.9: Multiplier used for time limiting the incoming signal.

Q =
ω0C2

Gm3

(3.18)

GD0 =
2C2

Gm3

(3.19)

where Gm1, Gm2, and Gm3 are transconductances of OTA1, OTA2, and OTA3 in

Fig. 3.10, respectively. Existence of Gm3 in (3.18) adds a degree of freedom in designing

and tuning the filter. DC gain is OTA4 to OTA3 transconductance ratio (Gm4/Gm3).

Four biquads of Fig. 3.10 are used to create enough GD. All OTA cells have the same

structure in the BPF of Fig. 3.10. Both transconductance of OTA cells and capacitors in

the OTA-C filter are reconfigurable to provide the required tuning range. For simplicity

Gm1 and Gm2 are chosen to be equal for all settings. While Gm1,2, C1, and C2 affect ω0,

Gm3 and C2 determine GD0. To achieve the required ω0, the value of C1 is minimized,

for each frequency setting, to make the value of C2 more relaxed to provide high enough

GD0 as C2 also appears in (3.19). Gm3 should change in the same direction of C2 to
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Figure 3.10: Block diagram of the proposed phaser.

compensate GD0 variation to some degree. Since tuning range of transconductance is

inherently smaller than capacitor, GD0 cannot remain constant within the entire tuning

range. Transistor sizing for OTA4 is chosen three times higher than OTA3 to maintain a

gain of higher than one for each biquad stage. To preserve a nearly constant gain (∼ 1.5)

in all settings, Gm4 is designed to track Gm3 variations. For tuning the filter, first ω0 is

tunned by Gm1,2, C1, and C2 variation, thenGD0 is tunned byGm3 variation. Q variation

is determined by ω0 and GD0 variations (Q ∝ ω0 × GD0). Fig. 3.11 shows the tuning

process in a flowchart.
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Figure 3.11: Tuning process flowchart (state 12 corresponds to the highest operating fre-
quency).

An inverter-based structure [51] is used for the OTA cells as shown in Fig. 3.10, which

has only an input and an output node making it suitable for operation in higher frequencies.

INV 3− 6 make a high impedance load for differential gain (1/(GmINV 4,5−GmINV 3,6))

and a low impedance load for common-mode gain (1/(GmINV 4,5 + GmINV 3,6)). For

higher differential gain, transconductance of INV 3 and INV 6 are chosen slightly larger

than INV 4 and INV 5. Transconductance of OTAs are set by changing degenerative

resistors in sources of INV 1− 2 using CMOS switches.

A digital circuitry consisting of a counter and a look-up table (LUT) is employed to
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provide all the controlling signals of the phaser (Fig. 3.12). Detection process involves

changing the control signals between twelve different states corresponding to twelve chan-

nels in the frequency band. State transition is performed periodically using the signal

“Clk” with period of TG, which is the same as the period of the Gaussian pulse train. In

each period, phaser selects one specific channel and in twelve periods, phaser discrimi-

nates all the twelve channels in the frequency band with frequency resolution of 27 MHz.

Here each defined channel is correspond to four channels in a 802.22 standard. The entire

detection process can be performed periodically using the signal “reset” with the period

of at least 12× TG.

Fig. 3.13 shows the simulated magnitude and GD response of the phaser for all states

vs. frequency. As illustrated in Fig. 3.13, GD variation is limited to 50-90 ns range, which

can satisfy (3.11)-(3.16) if proper T and TG are chosen.

Fig. 3.14 shows the transient simulation at different points of the proposed detector for

a special case, evaluating the signal existence at channel three to five when Ch3 and Ch5

are occupied, while Ch4 is empty. In Fig. 3.14, transition of frequency difference to time

difference and status of signal in each stage of transition is illustrated.
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Figure 3.13: Simulated (a) GD and (b) magnitude of the phaser vs. frequency.

3.3 Fabrication and measurement

The proposed real-time spectrum sensor is fabricated using a 0.18-µm CMOS IBM

technology. The overall area (including pads) and power consumption are 1.18 mm2 and

20 mW, respectively. Fig. 3.15 shows the fabricated IC microphotograph. In Fig. 3.16

the temporal measurement setup is shown, where the gray part is the integrated chip. For

simplicity a single tone for each channel rather than a wideband signal is used. Note that
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multiplying a single tone with a Gaussian pulse creates a wideband signal at the center fre-

quency of the single tone, so there is no need to create a wideband signal for each channel

at the input. BW of the resulted signal from multiplication of the input and Gaussian pulse

train (for each channel), which in this case is the same as the BW of the Gaussian pulse,

should be smaller than the phaser frequency resolution. In Fig. 3.16, “In” is a multi-tone

sinusoid coming from an Agilent E8267D PSG signal generator. It multiplies with a pe-

riodic Gaussian pulse coming from an arbitrary wave generator (AWG) (N8241A), which

takes its data from a MATLAB code. The resulting signal passes through a tunable BP

delay filter (phaser) with 12 states and then is multiplied by a delayed version of the Gaus-

sian pulse. The resulted output is converted to a “1”-“0” pattern using an off-chip decision

circuit, consisting of an amplifier, an envelope detector and a comparator, implemented on

a PCB, along with the integrated detector. A 2 Gb/s oscilloscope (54625A Infiniium Os-

cilloscope) is used to observe the results. For temporal measurement, based on the AWG

symbol rate, number of samples in the data coming from MATLAB, resolution of the os-

cilloscope, and channel spreading, period of the Gaussian pulses and clock signal, TG, is

chosen to be 0.2048 µs, which leads to a sensing time of 12×TG=2.5 µs. Gaussian pulse

duration is chosen to be 41 ns, which results in a BW of around 16 MHz (pulse duration

is approximated by 6σ), which is less than the frequency steps of 27 MHz. This sets a

margin of 12 MHz for the input signal channel BW (considering the BW of the BPF). For

GDMax = 90 ns, GDmin = 50 ns, GDavg = 70 ns, ∆fG = 16 MHz (T = 41 ns), and

TG = 0.2048 µs, (3.11)-(3.16) are satisfied.

Fig. 3.17 shows measured output of the detector for four special cases. All channels

cannot be applied simultaneously due to signal generator limitations. Input power levels

in Fig. 3.17 are chosen in a way to avoid false detection, which will be explained later.

NF is measured in a conventional way and the output is connected to an spectrum

analyzer (Agilent E4446A PSA), however, to measure NF for each channel, phaser needs
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to operate in the state corresponding to that channel, without changing periodically, so that

the frequency response of the detector doesn’t change with time during measurement. Also

since the noisy signal exists in part of the period, TG, average number to the resolution BW

ratio ( Navg
BWres

) in the spectrum analyzer is chosen much higher than TG which results in a

nearly static output power in the spectrum analyzer. NF of the detector changes between

3.8 dB and 5.1 dB for all channels.

For IIP3 measurement, output is connected to an oscilloscope and a two-tone test is

used for each channel in time domain. For a conventional two-tone test, two tones are

chosen within a band in a way to produce the third order intermodulation (IM3) products

within the same band and the difference between the main tone and IM3 product deter-

mines IIP3. Here, the main tones and IM3 products cannot be measured in one single

measurement and each should be measured separately; if the two tones are located in two

adjacent channels and IIP3 is measured by looking at the output of the phaser at the adja-

cent channels (main tone) and main channel (IM3 product), the measured IIP3 would be

unrealistically good. The reason behind this is that the IM3 product in the desired chan-

nel is resulted from two attenuated tones after passing through the BPF set to the center

frequency of the desired channel, while each main tone in an adjacent channel shows the

output of the phaser, when the BPF is set to the frequency of that channel. For measuring

IIP3 for each channel without the attenuation effect of the BPF, the main tone and the

IM3 product in the desired channel can be measured separately; for measuring the main

tone in the desired channel, one single tone in that channel is applied to the system. For

measuring the IM3 product in the desired channel, two tones are located out of the channel

in a way to produce an IM3 product within the desired channel; however, the input power

of these two tones are chosen higher than that of the first measurement to compensate for

the attenuation created by the BPF (when it is set to the desired channel). Fig. 3.18 shows

the method of measuring IIP3 in time domain for the first channel (fCh1 = 57 MHz).
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Fig. 3.18a shows the output of Ch1 in time domain for an input with a power of -20 dBm

located at fCh1, while Fig. 3.18b shows the resulting IM3 product at fCh1 from two in-

put tones located at 178.5 MHz and 300 MHz, each with an effective power of -20 dBm

(after attenuation by the BPF). After measuring voltage of both main and IM3 products,

following equation is used to calculate IIP3:

IIP3 = Pin + 10log(
vout

vIM3,out

) (3.20)

Which leads to an IIP3 of -3.8 dBm for the first channel. IIP3 changes between -3.8

dBm and 2.7 dBm for this detector over the 57-354 MHz band. Fig. 3.19 shows measured

NF and IIP3 for each channel.

Fig. 3.20 shows the detected power and the detection error at the output of the off-chip

envelope detector vs. input power for channel 7 (center frequency of 219 MHz). Note that

the RC filter in the envelope detector smooths the detected power variation by averaging.

Gain of the off-chip amplifier for Fig. 3.20 is set to 21 dB. As shown in Fig. 3.20, the

detection dynamic range (DR) is 71.5 dB (-85.3 dBm∼-13.8 dBm) within ±1 dB error.

Sensitivity and 1-dB compression point change between -85.9 dBm to -84.6 dBm and -17.3

dBm to -11.5 dBm, respectively, resulting in a DR of 68.6 dB to 73.1 dB from channel 1

to 12.

False detection is a scenario in which the signal doesn’t exist in the intended channel

but it exists in the adjacent channel and the detector falsely indicates the presence of the

signal in the intended channel. For continuous time signal detection, false alarm probabil-

ity (PFA) is: PFA = e−γ
2/2σ2 [52], where γ is the comparator threshold voltage and σ2 is

the estimated noise power. A 3 dB noise uncertainty is considered for σ2 estimation [53].

For PFA of %10, threshold voltage is: γ = 2.146σ. To have a PFA of %10 and a detection

probability (PD) of better than %90, an SNR of higher than 7.2 dB is required, when a
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continuous time decision circuit, based on ED is employed to test the functionality of the

integrated detector [52].

Fig. 3.21 shows the minimum input power in an adjacent channel leading to a false

detection (PFA=%10) vs. channel number, when the input to the phaser has a channel BW

of 16 MHz (signal BW+Gaussian pulse BW). For example, if the signal level in channel

number “4” or “6” exceeds -23 dBm, there might be a false detection in channel number

“5”. The variation in Fig. 3.21 comes from different GD, frequency response, and BW of

each state (see Fig. 3.13). Fig. 3.21 interprets to a tolerable INR of 72 dB to 87 dB, which

is hard to achieve using conventional magnitude-based spectrum sensors (INRMax is 30

dB in [16, 17]).

Table 3.1 shows the performance summary of the proposed real-time spectrum sensor

in comparison to the state-of-the-art spectrum sensors. Real-time spectrum sensing in

[12, 15] is performed using a wideband fast-sweeping frequency synthesizer, an RF front-

end, and a wavelet-based spectrum-sensing block. In [16, 17] it is performed using a

digital processor, assuming the input data is a BB signal in digital domain, and lastly in

[45] it is performed using a dual-mode detection technique (ED and CD as coarse and fine

tuning techniques, respectively) after an RF front-end with frequency down-conversion

and BB filtering. However, [45] uses a software for spectrum-sensing blocks with no

actual circuits. The method in [16, 17] requires using an RF front-end and a high BW

ADC to operate with RF signals and is not applicable to very wideband applications. The

needs for a wideband frequency synthesizer for conventional spectrum sensors such as

[9, 11, 12, 13, 45, 15], and a wideband ADC for [17, 16], make the proposed method

outperform previous methods in terms of complexity and power consumption. However,

the reason of not having a high power consumption in [17, 16] is that the wideband ADC

contribution is not considered in the system performance. Sensing time depends on the

target BW and frequency resolution which are different for all the works in Table 3.1.
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Parameter This work [12] [11] [13] [17] [45] [15]

Spectrum

Sensing Type

Analog/

Phaser

Analog/

Dig/ED

Analog/

ED

Analog/

QCFD

Dig/

ED

Analog/

CD/ED

Analog/

ED

Freq Range

(MHz)
57∼354 400∼900

30∼
2400

54∼862
200

in BB

300∼
700

3100∼
10600

Freq Res

(MHz)
27 0.025∼0.8 0.2∼30 8 0.2 6 132

ST.Res/BW

(µs.MHz/MHz)
0.23 57.53 - - 50h 1.5i/15j 7.4

NF (dB) 3.8∼5.1 - 5∼8 - - 3.5 6.9∼7.6

IIP3 (dBm) -3.8∼2.7 - -11 - - -12 -7.9

INR (dB) 72∼87 - - 25e 30 - -

Sensitivity/Res

(dBm/MHz)

-100.2∼
-98.9

-62.5 -76 - -
-98.8i/

-111.8j
-95.2

SNRmin (dB) >0 >0 >0 -24 -5 >0 >0

DR (dB)
68.6∼
73.1

32 29∼48 39 - 84 35

Power

Diss (mW)
20a,b 122c

30∼
44c,f

57a,f,g 7.4c,f,g 28f,k
26.4∼
47.9c

Area (mm2) 1.18 9.2 2.34d 1.08 1.64d 1.2 2.53

CMOS Tech 0.18 µm 0.18 µm 90 nm 0.18 µm 65 nm 65 nm 65 nm

Table 3.1: Performance Summary and Comparison of the Proposed Spectrum Sensor with
Previously Reported Spectrum Sensors
a Excluding the off-chip decision circuit. b Excluding the external Gaussian signal gen-
erator. c Excluding the external ADC. d Active area. e Within 32 MHz. f Excluding the
external LO signal generator. g Excluding the external RF front-end. h Is 1 for an INR of
20 dB. i ED with 1 dB noise error. j CD with 1 dB noise error. k Includes only an RF
front-end and BB filters.
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So a new parameter is employed in Table 3.1 to evaluate the sensing time performance

as: Sensing Time.Resolution/BW. This parameter for the proposed method is far below

the conventional techniques. Also the high IIP3 of the proposed technique compared to

other methods shows the effect of removing frequency down-conversion in phaser-based

spectrum sensing. On the other hand, phaser-based spectrum sensors cannot achieve the

frequency resolution of conventional spectrum sensors, unless a high Q tunable phaser is

used, to have higher GDs, leading to higher sensing time. This makes them mostly suitable

for interferer detection.

3.4 Conclusion

An integrated real-time spectrum sensor has been described and fabricated in a 0.18-

µm CMOS IBM technology, which achieves a low sensing time, while preserving a good

noise and linearity performance. The proposed phaser-based method, which employs both

magnitude and GD characteristics of BPFs, simplifies real-time spectrum sensing for a

wideband signal, accomplishing a low area and power consumption. It achieves a sensing

time of 2.5 µs for a frequency range of 57-354 MHz with 27 MHz resolution and a power

consumption of 20 mW.
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Figure 3.14: Transient simulation of the detector for an input consisting of four tones
located at fCh3, fCh5, fCh8, and fCh12 (each with the power of -40 dBm) and the resulting
output at fCh3 to fCh5 for the following points; (a) input, (b) Gaussian pulse train, (c) input
of the phaser, (d) output of the phaser, (e) delayed Gaussian pulse train, (f) output.
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Figure 3.17: Temporal measurements at the output of the detector when input signal exists
in; (a) fCh1, fCh2, and fCh3; (b) fCh4, fCh5, and fCh6; (c) fCh7, fCh8, and fCh9; (d) fCh9,
fCh10, fCh11, and fCh12 (Pin=-30 dBm for each channel, VPeak,Gaussian=42 mV).
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Figure 3.18: Measured output at fCh1 for; (a) an input power of -20 dBm located at 57
MHz, and (b) for two tones with the same power (after attenuation) located at 178.5 MHz
and 300 MHz.
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Figure 3.19: Measured (a) NF vs. channel number, and (b) IIP3 vs. channel number.
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4. UWB RX WITH BLOCKER DETECTION AND REJECTION∗

In this chapter an efficient solution for increasing robustness of UWB receivers towards

NB interferers is proposed. This technique involves employing a phaser-based real-time

spectrum sensor for detecting the frequency locations of interferers at a specific time. The

detected blockers are removed with notch filters in the receiver.

4.1 Proposed architecture

4.1.1 UWB receiver

The target frequency band for the UWB receiver is 3.1-4.8 GHz, corresponding to the

first UWB group, so in-band IIP2 is of less concern and a direct conversion architecture

[24] is adequate considering its simplicity and area towards super-heterodyne [27, 54], re-

quiring image rejection, and multi-path receiver [55], employing parallel NB paths with

different LO frequencies. Note that IM2 products resulting from LNA second order non-

linearities and RF to IF feed-through, and also DC offset can cause issues for a wideband

direct-conversion receiver. For LNA IIP2 issues, differential LNAs or LNAs with selectiv-

ity at their output are desired. Here, impedance transfer feature of a voltage-mode passive

mixer (which is explained later in this section) is utilized for creating a BPF at the output

of the LNA and removing IM2 products. It is assumed that DC offset is removed in vari-

able gain amplifiers (VGAs) (which are not implemented here) after BB filtering. Fig. 4.1

shows the entire system including both receiver and blocker detection architectures.

Notch filters should be placed at the beginning of the receiver path, for the best out-of-

band linearity performance, before the saturation of the receiver by strong blockers. Since

the noise performance is also important due to weak UWB signals, notch filters are placed

∗ c©2017 IEEE. Part of the data reported in this chapter is reprinted with permission from P. Sepidband
and K. Entesari, “A CMOS UWB receiver with reconfigurable notch filters for narrow-band interferers,”
accepted in IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Jun. 2017.
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Figure 4.1: Proposed UWB receiver with blocker detection architecture.

after the LNA.

Gain of the LNA is chosen to be relatively small (14 dB) to avoid signal saturation

due to blockers. Further amplification of the weak UWB signal is required to preserve

good NF for the entire system and needs to be performed after blocker rejection to avoid

any saturation by the blockers. Passive mixers are used for better linearity considering

the low supply voltage of the 65 nm CMOS process (1 V). Two types of front-ends can

be implemented using passive mixers; voltage-mode or current-mode (Fig. 4.2). Voltage

mode includes LNA, switch, BB Gm, and TIA, while current mode is the combination of

LNA and Gm-cell (LNTA), switch, and TIA.

Fig. 4.2 can be simplified as Fig. 4.3, at the output of the LNA (LNTA), when switches

of the mixer are “on” and can be modeled with an Ron resistance. Note that LNA in

Fig. 4.3a and LNTA in Fig. 4.3b are realized with their Norton equivalent, assuming the

output impedance of the LNA can be modeled with a resistor in parallel with a capacitor

(Ro,LNA and Co,LNA), while the LNTA output impedance is approximated with a capacitor

(Co,LNTA). Also BB Gm of Fig. 4.2a is modeled as Ci,Gm in Fig. 4.3a.
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Figure 4.2: Front-end utilizing a (a) voltage-mode passive mixer, and (b) current-mode
passive mixer.

Mixing function in time domain results in a convolution in frequency domain, trans-

ferring the BB impedance to LO frequency. The voltage seen at the LNA (LNTA) output,

Vo,LNA (Vo,LNTA), is calculated by multiplying Io,LNA (Io,LNTA) by the impedance seen at

that point. For voltage mode, this results in a zero at

ωZ,V = ωLO ±
1

RonCi,Gm
(4.1)

and two poles corresponding to Ci,Gm and Co,LNA. If the LNA has a high BW (Co,LNA �
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Figure 4.3: Norton simplification of Fig. 4.2 at the output of the LNA (LNTA) for (a)
voltage-mode, and (b) current-mode passive mixer.

Ci,Gm), the poles can be approximated as

ωP1,V = ωLO ±
1

(Ron +Ro,LNA)Ci,Gm
(4.2)

ωP2,V =
1

(Ron||Ro,LNA)Co,LNA
(4.3)

where ωP1 is resulted from impedance transfer from BB to LO frequency. Note that using

a large switch for lowering Ron is not desirable here as it introduces a significant parasitic

capacitor to Co,LNA, lowering BW of the LNA. Besides, Ro,LNA cannot be very large, due

to headroom and gain limitation of the LNA. So Ron can be comparable with Ro,LNA.

Therefore, the zero reduces the rejection caused by the first pole, however its effect is

reduced by the second pole (ωP2,V ) at higher frequencies.

Now consider the current mode mixer of Fig. 4.3b, which again results in an LNTA

output voltage with one zero (ωZ,I) and two poles (ωP1,I and ωP2,I). As mentioned before,
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Ron cannot be very small, and as a result:

Ron �
RL

1 + A
(4.4)

Equation (4.4) approximates the impedance seen at the output of the LNTA with only one

pole located at

ωP2,I =
1

RonCo,LNTA
(4.5)

which is not resulted from impedance transfer and is undesirable as it limits the BW of

the LNTA. In another words, with the condition mentioned in (4.4), the zero cancels out

with the first pole (ωZ,I ≈ ωP1,I). Fig. 4.4 compares the voltage-mode and current-mode

voltage gain frequency response at the output of the LNA/LNTA, assuming ωZ,V = ωZ ,

ωP1,V = ωP1, ωP2,V = ωP2,I = ωP2, and also the DC-gain is equal in both cases. As

shown in Fig. 4.4, the impedance transfer feature in not observed in current-mode for high

frequency applications.

Since having a low input impedance at the input of the TIA is not critical in voltage

mode, gain-BW (GBW), noise, and power consumption of the op-amp of the TIA are more
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relaxed without degrading the sensitivity compared to current-mode [56, 57]. There is no

superiority in terms of power consumption for the two front-ends as the power consump-

tion of the extra Gm-cell plus TIA in the voltage-mode is comparable with the TIA in

the current-mode. As a result, voltage-mode mixer topology is chosen here based on the

mentioned advantages over its current-mode counterpart.

BB Gm should have a high transconductance and low noise to compensate for the low

gain of the LNA to provide a reasonable NF for the entire receiver.

Further linearity improvement is performed in the TIA of the mixer and the subsequent

BB LPFs. Here, a biquad active-RC LPF is used along with a TIA with an RC feedback,

which overall with the BB Gm create a fourth order LPF at the output of the receiver.

So BB filtering of the voltage-mode also outperforms the current-mode with similar BB

LPFs, due to the extra pole created by the BB Gm.

4.1.2 Blocker detector

As mentioned earlier, out-of-band linearity performance is strict for a UWB receiver

due to strong adjacent blockers. In a UWB system, while possible locations of the adja-

cent blockers are known, their presence is not guaranteed; this means a dynamic blocker

detector which dynamically detects the location of blockers and reports them to the notch

filters used in the receiver, can reduce the number of notch filters.

Here, three tunable notch filters are employed, which means up to three blockers (de-

tected by the blocker detector) can be simultaneously rejected. Possible locations are di-

vided to 3 sub-bands: 2.35-2.75 GHz (802.11b/g and WiMAX), 5.1-5.5 GHz, and 5.5-5.9

GHz (802.11a, HiperLAN/2, etc.). Note that WiMAX (3.3-3.7 GHz) is within the band

and placing a notch filter in the band can degrade the system specs significantly, so a notch

filter is avoided in this band, however its interferer effect is evaluated.

The blocker detector architecture is also shown in Fig. 4.1. LNA is a common block
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between the receiver and blocker detector. After the LNA in the detection path, the signal

is converted to a differential one using an active balun, then time limited (in a specific

period of TG) by a multiplier which multiplies the signal by a Gaussian pulse train with

a period of TG. The resulted signal passes through a phaser [20], which is a tunable BPF

with BP GD response. The phaser converts the frequency difference in the incoming signal

to time difference, discriminating the blockers in time domain.

The output of the phaser passes through a differential to single-ended buffer and then

an envelope detector and a dynamic comparator, which converts the delayed signal in each

period of TG to a “1”-“0” pattern, which “1” indicates the presence of the interferer at a

specific frequency. To make the detection procedure simpler, the first detected blocker in

each sub-band is reported to the notch filters of the receiver. So the reference voltage of

the comparator (Vref ) is chosen based on the interferer power. It should be lower than the

received interferer power at the input of the comparator and higher than the UWB signal

power and noise of the comparator, as only detection of the interferer is desired.

Using a digital circuitry, the first frequency occupied by a blocker in each mentioned

sub-band is selected, so up to three blockers are located. Then this information is mapped

to the notch filters of the receiver and corresponding switches in the notch filters are se-

lected automatically.

Linearity is the most important factor for detecting strong blockers and a phaser-based

detector can achieve a reliable detection. It does not require a non-linear mixer. Instead,

it employs a linear multiplier. The balun after the LNA results in a more linear multiplier,

while it is not necessary for the receiving path for the intended frequency band, as the

noise performance is of more concern compared to second order non-linearity.
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Figure 4.5: LC series notch filters.

4.2 Active filter design considerations

Three notch filters are employed as the output load of the LNA (see Fig. 4.1). To be

able to disconnect the notch filters easily without much effect on the signal, series resonant

LC notch filters are used (Fig. 4.5). Znotch impedance in Fig. 4.5 is calculated as follows

(not considering the effects of “on”/“off” switches)

Znotch(ω) =

[(1− ω2C1L1)(1− ω2C2L2)(1− ω2C3L3)]/

[jω(ω4C1C2C3(L1L2 + L1L3 + L2L3)−

ω2(C1L1(C3 + C2) + C2L2(C1 + C3) + C3L3(C1 + C2))+

C1 + C2 + C3)] (4.6)

Note that (4.6) provides the impedance when all three notch filters are active. The effect

of deactivating each filter can be observed by setting the corresponding inductor and ca-

pacitor to infinity and zero, respectively. The numerator zeros in (4.6) determine the notch
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frequency locations and are given as follows:

ω2
Zi =

1

CiLi
, (i = 1, 2, 3) (4.7)

Each zero is assigned to one of the sub-bands; ωZ1, ωZ2, and ωZ3 are corresponding to

2.35-2.75 GHz, 5.1-5.5 GHz, and 5.5-5.9 GHz, respectively. Setting the denominator in

(4.6) to zero provides poles of Znotch(ω), which satisfy the following equations:

ω2
P1ω

2
P2 =

C1 + C2 + C3

C1C2C3(L1L2 + L1L3 + L2L3)
(4.8)

ω2
P1 + ω2

P2 =
C1L1(C3 + C2) + C2L2(C1 + C3) + C3L3(C1 + C2)

C1C2C3(L1L2 + L1L3 + L2L3)
(4.9)

These two poles, ωP1 and ωP2, are placed between ωZ1, ωZ2 and ωZ2, ωZ3, respectively.

Fig. 4.6 shows impedance Znotch and the locations of zeros and poles for a specific case,

when LA1 =16 nH, LA2,3=8 nH, CA
1 =275 fF, CA

2 =122 fF, and CA
3 = 105 fF, resulting ωZ1=2.4

GHz, ωZ2=5.1 GHz, ωZ3=5.5 GHz, ωP1=3.2 GHz, and ωP2=5.3 GHz (using ideal capac-

itors, inductors, and switches). Fig. 4.7 shows S21 of a network with the load of Znotch,

for three different values of inductors and capacitors, resulting the same zeros and poles;

first values are the same as the ones used in Fig. 4.6, LA1−3 and CA
1−3, second values are

LB1−3=0.5×LA1−3, CB
1−3=2×CA

1−3, and third values are LC1−3=0.125×LA1−3, CC
1−3=8×CA

1−3.

As Fig. 4.7 suggests, higher values for inductors results in less in-band variations. Note

that in Fig. 4.7, port resistors reduce the effect of ωP1 and ωP2, preventing the impedance

to go to infinity at the pole location. So, the impact of the poles on the gain flatness is

reduced by designing the LNA with a low impedance load. Q of the inductors limits the

notch rejection. Fig. 4.8 shows the S21 for different values of Q, when LA1−3 and CA
1−3

values are selected for the inductors and capacitors. As shown in Fig. 4.8, a Q of at least

100 is required to achieve a rejection of 20 dB, which is not possible using on-chip passive
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inductors.

The BPFs, which are used as a phaser, are placed as the output load of the multiplier,

in the detection path (see Fig. 4.1). To disconnect the BPFs easily without much effect

on the signal and also employ only one inductor for each filter for a differential signal,

parallel resonant LC BPFs are used (Fig. 4.9). Since only one of the BPFs is active at a

time (L4 and C4 in Fig. 4.9), the BPF impedance equation only reflects the effect of one

set of inductor and capacitor, which is (not considering the effects of “on”/“off” switches)

ZBPF (ω) =
jωL4

1− ω2C4L4

(4.10)

C4 and L4 create a pole corresponding to the center frequency of the BPF at:

ω2
P =

1

C4L4

(4.11)

For an ideal inductor and capacitor and a switch resistance of zero, GD of (4.10) is infinity
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Figure 4.9: LC parallel BPFs.

at frequency of (4.11) and zero elsewhere. Placing the BPFs in a network similar to Fig. 4.7

with an overall parallel resistor ofRP , will reduce the maximum GD at frequency of (4.11)

to

GDMax = 2RPC4 (4.12)

Fig. 4.10 shows the S21 and GD of the network with three BPF of Fig. 4.9 as load (one

connected at a time), for RP of 1 kΩ and 4 kΩ. In Fig. 4.10 capacitor values are chosen

similar and inductor values change based on the center frequency (C4,5,6=550 fF, L4=8 nH,

L5=1.7 nH, and L6=1.5 nH) to achieve a similar maximum GD for all three BPFs.

Passive inductors alone do not provide a high enough Q and are not area efficient, so

for each inductor in filters of Fig. 4.5 and Fig. 4.9 a high-Q gyrator-based active inductor is

used (Fig. 4.11), which consists of two back-to-back connected Gm-cells, and inverts the

load impedance (capacitor) to its input. For the case of notch filters of Fig. 4.5, each filter

can be disconnected by connecting the bias of each gyrator to zero, so there is no need

for using switches in the main path of each filter for connecting/disconnecting purposes.

For BPFs of Fig. 4.9, the use of switches in the main filter path is unavoidable, as the

capacitors cannot be disconnected by only disconnecting the inductors using their bias.
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CLZin

Figure 4.11: A single-ended implementation of a wideband gyrator.

Considering the effect of switch resistance, (4.12) changes to

GDMax = 2RPC4 − 4RswC4 (4.13)

where, Rsw is the “on” resistance of each switch.

The inductor equation for the gyrator shown in Fig. 4.11 using ideal Gm-cells is as
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Figure 4.12: Gyrator of Fig. 4.11 with all the parasitics.

follows:

Lin =
CL

Gm1Gm2

(4.14)

Fig. 4.12 shows the gyrator of Fig. 4.11 with all the parasitics of the Gm-cells, assum-

ing no internal nodes (CL in Fig. 4.11 is considered as a parasitic capacitor).

The parasitic resistors and capacitors of Fig. 4.12 are given as

Ri = Ri1 +Ro2; Ro = Ri2 +Ro1 (4.15)

Ci = Ci1 + Co2; Co = Co1 + Ci2; Cf = Cf1 + Cf2 (4.16)

where Ri1 (Ri2) and Ro1 (Ro2) are parasitic input and output resistors of Gm1 (Gm2), re-

spectively and Ci1 (Ci2), Co1 (Co2), and Cf1 (Cf2) are parasitic input, output, and feedback

capacitors of Gm1 (Gm2), respectively. For identical Gm-cells, Ci = Co and Ri = Ro, so

Zin can be estimated as

Zin(ω) =
Rg + jωLg

1 + jω
(
Lg
Ro

+ CiRg

)
+
(
ω
ω0

)2 (4.17)
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where

Rg =
(
Gm1Gm2Ro

)−1

; Lg =
Ci + Cf
Gm1Gm2

(4.18)

and

ωo =

√√√√ 1

Lg

(
Ci +

CiCf
Ci+Cf

) (4.19)

Equation (4.17) shows thatZin is a series combination of an inductor, Lg, and a resistor,

Rg, as long as the frequency of operation is far below the resonance frequency, ω0. It is de-

sired to reduce series resistance to enhance the quality factor of the inductor, which means

using Gm-cells with higher output resistance. Also increasing the resonance frequency

for enhancing inductor’s frequency of operation requires lowering input capacitance of the

Gm-cells.

Considering a more realistic scenario and using Zin of (4.17) in series with a capacitor

to create a notch filter as in Fig. 4.5 will add a parasitic pole corresponding to ω0. When

three notch filters are used together, the parasitic pole of each inductor will decrease ωP1

and ωP2 in Fig. 4.6 and add another pole after ωZ3, which overall has a negligible impact

on the notch rejection if the parasitic capacitor of each gyrator in each notch filter (Ci) is

sufficiently smaller than the filter capacitor.

Considering the gyrator of Fig. 4.12 with all the parasitics in the BPF topology of

Fig. 4.9, it can be seen that the zero of the ideal BPF is increased (from frequency of zero)

and the pole is decreased. Lowering switch resistance and using transconductance stages

with high output resistor, in the gyrator, will reduce the zero. The effect of the gyrator on

the pole is minimized by using transconductance stages with high output resistor and low

parasitic capacitors.

89



Vbias3

Vbias1
Vin

VoutVbias4

Vbias2

M1

M3

M2

M5

R1 R2

CAC1

M4

CAC2

Vx

Rbias Rbias

Figure 4.13: UWB LNA used at the beginning of the proposed system.

4.3 Circuit design

4.3.1 LNA

A wideband inductorless LNA, utilizing noise and distortion canceling is employed

here [58]. Fig. 4.13 shows the LNA circuit. The input signal paths to the output are

through transistors (M3,M5) and (M1,M4,M5), both facing similar polarity resulting an

amplified signal at the output. On the other hand, noise of M1 at Vin and Vx have opposite

polarities, which results in a reduced noise at the output. M1 third order distortion is also

reduced in the same way.

There is a trade-off between noise and power consumption. Reducing FM1 (noise

factor of M1) and FR1 (noise factor of R1), while maintaining the same input match,

reduces NF while increasing current consumption. In order to reach a power efficient

noise cancellation, FM1 is chosen to be equal to FR1 , as discussed in more details in [58].

90



The ratio of FM1 to FR1 is calculated as

FM1

FR1

=
(γ/α)gm1R1R

2
T

R2
S

δ2 (4.20)

where RS is the source resistance, γ is the MOSFET noise parameter, α = gm/gd0,

RT = RS||
ro1

1 +R1/RS

|| 1

gm1

(4.21)

and

δ =
RS

R1

gm3

gm4

− 1 (4.22)

Equating FM1 and FR1 results in a δ of −0.526.

From distortion analysis in [58], equations required for third-order distortion cancella-

tion of M3 and M4 are as follows
gm3

gm4

=
R1

RS

(4.23)

g′′m3

g′′m4

=
R1

Rin

(4.24)

where g′′m3 and g′′m4 are third order non-linearity coefficient of M3 and M4 respectively,

and

Rin =
R1 + ro1

1 + gm1ro1
(4.25)

Bias and sizing of M3 and M4 are chosen in a way to attain (4.23) and (4.24).

Simulation results show the LNA achieves a voltage gain of 13.4-14 dB, a NF of 3.9

dB, and an IIP3 of −3.3 dBm to −2.8 dBm within 3.1-4.8 GHz band, while drawing 4.4

mA from a 1 V supply. Fig. 4.14 shows the simulated voltage gain and NF of the LNA vs.

RF frequency.
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Figure 4.14: Simulated (a) voltage gain, and (b) NF of the UWB LNA.

4.3.2 Notch filters

As mentioned in section 4.2, gyrator-based active inductors are preferred here over

passive ones due to the lower area and higher quality factors and are employed in the

notch filters of Fig. 4.5.

Fig. 4.15 shows the implementation of each notch filter circuit. The reason of placing

the active gyrator in the middle of two series capacitors, C1 and C2 in Fig. 4.15 is to

avoid using extra decoupling capacitors at the output of Gm2 for isolating the bias of the

transconductors. An inverter-based structure [51] is used for the Gm-cells, consisting of

only two nodes (In and Out) and no internal nodes, resulting in lower parasitics and

hence higher frequency of operation. This structure also provides a high output resistance

for differential gain using inv3−6, providing a high quality factor inductor. To understand

this effect, consider the differential load resistance of the inverter-based structure shown
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in Fig. 4.15, which is

Rd =
1

1
ro,inv1,2

+ 1
ro,inv3,6

+ 1
ro,inv4,5

+ gm,inv4,5 − gm,inv3,6

(4.26)

Choosing 1
ro,inv1,2

+ 1
ro,inv3,6

+ 1
ro,inv4,5

= gm,inv3,6 − gm,inv4,5 results in an output resis-

tance of infinity, which in reality is a finite value due to the difference between the actual

transconductance and the desired one. For common-mode resistance, gm,inv3,6 and gm,inv4,5

are added, creating a low common-mode load impedance. For higher differential gain,

transconductance of inv3 and inv6 are chosen slightly larger than inv4 and inv5.

Changing the center frequency of each notch filter in Fig. 4.15 is performed by chang-

ing capacitors using three switches. For each specific frequency, the output resistor is

tuned by adding a variable resistor at the output load, using three switches, to yield the

maximum rejection.

93



Frequency (GHz)

1 2 3 4 5 6 7

Q
u

a
lit

y
 F

a
c
to

r 

0

200

400

600

800

1000

QL1

QL2

QL3
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Fig. 4.16 shows the simulated Q for each active inductor, at a specific setting of

switches, QL1, QL2, and QL3 are quality factors of the active inductor used in Notch1,

Notch2, and Notch3, respectively (see Fig. 4.5). Values of inductor for QL1, QL2, and

QL3 in Fig. 4.16 are 20 nH, 7.7 nH, and 6.6 nH, respectively.

Fig. 4.17 shows the simulated voltage gain and NF of the LNA when the notch filters

are added, for two specific cases; when all of the notch filters are enabled (for one specific

set of switches), and when all of them are disabled. As Fig. 4.17 suggests, voltage gain

drops to 11.1-12.2 dB within the desired band, when the notch filters are deactivated, due

to the added parasitics, and it is 11.2-13.3 dB, when all three filters are activated. The

NF however is similar to Fig. 4.14b (3.9 dB), when the notch filters are disabled, and it

increases to 4.4-5.5 dB for the desired band, when they are enabled due to the lowered

gain at the notch frequencies. IIP3 at 3.5 GHz is −2.3 dBm and −3 dBm, when all notch

filters are “off” and “on”, respectively. Each notch filter rejection is more than 20 dB and

the BW in which each notch filter achieves a 10 dB rejection is 100 MHz. The channel
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Figure 4.17: Simulated (a) voltage gain, and (b) NF of the LNA, when all three notch
filters are “on” and “off”.

bandwidth of interferers in the proximity of UWB band (802.11b/g, WiMAX, 802.11a,

and HiperLAN2) is less than 25 MHz, so the notch is wide enough to adequately attenuate

an entire channel. Each Gm-cell for Notch1, Notch2, and Notch3, consumes 0.8 mA, 1.4

mA, and 1.5 mA from a 1 V supply, respectively.

4.3.3 Mixer and BB filters

A single-balanced voltage-mode passive mixer is employed here. The mixer consists

of NMOS switches, BB Gm, and TIA. A Tow-Thomas biquad active-RC LPF [50] is used

after the TIA for better rejection of undesired terms. Fig. 4.18 shows the mixer along with

the BB filter. Again, inverter-based structure is used for the BB Gm and also each OTA.

The high DC gain of this structure makes it a good candidate to be used as an OTA as well.

Frequency response of the biquad is calculated to be

Vout
Vin,b

=
1

RdRbCbCc

s2 + 1
RcCb

s+ 1
RdReCbCc

(4.27)
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Figure 4.18: Mixer and BB filters.

For simplicity capacitor values are chosen similar (Cb = Cc = C) and also Rd = Re = R,

which leads to the following equations for ω0, Q, and DC gain

ω0 =
1

RC
,Q =

Rc

R
,GDC =

R

Rb

(4.28)

For a specific ω0, Gain andQ of the Tow-Thomas biquad is adjusted by varyingRb andRc,

respectively. The BB Gm, TIA, and biquad filter, are cascaded, overall creating a fourth

order filter at BB. Fig. 4.19 shows the simulated conversion gain and NF of the entire

receiver (LNA, mixer, and BB filter) at the BB, for LO frequency of 3.9 GHz, when the

notch filters are deactivated. The IIP3 for LO of 3.9 GHz is -9 dBm. Fig. 4.20 shows the

simulated gain and NF of the receiver vs. RF frequency, when the notch filters are “on”

(for a specific setting) and “off”. Gm1 and each OTA in Fig. 4.18 consume 2.7 mA and 3.1

mA from a 1 V supply, respectively.
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Figure 4.19: Simulated (a) conversion gain, and (b) NF of the receiver, at the BB, for LO
frequency of 3.9 GHz.
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Figure 4.20: Simulated conversion gain and NF of the receiver vs RF frequency, when (a)
notch filters are “off”, and (b) notch filters are “on”.

4.3.4 Balun and multiplier

Linearity is a limiting factor in the detection path as the incoming signal can include

strong blockers. A linear multiplier requires to be differential and hence a balun is em-
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Figure 4.21: Balun LNA used after the UWB LNA in the blocker detection path.

ployed before the multiplier. An active CS-CG noise and distortion canceling balun-LNA

[59] is employed due to area limitation (Fig. 4.21). Simulations show a current consump-

tion of 1 mA from a 1 V supply, voltage gain of 6 dB, NF of 8 dB, and IIP3 of 8 dBm for

the balun-LNA in the intended frequency band.

A differential four-quadrant multiplier [49] is employed after the balun-LNA (Fig. 4.22),

to time limit the signal periodically by multiplying it with a Gaussian pulse train. Tran-

sistors M1 − 4 operate in linear region and the multiplication is performed using VgsVds

term in the current equation of M1 − 4. Transistors M5 − 8 should operate as source

followers to translate VgsVds term of M1− 4 to multiplication of the signals applied to the

gates of M1 − 4 and M5 − 8, which necessitates using larger transistor size for M5 − 8

(at least three times of size of M1 − 4 [49]). The multiplier of Fig. 4.22 is capable of a

simultaneous good noise and linearity performance [49]. The output of the balun-LNA

is applied to the gates of M1 − 4, while the Gaussian pulse train is applied to the gates

of M5 − 8, resulting a Gaussian shape periodic signal at the output of the multiplier (see

Fig. 4.22). The multiplier adds a 6 dB gain to the signal resulted from the multiplication

98



TG

VGauss+ VGauss-

M1 M2 M3 M4

M5

M6 M7
M8

Vin+

Vin- Vin-

Vout+

R2

Vout-

R1

Figure 4.22: Multiplier used for time limiting the incoming signal.

of its inputs and consumes only 0.3 mA from a 1 V supply.

4.3.5 BPFs (phaser)

Phaser is a DDS, which converts the frequency difference in the incoming signal to

time difference, discriminating channels in time domain. While it is superior to conven-

tional BB blocker detectors in terms of linearity due to mixer elimination, it is also advan-

tageous for creating separated channels in time domain and hence making an straightfor-

ward scenario for decision making.

Fig. 4.23 shows each BPF of the proposed phaser. The phaser consists of tunable LC

parallel BPFs (Fig. 4.9). Since tuning for the entire interferer band (2.35-5.9 GHz) is not

straightforward using only one BPF, three BPFs are employed to tune the required sub-

bands. Each inductor in the BPFs is a differential active gyrator. Note that in Fig. 4.23,

using of decoupling capacitors is unavoidable after the switches, S1 and S2, to connect the

BPF to the output of the multiplier without changing the bias of the gyrator. Similar to the

notch filters, for each Gm-cell, inverter-based structure is used (see Fig. 4.23). Tuning is
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Figure 4.23: Block diagram of each BPF of the phaser.

performed by changing only the capacitors of the filter using three switches for each filter,

as it is less sensitive to output resistance variations. Fig. 4.24 shows the voltage gain and

GD frequency response of the blocker detector at the output of the phaser for each BPF

at a specific calibration setting, when a differential voltage of 200 mV is applied to the

gates of M5−8 in Fig. 4.22 (500 mV for M5−6 and 700 mV for M7−8). Here, the reason

of choosing the constant differential voltage of 200 mV for the gate of M5 − M8 is to

obtain the voltage gain of the blocker detector, while M5 −M8 stay in saturation. Each

Gm-cell in BPF1, BPF2 and BPF3 draws 0.8 mA, 2 mA and 2.1 mA from a 1 V supply,

respectively.

Fig. 4.25 shows the output of the phaser, when the center frequency is set to 2.6 GHz,

for two cases, two tones each with the power of -20 dBm are at 2.6 GHz and 2.7 GHz
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Figure 4.24: Simulated (a) magnitude, and (b) GD frequency response of the blocker
detector at the output of the phaser for each BPF, when a differential voltage of 200 mV is
applied to the gates of M5 −M8 in Fig. 4.22.

(signal exists at the intended frequency of 2.6 GHz), and one tone with the power of -20

dBm is at 2.7 GHz (signal doesn’t exist at the intended frequency of 2.6 GHz). Gaussian

pulse amplitude is chosen to be 200 mV. The former shows an unattenuated, time shifted

signal at the output of the phaser, corresponding to the frequency of 2.6 GHz, while the

latter shows an attenuated signal at the output of the phaser, which is not shifted in time

domain with respect to the input of the phaser, because the input has no component at the

current center frequency of the phaser (2.6 GHz). For Fig. 4.25, σ of the Gaussian pulse

is 0.8 ns. Note that in the automatic mode of the phaser, when the center frequency of the

phaser changes with a frequency step of 100 MHz, BW of the Gaussian pulse should be

less than the frequency step [20]. BW of a Gaussian pulse is

∆fG =
1

2π
√

2σ
(4.29)

which requires a σ of greater than 1.1 ns. Estimating the Gaussian pulse duration, T , as
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Figure 4.25: Transient output of the phaser with center frequency of 2.6 GHz, when the
signal is at 2.6 GHz and 2.7 GHz, and only at 2.7 GHz (power of each tone is -20 dBm
and Gaussian pulse amplitude is 200 mV).

6σ, results in a T of greater than 6.6 ns. Following conditions are mentioned in [20] for

better channel discrimination in time domain

GD > T/2, TG > T +GD (4.30)

which T is the Gaussian pulse duration and TG is the period of the Gaussian pulse train.

Equation (4.30) shows that a GD of greater than 3.3 ns is required for better channel

separation.

4.3.6 Decision circuits

In this section, the operation of the digital control circuit is explained. After the phaser,

an active balun and a diode-RC envelope detector is placed to take the envelope of the

signal (Fig. 4.26). Transistor M8 is biased in weak inversion region to act as a diode. The

balun with envelope detector only consume 0.11 mA from a 1 V supply. The transient
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Figure 4.27: Transient output of the envelope detector with phaser center frequency of 2.6
GHz, when the signal is at 2.6 GHz and 2.7 GHz, and only at 2.7 GHz (power of each tone
is -20 dBm and Gaussian pulse amplitude is 200 mV).

output of the envelope detector for the signals shown in Fig. 4.25 is shown in Fig. 4.27.

Fig. 4.28 shows the block diagram of the digital control circuit. Before the normal

operation of the system both notch filters, in the receiver, and BPFs, in the detector, are

103



fb1-fb4 
settings

M
U

X
1 To BPF1

fb5-fb8 
settings To BPF2

fb9-fb12 
settings To BPF3

One Hot 
Logic

reset

clk

Detection End
Notch-Select

BP-Select (clk enable)

fn1-fn4 
settings

To Notch1

fn5-fn8 
settings

To Notch2

fn9-fn12 
settings

To Notch3

12-bits Shift Register

Comparator

clkb

Vref

Vout,Phaser

Envelope 
Detector

clk

Manual settings

Manual settings

Calibration/
Normal

Calibration/
Normal

Calibration/
Normal

Calibration/Normal

Calibration/Normal

Calibration/Normal

Priority encoded 
to select the first 

eligible setting 

4-bits 4-bits 4-bits

clk enable

Vout,env

M
U

X
2

M
U

X
3

M
U

X
4

M
U

X
5

M
U

X
6

M
U

X
9

M
U

X
8

M
U

X
7

M
U

X
1

2

M
U

X
1

1

M
U

X
10

Figure 4.28: block diagram of the digital control circuit.

calibrated manually. First, the BPFs of the phaser are calibrated manually in the detection

path using three switches for each BPF (see Fig. 4.23); from each BPF, four desired set-
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tings are selected, determining an overall of twelve desired settings. The desired settings

should result in a separation of 100 MHz between each two consecutive states for each

sub-band. After calibration, the BPFs are selected automatically using “one hot logic” and

MUX1 −MUX3; first BPF1 is enabled, while BPF2 and BPF3 are disabled, and its

center frequency varied from 2.4 GHz to 2.7 GHz (fb1 − fb4 settings), then, BPF2 is acti-

vated and varied with fb5−fb8 settings (center frequency of 5.15 GHz to 5.45 GHz), while

the other two are deactivated, and finally the BPF3 is activated, while the other two are

disconnected (fb9 − fb12 settings corresponding to center frequency of 5.55 GHz to 5.85

GHz). MUX4 −MUX6 determine the normal or calibrated mode of the BPFs. The out-

put of the envelope detector, which is placed after the phaser, (Vout,env) is compared with a

reference voltage (Vref ), using a dynamic comparator [60]. The comparator operates with

a clock signal clkb, with a period of TG, similar to the period of the Gaussian pulse train.

Since notch filters operate in parallel, the twelve serial bits corresponding to a maximum

of three interferes (one for each BPF) are placed in parallel using a 12-bits shift register.

After the detection process is finished, the Detection End signal turns from “0” to “1”

and the detection path is disconnected from the LNA and the receiving path is activated.

For each of the BPFs of the phaser, the first setting which results in a “1” at the output

of the comparator is selected and mapped to the corresponding setting of the notch filters

with the same frequency (one of fn1 to fn12 which is specified in calibration mode) using

priority encoded MUXs, MUX7−MUX9. Note that if there is no interferer in any of the

sub-bands, the corresponding notch filter is deactivated. MUX10−MUX12 determine the

calibration or normal operation of the notch filters. The entire detector works periodically

(with a period of TG) and in each period one interferer is discriminated. The detecting and

receiving times are controlled using a reset signal. The order of system functionality is

summarized as follows:
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• Calibrate notch and BPFs

• Set states of switches for each frequency through scan chain (for both notch and

BPFs)

• Automatic tuning of the BPFs and finding the first blockers in each sub-band using

a state machine

• Automatic state mapping for selection of up to three notch filters

• Normal operation of the receiver with the selected notch filters

4.4 Fabrication and measurement

The proposed UWB receiver with blocker detection is fabricated using TSMC 65-nm

CMOS technology. The overall area (including pads) is 1 mm2 and the maximum power

consumption for detecting and receiving modes are 9.6 mW and 23.8 mW, respectively.

Fig. 4.29 shows the fabricated IC microphotograph.

The first step in measurement is calibration of BP and notch filters. To calibrate the

BPFs, the receiving path is disabled and the detection path is enabled. For each BPF

calibration the other two are deactivated. Fig. 4.30 shows the measured voltage gain and

GD frequency response of the blocker detector at the output of the differential to single-

ended balun placed after the phaser, for each BPF at a specific calibration setting, when a

differential voltage of 200 mV is applied to the gates of M5−8 in Fig. 4.22 (500 mV for

M5−6 and 700 mV for M7−8). An open drain buffer is used at the output of the balun for

measurement and its effect, which is only on gain, is subtracted in Fig. 4.30.

Next, the detection path is deactivated and the receiver path is activated for manual

calibration of the notch filters to reach to the desired settings. Fig. 4.31 shows the measured

voltage gain at the output of the LNA, when the three notch filters are all “on” or “off”,
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Figure 4.29: Die micrograph of the fabricated UWB receiver with blocker detection.
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Figure 4.30: Measured (a) magnitude, and (b) GD frequency response of the blocker detec-
tor at the output of the differential to single-ended balun for each BPF, when a differential
voltage of 200 mV is applied to the gates of M5−8 in Fig. 4.22.

for a specific setting, which is very close to simulation results in Fig. 4.17. Again, an open

drain buffer is used at the output of the LNA and its effect is subtracted in Fig. 4.31.
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Figure 4.31: Measured voltage gain of the LNA when all three notch filters are “on” or
“off”.

After the calibration process, the normal operation begins; first the blocker detector

is activated and the locations of the interferers are determined and mapped to the notch

filters of the receiver. Then the receiver is activated and operates normally and rejects the

blockers using notch filters, while the blocker detector is deactivated. Fig. 4.32 shows

the comparator output for two scenarios; one, the blockers (sinusoid tones) exist at 2.4

GHz, 2.6 GHz and 2.7 GHz (not at 2.5 GHz), and two, the blockers exist at 5.45 GHz

and 5.55 GHz (not at 5.35 GHz and 5.65 GHz), each with a power of -20 dBm (Gaussian

pulse amplitude is 200 mV). For Fig. 4.32, σ is chosen to be 1.2 ns and TG is 100 ns,

which results in a sensing time of 1.2 µs for the twelve channels. Based on GD values (see

Fig. 4.30b) and T and TG selections, (4.30) is met.

Measured voltage conversion gain, NF, in-band IIP3, and S11 of the receiver are shown

in Fig. 4.33. For Fig. 4.33a and Fig. 4.33c, all notch filters are “off”, while Fig. 4.33b

shows the gain and NF for a specific case when all three notch filters are “on”. Fig. 4.33c

shows conversion gain, NF, and IIP3 in BB for LO frequency 3.9 GHz.
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Figure 4.32: Measured comparator output evaluating the signal presence at (a) 2.35-2.75
GHz, and (b) 5.3-5.7 GHz.

For OB-IIP3 and OB-IIP2 measurements, all the cases in Table 1.1 and 1.2 includ-

ing the ones with no improvement, plus some non-extreme cases are examined. So the

measurement is based on the frequencies and powers mentioned in Table 1.1 and 1.2.

In Fig. 4.34a (Fig. 4.34b) all pairs of interferers, which create an IM3 (IM2) product

within the first UWB group, and their corresponding IIP3 (IIP2) is demonstrated, when

the notch filters are both activated an deactivated. Power of 802.11a interferers, which

is not mentioned in Table 1.1 and 1.2, is -24 dBm. The improved OB-IIP3/OB-IIP2 val-

ues in Fig. 4.34 are higher than the required values in Table 1.1 and 1.2. As shown in

Fig. 4.34, an improvement of up to 21.7 dBm for OB-IIP3 (-2.84 dBm to 18.9 dBm for

802.11a and 802.11a) and 36.1 dBm for OB-IIP2 (8.41 dBm to 44.53 dBm for 802.11b/g

and 802.11b/g) is feasible using the proposed architecture.

Table 4.1 shows the performance summary of this work and most recent state-of-the-

art MB-OFDM UWB receivers. The proposed receiver excels in terms of OB-IIP3 and

OB-IIP2 performance and achieves a good power consumption and acceptable NF and
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Parameter This work [31] [61] [62] [63]

System RFE+LPF RFE
RFE+LPF

+VGA
RFE RFE

Frequency (GHz) 3.1−4.8 3.1−4.8 3.1−10.6 3.1−10.6 0.6−10

Gain (dB) 23.2 25 73.5 20.6 14

NFmin (dB) 5.5a/6b 5.1 8.4 3 7

IIP3avg (dBm) -9.1 1-dB CP:-30 1-dB CP:-36.8 -9.6 0

OB-IIP3 (dBm) 2.5−18.9c -4.7−-1.6d - - -

OB-IIP2 (dBm) 22.6−46e 6.2−20.4f - - -

Power Diss (mW) 16.4g/23.8h 32 88.74 10.8 90

area (mm2) 1i 2.25j 3.23 0.91 1

CMOS Tech 65 nm 130 nm 180 nm 65 nm 45 nm

Table 4.1: Performance Summary and Comparison of the UWB Receiver with Previously
Reported Receivers
a,g When notch filter(s) are “off”.
b,h When notch filter(s) are “on”.
c,d,e,f After improvement by notch filter(s).
i,j Area is for the entire system including the detection circuits.
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Figure 4.33: Measured (a) voltage conversion gain, NF, and S11 vs. RF frequency, when
notch filters are “off”, (b) voltage conversion gain, and NF vs. RF frequency, when notch
filters are “on”, and (c) voltage conversion gain, NF, and in-band IIP3 vs. BB frequency
for LO frequency of 3.9 GHz, when notch filters are “off”.

IIP3.

4.5 Conclusion

A UWB receiver for the first UWB group, featuring a phaser-based blocker detection

has been described and fabricated in a TSMC CMOS 65-nm technology. The receiver

achieves a maximum OB-IIP3 (OB-IIP2) of 18.9 dBm (46 dBm) with blocker rejection

111



using three tunable notch filters in the receiving path, each corresponding to 2.35-2.75

GHz, 5.1-5.5 GHz, and 5.5-5.9 GHz bands. The receiver meets the challenging OB-IIP3

and OB-IIP2 specs corresponding to the blockers located in the frequencies of the notch

filters and draws 23.8 mA (16.4 mA) from a 1 V supply when the three notch filters are ac-

tivated (deactivated). The phaser-based real-time blocker detector discriminates blockers

located in the mentioned bands, in time domain, with a frequency resolution of 100 MHz

and consumes only 9.6 mW at its worst case.
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Figure 4.34: Measured (a) OB-IIP3, and (b) OB-IIP2 of different pairs of UWB blockers,
which their IM3/IM2 falls within the first UWB group, when the notch filters are “on” and
“off”.
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5. SUMMARY AND CONCLUSIONS∗

Several methods and applications of spectrum sensing are evaluated. Sections 1.1 and

1.2 provided a through background on different spectrum sensing methods for CR and

UWB applications, while Section 1.3 evaluated different reported approaches for UWB

receivers to overcome the NB blockers working in the proximity of the UWB devices.

As explained in Chapter 2, sensitivity and sensing time are the key features for an

spectrum sensor in a CR device, which detects white space within VHF/UHF TV broad-

cast bands. The CR device works as a secondary user in the detected empty bands. In

Chapter 2 an integrated CMOS CR spectrum sensor for a CR receiver in 54-862 MHz

band is presented. A QCF detector is proposed based on both energy and feature detection

methods and can take advantage of both methods to reach a fast and accurate decision

without the need for an ADC for decision making. The integrated chip has been fabricated

in a standard 0.18-µm CMOS IBM technology and has achieved minimum detection SNR

of as low as -24 dB and DR of 39 dB. This work is published in [13].

Real-time spectrum sensing refers to searching for possible signals at a specific time

and location, which is applicable to CR for primary signal detection and UWB for inter-

ferer detection. The simplicity and low sensing time of phaser-based spectrum sensors,

implemented in a discrete manner previously, provided the incentive of the proposed spec-

trum sensor. In Chapter 3, an integrated CMOS wideband real-time spectrum sensor with

a novel on-chip phaser in 57-354 MHz band, as part of VHF/UHF TV broadcast bands, is

presented. The proposed approach provides a fast, simple, area efficient, analog solution

for real-time spectrum sensing with low NF and power consumption. The integrated chip

∗ c©2015 IEEE. Part of this chapter is reprinted with permission from P. Sepidband and K. Entesari,
“A CMOS spectrum sensor based on quasi-cyclostationary feature detection for cognitive radios,” IEEE
Transactions on Microwave Theory and Techniques, vol. 63, no. 12, pp. 4098-4109, Dec. 2015.
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has been fabricated in a standard 0.18-µm CMOS IBM technology and has achieved a

sensing time of as low as 2.5 µs for 27 MHz frequency resolution. This work is published

in [20].

In Chapter 4, an interferer-tolerant receiver for the first group of UWB (3.1-4.8 GHz)

is presented. The entire system operates in two modes; detecting and receiving. In the

detecting mode the interferers pass through an LNA, a multiplier, a phaser, and a decision

circuit, while in the receiving mode the signal passes through the LNA, three tunable notch

filters, a mixer (consisting of a switch, a BB transconductance stage, and a TIA), and a BB

filter. The blocker detector detects the location of blockers and reports them to the notch

filters of the receiver for rejection. The entire system is integrated in a standard TSMC

CMOS 65-nm technology and consumes up to 23.8 mW and 9.6 mW, in the receiving

and detecting modes, respectively, with a 1 V voltage supply. The receiver achieves a

simultaneous rejection of up to three out-of-band interferers and maximum out-of-band

IIP3 and out-of-band IIP2 of 18.9 dBm and 46 dBm, respectively, using a dynamic blocker

detection and rejection technique. This work has been accepted for publication in [33].

5.1 Future Work

The simplicity and functionality of CMOS phaser-based spectrum sensors, which are

employed in [20] and [33], for signal and interferer detection, respectively, can extend to

other applications. One of the applications can be in chirp-UWB receivers to simplify the

receiving process.

5.1.1 Phaser-based chirp-UWB receivers

Low data-rate impulse radio ultra-wideband (IR-UWB) transceivers [64] achieve low

power consumption, but suffer from the bit-level synchronization problem at the BB.

Moreover, they exhibit a high peak transmission power to maintain a sufficient average

transmission power for a given link margin. Constant-envelope frequency modulated ultra-
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Figure 5.1: Conventional FSK-based chirp-UWB receivers.∗

wideband (FM-UWB) systems [65, 66] feature a low peak voltage and a steep roll-off

spectrum, but they suffer from high power consumption due to the lack of duty-cycled

operation. On the other hand, frequency-shift keying-based (FSK-based) chirp-UWB

transceivers [67] significantly reduce the peak transmission power with relaxed duty-

cycled operation for noninvasive, energy-efficient, and fast short-range communications.

Fig. 5.1 shows the chirp-UWB receiver front-end architecture in [67]. The modulation

is a 2-FSK; “1” corresponds to 8-8.25 GHz and “0” corresponds to 7.75-8 GHz. The

FSK demodulator consists of two BPFs, two envelope detectors and a comparator. The

upper-band BPF has a center frequency of 8.3 GHz, and the lower-band BPF has a center

frequency of 7.7 GHz. The gain difference of 13 dB between the two BPFs at the high end

of 8.25 GHz and at the low end of 7.75 GHz is obtained. The envelope difference between

the BPFs is extracted by the envelope detectors whose output is sampled by the data slicer

with the synchronized data clock. ∗

As mentioned before a phaser is a DDS structure with a specific GD characteristic. A

phaser with an all-pass magnitude and a linear GD can easily act as an FSK demodulator,

simplifying the entire procedure. Previously it was mentioned on-chip APFs cannot be

∗ c©2014 IEEE.
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used as phasers for signal and interferer detection for CR and UWB applications due to

required resolutions. Here, a 2-FSK demodulator for a chirp-UWB signal, requires a lousy

frequency resolution of 600 MHz, which is possible using on-chip APFs. It means a simple

CMOS APF which has a linear GD within the required frequency can act as a phaser and

a 2-FSK demodulator for a chirp-UWB signal.
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