8 research outputs found

    99% (Biological) Inspiration …

    Get PDF
    Greater understanding of biology in modern times has enabled significant breakthroughs in improving healthcare, quality of life, and eliminating many diseases and congenital illnesses. Simultaneously there is a move towards emulating nature and copying many of the wonders uncovered in biology, resulting in “biologically inspired” systems. Significant results have been reported in a wide range of areas, with systems inspired by nature enabling exploration, communication, and advances that were never dreamed possible just a few years ago. We warn, that as in many other fields of endeavor, we should be inspired by nature and biology, not engage in mimicry. We describe some results of biological inspiration that augur promise in terms of improving the safety and security of systems, and in developing self-managing systems, that we hope will ultimately lead to self-governing systems.1st IFIP International Conference on Biologically Inspired Cooperative Computing - Biological Inspiration: Just a dream?Red de Universidades con Carreras en Informática (RedUNCI

    Towards Biological Inspiration in the Development of Complex Systems

    Get PDF
    Greater understanding of biology in modem times has enabled significant breakthroughs in improving healthcare, quality of life, and eliminating many diseases and congenital illnesses. Simultaneously there is a move towards emulating nature and copying many of the wonders uncovered in biology, resulting in "biologically inspired" systems. Significant results have been reported in a wide range of areas, with systems inspired by nature enabling exploration, communication, and advances that were never dreamed possible just a few years ago. We warn, that as in many other fields of endeavor, we should be inspired by nature and biology, not engage in mimicry. We describe some results of biological inspiration that augur promise in terms of improving the safety and security of systems, and in developing self-managing systems, that we hope will ultimately lead to self-governing systems

    Task allocation and consensus with groups of cooperating Unmanned Aerial Vehicles

    Get PDF
    The applications for Unmanned Aerial Vehicles are numerous and cover a range of areas from military applications, scientific projects to commercial activities, but many of these applications require substantial human involvement. This work focuses on the problems and limitations in cooperative Unmanned Aircraft Systems to provide increasing realism for cooperative algorithms. The Consensus Based Bundle Algorithm is extended to remove single agent limits on the task allocation and consensus algorithm. Without this limitation the Consensus Based Grouping Algorithm is proposed that allows the allocation and consensus of multiple agents onto a single task. Solving these problems further increases the usability of cooperative Unmanned Aerial Vehicles groups and reduces the need for human involvement. Additional requirements are taken into consideration including equipment requirements of tasks and creating a specific order for task completion. The Consensus Based Grouping Algorithm provides a conflict free feasible solution to the multi-agent task assignment problem that provides a reasonable assignment without the limitations of previous algorithms. Further to this the new algorithm reduces the amount of communication required for consensus and provides a robust and dynamic data structure for a realistic application. Finally this thesis provides a biologically inspired improvement to the Consensus Based Grouping Algorithm that improves the algorithms performance and solves some of the difficulties it encountered with larger cooperative requirements

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Population-based runtime optimisation in static and dynamic environments

    Get PDF
    [no abstract

    Adaptation autonomique d'applications pervasives dirigée par les architectures

    Get PDF
    The autonomic adaptation of software application is becoming increasingly important in many domains, including pervasive field. Indeed, the integration fo different application resources (physical devices, services and third party applications) often needs to be dynamic and should adapt rapidly and automatically to changes in the execution context. To that end, service-oriented components offer support for adaptation at the architectural level. However, they do not allow the formalisation of all the design constraints that must be guaranteed during the execution of the system. To overcome this limitation, this thesis modeled the design, deployment and runtime architectures. Also, it proposes to establish links between them and has developed algorithms to check the validity of an execution architecture with respect to its architectural design. This led us to consider the entire life cycle of components and to define a set of concepts to be included in architectures supporting variability. This formalisation can be exploited both by a human administrator and by an autonomic manager that has its knowledge base increased and structured. The implementation resulted in the realization of a knowledge base, providing a studio (Cilia IDE) for the design, deployment and supervision of dynamic applications, as well as an autonomic manager that can update the structure of pervasive applications. This thesis has been validated using a pervasive application called “Actimetry”, developed in the FUI~MEDICAL project.La problématique d'adaptation autonomique prend de plus en plus d'importance dans l'administration des applications modernes, notamment pervasives. En effet, la composition entre les différentes ressources de l'application (dispositifs physiques, services et applications tierces) doit souvent être dynamique, et s'adapter automatiquement et rapidement aux évolutions du contexte d'exécution. Pour cela, les composants orientés services offrent un support à l'adaptation au niveau architectural. Cependant, ils ne permettent pas d'exprimer l'ensemble des contraintes de conception qui doivent être garanties lors de l'exécution du système. Pour lever cette limite, cette thèse a modélisé les architectures de conception, de déploiement et de l'exécution. De plus, elle a établi des liens entre celle-ci et proposé des algorithmes afin de vérifier la validité d'une architecture de l'exécution par rapport à son architecture de conception. Cela nous a conduits à considérer de près le cycle de vie des composants et à définir un ensemble de concepts afin de les faire participer à des architectures supportant la variabilité. Notons que cette formalisation peut être exploitée aussi bien par un administrateur humain, que par un gestionnaire autonomique qui voit ainsi sa base de connaissances augmentée et structurée. L'implantation a donné lieu à la réalisation d'une base de connaissance, mise à disposition d'un atelier (Cilia IDE) de conception, déploiement et supervision d'applications dynamiques, ainsi que d'un gestionnaire autonomique capable de modifier la structure d'une application pervasive. Cette thèse a été validée à l'aide d'une application pervasive nommée >, développée dans le cadre du projet FUI~MEDICAL

    99% (Biological) Inspiration...

    No full text
    corecore