383 research outputs found

    A Plague of Magnetic Spots Among the Hot Stars of Globular Clusters

    Get PDF
    Six decades and counting, the formation of hot ~20,000-30,000 K Extreme Horizontal Branch (EHB) stars in Galactic Globular Clusters remains one of the most elusive quests in stellar evolutionary theory. Here we report on two discoveries shattering their currently alleged stable luminosity. The first EHB variability is periodic and cannot be ascribed to binary evolution nor pulsation. Instead, we here attribute it to the presence of magnetic spots: superficial chemical inhomogeneities whose projected rotation induces the variability. The second EHB variability is aperiodic and manifests itself on time-scales of years. In two cases, the six-year light curves display superflare events a mammoth several million times more energetic than solar analogs. We advocate a scenario where the two spectacular EHB variability phenomena are different manifestations of diffuse, dynamo-generated, weak magnetic fields. Ubiquitous magnetic fields, therefore, force an admittance into the intricate matrix governing the formation of all EHBs, and traverse to their Galactic field counterparts. The bigger picture is one where our conclusions bridge similar variability/magnetism phenomena in all radiative-enveloped stars: young main-sequence stars, old EHBs and defunct white dwarfs.Comment: Author's version of the main article (23 pages) and Supplementary Information (22 pages) combined into a single pdf (45 pages). Readers invited to read the Nature Astronomy Published version available at this url: https://www.nature.com/articles/s41550-020-1113-

    The M-type stars

    Get PDF
    The papers in this volume cover the following topics: (1) basic properties and photometric variability of M and related stars; (2) spectroscopy and nonthermal processes; (3) circumstellar radio molecular lines; (4) circumstellar shells, the formation of grains, and radiation transfer; (5) mass loss; (6) circumstellar chemistry; (7) thermal atmospheric models; (8) quasi-thermal models; (9) observations on the atmospheres of M dwarfs; and (1) theoretical work on M dwarfs

    Spectroscopic survey of the Galaxy with Gaia I. Design and performance of the Radial Velocity Spectrometer

    Get PDF
    The definition and optimisation studies for the Gaia satellite spectrograph, the Radial Velocity Spectrometer (RVS), converged in late 2002 with the adoption of the instrument baseline. This paper reviews the characteristics of the selected configuration and presents its expected performance. The RVS is a 2.0 by 1.6 degree integral field spectrograph, dispersing the light of all sources entering its field of view with a resolving power R=11 500 over the wavelength range [848, 874] nm. The RVS will continuously and repeatedly scan the sky during the 5 years of the Gaia mission. On average, each source will be observed 102 times over this period. The RVS will collect the spectra of about 100-150 million stars up to magnitude V~17-18. At the end of the mission, the RVS will provide radial velocities with precisions of ~2 km/s at V=15 and \~15-20 km/s at V=17, for a solar metallicity G5 dwarf. The RVS will also provide rotational velocities, with precisions (at the end of the mission) for late type stars of sigma_vsini ~5 km/s at V~15 as well as atmospheric parameters up to V~14-15. The individual abundances of elements such as Silicon and Magnesium, vital for the understanding of Galactic evolution, will be obtained up to V~12-13. Finally, the presence of the 862.0 nm Diffuse Interstellar Band (DIB) in the RVS wavelength range will make it possible to derive the three dimensional structure of the interstellar reddening.Comment: 17 pages, 9 figures, accepted for publication in MNRAS. Fig. 1,2,4,5, 6 in degraded resolution; available in full resolution at http://blackwell-synergy.com/links/doi/10.1111/j.1365-2966.2004.08282.x/pd

    Hot subluminous stars

    Full text link
    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Strikingly, the distribution in the Hertzsprung-Russell diagram of He-rich vs. He-poor hot subdwarf stars of the globular clusters omega Cen and NGC~2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope phase of evolution.They provide a clean-cut laboratory to study this important but yet purely understood phase of stellar evolution. Substellar companions to sdB stars have also been found. For HW~Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the pulsator V391 Peg was the first discovery of a planet that survived the red giant evolution of its host star. Several types of pulsating star have been discovered among hot subdwarf stars, the most common are the gravity-mode sdB pulsators (V1093 Her) and their hotter siblings, the p-mode pulsating V361 Hya stars. Another class of multi-periodic pulsating hot subdwarfs has been found in the globular cluster omega Cen that is unmatched by any field star. The masses of hot subdwarf stars are the key to understand the stars' evolution. A few pulsating sdB stars in eclipsing binaries have been found that allow mass determination. The results are in good agreement with predictions from binary population synthesis. New classes of binaries, hosting extremely low mass (ELM) white dwarfs (M<0.3 Msun), have recently been discovered, filling a gap in the mosaic of binary stellar evolution. (abbreviated)Comment: 216 pages, 79 figures, PASP invited review, accepted 04/19/201

    Hot subdwarf stars in close-up view. I. Rotational properties of subdwarf B stars in close binary systems and nature of their unseen companions

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO)The origin of hot subdwarf B stars (sdBs) is still unclear. About half of the known sdBs are in close binary systems for which common envelope ejection is the most likely formation channel. Little is known about this dynamic phase of binary evolution. Since most of the known sdB systems are single-lined spectroscopic binaries, it is difficult to derive masses and unravel the companions' nature, which is the aim of this paper. Due to the tidal influence of the companion in close binary systems, the rotation of the primary becomes synchronised to its orbital motion. In this case it is possible to constrain the mass of the companion, if the primary mass, its projected rotational velocity as well as its surface gravity are known. For the first time we measured the projected rotational velocities of a large sdB binary sample from high resolution spectra. We analysed a sample of 51 sdB stars in close binaries, 40 of which have known orbital parameters comprising half of all such systems known today. Synchronisation in sdB binaries is discussed both from the theoretical and the observational point of view. The masses and the nature of the unseen companions could be constrained in 31 cases. We found orbital synchronisation most likely to be established in binaries with orbital periods shorter than . Only in five cases it was impossible to decide whether the sdB's companion is a white dwarf or an M dwarf. The companions to seven sdBs could be clearly identified as late M stars. One binary may have a brown dwarf companion. The unseen companions of nine sdBs are white dwarfs with typical masses. The mass of one white dwarf companion is very low. In eight cases (including the well known system KPD1930+2752) the companion mass exceeds , four of which even exceed the Chandrasekhar limit indicating that they may be neutron stars. Even stellar mass black holes are possible for the most massive companions. The distribution of the inclinations of the systems with low mass companions appears to be consistent with expectations, whereas a lack of high inclinations becomes obvious for the massive systems. We show that the formation of such systems can be explained with common envelope evolution and present an appropriate formation channel including two phases of unstable mass transfer and one supernova explosion. The sample also contains a candidate post-RGB star, which rotates fast despite its long orbital period. The post-RGB stars are expected to spin-up caused by their ongoing contraction. The age of the sdB is another important factor. If the EHB star is too young, the synchronisation process might not be finished yet. Estimating the ages of the target stars from their positions on the EHB band, we found PG 2345+318, which is known not to be synchronised, to lie near the zero-age extreme horizontal branch as are the massive candidates PG 1232-136, PG 1432+159 and PG 1101+249. These star may possibly be too young to have reached synchronisation. The derived large fraction of putative massive sdB binary systems in low inclination orbits is inconsistent with theoretical predictions. Even if we dismiss three candidates because they may be too young and assume that the other sdB primaries are of low mass, PG 1743+477 and, in particular, HE 0532-4503 remain as candidates whose companions may have masses close to or above the Chandrasekhar limit. X-ray observations and accurate photometry are suggested to clarify their nature. As high inclination systems must also exist, an appropriate survey has already been launched to find such binaries.Peer reviewe

    Thermally Pulsing Asymptotic Giant Branch Stars in the Cluster NGC 419.

    Get PDF
    In this work we study the Thermally Pulsing Asymptotic Giant Branch (TP-AGB) stars in the Small Magellanic Cloud (SMC) star cluster NGC 419. This is the known star cluster which is richest in TP-AGB and carbon stars. The aim of this work is twofold: i) to test available stellar models originally calculated for field TP-AGB stars of the SMC, and ii) to calibrate the processes involved during TP-AGB phase (mass loss and third dredge-up) to reproduce the observed properties of TP-AGB stars of the cluster (star counts and luminosities). First we consider photometrical data by High Resolution Channel and by Wide Field Channel of the Advanced Camera for Surveys (respectively ACS/HRC and ACS/WFC) to estimate the global properties of the cluster (age, mass). From the color-magnitude diagram (CMD) of NGC 419 we can note some dispersion, especially in the main sequence and in the turn-off. This is likely due to rotation but, since this aspect is not treated in the models, in order to have a satisfactory description of star counts related to pre-AGB phases, we analyze it as due to an age spread. The population synthesis code used is TRILEGAL. First of all we use ACS/HRC data and we consider the isochrone fitting method. In the estimated age range we build the star formation history (SFH) of the cluster, trying to reproduce the luminosity function of the red clump region. In this way we are able to reproduce well the CMD of the red giants, and we expect to have a reasonable distribution of the core masses of stars entering the AGB phase. We are also able to estimate the stellar mass comprised in the HRC field. Afterwards we use ACS/WFC data to estimate the total mass of the cluster: we consider the number density profile in order to assess the background density and the radius of the cluster. Once determined the global properties of the cluster, in the second part of this work we consider near-IR data (2MASS and CASPIR photometry) of AGB stars of NGC 419. We first consider a complete list of AGB stars of the cluster and then we discard the ones which are outside the fixed radius and the ones which are below the tip of red giant branch. We test eighteen models for TP-AGB stars, obtaining median values for the adopted quantities and 1σ error bars using the cumulative function. A general result of all models is a deficit of predicted M-stars and a too faint M/C transition luminosity (these quantities are mainly related to the onset of third dredge-up). There is instead a good agreement of most of the models with the data in reproducing the number of C-stars and the AGB tip luminosity. We discuss the three most different models. We analyze their diffencences concerning mass loss regimes, characteristic of third dredge-up and the Hertzsprung-Russel diagrams. The general aspect required by all models for a better description of the data and for a following work is a later onset of the third dredge-up which would imply a longer M-phase and a brighter M/C transition luminosity.ope

    Pulsating White Dwarf Stars and Precision Asteroseismology

    Full text link
    Galactic history is written in the white dwarf stars. Their surface properties hint at interiors composed of matter under extreme conditions. In the forty years since their discovery, pulsating white dwarf stars have moved from side-show curiosities to center stage as important tools for unraveling the deep mysteries of the Universe. Innovative observational techniques and theoretical modeling tools have breathed life into precision asteroseismology. We are just learning to use this powerful tool, confronting theoretical models with observed frequencies and their time rate-of-change. With this tool, we calibrate white dwarf cosmochronology; we explore equations of state; we measure stellar masses, rotation rates, and nuclear reaction rates; we explore the physics of interior crystallization; we study the structure of the progenitors of Type Ia supernovae, and we test models of dark matter. The white dwarf pulsations are at once the heartbeat of galactic history and a window into unexplored and exotic physics.Comment: 70 pages, 11 figures, to be published in Annual Review of Astronomy and Astrophysics 200

    Science cases for a visible interferometer

    Get PDF
    High spatial resolution is the key for the understanding various astrophysical phenomena. But even with the future E-ELT, single dish instruments are limited to a spatial resolution of about 4 mas in the visible. For the closest objects within our Galaxy most of the stellar photosphere remains smaller than 1 mas. With the success of long baseline interferometry these limitations were soom overcome. Today low and high resolution interferometric instruments on the VLTI and CHARA offer an immense range of astrophysical studies. Combining more telescopes and moving to visible wavelengths broadens the science cases even more. With the idea of developing strong science cases for a future visible interferometer, we organized a science group around the following topics: pre-main sequence and main sequence stars, fundamental parameters, asteroseismology and classical pulsating stars, evolved stars, massive stars, active galactic nuclei (AGNs) and imaging techniques. A meeting was organized on the 15th and 16th of January, 2015 in Nice with the support of the Action Specific in Haute Resolution Angulaire (ASHRA), the Programme National en Physique Stellaire (PNPS), the Lagrange Laboratory and the Observatoire de la Cote d'Azur, in order to present these cases and to discuss them further for future visible interferometers. This White Paper presents the outcome of the exchanges. This book is dedicated to the memory of our colleague Olivier Chesneau who passed away at the age of 41
    • …
    corecore