52 research outputs found

    Computing emotion awareness through galvanic skin response and facial electromyography

    Get PDF
    To improve human-computer interaction (HCI), computers need to recognize and respond properly to their user’s emotional state. This is a fundamental application of affective computing, which relates to, arises from, or deliberately influences emotion. As a first step to a system that recognizes emotions of individual users, this research focuses on how emotional experiences are expressed in six parameters (i.e., mean, absolute deviation, standard deviation, variance, skewness, and kurtosis) of not baseline-corrected physiological measurements of the galvanic skin response (GSR) and of three electromyography signals: frontalis (EMG1), corrugator supercilii (EMG2), and zygomaticus major (EMG3). The 24 participants were asked to watch film scenes of 120 seconds, which they rated afterward. These ratings enabled us to distinguish four categories of emotions: negative, positive, mixed, and neutral. The skewness and kurtosis of the GSR, the skewness of the EMG2, and four parameters of EMG3, discriminate between the four emotion categories. This, despite the coarse time windows that were used. Moreover, rapid processing of the signals proved to be possible. This enables tailored HCI facilitated by an emotional awareness of systems

    Dance-the-music : an educational platform for the modeling, recognition and audiovisual monitoring of dance steps using spatiotemporal motion templates

    Get PDF
    In this article, a computational platform is presented, entitled “Dance-the-Music”, that can be used in a dance educational context to explore and learn the basics of dance steps. By introducing a method based on spatiotemporal motion templates, the platform facilitates to train basic step models from sequentially repeated dance figures performed by a dance teacher. Movements are captured with an optical motion capture system. The teachers’ models can be visualized from a first-person perspective to instruct students how to perform the specific dance steps in the correct manner. Moreover, recognition algorithms-based on a template matching method can determine the quality of a student’s performance in real time by means of multimodal monitoring techniques. The results of an evaluation study suggest that the Dance-the-Music is effective in helping dance students to master the basics of dance figures

    Intelligent Interfaces to Empower People with Disabilities

    Full text link
    Severe motion impairments can result from non-progressive disorders, such as cerebral palsy, or degenerative neurological diseases, such as Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS), or muscular dystrophy (MD). They can be due to traumatic brain injuries, for example, due to a traffic accident, or to brainste

    Time- and value-continuous explainable affect estimation in-the-wild

    Get PDF
    Today, the relevance of Affective Computing, i.e., of making computers recognise and simulate human emotions, cannot be overstated. All technology giants (from manufacturers of laptops to mobile phones to smart speakers) are in a fierce competition to make their devices understand not only what is being said, but also how it is being said to recognise user’s emotions. The goals have evolved from predicting the basic emotions (e.g., happy, sad) to now the more nuanced affective states (e.g., relaxed, bored) real-time. The databases used in such research too have evolved, from earlier featuring the acted behaviours to now spontaneous behaviours. There is a more powerful shift lately, called in-the-wild affect recognition, i.e., taking the research out of the laboratory, into the uncontrolled real-world. This thesis discusses, for the very first time, affect recognition for two unique in-the-wild audiovisual databases, GRAS2 and SEWA. The GRAS2 is the only database till date with time- and value-continuous affect annotations for Labov effect-free affective behaviours, i.e., without the participant’s awareness of being recorded (which otherwise is known to affect the naturalness of one’s affective behaviour). The SEWA features participants from six different cultural backgrounds, conversing using a video-calling platform. Thus, SEWA features in-the-wild recordings further corrupted by unpredictable artifacts, such as the network-induced delays, frame-freezing and echoes. The two databases present a unique opportunity to study time- and value-continuous affect estimation that is truly in-the-wild. A novel ‘Evaluator Weighted Estimation’ formulation is proposed to generate a gold standard sequence from several annotations. An illustration is presented demonstrating that the moving bag-of-words (BoW) representation better preserves the temporal context of the features, yet remaining more robust against the outliers compared to other statistical summaries, e.g., moving average. A novel, data-independent randomised codebook is proposed for the BoW representation; especially useful for cross-corpus model generalisation testing when the feature-spaces of the databases differ drastically. Various deep learning models and support vector regressors are used to predict affect dimensions time- and value-continuously. Better generalisability of the models trained on GRAS2 , despite the smaller training size, makes a strong case for the collection and use of Labov effect-free data. A further foundational contribution is the discovery of the missing many-to-many mapping between the mean square error (MSE) and the concordance correlation coefficient (CCC), i.e., between two of the most popular utility functions till date. The newly invented cost function |MSE_{XY}/σ_{XY}| has been evaluated in the experiments aimed at demystifying the inner workings of a well-performing, simple, low-cost neural network effectively utilising the BoW text features. Also proposed herein is the shallowest-possible convolutional neural network (CNN) that uses the facial action unit (FAU) features. The CNN exploits sequential context, but unlike RNNs, also inherently allows data- and process-parallelism. Interestingly, for the most part, these white-box AI models have shown to utilise the provided features consistent with the human perception of emotion expression

    Video interaction using pen-based technology

    Get PDF
    Dissertação para obtenção do Grau de Doutor em InformáticaVideo can be considered one of the most complete and complex media and its manipulating is still a difficult and tedious task. This research applies pen-based technology to video manipulation, with the goal to improve this interaction. Even though the human familiarity with pen-based devices, how they can be used on video interaction, in order to improve it, making it more natural and at the same time fostering the user’s creativity is an open question. Two types of interaction with video were considered in this work: video annotation and video editing. Each interaction type allows the study of one of the interaction modes of using pen-based technology: indirectly, through digital ink, or directly, trough pen gestures or pressure. This research contributes with two approaches for pen-based video interaction: pen-based video annotations and video as ink. The first uses pen-based annotations combined with motion tracking algorithms, in order to augment video content with sketches or handwritten notes. It aims to study how pen-based technology can be used to annotate a moving objects and how to maintain the association between a pen-based annotations and the annotated moving object The second concept replaces digital ink by video content, studding how pen gestures and pressure can be used on video editing and what kind of changes are needed in the interface, in order to provide a more familiar and creative interaction in this usage context.This work was partially funded by the UTAustin-Portugal, Digital Media, Program (Ph.D. grant: SFRH/BD/42662/2007 - FCT/MCTES); by the HP Technology for Teaching Grant Initiative 2006; by the project "TKB - A Transmedia Knowledge Base for contemporary dance" (PTDC/EAT/AVP/098220/2008 funded by FCT/MCTES); and by CITI/DI/FCT/UNL (PEst-OE/EEI/UI0527/2011

    Human and Artificial Intelligence

    Get PDF
    Although tremendous advances have been made in recent years, many real-world problems still cannot be solved by machines alone. Hence, the integration between Human Intelligence and Artificial Intelligence is needed. However, several challenges make this integration complex. The aim of this Special Issue was to provide a large and varied collection of high-level contributions presenting novel approaches and solutions to address the above issues. This Special Issue contains 14 papers (13 research papers and 1 review paper) that deal with various topics related to human–machine interactions and cooperation. Most of these works concern different aspects of recommender systems, which are among the most widespread decision support systems. The domains covered range from healthcare to movies and from biometrics to cultural heritage. However, there are also contributions on vocal assistants and smart interactive technologies. In summary, each paper included in this Special Issue represents a step towards a future with human–machine interactions and cooperation. We hope the readers enjoy reading these articles and may find inspiration for their research activities

    Face Detection and Verification using Local Binary Patterns

    Get PDF
    This thesis proposes a robust Automatic Face Verification (AFV) system using Local Binary Patterns (LBP). AFV is mainly composed of two modules: Face Detection (FD) and Face Verification (FV). The purpose of FD is to determine whether there are any face in an image, while FV involves confirming or denying the identity claimed by a person. The contributions of this thesis are the following: 1) a real-time multiview FD system which is robust to illumination and partial occlusion, 2) a FV system based on the adaptation of LBP features, 3) an extensive study of the performance evaluation of FD algorithms and in particular the effect of FD errors on FV performance. The first part of the thesis addresses the problem of frontal FD. We introduce the system of Viola and Jones which is the first real-time frontal face detector. One of its limitations is the sensitivity to local lighting variations and partial occlusion of the face. In order to cope with these limitations, we propose to use LBP features. Special emphasis is given to the scanning process and to the merging of overlapped detections, because both have a significant impact on the performance. We then extend our frontal FD module to multiview FD. In the second part, we present a novel generative approach for FV, based on an LBP description of the face. The main advantages compared to previous approaches are a very fast and simple training procedure and robustness to bad lighting conditions. In the third part, we address the problem of estimating the quality of FD. We first show the influence of FD errors on the FV task and then empirically demonstrate the limitations of current detection measures when applied to this task. In order to properly evaluate the performance of a face detection module, we propose to embed the FV into the performance measuring process. We show empirically that the proposed methodology better matches the final FV performance

    Review of three-dimensional human-computer interaction with focus on the leap motion controller

    Get PDF
    Modern hardware and software development has led to an evolution of user interfaces from command-line to natural user interfaces for virtual immersive environments. Gestures imitating real-world interaction tasks increasingly replace classical two-dimensional interfaces based on Windows/Icons/Menus/Pointers (WIMP) or touch metaphors. Thus, the purpose of this paper is to survey the state-of-the-art Human-Computer Interaction (HCI) techniques with a focus on the special field of three-dimensional interaction. This includes an overview of currently available interaction devices, their applications of usage and underlying methods for gesture design and recognition. Focus is on interfaces based on the Leap Motion Controller (LMC) and corresponding methods of gesture design and recognition. Further, a review of evaluation methods for the proposed natural user interfaces is given

    Workshop, Long and Short Paper, and Poster Proceedings from the Fourth Immersive Learning Research Network Conference (iLRN 2018 Montana), 2018.

    Get PDF
    ILRN 2018 - ConferĂȘncia internacional realizada em Montana de 24-29 de june de 2018.Workshop, short paper, and long paper proceedingsinfo:eu-repo/semantics/publishedVersio
    • 

    corecore