

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

 Task Allocation and Consensus with Groups of Cooperating

Unmanned Aerial Vehicles

by

Simon Hunt

 A Doctoral Thesis

Submitted in Partial Fulfilment

of the requirements for the award of

 Doctor of Philosophy

 of

 Department of Computer Science

 15
th

 January 2014

Copyright 2014 Simon James Hunt

 i

Abstract

 Task Allocation and Consensus with Groups of Cooperating

Unmanned Aerial Vehicles

Simon Hunt

Loughborough University, 2014

Supervisor: Qinggang Meng

Supervisor: Chris Hinde

The applications for Unmanned Aerial Vehicles are numerous and cover a

range of areas from military applications, scientific projects to commercial activities,

but many of these applications require substantial human involvement. This work

focuses on the problems and limitations in cooperative Unmanned Aircraft Systems to

provide increasing realism for cooperative algorithms. The Consensus Based Bundle

Algorithm is extended to remove single agent limits on the task allocation and

consensus algorithm. Without this limitation the Consensus Based Grouping

Algorithm is proposed that allows the allocation and consensus of multiple agents

onto a single task. Solving these problems further increases the usability of

cooperative Unmanned Aerial Vehicles groups and reduces the need for human

involvement. Additional requirements are taken into consideration including

equipment requirements of tasks and creating a specific order for task completion.

The Consensus Based Grouping Algorithm provides a conflict free feasible solution

to the multi-agent task assignment problem that provides a reasonable assignment

 ii

without the limitations of previous algorithms. Further to this the new algorithm

reduces the amount of communication required for consensus and provides a robust

and dynamic data structure for a realistic application. Finally this thesis provides a

biologically inspired improvement to the Consensus Based Grouping Algorithm that

improves the algorithms performance and solves some of the difficulties it

encountered with larger cooperative requirements.

 iii

Acknowledgements

As this thesis draws closer to its end it seems appropriate now to spend some

time looking back and giving thought to those who helped me reach this point. This

Ph.D. has coincided with some of my lowest moments in my life but equally with the

greatest moments of my life so far. I do not think I could have ever achieved this

without the support and dedication of a number of people. Firstly I would like to

thank both my supervisors Dr. Qinggang Meng and Prof. Chris J. Hinde, who have

provided untold help to me throughout my research. They have helped support and

motivate me when I was at my lowest and without them I certainly would not have

made it to the end. Thanks to EPSRC for funding part of this research.

To my family for supporting me throughout and a particular thank you to my

father Peter who pushed me so sternly but never stopped caring, had I listened to you

more often perhaps I would be writing this a bit sooner. I must not forget the final

family member, Molly the family dog, it is surprising how much clarity of thought

walking the dog and talking to yourself can do.

The support my friends have given me especially those in the Loughborough

Students Union Computer Society. For all the enjoyable steak nights we have had and

the entertaining weekends at James France. A special thank you to Miles Sutcliffe for

being there when I needed it with both good advice and good cooking.

My final and parting dedication goes my partner in life, Nadia Ong, you have

made me more confident and helped push me through these final stages of this thesis.

It does not matter what happens in the future because I know you will always be there

for me.

 iv

 v

Table of Contents

Abstract .. i

Acknowledgements .. iii

Table of Contents ...v

List of Tables ... viii

List of Figures ..x

Chapter 1: Introduction ..1

1.1 Introduction ...1

1.2 Problem Statement ..3

1.3 Objectives ...5

1.4 Document Layout..5

1.5 Background ...6

1.5.1 Unmanned Aerial Vehicles ...6

1.5.2 Autonomous Systems..7

1.5.3 Multi-Agent Systems ..11

1.5.4 Eusociality...13

Chapter 2: Literature Review ...17

2.1 Centralised and Decentralised Systems ..17

2.2 Task Allocation and Consensus ..19

2.2.1 Task Allocation ...19

2.2.2 Task Consensus ...20

2.2.3 Consensus Based Auction Algorithm ...25

Phase 1: The Auction Process ...25

Phase 2: The Consensus Process...26

2.2.4 Consensus Based Bundle Algorithm ..28

Phase 1: The Bundle Construction ..29

Phase 2: Conflict Resolution ...30

Scoring Functions ...33

2.2.5 Task Allocation with Duo Cooperation Restraints34

2.2.6 Task Allocation via Coalition Formation36

 vi

2.3 Eusocial Animal Behaviours...38

2.4 Conclusions ...42

Chapter 3: Consensus Based Grouping Algorithm ..43

3.1 Problem ...45

3.1.1 Single-Agent Task Assignment Problem45

3.1.2 Multi-Agent Task Assignment Problem46

3.1.3 Restricted Task Assignments ..48

3.2 The Proposed CBGA ..50

3.2.1 Local Data ...50

3.2.2 Phase 1: Bundle Construction ...52

3.2.3 Phase 2: Consensus ...56

3.3 Performance ..61

3.3.1 Methodology ...61

3.3.2 Test Scenario ...62

3.3.3 Multi-Agent Task Allocation ..65

3.3.4 Restricted Task Assignments ..78

3.4 Conclusions ...83

Chapter 4: Dynamic Multi-Agent Consensus Storage ...86

4.1 Problem ...86

4.2 Algorithm ..89

4.2.1 Local Data ...89

4.2.2 Communication ...92

4.3 Results ...95

4.4 Conclusions ...104

Chapter 5: Biologically Inspired Improvements to the CBGA106

5.1 Problem ...107

5.1.1 Team Improving Assignments ..108

5.1.2 Task Quitting ..110

5.2 Algorithm ..110

5.2.1 Team Improving Assignments ..111

5.2.2 Task Quitting ..114

5.3 Performance ..116

 vii

5.3.1 Test Scenario ...116

5.3.2 Results ...117

5.4 Conclusions ...127

Chapter 6: Conclusions and Future Work ...128

6.1 Conclusions ...128

6.1.1 Key Contributions ...128

6.1.2 Limitations ..129

6.2 Future Work ..129

Publications ..132

References ..133

Appendix A ..143

A.1 Task Assignment and Consensus with the CBBA143

A.2 Task Assignment and Consensus with the CBGA147

 viii

List of Tables

Table 2.1: Consensus decision table for the CBBA (Choi et al., 2009). ... 32

Table 3.1: Data stored on each agent . .. 51

Table 3.2: Data communicated by each agent 51

Table 3.3: Winning agent matrix for agent storing the binary values for winning assignments

between agents and tasks. .. 52

Table 3.4: Icon key for agent path graphs. ... 63

Table 3.5: Winning assignment bids for the experiment displayed in Figure 3.10 where each task

provides a fixed reward of modified by the cost of travel calculated from

the marginal score improvement (3.11). .. 69

Table 4.1: Winning bid list and winning agent list used in the CBBA. .. 89

Table 4.2: Winning bid matrix and winning agent matrix used for multi-agent assignments in

CBGA. ... 90

Table 4.3: Dynamic variable storage on agents, where references the winning bid agent

believes agent has made for task 92

Table 4.4: Agent A1’s winning bid matrix and the related communication message.. 93

Table 4.5: Agent A1 able to add newly discovered agents to its knowledge base; a similar method

can be used to add newly discovered tasks. ... 94

Table A.1: Agent A1’s initial winning agent list and winning bid list after the bundle

construction phase but before any consensus. ... 144

Table A.2: Agent A2’s winning agent list and winning bid list that is communicated to agent

A1 and A3 after the bundle construction phase. .. 144

Table A.3: Agent A1’s winning agent list and winning bid list after the second iteration of

the bundle construction phase.. 145

Table A.4: Agent A2’s winning agent list and winning bid list that is communicated to agent

A1 and A3 after the second iteration of the bundle construction phase. 145

 ix

Table A.5: Agent A1’s initial winning agent matrix and winning bid matrix after the bundle

construction phase but before any consensus. ... 148

Table A.6: Agent A2’s winning agent matrix and winning bid matrix that is communicated to

agent A1 and A3 after the bundle construction phase. .. 148

Table A.7: Agent A1’s winning agent matrix and winning bid matrix after the second

iteration of the bundle construction phase. .. 149

Table A.8: Agent A2’s winning agent matrix and winning bid matrix that is communicated to

agent A1 and A3 after the second iteration of the bundle construction phase. 149

Table A.9: Agent A1’s winning agent matrix and winning bid matrix after the third iteration

of the bundle construction phase. .. 150

Table A.10: Agent A2’s winning agent matrix and winning bid matrix that is communicated

to agent A1 and A3 after the third iteration of the bundle construction phase. ... 150

 x

List of Figures

Figure 1.1: ALFUS detailed model for agent autonomy (Huang et al., 2005) with an approximation

on the autonomy level of the BigDog system and the Curiosity. 8

Figure 1.2: ALFUS summary model for defining autonomy levels in autonomous systems (Huang

et al., 2005). ... 10

Figure 1.3: Hierarchical levels of autonomy algorithms (Lum, 2009). .. 11

Figure 1.4: Multi-agent system taxonomy (Farinelli et al., 2004). ... 12

Figure 1.5: Levels of social organisation for animal species. ... 14

Figure 1.6: The process of evolution by natural selection and random gene mutation. 15

Figure 2.1: Flowchart of basic consensus decision making process for a group of people. 22

Figure 2.2: Flowchart of basic consensus decision making for an agent in an agent based system.

 ... 23

Figure 2.3: Task allocation algorithm of the CBAA (Choi et al., 2009). 26

Figure 2.4: Consensus algorithm of the CBAA (Choi et al., 2009). ... 27

Figure 2.5: Task allocation algorithm for the CBBA (Choi et al., 2009). 30

Figure 2.6: Decentralised task elimination for agent for the assignment and consensus of

cooperative duo tasks (Choi et al., 2010). .. 35

Figure 2.7: Task allocation algorithm using a task quitting method for the allocation of bees

throughout a hive (Johnson, 2009) .. 41

Figure 3.1: Bundle phase for CBGA. ... 56

Figure 3.2: Data sent and received between agent A and its neighbours, a link between two agents

represents that those agents are within communication distance and thus can

communicate data between each other. ... 57

Figure 3.3: Conflict resolution for the CBGA for multi-agent task. ... 58

Figure 3.4: Plot of agent paths and their assignments in X Y and Z. ... 63

Figure 3.5: Plot of agent paths and their assignments through time in X and Y. 64

 xi

Figure 3.6: Plot of agent paths and their assignments through time and position X. 65

Figure 3.7: First experiment (left) has three agents completing fifteen tasks. Second experiment

(right) has ten agents completing twenty tasks. ... 66

Figure 3.8: First experiment (left) has four agents completing fifteen multi-agent tasks that require

two agents each. The second experiment (right) has ten agents completing fifteen

tasks that require three agents each. .. 67

Figure 3.9: Agent paths with position (X) over time (). Four agents complete three single-agent

and three multi-agent tasks that require two agents each. 68

Figure 3.10: Agent paths with position (X) over time (). Eight agents complete two different types

of multi-agent tasks. Task 1 requires three agents and task 2 requires six agents. 68

Figure 3.11: Comparision of average score and number of communication steps for consensus

between the CBBA, CBGA and using both. Experiments contain twenty randomly

generated tasks and multi-agent tasks require two agents. 69

Figure 3.12: Cross section of agents movement through time () and the X axis to complete twenty

multi-agent tasks. Each task requires two agents for completion. 70

Figure 3.13: Computational times for running each experiment in Figure 3.11 CBBA assigns only

single-agent tasks, the CBGA assigns multi-agent tasks and mix requires both the

CBGA and CBBA. .. 71

Figure 3.14: Percent score improvement by using the preferred duo cooperation (left) (Choi et al.,

2010) and the CBGA (right) over the original CBBA where darker squares show

lower or no improvement and lighter squares show a higher improvement. 72

Figure 3.15: Difference in percent score improvement by using the CBGA over the CBBA

preferred duo cooperation where darker squares show a decline in score and lighter

squares show an improvement in score. .. 73

Figure 3.16: Implementation of a sequential greedy algorithm to solve the multi-agent task

assignment problem in a centralised system. ... 74

 xii

Figure 3.17: Average assignment score achieved by the CBGA and the SGAMA completing 20

tasks with agents (left) and 20 agents completing tasks. 75

Figure 3.18: Average assignment score achieved by the CBGA and the SGAMA when agent

requirements are increased with 10 agents and 20 tasks (left). Assignment of 10

agents to 20 tasks with each task requiring 10 agents (right). 76

Figure 3.19: Comparison of the average number of communication steps and number of bids

required to come to a consensus as the number of agents required per task

increases. ... 76

Figure 3.20: Effect on average communication steps and bid data as both the number of agents and

required agents for multi-agent tasks increases. .. 77

Figure 3.21: Agent paths with position (X) over time (). First experiment (left) shows two

different types of agents completing two different types of single-agent tasks. The

second experiment (right) shows the same group of agents and tasks except the

tasks are now multi-agent tasks requiring two agents each. 78

Figure 3.22: Two experiments both with multi-agent tasks that require two agents one of type A

and one of type B. .. 79

Figure 3.23: Comparison of average score and number of communication steps required to reach a

consensus for tasks that require multiple different heterogeneous agents. 79

Figure 3.24: Agent’s paths through time for 3 agent types (A,B,C) completing 3 different types of

tasks (TA, TB, TC). ... 80

Figure 3.25: Comparison of total score and number of communication steps for tasks that require

previous tasks completed. .. 82

Figure 3.26: Agents ‘A’ movement through time and the X axis. Tasks marked ‘B’ require the

corresponding task ‘T’ to be completed first, similarly tasks marked ‘C’ require a

corresponding task ‘B’ completed. .. 82

Figure 4.1: The average amount of data sent in progressive steps through each iteration of the

CBGA .. 96

 xiii

Figure 4.2: Communication range limited to a distance of 1, overlapping circles and connected

lines show connecting communication networks. Associated assignments for 10

agents completing 20 single-agent tasks (right). ... 97

Figure 4.3: Communication range limited to a distance of 2, connected communications shown by

connected lines. Associated assignments for 10 agents completing 20 single-agent

tasks (right). ... 97

Figure 4.4: Communication range limited to a distance of 2.5, overlapping circles show connecting

communication networks, blue link shows the networked agents. Associated

assignments for 10 agents completing 20 single-agent tasks (right). 98

Figure 4.5: Communication range limited to a distance of 1, overlapping circles show connecting

communication networks, blue link shows the networked agents. Associated

assignments for 10 agents completing 10 multi-agent tasks where (right). 99

Figure 4.6: Total Score and convergence time for consensus using the CBGA measured in the

number of bid rounds required as the distance of communication increases.. 100

Figure 4.7: The effect on the number of communication steps and bids required in the CBGA for

consensus as the distance of communication is increased. 100

Figure 4.8: Average data sent and received per agent to achieve a consensus for twenty tasks using

the CBBA for single-agent tasks and the CBGA for two types of multi-agent tasks

requring two and three agents. ... 101

Figure 4.9: Average data sent and received per agent for each assignment where a multi-agent task

requiring three agents will require three assignments.. 102

Figure 4.10: The average number of conflicting bids per agent where a conflicting bid is defined as

a bid for a task that is replaced by a better bid. ... 103

Figure 4.11: Comparision between the CBGA and the CBBA for duo tasks on the amount of data

sent per agent to communicate an assigment at progressive iterations of each

algorithm. .. 104

 xiv

Figure 5.1: An example situation where individual assignment priority will result in a lower score

than a team focused assignment.. .. 109

Figure 5.2: Algorithm for determining valid task list in the CBGA. 112

Figure 5.3: Comparison of the bidding decision between individual focused bidding (left) and team

focused bidding (right) .. 113

Figure 5.4: Task quitting algorithm for the CBGA. ... 115

Figure 5.5: Performance of the CBGA algorithm compared to the CBGA using Team focused

bidding as the agent requirements on tasks increases. 117

Figure 5.6: Performance with the result spread for the CBGA (left) and the CBGA with team

focused bidding (right) with increasing agent requirement 119

Figure 5.7: Assignment of 10 agents completing 20 tasks resulting in a score of 7295 119

Figure 5.8: Performance of the CBGA algorithm compared to the CBGA using task quitting where

the number of agents is set to 10 (left) and when the number of agents is set to 8

(right) completing 20 multi-agent tasks. .. 120

Figure 5.9: Performance of the CBGA using task quitting with the spread of results as the agent

requirements on tasks increases. Task quitting threshold set to 1. 121

Figure 5.10: Performance of the task quitting algorithm as the task quitting threshold is

modified. ... 122

Figure 5.11: Performance of all variations of the CBGA with task quitting and team focused

bidding, each simulation contains 10 agents and 20 tasks. 122

Figure 5.12: Variance of results from assignments using the CBGA with both task quitting and

team focused bidding. .. 123

Figure 5.13: Assignment of 10 agents completing 20 tasks that require all 10 agents each the

simulation setup is exactly the same as in Figure 5.7 but using task quitting to

produce a score of 9391. .. 124

 xv

Figure 5.14: Average assignment score achieved by the CBGA with biologically inspired

improvements (CBGABI) and the SGAMA completing 20 tasks with agents

(left) and 20 agents completing tasks. .. 125

Figure 5.15: Average assignment score achieved by the CBGABI and the SGAMA when agent

requirements are increased with 10 agents and 20 tasks...................................... 125

Figure 5.16: The effects of adding task quitting and team bidding to the CBGA for multi-agent

tasks. .. 126

Figure A.1: Initial set up of the example simulation with a top down view of the agent starting

positions and their communication network (left) and the view of task positions

and their time windows (right). ... 143

Figure A.2: Initial assignments before any communication and consensus has taken place. Agent

paths offset to allow easier viewing of agents on the same path. 144

Figure A.3: Assignments after the second iteration of the bundle phase. Agent paths offset to allow

easier viewing of agents on the same path. .. 145

Figure A.4: Agent assignments at successive iterations of the CBBA. Agent paths offset to allow

easier viewing of agents on the same path. .. 146

Figure A.5: Initial set up of the example simulation with a top down view of the agent starting

positions and their communication network (left) and the view of task positions

and their time windows (right). ... 147

Figure A.6: Initial assignments before any communication and consensus has taken place. Agent

paths offset to allow easier viewing of agents on the same path. 147

Figure A.7: Assignments after the second iteration of the bundle phase. Agent paths offset to allow

easier viewing of agents on the same path. .. 148

Figure A.8: Final assignment of agents, agent paths offset to allow easier viewing of agents on the

same path. .. 150

 xvi

 1

Chapter 1: Introduction

This thesis investigates the problems with current task assignment and

consensus algorithms for cooperative Unmanned Aircraft Systems (UAS). In

particular, it addresses the limitations of consensus algorithms and develops

extensions to existing algorithms to eliminate some of these limitations.

This chapter is an introduction to the main thesis. A brief background section

describes aspects of autonomous systems and provides useful background information

for the thesis. Some of the major contributions of this work are also presented along

with the general layout and structure of the thesis.

1.1 INTRODUCTION

The subject of modern unmanned systems is challenging and engaging. Whilst

much theoretical work from ground robotics can be directly applied to Unmanned

Aerial Vehicles (UAV), there are still aspects that need to be accounted for as well as

increased complexity. UAVs provide a larger scope for application than their ground

counterparts which shows in their increasing use throughout the world (Fahlstrom &

Gleason, 2012; Kreps & Kaag, 2012; Papadales & Downing, 2005). However,

currently this is limited to military and research applications outside commercial

airspace or with strict limits and surveillance. Unmanned systems encompass many

areas of research such as machine learning, artificial intelligence, path planning, task

allocation, control systems and many more.

UAVs are commonly visualised as robotic planes flying themselves around

completing tasks on their own. In reality the operation of unmanned aircrafts around

the world still requires significant human supervision. For an autonomous system to

be beneficial it must be capable of operating in a wide variety of missions and be able

to perform required tasks competently and consistently. For example, if the police

force wants to use a UAV for surveillance of riots or crimes they cannot simply let a

 2

UAV operate by itself (Gogarty & Hagger., 2008). Working in commercial airspace

requires that all unmanned vehicles have a remote operator with a license to run the

vehicle (McCarley & Wickens, 2005). Even then there are strict limits on its

operation, but ignoring these points it would still be too dangerous for a UAV to run

unsupervised given current knowledge. These missions are often complex with

difficult operations due to the dynamic environments; a UAV must add no extra risk

to any other users over and above that which a human pilot would have added.

The rise in the use of UAVs is becoming prevalent throughout the world.

UAVs are finding valuable usage in performing military tasks that fall into the

categories of the dull, dirty and dangerous (Schneiderman, 2012) (Hirschfeld et al.,

1993) (Connelly et al., 2006). Dull missions can be thought of as those which require

repetitive and tedious actions over long periods of time where human error can easily

creep in from exhaustion. Dirty tasks will often require complicated processes and

decision making that would be better suited to the precision of a computer. As

expected some tasks contain potentially harmful activities that are dangerous in their

nature or if performed incorrectly would be fatal to human pilots. UAVs take

advantage of the better sustained alertness of machines over that of human pilots in

addition to lower political and human cost if the mission fails. Lower risk and higher

confidence in mission success are two strong motivators for continued expansion of

UAS.

The applications for UAVs are numerous and cover a range of areas from

military applications, scientific projects to commercial activities. As technology

advances the future of UAVs looks increasingly towards civilian activities (Martinez-

Val & Perez, 2009) (Campoy et al., 2009). Common applications include surveillance

of power lines or pipes (Jiang et al., 2013) (Larrauri et al., 2013) (Dewi, 2005),

disaster monitoring (Tuna et al., 2012) (Maza et al., 2011) and search and rescue

operations (Tomic et al., 2012) (Zhao et al., 2012) (Lin & Goodrich, 2009). With

 3

improvements in the cooperative abilities of UAVs there is a movement towards an

increase in the use of multiple UAVs for complex tasks like tracking and surveillance

(Li et al., 2012) (Chen & Wu, 2012) (Hirsch et al., 2012) (Hirsch et al., 2011). As the

applications for UAVs increase so too does their need to cooperate to perform bigger

and more complex tasks. Applications are wide and varied and can apply to both

military and civil areas, many applications spanning both sections. For example a

search and rescue application can be very useful for both military and civil areas. The

monitoring of a disaster area for civil use can be used in military applications by

monitoring a bomb site for example. A large portion of research into UAVs is being

dedicated to increasing their cooperative abilities (Zhu et al., 2013) (Nakamura et al.,

2013) to solve new complex problems or provide better and faster solutions to

existing problems.

1.2 PROBLEM STATEMENT

Creating a UAV to cover all situations and problems is difficult due to

hardware and software limitations (Pastor et al., 2007) and so it is far easier to use

UAVs dedicated to solving a precise problem. A reconnaissance UAV needs to be

lightweight and mobile whilst being able to carry state-of-the-art photography and

video equipment (Kontogiannis & Ekaterinaris, 2013), limiting any additional

equipment it can carry. However upon doing this the UAV’s ability to solve a wide

variety of tasks in a dynamic environment is reduced. With a diverse selection of

UAVs that can form teams and work together to complete tasks the limitation of any

one UAV can be mitigated. Using multiple UAVs will improve the efficiency with

which a number of tasks can be performed by completing tasks in parallel. A system

that allows heterogeneous agents to assign and complete tasks together increases the

flexibility of the system, which is an aspect of producing higher autonomy (Müller,

2012).

 4

Of particular interest within the area of UAV cooperation is the Task

Assignment Problem (TAP) which assigns a finite number of agents to complete a

finite number of tasks as efficiently as possible. This problem can be solved with a

centralized or decentralized solution but current research investigates decentralized

solutions that are more feasible for real world adoption. Many researchers have solved

the TAP using auction algorithms (Sujit & Beard, 2007) (Hoeing et al., 2007) where

agents make bids for tasks and receive assignments based on their bids by a single

auctioneer. One such solution that makes use of auction algorithms is the Consensus

Based Auction Algorithm (CBAA) (Choi et al., 2009). The CBAA brings agents to a

consensus on the allocation of tasks by enforcing agreement upon the solution rather

than the information set. Whilst task allocation for an individual agent is relatively

simple, the difficulty comes with consensus between all agents when using a

decentralized algorithm. The CBAA succeeds in giving a conflict free solution that

has superior convergence and performance to other auction algorithms performing at

a polynomial-time that scales well with the size of the network and/or the number of

tasks. However the CBAA focuses only on single agents completing single tasks or

in the case of the Consensus Based Bundle Algorithm (CBBA) a single agent

completing multiple tasks. Research has been done on using the CBBA with

heterogeneous agents to create heterogeneous teams that can perform complex

missions in real-time dynamic environments (Ponda et al., 2010) (Whitten et al.,

2011). An extension has already been made to the CBBA that accounts for

cooperative tasks; however this extension is limited to ‘Required Duo Tasks’ (Choi et

al., 2010) that require cooperation from two agent types. The work proposed in this

research aims to create a theoretically unlimited requirement on cooperation. This

research introduces multi-agent tasks that can be solved by multiple heterogeneous

UAVs working together, where modifications must be made to current task allocation

and consensus algorithms to account for these new constraints.

 5

1.3 OBJECTIVES

This research will investigate the challenges associated with the assignment of

multi-agent tasks to groups of cooperating agents. The objectives of this research are

as follows:

• Investigate solutions to the multi-agent task assignment problem.

• Develop a solution to handle multi-agent task assignments with a focus on

robustness, performance and scalability.

• Improve task assignment algorithms to function with complex task

requirements such as equipment and task dependencies.

• Improve the existing data structure in the CBBA for use in a dynamic

environment with heterogeneous agents

• Investigate the potential use of animal behaviours in multi-agent systems

The proposed algorithm will provide a solution to the assignment and

consensus of a decentralised group of agents representing UAVs. The solution will

provide a conflict free solution with a similar performance to the CBBA despite the

additional complexity of the assignments. The performance of the algorithm can be

measured from the quality of assignments created based on a scoring function as well

as the computational run time of the algorithm. Furthermore the algorithm will

provide a framework for introducing complex requirements on tasks including

equipment and task dependencies. Finally by investigating the cooperative behaviours

in animal species improvements can be created to increase the quality of assignments

and remove some issues found in the assignment algorithms.

1.4 DOCUMENT LAYOUT

This thesis is divided into several chapters. The rest of Chapter 1 outlines the

research area and some useful background knowledge. Chapter 2 describes the

previous work and knowledge relevant to the research topic including the Consensus

Based Auction and Bundle Algorithm which are the founding algorithms for this

 6

work. Chapter 3 details the development and results of the Consensus Based

Grouping Algorithm developed from the Consensus Based Bundle Algorithm to

achieve greater cooperative behaviours in performing complex tasks. This chapter

also includes additional limitations on the task requirements including equipment and

task dependencies. During the development of the grouping algorithm a new dynamic

bid storage system is developed to reduce communication and increase consistency

between UAVs, this research is presented in Chapter 4. Biologically inspired

improvements are made to the CBGA to improve its performance, the development

and results of these improvements are documented in Chapter 5. Finally Chapter 6

closes the report with comments about the work so far, and the future work and

applications this research can lead to.

1.5 BACKGROUND

To fully understand this research it will be necessary to include some

background information on relevant topics. The topics are required to understand the

literature, current work and the research.

1.5.1 Unmanned Aerial Vehicles

A UAV is an aircraft that flies without a human crew on board. The

abbreviation UAV has been expanded in some cases to Unmanned Aircraft Vehicle

System (UAVS). In the United States, the Federal Aviation Administration has

adopted the generic class UAS to reflect the fact that these are not just aircraft, but

systems, including ground stations and other elements. To distinguish UAVs from

missiles, a UAV is defined as a reusable, un-crewed vehicle capable of controlled,

sustained, level flight. This definition separates them from cruise missiles, which are

not considered UAVs, because, like many other guided missiles, the vehicle itself is a

weapon that is not reused.

 7

Historically, UAVs were simple drones (remotely piloted aircraft), but

autonomous control is increasingly being employed in UAVs. Their operations are

generally limited to military applications primarily due to limits and regulations on

their use in commercial airspace (Dalamagkidis et al., 2012). Currently, military

UAVs perform reconnaissance as well as attack missions. While many successful

drone attacks have been reported, they are also prone to collateral damage and/or

erroneous targeting, as with many other weapon types. UAVs are also used in a small

but growing number of civil applications but are often limited to private land and

outside of public airspace.

Currently, common UAS have basic autonomous flight capabilities such as

waypoint following (Chao et al., 2010), altitude and airspeed hold, and automated

launch and retrieval (Garratt et al., 2007). Although the capabilities of these systems

are formidable, the key distinction is that these are integrated systems rather than

merely aircraft. They require a support infrastructure which contains ground stations,

communication links, and human operators. Often the system requires at least two

human operators for flight operations: one to manage flight paths and the avionics

systems, and another to operate the camera system. Personnel required for launch,

retrieval, and ground tasks may further increase this number. Although these systems

succeed in shielding the human operator from the dangers present in these missions,

the amount of human interaction required for these autonomous systems exceeds that

of their manned counterparts.

1.5.2 Autonomous Systems

The majority of this work falls in the category of autonomous systems. This is an

ambiguous term as it can refer to certain types of networks or indeed any system

which has decision making abilities. This thesis works with the definition of

autonomous systems for robotics where autonomous is defined as operating without

 8

outside control or existing independently. These systems contain one or more robotic

devices such as vehicles, aircraft or simpler devices like arms. Within the system

these devices are referred to as agents. For these agents to be considered autonomous

they are expected to perform a desired task in potentially dynamic environments

without continuous human guidance. There are different levels of autonomy, for

example, some factory robots are considered autonomous but within the strict

confines of their environment resulting in what would be considered a low level of

autonomy. Compared to the high level of autonomy the Mars rover ‘Curiosity’ has,

which is necessary due to the delay between the system and the controller; this is

more important for tasks where speed is essential and the reaction time of controllers

is not adequate, as experienced when the rover first landed on Mars (Cruzen &

Thompson., 2013).

Figure 1.1: ALFUS detailed model for agent autonomy (Huang et al., 2005) with an

approximation on the autonomy level of the BigDog system and the Curiosity.

As there is such a broad range of autonomy levels it is useful to define a

method to determine the approximate autonomy of a given system. The autonomy

levels for unmanned systems (ALFUS detailed model) (Huang et al., 2005), takes into

- Subtasks

- Decisions
- Organisation

- Collaboration
- Performance

- Situational awareness

- Knowledge requirements

- Per cent of decisions/time,

supervisory control, trust
- Experience/skills
- Operator to UMS ratio and

communication types

- Static: terrain, soil
- Dynamic: object

frequency/density/types
- Electrical Interference

- Urban, rural, climate

- Operation: threats, decoy

Environmental

Difficulty

Mission Complexity

Human Independence

Mars Rover

‘Curiosity’

BigDog

 9

consideration the mission complexity, environmental difficulty and human

independence as shown in Figure 1.1. Task complexity and adaptability to

environment are among the key aspects as well as the collaboration with human

operators, such as their levels of involvement and types of interaction. It also takes

into account performance factors (Huang et al., 2005) including mission success rate,

response time and precision. Figure 1.1 plots a possible autonomy level for the Mars

rover Curiosity and the rough terrain quadruped robot BigDog. Curiosity would score

highly in all areas requiring many autonomous systems to function, even simple tasks

become more complex when commands take over 2.5 hours to receive and

acknowledge (Lutz, 2011). Comparatively the BigDog system is overall less

autonomous but contains higher levels of autonomous algorithms for navigating

difficult and dynamic terrain, such as path planning, navigation and stabilising

algorithms (Wooden et al., 2010). The overall concept for measuring each attribute is

shown in Figure 1.2, where as a system relies less on human supervision and is able to

deal with dynamic environments and missions, its level of autonomy increases.

 10

Figure 1.2: ALFUS summary model for defining autonomy levels in autonomous

systems (Huang et al., 2005).

As well as the overall autonomy of a system, the underlying algorithms that

control the agents can be similarly classified. Figure 1.3 shows the three levels for

autonomy algorithms; strategic, tactical and dynamics and control (Lum, 2009). The

strategic phase usually deals with tasks such as mission planning and task allocation.

These algorithms are considered “low bandwidth” because compared to the other

levels they run infrequently. The tactical phase deals with specialised responsibilities

dealing with short term goals for instance path following or target observation. Finally

the dynamics and control level deals with the inner control systems that often run

continuously such as state stabilisation, an autonomous aircraft may need to

constantly adjust its flight equipment to account for changing winds. Any high

autonomy agent will require algorithms from all three levels. This hierarchical

- Approaching 0% HC
- Highest complexity, all missions
- Extreme environments

- Low HC
- Collaborative, high

complexity missions
- Difficult environments

- Mid HC
- Mid complexity, multi-

functional missions
- Moderate environments

- High HC
- Low level tactical behaviour
- Simple Environment

- 100%
Human

control (HC)

Level 0

Remote Control

Level 10
Full, intelligent

autonomy

 11

structure of autonomy and the challenges it involves has been studied by groups like

Passino et al (Antsaklis et al., 1989).

Figure 1.3: Hierarchical levels of autonomy algorithms (Lum, 2009).

Often, the terms “autonomous systems" and “autonomous algorithms" are

used inter-changeably. The distinction made in this work is that autonomous

algorithms are the routines which manage specific tasks without human interactions

and autonomous systems are comprised of many sub-systems including hardware and

autonomous algorithms. The autonomous system may refer to a single actual agent or

the entire team and infrastructure to manage a group of agents.

1.5.3 Multi-Agent Systems

A multi-agent system can simply be a system that contains multiple intelligent

agents. This field has become a very important research area within artificial

intelligence and robotics, allowing the development and analysis of sophisticated AI

problem-solving and control architectures (Innocenti et al., 2010). With the increasing

 12

complexity and intelligence in robotics, cooperation has become a fundamental

feature of multi-agent systems. The work reported in this thesis is focused on in

cooperative systems; Figure 1.4 shows a proposed classification of multi-agent

systems (Farinelli et al., 2004). It categorises a multi-agent system based on how

coordinated the system is, showing how much coordination is achieved by the system.

Figure 1.4: Multi-agent system taxonomy (Farinelli et al., 2004).

The first level, cooperation, distinguishes between cooperative systems and

non-cooperative systems. It defines whether the agents cooperate to accomplish a

task. A cooperative system is one where the agents work together to complete a global

task. Competition is usually merged in with cooperative systems when using multi-

agent systems.

The second level deals with agent knowledge; this defines the type of

knowledge agents have about their team mates. Aware agents have some knowledge

about the other agents in their team, for instance, their location or current activity.

Unaware agents have no knowledge about their team mates and act only on their own

knowledge. Unaware systems are simpler than aware systems, however it must be

Strongly

Centralised

Cooperative

Unaware

Not

Coordinated

Aware

Strongly

Coordinated
Weakly

Coordinated

Weakly

Centralised
Decentralised

4 - Organisation

3 - Coordination

2 - Knowledge

1 - Cooperation

 13

noted that knowledge is not equivalent to communication. A multi-agent system can

be aware even though there is no direct communication among the agents.

Coordination describes the actions of agents when cooperating on a task.

Strong coordination means agents act to achieve a task based on the actions of the

other agents such that the whole group becomes coherent. There are different ways

the agents can take into account the actions of the others and it comes down to the

cooperation protocol which is a set of rules that the agents follow in order to interact

with each other in the environment. Weak coordination will produce agents that act to

achieve the team goal but without considering what the other agents are doing.

The final level is the organisation level, which comprises of the structure and

organisation of the multi-agent system. A centralised system has a leader that

organises the other agents to complete the goal; the other agents act in accordance

with what the leader tells them to do. A weak centralised system still uses a leader to

complete the goal however in this system the leader can change or have multiple

leaders. A distributed or decentralised system is comprised of agents that together

organise themselves, and there is no central area where all decisions are made.

This research is about creating cooperative, coordinated and, most

importantly, decentralised agents that can solve the problems provided and come to a

conflict free consensus that is focused on maximising the group performance.

Additionally this research will explore the effects of differing levels of knowledge on

the agents ranging from full global knowledge and communication to only allowing

local knowledge, with information communicated between agents.

1.5.4 Eusociality

Evolution is a process that gradually changes species over millions of years to

adapt and survive in their environment. The goal of any animal species is to survive

and reproduce, where evolution refines each species to complete those goals by

 14

removing weaknesses and adapting their bodies and behaviours to the environment.

With the power of adaption that comes from evolution scientists have made use of

many areas of biology to create robust and adaptive systems, for instance using

evolution itself in the form of genetic algorithms for machine learning (Goldberg &

Holland, 1988) or the creation of robotics inspired by biology (Liu & Sun, 2012).

Figure 1.5: Levels of social organisation for animal species.

The emergence of cooperation and altruism were once thought of as

impossible through evolution by natural selection, but scientists have shown

conditions under which reciprocity cooperation can evolve (Axelrod & Hamilton,

1981). With the powerful filtering of weaknesses and strengths by evolution

cooperative animal species make excellent tools to extract cooperative algorithms or

beneficial concepts. Social animals that often show aspects of cooperative behaviour

can be split into different levels of sociality; eusocial, presocial, subsocial and

parasocial.

S
o

ci
al

 O
rg

an
is

at
io

n

Higher

Lower

Eusocial

- Overlap of adult generations

- Reproductive division of labour
- Cooperative care of young

Presocial
- Communal living
- Cooperative care of young

Subsocial - Parental interaction with young

Parasocial
- Same generation interact with each

other

 15

Figure 1.6: The process of evolution by natural selection and random gene mutation.

Figure 1.5 shows the various levels of social organisation with humans

categorised as presocial and being preceded by various types of insects at the eusocial

level. Eusociality is defined by a number of characteristics; cooperative care of the

young, overlapping generations of adults within the group and a division of labour

into reproductive groups and non-reproductive groups (Plowes, 2010). For a species

to be considered eusocial they must possess each of these characteristics with many

species failing at the division of labour. Eusocial species make excellent resources for

studying cooperative animal behaviours because of the method of their reproduction

and subsequent evolution. Species evolve by passing on their genes where a gene is

the biological code for a characteristic that an animal possesses, such as an insect’s

colour. Should that specific characteristic aid the animal in its survival then it is more

likely to survive and reproduce thus propagating that gene down the generations until

Generation 1

Generation 2

Generation 3 Generation 𝑁

Non-random

survival

Non-random

survival

Reproduction and
undirected

mutation

Reproduction and

undirected

mutation

Many generations
of mutation and

natural selection

 16

it becomes a predominant gene in the species as shown in Figure 1.6. For non-

eusocial species the genes that are passed on are stored in each individual animal

creating a selective pressure towards individual survival. Furthermore, whilst these

species may cooperate each individual does so for selfish reasons, because

cooperation increases the individual’s odds for survival. In comparison eusocial

species have their genes passed on only by one member in a group such as the queen

ant in an ant colony. This form of reproduction means that for the majority of

individuals, their only goal is the survival of the colony and specifically the queen; an

individual ant is willing to sacrifice its life if it means the queen survives and

reproduces.

When analysing cooperative behaviours it seems that eusocial species would

provide more suitable results, as the only concern of a group of cooperative robots is

achieving the goal set out, and that sacrifice of individual performance for the greater

good of the team is a desirable trait.

 17

Chapter 2: Literature Review

The work presented in this thesis covers many fields of research. Many of

these subjects are well studied and extensive literature exists regarding relevant

methods and techniques. This chapter highlights some of the related work done by

others in specific areas related to this research. The limitations of these approaches are

not detailed here. Instead, as the corresponding topic is discussed in the thesis, the

deficiencies of these methods are outlined which illustrate the advantages and thus,

the need for the methods developed in this dissertation.

2.1 CENTRALISED AND DECENTRALISED SYSTEMS

Centralisation comes from network theory; centralised networks are a type of

network where all users connect to a central server, which is the acting agent for all

communications. When applied to multi-agent systems all relevant sensors and agent

information required in decision making are sent to a central hub or a single agent

acting as the leader of the group. This central point in the multi-agent system collects

the relevant situational awareness of all agents such as location or health status. With

this information decisions can be made and communicated to the rest of the agents in

the network. Task allocation deals strictly with centralised systems.

Centralisation makes decision making easier with complete system knowledge

but in reality there is far too much information required. In practice, consideration of

factors such as communication bandwidth, interference and delay is needed. This

leads to using decentralised systems where the decision making is split across all

agents. Each agent in the system will make its own decisions rather than a collective

leader or central hub. However, decentralised systems must solve another problem:

consensus. With each agent making its own decisions it is very easy for conflicts to

arise as multiple agents attempt the same task. To avoid conflict in the system

consensus must be reached between the agents as to who will do which tasks.

 18

 Within the field of robot formation control, the team formation can be

controlled as a centralised system where there is monitoring and control of all robots

to place them in specifically desired positions, or by a decentralised system when

there is no supervisor and feedback is only detected by the relative position of each

robot in respect to their neighbours. The centralised formation control can be a good

strategy for a small team of robots, when it is implemented using a single computer

and a single sensor to monitor and control the whole team. However, when

considering a team with a large number of robots, the need for a greater

computational capacity and a large communication bandwidth could make it advisable

to use a decentralised formation control. Yamaguchi et al. present a distributed control

scheme and shows simulations for final static formations (Yamaguchi et al., 2001).

Fierro et al. proposes a hierarchical control structure that allows the switching of

controllers in order to have a stable formation, based on sensing their relative

positions to neighbouring robots, under a strategy of distributed control (Fierro et al.,

2002).

Research by Claes and Holvoet shows that with a multi-agent exploration

model, the overhead introduced by the decentralised system is higher (Claes &

Holvoet, 2011). When comparing communication in decentralised and centralised

systems this is often to be expected. The researchers argue that a decentralised system

offers benefits of scalability. Even though the total message count in the decentralised

system is higher than that of the centralised one, it spreads the communication

overhead more evenly over the system. The centralised system, on the contrary,

focuses all messages along with most computations in one central location. A

decentralised method allows more freedom and autonomy for multi-agent systems and

gives a robust solution that is required when dealing with autonomous multi-agent

systems.

 19

2.2 TASK ALLOCATION AND CONSENSUS

2.2.1 Task Allocation

With an increasing focus on the cooperative use of multi-robot systems, multi-

robot coordination has received significant attention. Cooperative multi-robot systems

allow for the execution of an increased number, variety and complexity of tasks. With

this the importance of multi-robot task allocation (MRTA) has emerged. The

advantages of self-organising groups of robots have led to MRTA becoming a key

research issue in its own right. As cooperative multi-robot systems are created, the

question “which robot should execute which task?” is inevitably asked (Bellingham et

al., 2001).

The assignment problem or task allocation problem is a combinatorial

optimisation problem that attempts to find the least-cost solution between two disjoint

sets (Lo, 1998). In its general form, the problem is as follows:

“There are a number of agents and a number of tasks. Any agent

can be assigned to perform any task, incurring some cost that may

vary depending on the agent-task assignment. It is required to

perform all tasks by assigning exactly one agent to each task in such

a way that the total cost of the assignment is minimized.”

There is a set of agents and a set of tasks . An

agent has a cost associated with it for completing each task. Let be the non-

negative cost of assigning the th
 agent to the th

 task. The objective is to assign each

task to one agent in such a way as to minimize the overall cost of completing all the

tasks. Define a binary variable where to indicate agent is assigned to

task . Otherwise . Then the total cost of the assignment is equal to ∑

 20

 . A valid task allocation must satisfy the following

constraints:

 A task allocation must be correct. For each agent must be assigned to no

more than one task.

 A task allocation must be complete. For each task must have exactly one

agent assigned.

For an assignment to be efficient the task allocation must be valid and the cost

is minimized, i.e.

 ∑ (2.1)

Once the assignment is solved, agents will be assigned tasks such that the cost

of completing each task is minimised. Many solutions exist for the task allocation

problem (Wright, 1990) (Burkard et al., 2009) including practical solutions for use in

UAVs (Jin et al., 2003) (Richards et al., 2002), however these solutions are

centralised requiring a central agent or hub to perform the assignments. In this way,

solving the task assignment problem for a decentralised system creates additional

problems.

2.2.2 Task Consensus

Task allocation requires a central hub or a designated leader in order for a

group of agents to decide on the correct allocation. For the task allocation problem to

be solved in a decentralised system where each agent makes their own decisions about

their assignments, it requires that agents come to a consensus on assignments. Task

consensus is the process of agents communicating their desired assignments to each

other and agreeing or coming to a consensus on the correct assignments.

 21

Although group consensus can be found in many social animal species

(Conradt & Roper, 2005), coming to a consensus is a difficult process even for

humans who have the ability to easily adapt to unforeseen problems. Consensus

decision-making is a group decision making process that attempts to provide a

unanimous decision for all participants of the group. There are many different

methods groups can use to come to a consensus (Schweiger et al., 1986) but the

following concepts form some unifying principles for consensus decision making.

Agreement Seeking

Consensus decision-making is a process that seeks agreement across the

group. Individuals may initially have different choices but must ultimately agree on

one decision through the process of consensus decision-making. Failure to

unanimously agree on a decision would be defined as a conflict, whereas the decision

making process should come to a conflict free solution.

Inclusive

All members of the group should provide input into the decision making

process such that conflicting information or decisions can be removed or dealt with.

Collaborative

Consensus decision-making is a collaborative process where the group comes

to an agreed decision. All members of the group contribute towards the decision

making process without one central leader making decisions for the group.

Cooperative

Participants in the consensus process should attempt to reach the best decision

possible for the group taking into account information from all members. At times the

best decision for the group may not be the optimum decision for an individual.

 22

Although the process of consensus between two humans is complicated, it can

be broken down into some key steps. These basic steps provide a method for

formulating the decision making process as seen in Figure 2.1.

Figure 2.1: Flowchart of basic consensus decision making process for a group of

people.

Discussion of the problem: The problem is discussed with the goal of identifying the

current situation; the goal is for each member involved to gather as much information

as they can such that they can form their own decisions on the matter.

Formation of a proposal: Based on the discussion a formal decision is proposed

either for the group as a whole or for a specific individual’s decision.

Call for consensus: Each member determines whether they agree with the proposed

decision.

Yes

Yes

No

No

Discussion

Proposal

Consensus

Achieved?

End

Start

Concerns

Raised

Modify

Proposal?

Modification

of Proposal

Discussion

New

Proposal

 23

Identification and addressing of concerns: If a consensus is not achieved problems

with the proposal are raised and points of conflict explained.

Modification of the proposal: Depending on the degree of conflict with the original

decision either a modification of the decision can be proposed or the group rejects the

decision and returns to discussion of the problem.

Although the decision making process between a group of humans is more

complicated, containing much back and forth discussion, the basic idea can be

translated into an agent based group decision making process. The key steps shown in

Figure 2.2 outlines what stages must be incorporated into an agent based consensus.

Figure 2.2: Flowchart of basic consensus decision making for an agent in an agent

based system.

Start

Formulate Personal

Decision

Communicate

Decision

Receive Decision of

Others

Consensus

Achieved? Resolve Conflict Proceed with Action

End

Yes No

 24

In multi-robot systems a decentralised solution for the task allocation problem

would provide a more suitable solution for a real world application. This is even more

valid for UAS where operational distances can cover large areas that could leave a

central hub out of communication range or provide a single point of failure in a leader

system. A decentralised solution for the MRTA would provide a robust and dynamic

solution for a self-organising autonomous system. For decentralized systems,

cooperating agents often require a globally consistent situational awareness (Ren et

al., 2007). In a dynamic environment with sensor noise and varying network

topologies, maintaining a consistent situational awareness throughout the group can

be very difficult. Consensus algorithms are used in these cases to enable the group to

converge on some specific information set before generating a plan (Beard &

Stepanyan, 2003). Examples of typical information sets could be detected target

positions, target classifications, and agent positions. Various consensus approaches

have been shown to guarantee convergence over many different dynamic network

topologies (Hatano & Mesbahi, 2004) (Wu, 2006) (Tahbaz-Salehi & Jadbabaie,

2006).

A variety of consensus based task allocation algorithms have been developed

that provide provably conflict free solutions with superior convergence properties and

performance (Choi et al., 2009). Further, these algorithms have been extended to

provide robust solutions for specific situations and requirements (Ponda et al., 2010)

(Di Paola et al., 2011) such as time constraints (Mercker et al., 2010) and dynamic

uncertain environments (Bertuccelli et al., 2009). The consensus based algorithms

provide excellent frameworks to develop solutions to the multi-agent task assignment

problem.

 25

2.2.3 Consensus Based Auction Algorithm

The Consensus Based Auction Algorithm (CBAA) solves single assignment

problems by using both auction and consenus algorithms in a decentralized system

(Choi et al., 2009). The algorithm contains two phases that alternate until assignments

and consensus are achieved. The first phase of the algorithm is the auction process,

while the second is a consensus algorithm that is used to converge on a winning

solution. The CBAA, by iterating between the two phases can exploit the benefits of

both auction and consensus algorithms. Robustness and computational efficiency are

achieved from the auction algorithm whilst the decentralized consensus algorithm can

exploit network flexibility and converge on a conflict free solution. The CBAA has

been shown to provide a conflict free, feasible solution, which previous algorithms

were unable to account for.

Phase 1: The Auction Process

The first phase of the algorithm is the auction process. Here, each agent

places a bid on a task asynchronously with the rest of the agents. All agents store

and update 2 vectors of length where is the number of tasks in the simulation,

both are initialized as zero vectors. The first vector records the task list for agent

where if agent has been assigned to task , and if not. The second vector

is the winning bids list which keeps an as up-to-date as possible estimate of the

highest bid made for each task thus far, this vector is used primarily in phase 2. Using

 as the bid that agent places for task , and be the availability

vector whose th
 entry is 1 if task is available to agent . The list of valid tasks can

be generated using

 () (2.2)

 26

where is the indicator function that is 1 if the argument is true and 0 otherwise.

Algorithm 1 in Figure 2.3 shows the procedure of agent ’s phase 1 at iteration

where one iteration consists of a single run of phase 1 and phase 2. With a

decentralized system each agent’s iteration count can be different allowing each agent

to run with different iteration periods. An unassigned agent , which can be defined as

having ∑ , first computes a valid task list . If there are valid tasks, it then

selects a task giving it the maximum score based on the current list of winning bids

(line 7 of algorithm 1, Figure 2.3), and updates its task and winning bids list

accordingly. If it is the case that an agent has already been assigned a task ∑ ,

this selection process is skipped and the agent moves to phase 2.

Figure 2.3: Task allocation algorithm of the CBAA (Choi et al., 2009).

Phase 2: The Consensus Process

The second phase of the CBAA is the consensus section of the algorithm. Here

agents make use of a consensus strategy to converge on the list of winning bids and

use that list to determine the winner in the bidding. This allows agents to converge on

a conflict free solution over all tasks.

Algorithm 1: CBAA Phase 1 for agent at iteration

1: procedure SELECT TASK (
2:
3:
4: if ∑ then

5: ()

6: if then
7:

8:

9:

10: end if
11: end if
12: end procedure

 27

Phase 2 involves communicating the winning bid list for an agent to all other

agents within communication range. is a symmetric adjacency matrix showing

communication links between agents where if a link exists between

agents and at time , and otherwise. Agents and are said to be neighbours if

such a link exists. It is assumed that every node has a self-connected edge; in other

words, .

During each iteration of phase 2 of the algorithm, agent receives the list of

winning bids from every neighbour in range. The procedure of phase 2 is shown in

algorithm 2 (Figure 2.4) when agent ’s th
 iteration corresponds to in real time. The

consensus is performed on the winning bids list based on the winning bids lists

received from each neighbour for all agents such that in a way that agent

 replaces values with the largest value between itself and its neighbours (line 4).

Additionally an agent will lose its assignment if it finds that it is outbid by others for

the task it had selected (line 6).

If two agents place the same winning bid for a task the winner cannot be

determined randomly because each agent decides the winner independently and

knowledge must be coherent across the group. A number of solutions exist for this

problem; one such solution is to communicate an agent’s unique identification

number along with the bid data and using it to break any ties.

Figure 2.4: Consensus algorithm of the CBAA (Choi et al., 2009).

Algorithm 2: CBAA Phase 2 for agent at iteration

1: SEND to with
2: RECEIVE from with
3: procedure UPDATE TASK |

4:

5:

6: if
 then

7:

8: end if
9: end procedure

 28

The CBAA converges on a conflict free solution to the single assignment

problem with provable score performance of at least 50% of the value of the optimal

solution (Choi et al., 2009). The optimal score is the maximum score achievable from

valid assignments of agents to tasks. With perfect information the optimal score for

the single-agent task assignment problem can be calculated using the implicit

coordination algorithm (Alighanbari, 2004). Assuming agents have accurate

knowledge of their situational awareness the CBAA provides the same performance

score of a sequential greedy algorithm a centralised solution for the task assignment

problem.

2.2.4 Consensus Based Bundle Algorithm

The major downside to the CBAA is that whilst at a specific time in the

simulation each agent can select the optimal task for it to complete, it does not take

into account future selections. When a number of tasks are located close to each other

a single agent can perform all the tasks rather than sending an agent to each task.

Researchers addressed the problem by grouping assignments into bundles for bidding

(Shehory et al., 1998) (Berhault et al., 2003) (Andersson et al., 2000) (De Vries &

Vohra, 2003) providing the multi-assignment problem where each agent bids for

multiple tasks. Each assignment combination or bundle was treated as a single item

for bidding which led to complicated winner selection methods. The CBAA was

extended to the multi-assignment problem developing the Consensus Based Bundle

Algorithm (CBBA) (Choi et al., 2009). In the CBBA each agent has a list of tasks

potentially assigned to it, but the auction process is carried out at the task level rather

than at the bundle level as previous algorithms had been. Similar to the CBAA the

CBBA contains two distinct phases for controlling the allocation and consensus of

tasks.

 29

Phase 1: The Bundle Construction

During the first phase an agent internally builds up a single bundle containing

all the tasks it plans to complete and updates it as the assignment process progresses.

Each agent continually adds tasks to its bundle until it is incapable of adding any

others. Agents carry two lists of tasks: the bundle , with a path . Tasks are added

to the end of an agents bundle in the order of their assignment; while the path contains

the order in which those tasks will be completed. The cardinality of and cannot

be greater than the maximum assignment size, without any limitation of assignment

size the cardinality is equal to the number of tasks . Using
 as the total reward

value for agent performing the tasks along the path , if a task is added to the

bundle , it incurs the marginal score improvement of

 {

 | |

 (2.3)

Where | | denotes the cardinality of the list, and denotes the operation that

inserts the second list right after the th
 element of the first list. A task is inserted into

the current path at all possible locations to find the greatest score improvement. The

first phase of the CBBA is summarized in algorithm 3 in Figure 2.5. Each agent

carries four vectors: a winning bid list , a winning agent list , a bundle and the

corresponding path . The difference between and is that in the CBBA an agent

needs to know not only if it is outbid on the task it selects but who is assigned to each

task as well; this enables better assignments based on more sophisticated conflict

resolution rules.

 30

Figure 2.5: Task allocation algorithm for the CBBA (Choi et al., 2009).

Phase 2: Conflict Resolution

Similarly to the CBAA, the CBBA runs a consensus phase to remove agents

bidding for the same task and unify group knowledge. In the case of the CBAA agents

made bids for single tasks, if they received a higher winning bid for that task from one

of their neighbours they would release it and re-assign themselves to another task.

However the CBBA deals with multiple assignments where bids are made based on

their current bundle of tasks. If an agent loses an assignment they must not only

release the task in question but also any tasks scheduled to be completed after that

task, where the marginal score values for the proceeding tasks are no longer valid. But

this method of releasing tasks makes convergence more complicated as other agents

might have made incorrect observations about the maximum bids. To prevent this,

information about when agents last communicated with each other must also be

transferred so in this way agents can work out if bid data for an agent is out of date.

 In the consensus phase of the CBBA three vectors are communicated. The

winning bid list , the winning agent list and containing the last update time an

Algorithm 3: CBBA Phase 1 for agent at iteration :

1: procedure BUILD BUNDLE
2:
3:
4:
5:
6: while | | do

7: | |

8: ()

9:

10:

11:
12:

13:

14:

15: end while
16: end procedure

 31

agent had with all other agents. When assignments are communicated the time vector

 is calculated as

 {

 (2.4)

where is the previous message reception time when an agent is in communication

range, otherwise the agent uses the last update time of one of its neighbours who has

had communication with the target.

With the addition of the time vector an agent can determine when its bid

data is out of date by comparing the update time for the agent it has received

communication from. For example, if two agents and both think agent is

assigned to task such that but that meaning that each agent

has a different winning bid value for , by comparing with agents can

determine whose bid is out of date and update their information.

When agent receives bid data from agent about task there are three

possible actions agent can take

1)

2)

3)

Table 2.1 outlines the decision rules for all combinations of bid comparisons

when receiving a communication message. The first column contains who the agent

 , the sender, believes is assigned to task . The second column contains who the

receiver, agent , thinks is assigned to the task. Finally depending on the combination

of sender to receiver assignments, the final column displays the action the receiver

will take depending on the agents involved, the bids placed and the update time of

 32

each agent’s data. As agents iterate between the two phases they will gradually

converge on a conflict free solution, an overview of the CBBA converging on a

conflict free assignment can be seen in Appendix A.1.

When the number of assignments an agent is allowed is limited to 1, the

CBBA will produce the same result as the CBAA, so in this respect the CBBA can

also guarantee 50% optimality for the single-assignment problem. Additionally

because the multi-assignment problem can be treated as a single assignment problem

with an additional combinatorial number of agents the minimum 50% performance

guarantee can also be applied to the multi-assignment problem (Choi et al., 2009).

Table 2.1: Consensus decision table for the CBBA (Choi et al., 2009).

Sender’s (agent ’s) Receiver’s (agent ’s) Receiver’s Action (default: leave)

 33

Scoring Functions

The CBBA provides a conflict free assignment on the assumption that the

scoring function it uses satisfies a diminishing marginal gain (DMG). The marginal

score improvement of a task described in (2.1) shows that the score improvement for

agent doing task is but that this score is dependent on the current bundle .

If the scoring function satisfies DMG it can be said that the value of a task does not

increase as other tasks are added to the set before it. This can be formally described as

 (2.5)

where denotes an empty task and is the function that adds the second list after

the first list. The value of an assigned task with the bundle does not gain any

increased value when another task is added to the bundle . Many reward

functions in autonomous search and exploration robotics are consistent with DMG

(Bertuccelli et al., 2009). The CBBA uses a time-discounted reward that satisfies

DMG as follows

 ∑

 (2.6)

where is the time discount rate,

 is the estimated time of arrival for agent

travelling along with the path to arrive at task location and is the fixed reward

for performing task . This creates a time discounted reward where performing a task

later will result in a reduced reward (Alighanbari, 2004). In search and rescue

scenarios where uncertainty grows with time, the time discounted reward models the

reduced expected reward for visiting a location later rather than earlier. Distance is

not factored into the cost because travel time is sufficient at modelling the discounted

reward and still satisfies the triangular inequality for distance between task locations

such that

 34

 (2.7)

results in an agent taking longer to travel between tasks thus arriving at each task later

than if the agent travelled over a shorter path. This inequality further discounts the

score value such that for all non-negative the scoring function
 does satisfy

DMG. With this assumption, the CBBA provides a decentralised task-allocation

algorithm addressing the multi-assignment problem to produce a conflict free

solution.

2.2.5 Task Allocation with Duo Cooperation Restraints

An extension to the CBBA developed part of a solution to the multi-agent task

allocation problem, extending the algorithm to deal with “duo tasks” that are defined

as tasks requiring one or two agents. The algorithm was extended to solve missions

with heterogeneous networked agents, where tasks are given a specific number of

agents required for their completion. There are quantifiable advantages to using

multiple UAVs for tasks that could be undertaken with a single UAV. For instance,

search and rescue operations can be done with a single UAV but multiple UAVs

would speed the process up among other advantages (Bernard et al., 2011) unlike

computer parallelisation which rarely achieves twice the speed for twice the

computing. In other situations a task might require multiple UAVs where a single

UAV would not be sufficient, for example, two UAVs carrying heavy building

material together (Willmann et al., 2012). This leads to three types of tasks defined as

the following:

1) Solo Task (: Referred to as single-agent tasks are tasks that require one agent to

complete them. Additional agents assigned to the task are unacceptable providing no

increase in the score of the assignment and would be classed as producing a conflict

in the assignment.

 35

2) Preferred Duo Tasks (): A task that can be completed by either one or two agents.

The assignment of a single agent is acceptable and provides the same reward as a solo

task. Assigning two agents to the task provides a greater reward.

3) Required Duo Tasks (: Similar to the Preferred Duo Tasks however a single

assignment is unacceptable and provides no reward. Instead these tasks require two

agents of differing types to complete the task.

Figure 2.6: Decentralised task elimination for agent for the assignment and

consensus of cooperative duo tasks (Choi et al., 2010).

The assignment algorithm for cooperative duo tasks is displayed in Figure 2.6

and uses a method of decentralised task elimination to remove and re-distribute agents

amongst the remaining valid tasks. The inside loop of the algorithm (lines 6-10) runs

the regular CBBA with additional task restriction such as an agent cannot assign itself

to both the leader and follow role for a duo task. Once the inner CBBA has converged

all agents have the same situational awareness about the status of each task because of

the conflict free properties of the CBBA. The process of task elimination is used to

remove any tasks that either have no assignments or an incorrect number of

assignments for the required duo tasks. With the invalid tasks removed the CBBA is

Algorithm 4: Decentralized task elimination for agent i

1: Initialise invalid tasks set: .
2: Initialise outer-loop iteration count: .
3: while do
4: Eliminate invalid tasks: .

5: .
6: while CBBA not converged do
7: CBBA bundle construction phase.
8: CBBA conflict resolution phase.
9: Check CBBA convergence.
10: end while

11: Identify invalid tasks: |()

12: end while

 36

run again with the restricted pool of tasks, this allows agents with spare time to assign

to the second slot of preferred duo tasks providing an improved solution.

The algorithm successfully allows the assignment of duo tasks and provides an

improvement in score over the CBBA when using preferred duo tasks. However the

algorithm is limited to two agent requirements and the use of vectors for the winning

bid and agent lists causes problems where agents must be explicitly forbidden from

assigning themselves to each and every other part of a duo task they are assigned to.

This system would provide difficulties expanding the algorithm for agent

requirements greater than two.

2.2.6 Task Allocation via Coalition Formation

A method of multi-agent cooperation involves the assignment of tasks to

groups of cooperating agents called coalitions (Shehory & Kraus, 1998) (Lau &

Zhang, 2003) (Amgoud, 2005). This situation involves tasks that can be split up into

many sub-tasks that may not be satisfied by a single agent. This problem takes a set of

agents and a set of tasks where agents must work out

how best to form coalitions so as to maximise the overall reward from completing

tasks. Each task contains a fixed number of subtasks with each subtask requiring

a specific capability value and providing a reward of . Every agent has an

associated vector , where is the capability value of the agent

performing a sub task . Coalitions are defined as groups of agents working towards a

common goal each coalition is given a value based on the sum of the capabilities of

the group. Agents in coalitions can then work together to complete various tasks and

subtasks.

Task allocation via coalition formation follows three general phases:

 37

1) Generate the collation structures; here the agents form a collation in order

to coordinate at completing a task or set of tasks.

2) Discuss the structure amongst the agents to determine which one is most

suitable.

3) Distributing the sub-tasks over the agents of the coalition.

The structure of coalitions depends on the specific problem; it might be that

tasks are independent or that agents must belong to only one or multiple coalitions. It

is assumed that agents are co-operative and interested in maximising the overall score

of the system, therefore the objective function is the sum of all fulfilled tasks as seen

in (2.8) where is the non-negative integer for high-demand meaning a task can be

repeated as many times as resources will allow or a boolean value where the task can

only be completed once. is the total resources available for the subtask

Maximize

Subject to

∑

∑

(2.8)

Various solutions to this problem exist depending on the specific task settings,

consider that each task can only be completed once, agents have limited resources and

the reward is fixed. A standard greedy approach does not provide a good solution as

the capabilities of each agent are limited. Instead coalitions are constructed iteratively

by maximising the coalition value (Lau & Zhang, 2003). This approach has two

steps that are iterated between, firstly the coalition capability values are computed for

each possible coalition, then secondly the coalition with the highest value among all

tasks is formed and the task that is assigned to the coalition removed from the task

list. This process is alternated until no more tasks are left or a coalition with sufficient

value cannot be formed.

 38

Task allocation via coalition formation allows agents to pool resources

together and complete tasks with their related sub-tasks that a single agent would be

unable to do. However, coalition formation assumes global communication and whilst

it can function with some delay the quality of assignments is reduced as delay

increases. In addition the population of agents cannot change during the formation

process and would not function with unknown agents that are discovered as the

assignment proceeds. Finally many solutions for achieving coalition formation

assume global knowledge of the goals (Shehory & Kraus, 1998). Whilst each task can

be defined as a multi-agent task, it is always broken down into single-agent sub tasks

such that coalitions are formed to complete the multi-agent task but agents are still

only being assigned to single-agent tasks.

2.3 EUSOCIAL ANIMAL BEHAVIOURS

Eusocial animals, like the majority of ant species, a number of bee species and

a few wasp species have some similarities to that of robotic cooperative systems.

Unlike most animals, eusocial species focus on the group rather than the individual.

An ant, for instance, has evolved to put the success of the colony ahead of itself, in the

case where for example ants have been shown to use self-sacrificial defences to

protect the nest (Tofilski et al., 2008). Similarly with a cooperative system an

individual agent should focus on maximising the performance of the group as a whole

rather than its own performance. Ant nests allocate specific workers to specific tasks

without any central or hierarchical control (Anderson & Ratnieks, 1999). Whilst the

task allocation is individual centric and the decision is made by an individual it must

still be beneficial to the group. Some decisions will reduce an agent’s contribution but

overall increase the team’s performance, the allocation algorithm must account for

both loss of time and score by not fully allocating multi-agent tasks. Detrain and

 39

Deneubourg (Detrain & Deneubourg, 2006) show how if-then rules embedded in ant

behaviours, however simple in their logic, ultimately produce efficient group-level

responses for objectives like resource acquisition and risk avoidance. Further, that

these behavioural rules coupled with self-organising processes provide a robust and

efficient method for problem solving. A difficulty encountered with multi-agent tasks

is that agents can become confined to tasks that no other agents plan to assist with.

When a multi-agent task has insufficient assignments the task cannot be completed

and will not score, thus wasting the contribution of agents assigned.

Bees are another eusocial species that show collective intelligence in the

organisation and allocation of tasks for the survival of the colony. Bees perform task

partitioning where a task is split up into a number of steps that are performed by

multiple bees (Arathi & Spivak, 2001) where each bee has a specific part of the

overall task to achieve. This focuses the hive on the task and its division rather than

the individual performing the task. As part of a “hygienic behaviour” worker bees

remove diseased brood cells from the hive, if left the infection would spread and

destroy the colony. This requires two operations, the removal of the cap on the cell

followed by removing the diseased brood. Individual bees will focus either on

removing the cap or removing the cell and together will complete the tasks rather than

each individual removing a cap then removing the diseased cell. Bee colonies show

complex cooperative behaviours for the organisation and allocation of workers in the

hive. Multiple systems have been proposed that show how bee colonies come to

collective decisions in tasks such as the allocation of workers to nectar sources with

changing environmental conditions (Seeley et al., 1991) (Biesmeijer & de Vries,

2001) (Cox & Myerscough, 2003). The similarities between the multiple systems are

that global coordination of the workers happens despite individual bees relying on

local information. The self-organising model of these colonies shows the

amplification of random noise into structured patterns and that collective problem

 40

solving capabilities can emerge when individuals have limited information processing

abilities (Deneubourg et al., 1991). With a great deal of research focused on the

foraging abilities of honey bees, Johnson examined the self-organisation of the

internal hive where bees would perform over 15 tasks varying in exigency, often

localised to specific regions of the hive (Johnson, 2009). Johnson proposed an agent

based self-organisation model that explained the fluid task-allocation dynamics

observed in the hive. Using a form of task-quitting the bees are able to track changes

in task demand at the group level whilst individually using local information. As bees

become insensitive to certain stimuli for a period of time after quitting a task it

allowed bees to redistribute the colony resources to high demand areas. Figure 2.7

shows the developed task-quitting algorithm, where agents can be at one of three

behavioural states; working, patrolling or inactive. Whilst in a specific behavioural

state the bees will perform tasks related to it, where a working bee is either busy or

not. At each time step, bees either quit or remain in their current behaviour state based

on a quitting probability. The quitting probability was developed such that the agent

bees would stay in a state on average as long as was empirically observed in the bee

hives. Johnson was able to show that frequent task quitting can allow colonies to track

variation in task demand in a changing environment. This process allows bees to re-

assign themselves to high priority areas and would be useful in solving the problem of

agents being assigned to multi-agent tasks that are not reaching the correct

requirements.

 41

Figure 2.7: Task allocation algorithm using a task quitting method for the allocation

of bees throughout a hive (Johnson, 2009). At each time step, bees either remain in

their behavioural state or quit based on a quitting probability. When a bee quits its

current activity it chooses randomly one of the other two states (Work, Patrol, and

Inactive). Working bees are either busy or not busy, busy bees complete tasks in their

location, when there are no tasks at a bees location the bee is not busy and instead

moves randomly to find work.

An environmental change in a bee hive such as an increase in the temperature

creates an increase in new assignments to the task of “fanning” that cools down the

hive and larva. Johnson (Johnson, 2009) showed that using this method of frequent

task quitting resulted in a similar change in assignments between the real colonies and

the simulated ones. Additionally Johnson showed that by decreasing the probability of

bees quitting their current task the allocation of bees to the tasks with the highest

demand was greater but that the hives response to changing task demands, such as

environmental changes, was much lower. Essentially the bee’s use of task quitting

causes a sacrifice in work output but it increases the hives ability to deal with and

adapt to a changing environment.

Quit?

Patrol

Busy?

Stimulus

>= 1

Inactive

Work Move

Quit?

Quit?

Yes

Yes

Yes

Yes

No

No

No

No

No

Yes

 42

2.4 CONCLUSIONS

This Chapter provided a detailed description of current solutions for the

single-agent task assignment problem. Furthermore, the limitations of these solutions

for multi-agent task assignments were discussed. Whilst the CBBA provides a conflict

free solution with 50% optimality for the single-agent task assignment problem, it has

limited capabilities in solving the multi-agent assignments as well as difficulties

scaling the solution for increasing agent requirements. Behaviours observed in

eusocial species show promise at providing stronger assignments in task allocation

algorithms. Using the CBBA a dynamic and scalable solution to the multi-agent task

assignment problem can be provided that removes the limitations of previous

solutions. To achieve these goals new assignment and consensus algorithms will need

to be developed for multi-agent tasks where single agent tasks can continue to be

handled by the CBBA. Furthermore to allow the new algorithm to function with

dynamically added tasks or agents, as well as handle heterogeneous agents, will

require a modification of how the CBBA structures its assignment data. These

changes to the CBBA will increase the complexity of tasks that agents can deal with

as well as provide potential practical applications in the future.

 43

Chapter 3: Consensus Based Grouping Algorithm

This chapter addresses the problem of multi-agent task assignments for UAVs,

which are defined as tasks that require multiple agents. The algorithm is an extension

of the Consensus Based Bundle Algorithm that converges to a conflict free, feasible

solution which previous algorithms were unable to account for. Furthermore the

algorithm takes into account heterogeneous agents and task dependencies such that

groups of UAVs with differing equipment or sensors can self-organise in order to

complete series of complex tasks.

The CBBA (Choi et al., 2009) was created to solve an extension of the TAP

where agents queue up tasks they will complete: individual agents take available tasks

and compute every permutation given their current queue of tasks or “bundle”, where

the highest rewarded permutation becomes their bid for that task. In this way, agents

continually remove and revise new tasks as other agents find they can create a more

valuable sequence with that task. Thus, the CBBA gives a conflict free solution with a

guaranteed 50% optimality to the multi-assignment problem.

Extensions of the problem can be developed that simulate realistic situations

by designing complex tasks with stricter requirements. The consensus algorithm

needs to be developed in order to handle these new tasks, including tighter task

selection and higher cooperative decision making. The requirements that are

examined are multi-agent, equipment requirements and task dependencies, where a

multi-agent task is defined as one which requires more than one agent to complete, an

example of which would be using two UAVs to carry construction material

(Willmann et al., 2012). A task that requires specific equipment would require unique

agents; Merino et al (Merino et al., 2005) looked at using multiple heterogeneous

agents for cooperative fire detection. Task dependencies are defined as tasks that

 44

require other tasks to be completed before they can start, creating a list of tasks that

must be completed in a certain order.

Two solutions for the multi-agent task allocation problem (Choi et al., 2010 ;

Manisterski et al., 2006) both have their limitations that make them unsuitable.

Firstly, the creators of the CBBA extended their algorithm for heterogeneous

cooperation (Choi et al., 2010); this extension solved duo cooperation constraints

where a simulation would contain two agent types that solve three different types of

tasks. Solo tasks required one type of agent; preferred duo tasks scored greater for the

assignment of two different agents and required duo tasks needed one of each agent

type. However, this solution is limited to two agents and the proposed solution here

will allow any number of agent requirements to be assigned to tasks. Secondly,

another solution to the multi-agent problem (Manisterski et al., 2006) used a central

solver to group related tasks into a set and assign enough agents to complete them.

However, using a centralized algorithm will not provide a robust and feasible solution

for real world applications. This chapter provides a solution for the decentralised

assignment of multi-agent tasks that require any number of agents for their

completion. Solving this problem can increase the cooperation of UAVs to an

improved autonomous operational level further reducing the need for human

interaction. To achieve this, agents need to develop an increased awareness of what

other agents are planning more so than is required for the CBBA. Agents must plan

their own schedules around that of others and come to complex agreements on task

order. As the complexity of decision making increases so too does the requirement for

information needed to make a decision and the underlying communication required

(Nodine et al., 2001). Using the framework set up by the CBBA the algorithm is

extended to account for the existing limitations; this extension leads us to the

Consensus Based Grouping Algorithm (CBGA).

 45

3.1 PROBLEM

The CBBA is limited to single-agent tasks and is unable to handle further

restrictions on which agents can complete those tasks; the duo-task extension is

similarly limited to multi-agent tasks for two agents. This chapter develops an

algorithm that can deal with and provide a conflict free solution to the following

restraints.

 Tasks require agents

 Tasks require specific equipment or sensors

 Tasks can have an order of completion

 Tasks have a time window in which they must be started

Agents will need to form groups containing the correct equipment before

being able to complete a task. Additionally tasks can require a specific order of

completion. The CBGA will provide a conflict free solution to this problem with

some small assumptions on the network connectivity and scoring scheme.

3.1.1 Single-Agent Task Assignment Problem

The single-agent task assignment problem is a combinatorial optimization

problem that tries to find the least-cost solution between two disjoint sets. There is a

set of agents and a set of tasks . The objective of the

task assignment problem is to find a conflict free matching set of agents to tasks that

maximises a global reward. With a valid assignment each agent can be assigned

up to a maximum of tasks and each task must have no more than one agent

assigned.

An agent has a reward associated with it for completing a task. Let be the

non-negative reward of assigning the agent to the task. The objective is to

assign each task to one agent in such a way as to maximise the overall reward from

 46

completing all the tasks. There is a binary variable where to indicate

agent is assigned to task , otherwise . The global reward or assignment score

is the sum of all local rewards, where each local reward is the function of tasks

assigned to an agent. Then the local reward generated by agent is equal to (3.1)

where is the path dependant reward of agent completing task on the path .

 ∑

 (3.1)

 For an assignment to be efficient the task allocation must be valid and the

reward is maximised as (3.2).

max

subject to

 ∑(∑

)

∑

∑

(3.2)

The single assignment problem emerges when which can be solved

with the CBAA. If then multi-assignments are allowed creating the multi-

assignment problem with a solution provided by the CBBA, although the CBBA also

provides the same solution as the CBAA for the single assignment problem.

3.1.2 Multi-Agent Task Assignment Problem

The task assignment problem is extended to cover the addition of multi-agent tasks.

Each agent can be assigned to multiple tasks as part of the CBBA, conversely each

task can similarly have multiple agents assigned to it. Agents will now need to store

 47

a matrix of bid data that will allow agents to track multiple winners for a multi-agent

task where the task requires multiple agents. The winning agent matrix will now take

the form , which translates to agent thinks agent is assigned to task with

a winning bid value of .

Tasks now contain an agent requirement that specifies how many agents are

required for the task . With multiple agents potentially being assigned to a task the

algorithm will not limit each task to a single assignment. Instead for a task

assignment to be valid (3.3) must be true for a given task , where determines an

agent’s own knowledge about its assignments and avoids double counting

assignments where with a conflict free solution.

 ∑

 (3.3)

It is assumed that such that agents will have no limit on the number

of tasks they can assign themselves to. Combining the task assignment problem from

(3.2) with the restriction for multi-agent tasks in (3.3) for an assignment to be efficient

the task allocation must be valid and the reward is maximised as

max

subject to

∑(∑

)

∑

∑

 ,

(3.4)

where is the binary value for task validity equal to 1 when a task is valid or 0 when

a task is invalid depending on the task requirements. A multi-agent task can be

 48

determined valid using (3.3) by having the correct number of assignments. If the task

has less than the required number the requirements have not been met so the task is

considered as having failed providing no score. A failed task is not considered a

conflict and no cost is associated with failing other than the indirect cost of not

receiving a reward for the assignments.

3.1.3 Restricted Task Assignments

In additional to the constraints in (3.4) further requirements and restrictions

are added to tasks that must be satisfied, each task will require specific types of agents

or a specific set of equipment before the assignment can be considered valid. There is

a list of pieces of equipment found in the assignments where

 is a list of equipment that agent has such that . Similarly task requires a

specific list of equipment where , if then it is assumed any agent

can bid on the task. When agent can bid on task because it contains

at least one piece of equipment required. A valid assignment is worked out using

 { | } (3.5)

where “ ” is the set complement that returns the list of equipment in that is not

found in the current assignment { | }. When (3.5) is true task j has a valid

assignment with the correct equipment. If the equipment list for each agent is

limited to a single piece of equipment such that | | then the problem is

limited to agents of different types and that | | . In this case each task requires

multiple agents of a specific type.

When making assignments with task planning from the CBBA tasks are only

available for bidding when all requirements have been met, agents should be able to

plan all tasks in advance. When tasks have time restrictions for their completion it

 49

becomes imperative to assign as many tasks as possible at the beginning of the

simulation, waiting until after the pre-requisites of a task have been completed could

lead to no time being available or agent close enough to complete it. However if

agents assume an assigned task will be completed they can prepare ahead of time to

complete the follow up task and it does not necessarily have to be the same agent

performing the following task.

Therefore a set of task prerequisites are created for each task such that

 and that . The set contains which tasks must be completed before the

related task can be attempted. When task has no prerequisites and

availability is limited to the highest bidder as before. Assuming that the existence of a

bid for a preceding task will result in the completion of that task then a task with

prerequisites is valid when

 (3.6)

thus when (3.6) is true agent can bid on task where all prerequisite tasks have

valid assignments. With multiple prerequisite tasks the order of completion does not

matter except in the case that those tasks also have their own prerequisite. However,

these pre-conditions are assumed to be unchanging such that by completing another

task or fulfilling a prerequisite task does not add, remove or change other pre-

conditions. In reality the task of attacking a target might require a task prerequisite to

find the target in an area, if the target is unfound then the following attack task is now

unnecessary. Tasks and their prerequisite tasks are assumed to be static such that the

conditions set out at the beginning of a simulation for each task are not changed

during the simulation.

Finally each task has a start and end time in which the task must begin, an agent can

calculate valid tasks for assignment using

 50

 (3.7)

where
 is the estimated arrival time of agent at task along the path . If the

agent can arrive before the end time then it can be assigned to the task.

Additionally it cannot finish a task until after the start time with each task taking a

length of time to complete.

3.2 THE PROPOSED CBGA

The Consensus Based Grouping Algorithm is a solution to the multi-agent task

assignment problem where tasks can require multiple agents before they can be

completed. Agents make bids on valid tasks and send this data to their neighbours. All

agents receive bids from their neighbours and validate that data with their own

removing conflicts and converging on a single global solution as assignment data

propagates through the networked agents. The CBGA is split similarly to the CBBA

into two phases; first the bundle construction phase where agents fill their bundle with

tasks they will complete, secondly the consensus phase where agents come to an

agreement on which agents are participating in each task.

3.2.1 Local Data

Table 3.1 displays the data each agent stores during a simulation to perform

assignment and consensus on tasks. The data that agent sends to agent when they

are within communication distance are displayed in Table 3.2. An agent

 sends all the winning bids that it knows about where contains every

combination of agent to task bids that agent has. Similarly the winning agent matrix is

communicated which can be seen in Table 3.3. Along with this agent update times are

sent allowing agents to know how old information is that they are being sent. Because

all winning bid data is sent to an agent’s neighbour winning bids will eventually

 51

propagate to every agent connected in the communication network even though two

agents might be outside each other’s direct communication range. The equipment

each agent has is assumed to be known by other agents, in a team of cooperating

UAVs this information would already be known or in the case of discovering new

agents the information would be communicated on first contact. Similarly the

equipment requirement on tasks is assumed to be known.

Table 3.1: Data stored on each agent .

Stored Data Symbol Description

Bundle

List of tasks the agent has currently assigned to itself.

Ordered based on when tasks were added to the agent’s

assignments.

Path

Similar to the bundle a list of tasks the agent has currently

assigned itself. Ordered by the order in which an agent will

complete the tasks.

Winning Bid Matrix
Matrix containing the winning bid each agent has made to

each task according to agent .

Winning Agent Matrix
Matrix containing the winning assignments where 1 means

an agent is assigned to a task otherwise 0.

Agent Update Times
List of last update time from each agent in time t.

Equipment List
List of equipment an agent has or the agents type when

limited to one instance.

Table 3.2: Data communicated by each agent .

Communicated Data Symbol Description

Winning Agents
The agents that agent thinks are assigned to each task.

Winning Bids
The winning bids matrix that agent thinks have been

made for each task

Agent Update Times
List of last update time from each agent in time t.

 52

Table 3.3: Winning agent matrix for agent storing the binary values for winning

assignments between agents and tasks. The winning bid list is stored in exactly the

same except that it contains the winning bid.

Winning Agent Matrix ()

Tasks

 …

A
g
en

ts

 …

 …

… … … … … …

 …

3.2.2 Phase 1: Bundle Construction

 In phase 1 each agent constructs a bundle of tasks and the

ordered path for those tasks . Bundle and path construction works

similarly to the development in the CBBA (Choi et al., 2009) but with the new task

restrictions limiting the valid tasks for bidding. During the bundle phase an agent

builds up a bundle of tasks it plans to complete by calculating the marginal

improvement of each task and selecting the task with the greatest improvement. After

adding the best task to its bundle it repeats the process for the rest of the tasks,

continuing until no more tasks are valid or all tasks have been added.

An agent determines which task it will add next to the bundle by calculating

the marginal score improvement of a task. Each task provides a fixed reward for

each agent, multi-agent tasks provide the same reward for every agent assigned

therefore creating higher rewards for such tasks. As with the CBBA an agent places a

bid on a task based on the marginal score improvement it can achieve given the

agent’s current bundle. Because tasks are given time windows for their completion a

time discounted reward for the entire simulation is not viable, a task should not supply

a reduced reward because it starts later than another. Instead the time discounted

 53

reward should apply from the start time of the task not the simulation time. Thus the

reward for an agent completing task is worked out as

 (3.8)

where is the time discounted reward and
 calculates the

time difference between agent ’s arrival at task given path and the start time

 of the task. Thus as an agent receives the maximum reward by arriving on

time, arriving later provides a reduced reward. However, the distance an agent travels

to a task will provide an increasing cost such as the fuel requirement to travel or the

additional risk encounter over long journeys. The distance discounted reward is

calculated as

 (3.9)

where
 is the non-negative estimated distance agent will travel to task on the

current path and is the cost associated with traveling. This provides a further

discounted reward for completing a specific task.

 ∑() (3.10)

The overall score for agent completing an assignment is calculated in (3.10),

with the use of both time and distance discounted rewards makes the scoring function

satisfy DMG because of triangular inequality. The time and distance discounted

reward can model the degradation of an expected reward for completing a task that is

further away or for arriving at the task late.

As with the CBBA when a task is added to the bundle the marginal score

improvement is calculated as

 54

 {

 | |

 (3.11)

where is the operation that slots the second list into position of the first list and

therefore

 is the score for slotting task into position in the path . The

position of task in path that provides the highest score improvement is used as an

agent’s bid for the task . Agents are only able to bid on valid tasks such that if an

agent or task does not meet the task requirements in (3.5) and (3.6) then their bid for

that task will not be considered.

Before a bid selection the list of score improvements must be compared to

the current highest placed bids to create the valid bid list . In the CBBA this

process simply compared an agent’s bid to the current winning bid found in , the

valid bid list was generated using

 () (3.12)

where is one if the argument is true otherwise it is equal to zero. However, the

multi-agent requirement on tasks will require a change in this process. With single-

agent tasks there was only one bid for comparison and an agent either provided a high

enough bid or did not and thus replaced the previous bid. Multi-agent tasks allow

multiple assignments so long as the number of assignments does not exceed the

number of agents required for the task . In addition multi-agent tasks do not require

that an agent beat all the assigned bids, by beating and replacing the smallest bid the

overall reward from a task will increase.

 When a task is considered a single-agent task and as such bid

comparison will not change. If then the task is a multi-agent task with two

situations, either the number of assigned agents is less than the required number or the

task is full in which case the agent must out bid another agent for the task. The

 55

number of agents that agent thinks are assigned to a task can be calculated as the

summation of all assigned agents in an agent’s winning bid matrix, where a task is

considered full when the number of assigned agents is equal to as shown in (3.13).

 ∑

 (3.13)

If (3.13) is satisfied then a task is considered full and therefore an agent must

provide a bid higher than some other agent assigned to the task. Finding and replacing

the minimum bid will gradually provide a higher scoring assignment. An agent can

assign a bid to a task when (3.14) is true and in the case of tied scores agent ID is used

to determine the winner.

 () (3.14)

When either (3.13) or (3.14) are true then an agent has a valid bid for the

multi-agent task and the valid bid list is updated with . Once an agent has

generated the marginal score improvement for each valid task it must then select the

best task to be added to the bundle. The highest bid in that complies with the valid

bid list is placed in agent ’s bundle and added to location in the path . The

agent updates it’s own bid lists and before re-calculating all score

improvements and adding another task to the bundle. This process is repeated until an

agent can no longer add any more tasks to its bundle because either the bundle is full

or there are no more valid tasks to bid on. Figure 3.1 shows a summary of the bundle

construction phase for an agent .

 56

Figure 3.1: Bundle phase for CBGA.

3.2.3 Phase 2: Consensus

Phase 2 of the algorithm takes communications received from neighbouring

agents and analyses their knowledge of assignments to come to a consensus. In the

CBBA each agent would send their winning agent and winning bid list, with the

CBGA because of the existence of multi-agent tasks agents are now sending a matrix

of assignments instead of a single list. Each agent communicates their winning agent

matrix , winning bid matrix and the time stamp displaying the last information

Algorithm 5: CBGA Bundle Construction for agent at iteration :

1: procedure BUILD BUNDLE
2:
3:
4:
5:
6: while | | do

7: | |

8: for
9: if then

10: if ∑

11:

12: else if () then

13:

14: else
15:

16: end
17: else

18: (∑

)

19: end
20: end
21:

22

23:
24:

25:

26:

27: end while
28: end procedure

 57

update from each neighbouring agent. The data sent and received under a limited

communication network can be seen in Figure 3.2.

Figure 3.2: Data sent and received between agent A and its neighbours, a link between

two agents represents that those agents are within communication distance and thus

can communicate data between each other.

As agents receive assignment data from neighbours they will build up and

store assignment matrixes for each neighbour where shows that agent

thinks that agent is assigned to task with a corresponding bid from the

winning bid matrix. The consensus algorithm can be seen in Figure 3.3 and is split

into two sections, the first section (line 4-6, Figure 3.3) deals with tasks that require a

single agent, using to determine the number of agents required for task . Tasks

requiring a single agent will require the same consensus algorithm as found in the

CBBA (Choi et al., 2009) including the same decision table found in Table 2.1. The

consensus algorithm assumes only valid bids are made during the bundle construction

algorithm, thus no changes are required for single-agent tasks. The second section

(line 7-25, Figure 3.3) contains the multi-agent consensus part of the CBGA where

 , which is split into two phases; the first correlates the receiver’s current

information with that of the sender. Secondly the receiver takes new information from

0 1 2 3 4 5
0

1

2

3

4

5

A

B

C

E

D

𝒙𝑨

𝒚𝑨

𝒔𝑨
𝒙𝑨
𝒚𝑨
𝒔𝑨

𝒙𝑩
𝒚𝑩
𝒔𝑩

𝒙𝑪
𝒚𝑪
𝒔𝑪

X

Y

 58

the sender and merges it with its own data to produce a consistent set of agreed

information. The CBBA used a table for determining whether to update, leave or reset

information; with the extended problem this becomes problematic. When another

agent has differing assignments it does not necessarily require leaving or updating the

information as done in the CBBA, the information could merge causing both agents to

be correct. Further complications come when equipment requirements are taken into

account. The algorithm is split into two phases to best handle the incoming

information, by correcting each agent’s information the agent can merge incoming

data better by not having to account for mistakes in its own data.

Figure 3.3: Conflict resolution for the CBGA for multi-agent task.

Algorithm 6: Conflict Resolution for Agent i

1: send , and to agent with

2: receive , and from agent with

3: for
4: if then

5: Consensus from CBBA

6: else

7: for

8: if then

9:

10:

11: end

12: end

13: for

14: if then

15: if (∑) then

16:

17:

18: else if then

19: ,

20: ,

21: end

22: end

23: end

24: end sik =

25: end

 59

The first phase (7-11, Figure 3.3) takes all the winning assignments the

receiver has for task by checking for the existence of and

compares how correct that information is with the sender. If the agent assigned is the

sender or the sender has received a more recent update from the assigned agent using

 , then the sender’s information is more up to date thus their data will be

more accurate. This could be either that a better bid was placed or that the agent is no

longer assigned to the task. Either way the receiver will replace its bid data for that

assigned agent with the senders bid data. After comparing all the assignments

receiver has for task , the receiver can be sure its assignments for that task are

accurate, however, the sender may have new assignments that are better than the

current assignments dealt with in the next phase.

During the second phase (12-23, Figure 3.3) the receiver’s information is

updated with new assignments from the sender. From the first phase an agent knows

that all of its assignments, according to the sender, are currently up to date. Following

this the receiving agent can proceed through each new assignment and evaluate

whether the new bid is better. When the sender has an agent assigned to task

that is not the receiver nor is it assigned by because phase 1 has dealt with this

situation already and the sender has a better update time the new assignment can be

validated. Two situations can occur, either the multi-agent task still has space, in

which case the assignment will be added, or the task is full and the bid must be

compared. The receiver checks all bids assigned to find the minimum bid, which is

then compared to the new assignment keeping the highest bid of the two competing

assignments.

When the algorithm replaces an agent in a current group it must replace an

agent that is carrying at least one piece of identical equipment, if the task requires

specific equipment, as the bidding process will not let a group form without meeting

the required equipment list. There is still space in an assignment if ∑

 60

 , but the new assignment must contribute to the correct equipment list. The current

equipment list is calculated as { | } which provides the set of equipment of

all assigned agents. Thus agent can be assigned if { | } that is

true if there is still a requirement for an agent m with specific equipment without

the need to replace an assigned agent. If there are not available spaces in the group

then another agent must be replaced using

 () (3.15)

to find, if feasible, an agent with the same equipment as agent but with a lower

contribution score thus replacing that agent would provide an overall higher score. If

these conditions are met then the algorithm can replace the lower scored agent.

If two agents both place the same bid for a task there is the chance of the agents

creating a deadlock. This can be created by both agents refusing to leave the task with

the assumption that the other agent has lost and will leave, alternatively they could

both assume they have lost, leaving the task and re-assigning later. To avoid any

chance of deadlocking there must be a system in place to prevent such situations. The

agent with the highest ID is given priority that provides a systematic way for all

agents to agree on the winner in the case of tied bids.

 The consensus phase continues checking the assignment data received for each

bid until finally the agent updates its time stamp with the current simulation time.

The CBGA iterates between the bundle phase and the consensus phase until all agents

involved coverage to the same conflict free solution. A brief assignment involving the

CBGA and multi-agent tasks can be seen in Appendix A.2.

 61

3.3 PERFORMANCE

3.3.1 Methodology

The CBGA is extended from a Matlab implementation of the CBBA; the

algorithms are tested and compared using simulated experiments. The simulation

parameters are kept as close as possible to the setup used in previous research (Choi et

al., 2009) (Choi et al., 2010). The three main variables examined are the number of

agents, number of tasks and number of agents required for each task. Changing these

variables explores a large breadth of possible assignment situations, for example,

testing consensus on tasks that require a large number of agents resulting in an

assignment that requires significant cooperation. Covering a range of possible

simulation parameters helps defend the algorithms performance and use at

theoretically any number of agents, tasks and agent requirements of those tasks. With

the increased complexity of the requirements of tasks it is important to consider the

effect this has on the communication between agents. In the potential practical

application of this algorithm communication bandwidth is an important aspect to test.

The tasks have increased complexity in their requirements; requiring a longer decision

making process with more information to communicate to achieve consensus and thus

an overall increase is expected in the communication requirements, however, this

should only be a linear increase on a per assignment basis.

Comparisons with existing methods are difficult as previous algorithms solve

a specific aspect of the multi-agent task assignment problem. The extension of the

CBBA for multi-agent tasks that solves ‘duo’ tasks performs a comparison of the

percentage score improvement over the single agent solution provided by the CBBA.

A similar comparison is made between the CBBA and the CBGA, although the

experiments are setup to be as similar as possible there are still some differences

between the two setups. However this comparison still has some value in showing the

 62

possible improvement and strengths of the new algorithm and at the very least can

indicate a similar quality of assignments produced by the CBGA.

3.3.2 Test Scenario

Specific scenarios were randomly generated to test different aspects of the

CBGA in dealing with different requirements. Additionally comparisons were drawn

with the original CBBA and the CBBA solution to duo tasks. Comparing the

algorithms each test contains 20 tasks with a varying number of agents where

 . The simulation environment is a 3-D space of size (

) with agents randomly placed on the floor and tasks randomly placed

anywhere in the environment. Tasks are given a random start time window that lasts

5m within which agents must begin the task, additionally each task takes 5m to

complete. The time-distance discounted reward in (3.10) is used to define the scoring

function with a fixed reward , time-discount and distance discount

 . Each agent moves at a constant speed of 20 m/s.

The objective of each experiment is to maximise the total assignment score

where a higher score is indicative of a better assignment from a shorter travel

distance, timely task completion and greater number of valid assignments. The overall

score of each experiment is the sum of the scoring function for each agent’s path.

Multi-agent tasks defined as requiring more than one agent will reward a fixed score

to each agent involved signifying the difficulty and importance of such tasks. Both the

amount of agents required and the specific equipment needed is modified to test the

quality of assignments under certain circumstances. Observations will be made on the

overall impact on the score and the number of communications agents require to come

to a consensus. Communication between agent and agent where assignment data is

sent is counted as a single communication step. Each specific experiment setup is run

100 times as is consistent with experimental data for the CBBA and the CBBA with

 63

duo tasks (Choi et al., 2009) (Choi et al., 2010). For each experiment the average

score and communication data is plotted to show trends, agent movement during a

typical experiment is also shown to display the algorithm assigning agents correctly to

the available tasks and to draw discussion on assignment quality.

Table 3.4: Icon key for agent path graphs.

 Agent start locations, different colours represent

different type i.e an agent with a different piece or

set of equipment.

 An agent’s path through a simulation, agents of the

same type are coloured the same.

 Task location, the crosses represent the start and

end time window of when agents can attempt to

start the task. Tasks with differing requirements are

coloured and labelled differently.

Figure 3.4: Plot of agent paths and their assignments in X Y and Z.

Agents complete tasks in a three dimensional environment to effectivly

simulate UAVs, all agents begin a simulation at a random location on the ground.

Figure 3.4 shows the paths of ten agents completing twenty multi-agent tasks where

task 1 requires two agents of type A and task 2 requires three agents of type B.

Displaying the agent paths in this way does not provide enough useful information

0
2

4
6

0
2

4
6
0

0.5

1

1.5

2

XY

Z

Agent A

Agent B

Multi-Agent Task 1

Multi-Agent Task 2

 64

and it is problematic to visualise the order in which agents are completing tasks or

which agents are doing a task.

Figure 3.5: Plot of agent paths and their assignments through time in X and Y.

Figure 3.5 improves the display of agent’s paths by removing one dimension

and introducing time; this alleviates some of the problems and helps produce a better

image of agent movement through the simulation. All agents begin the simulation on

the ground plane, as time progresses agents move upwards through the graph,

although this is not necessarily upwards in the 3D environment. Whilst this method of

presenting the data is better than focusing on the pure coordinates of agent actions, it

is still partially difficult to see what is happening although it provides a clearer

picture. The most important information required to visualise the simulation is a

metric of movement over time, reducing the number of dimensions displayed down to

one is sufficient enough to convey movement through the simulation whilst still

differentiating between each agent (excluding when agents move together between

tasks). Figure 3.6 displays only the x coordinate of each agent as it changes through

time displayed on the y axis. With each task having a specific time window in which

it can be started this method provides a better way to visualise the activity in the

simulation. An important property to note is that two tasks could be displayed in a

T
im

e
(𝝉

)

0
2

4
6

0
2

4
6
0

20

40

60

80

100

120

XY

Agent A

Agent B

Multi-Agent Task 1

Multi-Agent Task 2

 65

similar area on the graph but in practise are potentially very far from each other,

generally this is not a problem and overall this method works well for displaying

movement and activity. Whilst the simulation displayed in Figure 3.5 is quite

complicated Figure 3.6 cleans up most of the difficulties allowing an easier

visualisation of the movement and assignments of agents through the simulation, this

method will be used to display agent assignments throughout this thesis.

Figure 3.6: Plot of agent paths and their assignments through time and position X.

3.3.3 Multi-Agent Task Allocation

The CBGA algorithm is first tested to determine if it can come to a conflict

free assignment for a number of situations that test the single and multi-agent task

assignments. A conflict free solution is defined as an assignment in which all agents

agree with the agent to task assignments. A conflict is said to have occurred if, for

example, two agents are assigned to a task that only requires one agent. Although the

algorithm has been created for multi-agent tasks the algorithm must still function for

single-agent tasks, Figure 3.7 shows the algorithm succesfully assigning agents for

single-agent tasks and providing a conflict free solution. It can be seen that each task

T
im

e
(𝝉

)

0 1 2 3 4 5
0

20

40

60

80

100

120

X

Agent A

Agent B

Multi-Agent Task 1

Multi-Agent Task 2

 66

requiring only one agent has exactly one agent assigned to it over the duration of the

experiment.

Figure 3.7: Agent paths with position (X) over time (). Both experiments show

conflict free solutions for single-agent tasks. First experiment (left) has three agents

completing fifteen tasks. Second experiment (right) has ten agents completing twenty

tasks.

Multi-agent tasks are tested to show that agents are able to correctly assign

multiple agents to a task. In Figure 3.8 it is shown that the CBGA can succesfully

converage on a solution for tasks requiring two agents. Upon completing the first

assignment agents often move as a group to complete further tasks for the most

efficent assignments. The second experiment in Figure 3.8 shows another multi-agent

assignment, however, this time the number of agents does not split evenly

with the multi-agent requirement . Interestingly rather than leaving an

agent on the side line the CBGA uses the spare agent to marginally improve the score

provided by some of the tasks. The second experiment in Figure 3.8 provides an

assignment score of 2777, removing the spare agent ‘A8’ the total assignment score is

reduced to 2653.

In some cases, as seen in the second experiments, agents can switch between

multi-agent tasks where the optimal choice would be to stay with the same agents and

continue to complete multi-agent tasks together. This is casued by the way agents

individually build up their own bundle of tasks to complete. An agent might add a

0 1 2 3 4 5
0

20

40

60

80

100

120

A1A2A3

T1

T2

T3T4

T5

T6

T7

T8

T9

T10

T11
T12

T13

T14

T15

X

T
im

e
(t

)

Agents

Tasks

T
im

e
(𝝉

)

0 1 2 3 4 5
0

20

40

60

80

100

120

A1A2A3A4 A5A6 A7A8 A9A10

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13
T14

T15

T16

T17

T18

T19

T20

X

T
im

e
(t

)

Agents

Tasks

T
im

e
(𝝉

)

 67

task close to its starting location as it would receive a high reward for completing that

task, upon adding other tasks to the bundle that are earlier on the agents path can

produce situations where agents split up. This situation could be avoided by focusing

assignment of tasks to tasks that can be completed first but this would provide its own

set of problems where agents would travel unnecessary distances simply because the

task scehdueled earlier. Both situations have their advantages and disadvantages

primairly casued by the method of bundle creation.

Figure 3.8: Agent paths with position (X) over time (). Both experiments show

conflict free solutions for multi-agent tasks. First experiment (left) has four agents

completing fifteen multi-agent tasks that require two agents each. The second

experiment (right) has ten agents completing fifteen tasks that require three agents

each.

It is also necessary to show that both systems can function together, that the

algorithm can handle both single-agent tasks and multi-agent tasks in the same

simulation. Figure 3.9 confirms that agents can assign the correct number to each task,

specifically looking at tasks 3, 4 and 5 it shows how two agents group together to

complete task 5 that requires two agents, then instead of both going to task 4, one of

the agents completes task 3 en route then reunites with the previous agent to complete

task 4. This experiment also shows that the algorithm does not necessarily need to use

every available agent; here agent 2 is not required at all because a better score is

produced by not using this agent.

0 1 2 3 4 5
0

20

40

60

80

100

120

A1
A2 A3A4 A5A6

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

X

T
im

e
(t

)

Agents

Tasks

T
im

e
(𝝉

)

0 1 2 3 4 5
0

20

40

60

80

100

120

A1A2

A3

A4

A5
A6 A7 A8

A9 A10

T1

T2
T3

T4

T5

T6
T7

T8

T9

T10

T11

T12

T13

T14

T15

X

T
im

e
(t

)

Agents

Tasks
T

im
e

(𝝉
)

 68

Figure 3.9: Agent paths with position (X) over time (). Four agents complete three

single-agent and three multi-agent tasks that require two agents each.

Figure 3.10: Agent paths with position (X) over time (). Eight agents complete two

different types of multi-agent tasks. Task 1 requires three agents and task 2 requires

six agents.

Finally Figure 3.10 illustrates that the algorithm can handle larger group

requirements. This experiment contains two different tasks, one requiring three agents

and another requiring six agents. Theoretically the algorithm can function with tasks

requiring any number of agents although, as the requirements increase, so too can the

computation time as shown later. Although as agents travel together it is not possible

0 1 2 3 4 5
0

20

40

60

80

100

120

T1

T2

T3

T4

T5

T6

A1 A2 A3A4

X

T
im

e
 (

t)
T

im
e

(𝝉
)

0 1 2 3 4 5
0

20

40

60

80

100

120

A1 A2 A3A4 A5 A6 A7A8

T1

T2

T3

T4

T5

T6

X

T
im

e
 (

t)
T

im
e

(𝝉
)

 69

to see how many agents are going to each task, but using Table 3.5 it shows the final

conflict free assignment that the agents converged on. In this particular experiment

agent 1 and 5 both finish after they have completed task 1.

Table 3.5: Winning assignment bids for the experiment displayed in Figure 3.10

where each task provides a fixed reward of modified by the cost of travel

calculated from the marginal score improvement (3.11).

Agents

A1 A2 A3 A4 A5 A6 A7 A8

T
a
sk

s

T1 99.6 99.6 99.5

T2 95.9 95.9 95.9

T3 95.7 95.7 94

T4 94.6 94.8 97.1 97.1 97 94.7

T5 94.3 94.2 94.2 93.1 93.9 95.3

T6 95.4 93.7 92.9 92.9 92.9 90

Investigating the effects of assignment and consensus of multi-agent tasks

comparisons are made between the previous algorithm the CBBA and the extended

algorithm the CBGA. The CBBA is used to solve single-agent tasks and the CBGA is

used to solve multi-agent tasks, in addition comparisions are drawn to a setup

involving both multi-agent and single agent tasks.

Figure 3.11: Comparision of average score and number of communication steps for

consensus between the CBBA, CBGA and using both. Experiments contain twenty

randomly generated tasks and multi-agent tasks require two agents.

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

Number of agents 𝑵𝒏

A
v

er
a

g
e

sc
o

re

N
u

m
b

er
 o

f
co

m
m

u
n

ic
a

ti
o

n
 s

te
p

s

 70

Figure 3.11 has three experiments plotted that tested both algorithms, single-

agent tasks use the CBBA and multi-agent tasks use the CBGA. The first experiment

used just the CBBA where each task required a single agent to complete it. The

second experiment tested the CBGA by requiring two agents to complete each task

the assignments are seen in Figure 3.12. The final experiment used both types of tasks

making the agents reach a consensus on assignments for ten multi-agent tasks and ten

single-agent tasks. In the experiment the multi-agent tasks initially provide lower

scores than the single-agent tasks but as the number of agents increases a greater

increase in score is observed. Interestingly the total number of communication steps

actually decreases with the introduction of multi-agent tasks, this is significant when

noted that the tasks in the second experiment double the total number of assignments

required for consensus from twenty assignments to forty because each multi-agent

task requires two agents instead of one agent thus two assignments.

Figure 3.12: Cross section of agents movement through time () and the X axis to

complete twenty multi-agent tasks. Each task requires two agents for completion.

Looking at the movement of agents in Figure 3.12 presents reasons why

communication drops are observed for multi-agent tasks with the CBGA. Between =

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

20

40

60

80

100

120

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

T19
T20

A1A2 A3A4 A5
A6

X

T
im

e
 (

t)
T

im
e

(𝝉
)

 71

0 and 20 each agent assigns and completes its initial task along with another agent.

After completing the first task agents commonly stay together for succeeding tasks,

with the closest task yielding the highest reward neither agent needs to dispute the

best choice. Occasionally two groups may attempt the same task, which will then

require consensus but overall each self-made group continues through the simulation

effectively as one entity. With 5 agents mean communication steps decreased

significantly (decrease of 14 steps) between the CBBA (24 ± 8 steps) single agent

tasks and the CBGA (10 ± 2 steps) multi-agent tasks as shown in Figure 3.11. At 10

agents mean communication steps for consensus decreased further (decrease of 24

steps) showing a significant communication drop for consensus from single agent

tasks (47 ± 14 steps) to multi-agent tasks (23 ± 4 steps). Improvements are significant

to p < 0.01 for statistical significance at 1%.

Figure 3.13: Computational times for running each experiment in Figure 3.11 CBBA

assigns only single-agent tasks, the CBGA assigns multi-agent tasks and mix requires

both the CBGA and CBBA.

As expected the computational times in Figure 3.13 show the CBGA takes

longer to come to a consensus, this was expected due to the increased complexity of

assignments. The CBBA in Figure 3.11 had to solve 20 assignments, 1 per task,

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

CBBA - Single-Agent Tasks

CBGA - Multi-Agent Tasks

CBGA - Single & Multi-Agent Tasks

Number of agents 𝑵𝒏

T
im

e
in

 s
ec

o
n

d
s

 72

alternatively the CBGA had to solve 40 assignments because each task required 2

agents. Comparing computational time and the number of communication steps; the

CBGA takes a longer time to compute the consensus when receiving new

assignments, but requires less overall communication between agents to achieve the

final consensus. This increase in computational run time is still acceptable as the base

CBBA converges very quickly (Choi et al., 2010).

The preferred duo cooperation algorithm (Choi et al., 2010) was developed to

address a limited version of the multi-agent task assignment problem. A test scenario

was setup where tasks were classed as “preferred duo” which meant they required one

agent and would reward a score of 100, however if a second agent assisted with the

task they would receive an additional reward of 50 for a total score of 150. This was

compared to the CBBA assigning agents to single-agent tasks rewarding a score of

100. Naturally this was always going to provide an improvement over the CBBA

because the preferred duo tasks provide a higher potential score per task. Figure 3.14

shows the resulting improvement of the preferred duo algorithm over the CBBA.

Using a similar setup the CBGA was tested where tasks required two agents and gave

a reward of 150, comparing the resulting improvement or reduction in score over the

CBBA and its single-agent tasks rewarding a score of 100.

Figure 3.14: Percentage score improvement by using the preferred duo cooperation

(left) (Choi et al., 2010) and the CBGA (right) over the original CBBA where darker

squares show lower or no improvement and lighter squares show a higher

improvement.

Number of tasks 𝑵𝒎

N
u

m
b

er
 o

f
a

g
en

ts
 𝑵

𝒏

1
0

2
0

3
0

4
0

5
0

 2

 3

 4

 5

 6

 7

 8

 9

-20

-10

0

10

20

30

40

50

Number of tasks 𝑵𝒎

N
u

m
b

er
 o

f
a

g
en

ts
 𝑵

𝒏

1
0

2
0

3
0

4
0

5
0

 2

 3

 4

 5

 6

 7

 8

 9

-20

-10

0

10

20

30

40

50

 73

Figure 3.15: Difference in percent score improvement by using the CBGA over the

CBBA preferred duo cooperation where darker squares show a decline in score and

lighter squares show an improvement in score.

Whereas the preferred duo algorithm provides an improvement across the

board the comparison between CBBA and CBGA shows poorer percentage score

improvement with smaller agent numbers. This loss is caused by the inability for the

CBGA to let a specific task be completed by either 1 or 2 agents as found with the

preferred duo tasks. With small agent numbers compared to the total number of tasks

completing two single-agent tasks in the CBBA provides a score of 200; however the

CBGA cannot do this as agents are forced to complete the task in teams of two only

providing a score of 150. Once the ratio of agents to tasks is greater the cooperation of

agents becomes more rewarding with less unassigned tasks. The preferred duo scoring

gives an advantage over the CBGA scoring better at high task to agent ratios. This

issue is still prevalent at increased agent numbers but is offset by the assignment

quality of the CBGA, showing percentage increases of up to 20% over the preferred

duo cooperation as can be seen in Figure 3.15. These results show a greater

performance improvement at higher levels of cooperativeness, where the best scores

Number of tasks 𝑵𝒎

N
u

m
b

er
 o

f
a

g
en

ts
 𝑵

𝒏

1
0

2
0

3
0

4
0

5
0

2

3

4

5

6

7

8

9

-20

-15

-10

-5

0

5

10

15

20

 74

are achieved by cooperatively completing as many tasks as possible because there is a

shortage of tasks.

Figure 3.16: Implementation of a sequential greedy algorithm to solve the multi-agent

task assignment problem in a centralised system.

In Figure 3.16 a centralised solution to the multi-agent task assignment

problem is presented that sequentially adds the greediest assignment at each iteration.

The sequential greedy algorithm calculates the best marginal score improvement for

every combination of task ̃ to agent ̃ given the agents current path ̃. If the

assignment is valid such that a multi-agent task is not full and the marginal score

improvement is better than any other score then the assignment is added. The

algorithm repeats this process of calculating the marginal scores and adding the best

until eventually there are no more valid score improvements and the algorithm ends.

Algorithm 7: Sequential Greedy Algorithm for Multi-Agent Assignments

1: while

2:

3: for ̃

4: for ̃

5: if ̃ ̃

6: ̃ ̃

7: else

8: ̃ ̃ | ̃| ̃
 ̃ ̃

 ̃
 ̃ ̃

9: end if

10: if ̃ ̃ ∑ ̅ ̃

 ̅ ∑ ̃ ̃

11: y = ̃ ̃ ∑ ̅ ̃

 ̅

12: ̃ ̃
13: end if

14: end for

15: end for

16:

17:
18:

19: end while

 75

This provides a greedy centralised solution to the multi-agent task assignment

problem.

The CBBA was shown to provide the same solution as a centralised greedy

algorithm; similarly the CBGA will be shown, with experimental results, to provide a

similar result to a centralised solution. Consider the sequential greedy algorithm for

multi-agent assignments (SGAMA) in Figure 3.16 that sequentially adds the best

score improving task agent pair at that point in time. Continually updating the

marginal score improvements of each agent the best agent task pair is added until no

further improvement for the solution is found. This algorithm is a centralised solution

where a central hub is given access to every agent’s scoring scheme and is able to add

tasks to any agent’s bundle and path.

Figure 3.17: Average assignment score achieved by the CBGA and the SGAMA

completing 20 tasks with agents (left) and 20 agents completing tasks.

Figure 3.17 shows how the CBGA provides very similar results to the

SGAMA. Although the resultant assignments are similar the results are not exactly

the same with small variation in the averages. Nevertheless neither produces a

statistically different result. However, comparisons with the SGAMA reveal a flaw

with the CBGA as shown in Figure 3.18. As the number of agents required per task

increases the CBGA scores similarly to the SGAMA until the ratio of agent

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

CBGA

SGAMA

Number of agents 𝑵𝒏

A
v

er
a

g
e

sc
o

re

10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

CBGA

SGAMA

Number of tasks 𝑵𝒎

A
v

er
a

g
e

sc
o

re

 76

requirements to the number of agents is such that

 . At this point the

CBGA provides a significantly worse score than the centralised solution. The

assignment graph shows that agents are producing a number of invalid, although still

conflict free, assignments that produce no score. This problem is caused by agents

maximising individual score over the teams focus on completing multi-agent tasks.

Chapter 5 will examine this situation and develop a solution.

Figure 3.18: Average assignment score achieved by the CBGA and the SGAMA

when agent requirements are increased with 10 agents and 20 tasks (left).

Assignment of 10 agents to 20 tasks with each task requiring 10 agents (right).

Figure 3.19: Comparison of the average number of communication steps and number

of bids required to come to a consensus as the number of agents required per task

increases. Experiments had 10 agents completing 20 tasks with increasing agent

numbers required on tasks.

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

CBGA

SGAMA

Agents required for each task 𝑳𝒋

A
v

er
a

g
e

sc
o

re

0 1 2 3 4 5
0

20

40

60

80

100

120

X

T
im

e
(t

)

Agents

Tasks

T
im

e
(𝝉

)

X

1 2 3 4 5 6 7 8 9 10
30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10
300

400

500

600

700

800

Agents required for each task 𝑳𝒋

N
u

m
b

er
 o

f
co

m
m

u
n

ic
a

ti
o

n
 s

te
p

s

A
v

er
a

g
e

b
id

s
fo

r
co

n
se

n
su

s

 77

Figure 3.20: Effect on average communication steps and bid data as both the number

of agents and required agents for multi-agent tasks increases.

Testing the effects of agent requirments on tasks Figure 3.19 shows the

average number of bids requied to come to a consenus on assignments as well as

showing the number of communication steps it took. The number of agents and tasks

are fixed at 10 and 20 respectively and with each set of experiments the number of

agents needed for each task was increased. It can be seen that as the agent requirement

increases the average communication steps decreases, a communication step is

defined as the number of instances of receiving a communication message from

another agent. The average number of bids has less correlation with the agent

requirement, introducing some multi-agent tasks increases the number of bids for

consensus but as the requirement increases closer to the maximum number of agents

in the simulation the bids required drops. It seems likely that the overall decrease in

bids and communications made is a result of the poor performance of the CBGA due

to the low ratio of agent requirements to the number of agents. The decline observed

in Figure 3.19 is consistant with the drop in performance from the centralised

algorithm in Figure 3.18. Changing the number of agents in each set of experiments to

match the required agents for tasks, a direct correlation is observed in Figure 3.20

2 4 6 8 10
0

10

20

30

40

50

2 4 6 8 10
0

50

100

150

200

250

300

350

400

450

500

550

Agents required 𝑳𝒋 & number of agents 𝑵𝒏

N
u

m
b

er
 o

f
co

m
m

u
n

ic
a

ti
o

n
 s

te
p

s

A
v

er
a

g
e

b
id

s
fo

r
co

n
se

n
su

s

 78

between the communication steps and number of bids for consensus. This suggests

that by increasing the number of agents each time to match the required agents per

task both sets of data increase with a strong correlation to each other.

3.3.4 Restricted Task Assignments

Introducing heterogenous agents and further requirements on tasks increases

the complexity of tasks. Initially tasks are limited to one type of agent and agents have

one piece of equipment that defines their type | | . Figure 3.21 presents two

simulations that were run where the system was populated with two different tasks

each requiring a different type of agent, here the blue agents complete the blue tasks

and the green agents complete the green tasks. This functionality continues to work

with the inclusion of multi-agent requirements as can be seen in the second

experiment where each task requires two of the specified agents.

Figure 3.21: Agent paths with position (X) over time (). First experiment (left)

shows two different types of agents completing two different types of single-agent

tasks. The second experiment (right) shows the same group of agents and tasks except

the tasks are now multi-agent tasks requiring two agents each.

Extending this experiment tasks can specify how many agents of a given type

it requires, the two experiments in Figure 3.22 display tasks that specifically require

one of each agent type such that where and | |

| |

0 1 2 3 4 5
0

20

40

60

80

100

120

A1
A2 A3A4 A5A6 A7 A8A9 A10

T1

T2 T3

T4

T5

T6
T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

T19

T20

X

T
im

e
(t

)

Agent A

Agent B

Task 1

Task 2

T
im

e
(𝝉

)

0 1 2 3 4 5
0

20

40

60

80

100

120

A1A2
A3

A4 A5
A6 A7 A8

A9 A10

T1

T2
T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

T19

T20

X

T
im

e
(t

)

Agent A

Agent B

Multi-Agent Task 1

Multi-Agent Task 2

T
im

e
(𝝉

)

 79

Figure 3.22: Two experiments both with multi-agent tasks that require two agents one

of type A and one of type B.

Figure 3.23: Comparison of average score and number of communication steps

required to reach a consensus for tasks that require multiple different heterogeneous

agents.

Figure 3.23 shows three experiments involving a varying number of

heterogenous agents and twenty tasks of differing types. Experiment 1 contains an

even split of two agent types A and B completing single-agent tasks of which half

require agent A and the other half require agent B. In experiment 2 ten single-agent

tasks are split evenly between agents A and B, in addition the final ten tasks are multi-

agent tasks that require both agents A and B. Finally experiment 3 contains three

types of agents A, B and C along with three different tasks. The first task is a single-

agent task that requires agent A, the second task is a multi-agent task that requires

0 1 2 3 4 5
0

20

40

60

80

100

120

A-A1
A-B2

T-A1

T-A2

T-A3

T-A4

T
im

e
(𝝉

)

X
0 1 2 3 4 5

0

20

40

60

80

100

120

A-A1
A-B2

A-B3

T-A1

T-A2

T-A3

T-A4

T
im

e
(𝝉

)

X

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000
Agent Requirements Effect on Score and Communications

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

Experiment 1

Experiment 2

Experiment 3

Number of agents 𝑵𝒏

A
v

er
a

g
e

sc
o

re

N
u

m
b

er
 o

f
co

m
m

u
n

ic
a

ti
o

n
 s

te
p

s

 80

agent A and B, finally the third task is another multi-agent task that requires all three

agents. Agents are split evenly between the three types with extra agents created

firstly as type A then type B. A split of 8-6-6 is created between the three tasks A, AB

and ABC. The results in Figure 3.23 show that when the restrictions on tasks are high

the number of comunications required for consensus is lower as seen from experiment

3. With multi-agent tasks the assignment score does not always improve linearly in

relation to the number of agents in the simulation, in the case of experiment 3 the

significant increases in score are observed by examining the introduction of an

additional agent of type C. This addition allows more of the multi-agent tasks to be

completed that provide a better score for the team thus providing a more significant

increase in score. Figure 3.24 shows a typical assignment of experiment 3 with

reduced tasks for visual clarity. A reduction in the communication required to meet a

consensus is observed from Figure 3.23 for experiment 3 where a task requires all

three equipped agent types. These results might be a consequence of the time

constraints on the tasks which will limit the available options from the maximum 20

tasks down to a much easier to manage set of the earliest obtainable.

Figure 3.24: Agent’s paths through time for 3 agent types (A,B,C) completing 3

different types of tasks (TA, TB, TC).

0 1 2 3 4 5
0

20

40

60

80

100

120

A BC

T1 - A

T2 - A

T3 - A

T4 - A

T5 - AB
T6 - AB

T7 - AB

T8 - ABC

T9 - ABC

T10 - ABC

X

T
im

e
(t

)
T

im
e

(𝝉
)

X

 81

In Figure 3.24, for equipment dependant multi-agent tasks, it is seen how

agent C has very little choice in its assignments and causes no conflict with other

agents because it must depend on its teammates to arrive and aid in its tasks. Agent A

freely moves between its tasks and, when required, aids its teammates. The reduced

options for each agent greatly reduces the length of communication time required

between team mates. More importantly the reduced amount of conflicts caused helps

agents come to a quick consensus with smaller communication exchanges.

Figure 3.25 and Figure 3.26 show the introduction of tasks that have

prerequisites where a specific task must be scheduled for completion before the task

with the prerequisite requirement is assigned. Experiment 1 contains no tasks with

prerequiste requirements such that . Experiment 2 and 3 both have task

dependancies on half the tasks where for 10 tasks , 5 tasks require a specific

task from the first group completed and the final 5 tasks require the

completion of a specific task from the second group for example . It shows

that compared to CBGA tasks found in experiment #1, the number of communication

messages sent to reach a consensus is usually lower with the additional restrictions.

By putting these prerequisite requirements on half the tasks in the simulation the

number of tasks that agents find conflict over is reduced, with the follow up tasks

having fewer conflicts. Experiment #2 contained a problem where the task time

window for completion was randomly generated. In some cases this meant a task with

requirements was set before that of the requirement. This error created a number of

tasks that could never be achieved and therefore limited the overall score obtainable.

Interestingly when these time limits were removed in experiment three, the average

score decreased even though more tasks had become available. Perhaps due in part to

the fact that only agents who were involved in the prerequisite would attempt the

follow up task, but often they would be busy completing other tasks. Although in

contrast after opening up accessibility on these tasks the overall communication levels

 82

increased. When tasks are made accessible to everyone points of conflict are

amplified and therefore the number of communication steps required to come to a

consensus is also increased. By limiting tasks to a small subset of agents the overall

requirements on communication for consensus decrease.

Figure 3.25: Comparison of total score and number of communication steps for tasks

that require previous tasks completed. Experiment 1 used multi-agent tasks with no

task dependency. Experiment 2 and 3 both added task dependencies but Experiment 3

removed the time requirement on follow up tasks.

Figure 3.26: Agents ‘A’ movement through time and the X axis. Tasks marked ‘B’

require the corresponding task ‘T’ to be completed first, similarly tasks marked ‘C’

require a corresponding task ‘B’ completed.

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Experiment 1

Experiment 2

Experiment 3

Number of agents 𝑵𝒏

A
v

er
a

g
e

sc
o

re

N
u

m
b

er
 o

f
co

m
m

u
n

ic
a

ti
o

n
 s

te
p

s

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

A1
A2

A3

A4

T1

T2

T3

T4

T5

T6

B2 - T4

B3 - T3

B1 -T5

C2 - B2

C1 - B1

X

T
im

e
(t

)
T

im
e

(𝝉
)

 83

Figure 3.26 shows the successful assignment of tasks requiring previous tasks

to be completed as well as each task requiring two agents. The CBGA can

successfully handle multi-agent tasks as well as deal with other restricted assignments

on tasks including equipment limits and task requirements.

3.4 CONCLUSIONS

This chapter presented an extension of the CBBA that solves the multi-agent

task assignment problem with group, equipment and task based dependencies.

Communication increases were expected with the introduction of multi-agent tasks,

which require an increase in information to reach consensus. However, multi-agent

tasks were in fact shown to require less communication messages in certain situations

to come to a consensus. These results might be derived from the time constraints on

tasks, which limit the available options from the maximum 20 tasks down to a more

manageable set of the earliest obtainable tasks. Added to this with constraints on

which agents can perform each task further reduces the set of achievable tasks for any

one agent. The necessity to bid over tasks and form consensus gradually disappears as

we tighten the restrictions on each task. In some cases agents do nothing as they are

not required, although it is far better for the group as a whole if they do not move,

therefore causing no cost on travel or an increase in communications. This situation

potentially brings the overall average communication down, where the agents

working towards tasks are communicating more than the averages would suggest.

As the number of agents in the simulation increases the overall score reaches

its full potential as agents complete all the available tasks. Eventually the only

increase in score is caused by a greater chance of an agent starting near a task than is

the case with fewer agents. For multi-agent problems agents group up and stick

together to complete tasks, in some cases for the entire simulation as seen in Figure

3.8. With increasingly complicated group and equipment requirements it is found that

 84

groups continue to work together where possible, but often an agent will leave to

complete another task and merge back again to work on a later task. In some respects

it can be said that when cooperation is a requirement it in fact simplifies the problem

rather than complicates it.

Compared to a centralised solution in the SGAMA the CBGA performs almost

identically in most situations, although this also highlighted a problem with the

CBGA for a low ratio of agents required to the number of agents in the system.

Agents are failing to agree on a single path when the number of agents and the

required agents on tasks creates a single scoring path through the simulation.

Figure 3.19 and Figure 3.20 show some correlation between the number of

agents and the agent requirements on tasks for the number of bids taken to come to a

consensus. When the number of agents equals the agent requirement a

steady increase in the number of bids required is observed, this is caused primarily

from the increase in agents, for every extra agent in the simulation another set of bids

needs to be communicated for consensus.

The initial introduction of multi-agent tasks increases the communication and

bids required for consensus but once the amount of agents each task is requesting is

similar in size to the number of agents in the system both communication and bids

reduce. When assigning 10 agents to complete tasks that require 10 agents each the

only complication is in deciding which task to complete first, after this point all the

agents can agree fairly straightforwardly which task is the next best. Whilst multi-

agent tasks reduce the overall communication steps required compared to single-agent

tasks they increase the bid data needed, as the complexity of the multi-agent tasks

increases though both communication steps and bid data decreases. Another issue

with the solution to multi-agent tasks is the arrival times of each agent. Currently the

time window for a task to start is small enough so that even if agents do not arrive at

the same time the resulting delay is minimal and as agents can only assign themselves

 85

to tasks they can start in time, the task is unaffected. However, if the start time for

tasks was made greater or the start time was completely removed agents would then

need to agree upon when they arrive at a task as well as who will be assigned to it.

This issue adds a huge amount of complexity to the situation where agents must also

communicate their earliest arrival time and must continually re-plan their assignment

when other agents want to assign themselves to the task but with a later arrival time.

Comparisons were made with an alternative method of solving multi-agent

assignments, although the duo cooperation extension of the CBBA (Choi et al., 2010)

is limited to solving tasks with duo agent requirements. The CBGA when similarly

limited to duo tasks can score comparatively to the duo extension of the CBBA.

Additionally the CBGA performs better when there are a larger number of agents in

the simulation, such that there are enough agents in the system to complete all the

tasks. In this case the preferred duo tasks are almost identical to the multi-agent tasks

in the CBGA where the best scores are achieved in high quality assignments with two

agents assigned to each task. Furthermore the CBGA also removes the limitation of

up to two agents per task that the duo cooperation algorithm is limited to providing

robust and conflict free assignments to complex cooperative requirements involving

any number of agents.

 86

Chapter 4: Dynamic Multi-Agent Consensus Storage

Chapter 3 extended the consensus based bundle algorithm to deal specifically

with multi-agent tasks, when the CBBA used two vectors to store an agent’s winning

bid list and winning agent list (Choi et al., 2009), by extending the algorithm to solve

multi-agent tasks the winning agent lists became inefficient and unnecessary. This

chapter examines combining the bids list into a concise and dynamic storage for

handling multi-agent tasks, additionally further changes allow the algorithm to handle

a dynamic environment with knowledge sharing. This method provides improved

communication and the flexibility of the algorithm to handle a dynamic environment

with discoverable knowledge of agents and tasks. The CBBA requires all agents to

function and store data in the exact same way including agreeing on task and agent

indexes in the winning bid lists. When considering a dynamic environment where

each agent can discover new agents and tasks independently it cannot be assumed task

and agent data will cross-over directly. Furthermore in practice different UAVs will

have software specific to their hardware (Pastor et al., 2007) (Valenti et al., 2007)

(Tisdale et al., 2006) and may store their data in differing ways. The CBBA requires

homogenous agents that store assignments in a specific format, any agent which is not

conforming to the correct standard is unable to communicate their assignments to the

other agents; in a practical application these requirements could be unfeasible. This

chapter provides a solution for consenting data between different UAVs providing

they can understand any communication messages about bidding data.

4.1 PROBLEM

Multi-agent tasks require multiple agents to complete them, when agents

communicate between each other they need to store every agent assigned to a task and

their current bid. When agreeing on the data they receive they need to know whether a

 87

task is at its maximum capacity i.e. whether a multi-agent task that requires 4 agents

already has 4 agents assigned, and if it is, then the only agent it should replace is the

agent with the smallest bid. Storing knowledge about tasks that require multiple

agents with a single vector is not sufficient for all the data. To create a consensus

agents require the knowledge of all agents assigned to a task and their respective bids.

With the CBBA task and agent information are stored locally at the beginning

of the calculation and each agent uses two vectors that are stored and communicated

between each agent, the winning bid list and the winning agent list . Data is

linked between the two vectors by using a task ID, this is an increasing value that

directly indexes the vectors , similarly the agent IDs used also

represent the agent index in a vector , and this works in a simulation

where all agents store data in exactly the same way, but in practice this should not be

assumed.

The extension to the CBBA for dealing with duo cooperative requirements

continues to use vectors in the storage of bid data. Tasks that require two agents are

split into two separate subtasks and with associated scores. However, it is

possible for an agent to assign itself to both parts of the task and so restrictions must

be placed such that (Choi et al., 2010)

 ()

 ()

(4.1)

where is the marginal score improvement an agent can achieve for task which

is modified to
 that is equal to if the second part of the task is not assigned by

e.g. ; otherwise the score improvement is set to 0 because the agent is

participating in the other part of the task. This method works for duo tasks but

becomes redundant if the system is scaled up to increasing number of agents

becoming needlessly complicated.

 88

The system proposed in chapter 3 converts the winning agent list from the CBAA

and the winning bid list from the CBBA into matrices, where agent stores

 when agent has a winning bid of 20 for task . When these assignments

are communicated another agent refers to as agent believes agent is

assigned to task . This system allowed tasks to require any number of agents but the

system contained some redundant data, the winning agent matrix is unnecessary

as each agent knows that another agent is assigned to a task by the existence of a

winning bid. Additionally because each agent’s bid data is stored in a separate column

and each agent also has access to the specific agent that made that bid. Finally the

system continued to assume that agent and task IDs would be simple numerical

scaling values such that agent bid data would always be stored in for every

single agent. In a real life system each agent can be assumed to have a unique

identification number but those numbers would not necessarily be in any order which

is easy to store.

When transferring this data storage system over to a multi-agent task assignment

problem, difficulties are caused with consistency between agents and tasks. Different

tasks can have varying number of agents assigned to them, for tasks that require

multiple assignments a vector cannot store data about each assignment. Therefore,

with the CBGA a new system of data storage must be developed that allows access to

which agents are assigned to a task (as far as that agent is concerned) and what the

current bids are with the agent they were made by. Furthermore the system needs to

be dynamic allowing new tasks and agents to be added during the simulation, without

conflict arising from the order data is added.

 89

4.2 ALGORITHM

4.2.1 Local Data

Originally the winning bids list and the winning agent’s list are two

vectors of length where is the number of tasks in the simulation as seen in

Table 4.1. With these two vectors each agent can keep track of the highest bid for

each task and which agent made that bid and therefore is assigned to the task.

Table 4.1: Winning bid list and winning agent list used in the CBBA.

Winning Bid List

Tasks

Agent

Winning Agent List

Tasks

Agent

Once tasks require multiple agents both vectors must be converted into

matrices to keep track of multiple contribution bids and multiple winners. This gives

two matrices of size where is the maximum number of agents in the

system. However, this means agents must now communicate two matrices rather than

two vectors as shown in Table 4.2.

 90

Table 4.2: Winning bid matrix and winning agent matrix used for multi-agent

assignments in CBGA. The winning agent matrix contains a binary value where

 signifies agent is assigned to task with the winning bid of .

Winning Agent Matrix ()

Tasks

 …

A
g
en

ts

 …

 …

… … … … … …

 …

Winning Bid Matrix ()

Tasks

 …

A
g
en

ts

 …

 …

… … … … … …

 …

With the increased data required for analysing multi-agent tasks and the

reduced number of total communications needed to achieve consensus, unnecessary

data can be removed by merging the two matrices into a single matrix . This matrix

contains all the winning bids and is of size where is the number of

agents in the simulation and the number of tasks. What this allows agents to do is

use the row to display tasks and the column to display agents and assume that the

existence of a winning bid is an agent’s assignment to the task. Thus corresponds

to the bid agent has made for task otherwise 0 if the agent has not made a bid. As

with the CBGA using the values in each column the current total score rewarded for a

task can be determined as

 91

 ∑ (4.2)

where is the score for completing task . This score is only the current reward for

the task based on the assignments, the task could ultimately score nothing if the

correct requirements are not met or more agents could assign themselves to the task

increasing the reward. An agent can determine the number of assignments on a

current task by counting the number of valid bids in the winning matrix column where

 .

 ∑{

 (4.3)

Using (4.3) to determine the number of assignments on a task removes the need for

the original winning agent matrix and if (4.3) is less than the required number of

agents then an agent can assign itself to the task assuming it meets any other

requirements such as the correct equipment.

Additionally in a dynamic system we cannot assume each agent will store data

in the same order, in a dynamic environment where agents look after their own data

new tasks or agents can be stored in their memory in different orders to that of a

neighbour. Therefore we cannot use the matrix index of as a reliable identifier for

an agent or task. Agents therefore need to store a separate agent vector that

contains all known agent IDs and a task vector containing all known task IDs by

agent . These two vectors are used as lookups to the assignment matrix . With this

new matrix agents can store data dynamically and build up a list of agent to task

assignments as they discover new agents or tasks in the system. When a new agent or

task is discovered an agent can create a new matrix column or row respectively and

the ID is added to the appropriate task or agent vector. Agents can individually build

up their assignment matrix in different orders but still store and exchange the data

 92

reliably. Update times from agents can continue to be stored in a vector and are

identified using the agent vector .

Table 4.3: Dynamic variable storage on agents, where references the winning bid

agent believes agent has made for task . The connection is made using the offset

of the agent and task in the associated lists.

Task List

1 2 3 …

Assignment Matrix

A
g
en

t
L

is
t

 1 …

2 …

3 …

… … … … … …

 …

Using Table 4.3 an agent can access the bid agent 3 has made on task 2 by

using
which is equivalent to but in the former case the agent and task id

can equal anything and the winning bid can still be located, assuming agent and task

IDs are unique. The difference between this method and the previous method is that

the existence of a bid such that can be assumed that agent is assigned to

task otherwise there would be no bid.

4.2.2 Communication

The CBBA communicated three sets of data to nearby agents, the winning

bids list , the winning agent list and the time stamp . The data sent was not

indexed and it was assumed that all agents would have the same setup i.e. that agent

one was in the first row. In a dynamic environment it can be assumed agents may

order their assignment matrix differently therefore the matrix cannot be directly

communicated; using the index of a matrix for a task or agent may not equal the task

or agent in the same index on another agent. Instead agents will transform the

 93

assignment matrix into a matrix where is the number of assignments in

sent to each agent. This matrix takes each individual assignment (those with a value

greater than 0) and reforms them as where is the sender who thinks that

agent is assigned to task with a bid of . This message is used by the receiver to

come to a consensus on the received winning assignments. If the receiving agent

decides the bid sent from the sender agent is valid it can update the assignment

matrix with .

Table 4.4: Agent A1’s winning bid matrix and the related communication message.

Highlighted cells show where the information is coming from for a specific

assignment. Although task and agent IDs are in numerical order this is irrelevant for

the working system.

 Tasks List for agent A1

j j+1 j+2 j+3 j+4 j+5 j+6 j+7

ID T1 T2 T3 T4 T5 T6 T7 T8

Table 4.4 shows the process an agent A1 will go through when constructing

their communication message for assignments. Each assignment found in the winning

assignment matrix is added into the communication message for A1, using the agent

list and task list the relevant IDs can be found for the winning assignment

 where the agent equal to is assigned to task . The complete

assignment message is .

 Agent list for agent A1

i i+1 i+2 i+3 i+4 i+5

ID A1 A2 A3 A4 A5 A6

Assignments for A1

Task Agent Bid

T1 A1 99.6

T1 A3 95.7

T1 A5 94.3

T2 A4 94.6

T2 A6 95.4

T3 A4 94.8

… … …

T8 A6 90

Assignment Matrix for agent A1

Tasks

j j+1 j+2 j+3 j+4 j+5 j+6 j+7

A
ge

n
ts

 99.6 99.6 99.5

i+1 95.9 95.9 95.9

i+2 95.7 95.7 94

i+3 94.6 94.8 97.1 97.1 97 94.7

i+4 94.3 94.2 94.2 93.1 93.9 95.3

i+5 95.4 93.7 92.9 92.9 92.9 90

 94

On initial communication with an agent their ID and equipment list is

sent to enable agents to calculate when equipment requirements are met for a task or

what is still needed. As in the CBBA the time stamp vector is sent once per

communication as well as all the assignments in an agents winning assignment list

 . Using this method the amount of data sent per agent when dealing with

multi-agent tasks should reduce, however it is expected to increase when dealing with

single-agent tasks.

Table 4.5: Agent A1 able to add newly discovered agents to its knowledge base; a

similar method can be used to add newly discovered tasks.

An agent will always store its own assignments in the first row of the

assignment matrix and the first column of its agent list. Additional agents it

communicates with will be added to both the assignment matrix and the agent list

when a first communication message is received as seen in Table 4.5. It is assumed

that on first contact agents would exchange relevant information such as their ID and

equipment list. This allows agents to build up their own agent list independently of

any other agents but in a way that allows them to continue to communicate. When a

Tasks

j j+1 j+2 j+3 j+4 j+5 j+6 j+7

A
ge

n
ts

i 99.6 99.6 99.5

i+1 95.9 95.9 95.9

i+2 95.7 95.7 94

i+3 94.6 94.8 97.1 97.1 97 94.7

i+4 94.3 94.2 94.2 93.1 93.9 95.3

i+5 95.4 93.7 92.9 92.9 92.9 90

…

i+n 0 0 0 0 0 0 0 0

 Agent List for A1

i i+1 i+2 i+3 i+4 i+5 … i+n

ID A1 A2 A3 A4 A5 A6 … An

 95

winning assignment is received from another agent the winning agent’s ID is found in

the receiver’s agent list and the index can be used to update the agent’s bid in the

assignment matrix. In the case that the correct agent ID is not found a new agent is

added to the agent list and assignment matrix. Therefore agents can continue to

consensus on assignments even when they start with no knowledge of an agent and

only receive assignments propagated from another agent.

4.3 RESULTS

An increase in the volume of data sent when considering single agent tasks is

expected because the data required for a single bid is now larger, this increase will be

equal to an extra vector in the worst case scenario. In the worst case scenario every

task will have an assignment, the CBBA sends the winning agent list , the winning

bid list and the update times . Therefore the total data sent for the final round of

bidding will equal to . Compared to the CBGA which will now send three

pieces of data for each assignment and the update times totalling

 .

However when looking at multi-agent tasks there will be a significant

reduction in the data transferred and at a worst case scenario send a similar amount of

data. With changes made to the data structures on each agent, comparisons can be

made between the two different data storage methods. Adapting the original method

to multi-agent tasks uses multiple matrices to store assignment data with each entire

matrix being communicated. The new method uses the dynamic matrix for each agent

with individually sent assignments in the form .

 96

Figure 4.1: The average amount of data sent in progressive steps through each

iteration of the CBGA. Simulated experiments contain 10 agents completing 20 tasks

requiring agents per task. Data is calculated as an individual piece of information

sent from one agent such as a single winning bid.

Figure 4.1 shows that the new system reduces the amount of data sent for

multi-agent tasks. Data sent with the new system gradually increases over the duration

of the simulation. The old method involved sending the entire assignment data

regardless of whether bids had been made. With the new system redundant data is

removed allowing agents to send only the required information. As consensus is

achieved with the new system the amount of data sent becomes fixed where data sent

becomes determined by the number of assigments required on each task equal to

 ∑

 . Similarly in the the worst case scenario where every agent is

required for every task the old CBGA required where as the new

method would require more data at .

A set of experiments was set up to look at the effects of limited

communication and agent knowledge discovery. The distance over which agents

could communicate was increased in steps of 0.1 with 100 simulations run for each

set and the average data between these simulations recorded. Figure 4.2 - 4.6 shows

assignments where communication is limited, additionally each agent starts the

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

4 Agent

2 Agents

1 Agent

Iteration time (𝒕)

D
a

ta
 s

en
t

p
er

 a
g

en
t

 𝐿𝑗
 𝐿𝑗
 𝐿𝑗 4

Old
New

 97

simulation with no knowledge about the other agents, knowledge is added through

direct communication between agents and indirect communication where an agent

shares its knowledge of other agents and assignments.

Figure 4.2: Communication range limited to a distance of 1, overlapping circles and

connected lines show connecting communication networks. Associated assignments

for 10 agents completing 20 single-agent tasks (right).

The resulting assignments from limiting communication to a distance of 1 are

shown in Figure 4.2, the communication distances are shown and any overlapping

circles show the available communication channels. Without being able to

communicate to the entire group many agents assign themselves to the same tasks

resulting in conflicting assignments and wasted effort.

Figure 4.3: Communication range limited to a distance of 2, connected

communications shown by connected lines. Associated assignments for 10 agents

completing 20 single-agent tasks (right).

-1 0 1 2 3 4 5 6
-1

0

1

2

3

4

5

A1

A2

A3

A4A5
A6

A7
A8

A9

A10

X

Y

0 1 2 3 4 5
0

20

40

60

80

100

120

A1 A2A3
A4

A5A6
A7

A8A9
A10

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

T19

T20

0 1 2 3 4 5
0

1

2

3

4

5

A1

A2

A3

A4
A5

A6

A7

A8

A9

A10

X

Y

0 1 2 3 4 5
0

20

40

60

80

100

120

A1 A2
A3 A4

A5A6 A7 A8A9
A10

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

T19

T20

X

T
im

e
(𝝉

)

 98

By increasing the communication distance to the point where most agents are

connected as seen in Figure 4.3, assignments become clearer and conflict is less

common with a number of agents not needing to do any assignments. However there

still is not a complete connected communication channel where an agent has indirect

communication with every other agent. In this case two groups of agents have

communication and have solved the assignment as two separate groups.

Figure 4.4: Communication range limited to a distance of 2.5, overlapping circles

show connecting communication networks, blue link shows the networked agents.

Associated assignments for 10 agents completing 20 single-agent tasks (right).

Finally increasing communication such that every agent is connected in the

network graph as shown in Figure 4.4 a complete conflict free assignment is now

available. Multi-agent tasks function slightly differently; when agents have no

communication with other agents they have no way to make any valid assignments

and thus will not assign themselves to any tasks. However, for the few groups of

agents in reachable communication distance with another will assign themselves as

normal with its neighbours. As seen in Figure 4.5 three groups of two agents exist and

perform assignment and consensus with each other, although because these sub-

groups have no contact with each other they will produce conflicting assignments

with the other groups as is seen for individual agents in Figure 4.2.

0 1 2 3 4 5
0

1

2

3

4

5

A1

A2

A3

A4A5
A6

A7

A8

A9

A10

X

Y

0 1 2 3 4 5
0

20

40

60

80

100

120

A1
A2A3 A4

A5A6
A7 A8A9A10

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

T19

T20

X

T
im

e
(𝝉

)

 99

Figure 4.5: Communication range limited to a distance of 1, overlapping circles show

connecting communication networks, blue link shows the networked agents (left).

Associated assignments for 10 agents completing 10 multi-agent tasks where

(right).

Figure 4.6 identifies that initially when a connected communication has not

been achieved convergence time is faster than with a full connection but that the score

achieved is diminished. This effect is seen because each connected group is smaller

than the maximum number of agents in the simulation, they are able to come to a

consensus on their knowledge at a faster rate but due to conflicting assignments that

they are unaware of the overall score is reduced. As the simulations achieve a

complete connected network the score continues to rise but the convergence time is

greater than that of global communication. Namely this is caused by the travel

distance of data where in a globally connected assignment all agents will bid for a

task and often the best bid will succeed and not be replaced, whereas when the

communication is only on a connected network the best bid will take longer than one

round to propagate to all other agents. Such that the convergence time of a single bid

will equal where is the maximum number of links between any two agents in a

group such that for a agent assignment and when and

 would imply all 10 agents in a row only able to communicate with at most

two neighbours and such that the two agents at the end of the links can only

communicate with one other agent. In a case where one end agent provides the

X

Y

0 1 2 3 4 5
0

1

2

3

4

5

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

X

T
im

e
(𝝉

)

0 1 2 3 4 5
0

20

40

60

80

100

120

A1 A2A3 A4A5A6A7 A8A9A10

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

 100

highest bid for a task it would take 9 bidding rounds for this bid data to move through

the network to the agent at the opposite end.

Figure 4.6: Total Score and convergence time for consensus using the CBGA

measured in the number of bid rounds required as the distance of communication

increases. Markings for the approximate point where all agents are networked and

when all agents can globally communicate with any other agent. Experiments use 10

agents completing 20 multi-agent tasks where .

Figure 4.7: The effect on the number of communication steps and bids required in the

CBGA for consensus as the distance of communication is increased. Markings for the

approximate point where all agents are networked and when all agents can globally

communicate with any other agent. Experiments use 10 agents completing 20 multi-

agent tasks where .

1 2 3 4 5 6 7 8 9 10
1500

1600

1700

1800

1900

2000

- Global

 Communication
- Connected

 Communication

A
v

er
a

g
e

sc
o

re

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

Communication distance

C
o

n
v

er
g

en
ce

 t
im

e
(𝒕

)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

- Global

 Communication

- Connected

 CommunicationA
v

er
a

g
e

co
m

m
u

n
ic

a
ti

o
n

 s
te

p
s

1 2 3 4 5 6 7 8 9 10
50

100

150

200

250

300

350

A
v

er
a

g
e

b
id

s
fo

r
co

n
se

n
su

s

Communication distance

 101

This reasoning is supported in Figure 4.7 where the total required number of

bids for consensus is at its highest just before a complete connected network is

achieved and gradually drops until a global connection is reached. The number of

communication steps continues to rise steadily where communications continue to

happen even when no new information is presented. Once global communication is

achieved the increase in communication distance has no effect thus all recorded data

for each set of experiments is the same.

Using the CBBA as a baseline Figure 4.8 shows the bandwidth requirement

for three sets of experiments where it can be seen how the amount of data sent and

received increases as the number of agents required is increased. The CBBA (blue

line) was run with an increasing number of agents to complete 20 single-agent tasks.

Comparisons are made between the bandwidth requirements of multi-agent tasks and

that of single-agent tasks. Experiments were run using the CBGA for multi-agent

tasks, one set required two agents per task (green line) and another required three

agents per task (red line).

Figure 4.8: Average data sent and received per agent to achieve a consensus for

twenty tasks using the CBBA for single-agent tasks and the CBGA for two types of

multi-agent tasks requiring two and three agents.

1 2 3 4 5 6 7 8 9 10

500

1000

1500

2000

2500

Average Data Sent

D
a

ta
 s

en
t

Number of agents 𝑵𝒏

CBBA 𝐿𝑗
CBGA 𝐿𝑗
CBGA 𝐿𝑗

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 Average Data Received

D
a

ta
 r

e
ce

iv
ed

Number of agents 𝑵𝒏

CBBA 𝐿𝑗
CBGA 𝐿𝑗
CBGA 𝐿𝑗

 102

Figure 4.9: Average data sent and received per agent for each assignment where a

multi-agent task requiring three agents will require three assignments. Consensus

required on twenty tasks with the CBBA for single-agent tasks and the CBGA for two

types of multi-agent tasks requiring two and three agents.

Figure 4.8 shows multi-agent tasks using the new communication method

requires more bandwidth when compared to single-agent tasks. These increases were

expected as each multi-agent task requires more assignments than a single-agent task.

With multi-agent tasks more information is needed to reach a consensus over single-

agent tasks, thus the amount of data sent and received increases. When allocating

agents for twenty multi-agent tasks where , the number of correct

assignments required is double that of single agent tasks. In Figure 4.9 the data is

adjusted to show the data sent or received per assignment, where the number of

assignments to reach a consensus is equal to ∑

 for tasks. An increase in

bandwidth can still be observed but the difference has been reduced by looking at

bandwidth per assignment and in smaller assignments the CBBA has a larger

bandwidth requirement per assignment. This difference can be attributed to the

number of conflicting bids found during an assignment as seen in Figure 4.10. When

the agent requirement on multi-agent tasks is similar to the number of agents in the

system fewer conflicting bids are seen. With fewer conflicts assignments are quicker

and thus the amount of overall data sent per assignment is reduced. As the number of

agents increases relative to the agent requirement an increasing number of conflicts

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

Average Data Sent per Assignment

D
a

ta
 s

en
t

Number of agents 𝑵𝒏

CBBA 𝐿𝑗

CBGA 𝐿𝑗

CBGA 𝐿𝑗

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

Average Data Received per Assignment

D
a

ta
 r

e
ce

iv
ed

Number of agents 𝑵𝒏

CBBA 𝐿𝑗
CBGA 𝐿𝑗
CBGA 𝐿𝑗

 103

arise. Overall the CBGA performs reasonably in terms of communication

requirements in solving multi-agent tasks given the increased complexity of those

tasks over single-agent tasks.

Figure 4.10: The average number of conflicting bids per agent where a conflicting bid

is defined as a bid for a task that is replaced by a better bid. Consensus required on

twenty tasks with the CBBA for single-agent tasks and the CBGA for two types of

multi-agent tasks requiring two and three agents.

The duo cooperative extension of the CBBA splits each task into two separate

sub tasks and . Both these subtasks must be recorded in the winning agent list

and the winning bid list as well as sending the agent update list . These changes

introduced by the duo cooperative algorithm almost doubles the amount of data each

agent has to send. In the worst case scenario the amount of data sent will be equal to

4 . However, the CBGAs worst case scenario requires ∑

 ,

which simplifed is when . This means in the worst case scenario the

CBGA requires more data to be sent to communicate an assignment, but the CBBAs

average case is very similar to its worst case where the entire assignment is sent at

each iteration of the algorithm. Figure 4.11 shows that the CBGA provides a much

lower average case that gradually increases as agents converge on a solution. The

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

C
o

n
fl

ic
ti

n
g

 b
id

s
p

er
 a

g
en

t

Number of agents 𝑵𝒏

CBBA 𝐿𝑗

CBGA 𝐿𝑗

CBGA 𝐿𝑗

 104

primary cause of this is because not every task is assigned due to agent and time

constraints.

Figure 4.11: Comparision between the CBGA and the CBBA for duo tasks on the

amount of data sent per agent to communicate an assigment at progressive iterations

of each algorithm. Experiments contain 10 agents and 20 multi-agent tasks requiring 2

agents each.

4.4 CONCLUSIONS

This Chapter provides an efficient method of storing data for the CBGA in

order to reduce data when assigning multi-agent tasks in the multi-agent task

assignment problem. Experimental data showed that the agents were able to acquire

and share knowledge of other agents in the system to the point where, once all agents

were connected, convergence to a solution was performable in a similar time to global

broadcast and converged on the same solution. Additionally it is shown that the

bandwidth increases from multi-agent tasks were as expected compared to single-

agent tasks but with the changes made to data storage and the method of

communication reduced the amount of communicated data for the CBGA.

Communication increases were expected with an increase in the complexity of

tasks that require more information to reach consensus. However, an overall decrease

1 2 3 4 5 6 7
0

25

50

75

100

125

150

CBBA for Duo Tasks

CBGA

Iteration time (𝒕)

D
a

ta
 s

en
t

p
er

 a
g

en
t

 105

in communications required for consensus are seen when moving from single-agent to

multi-agent tasks; though the actual size of data required for consensus has increased.

Further it can be seen how the assignment data is stored more efficiently and for

multi-agent tasks less data is sent than the original method in Chapter 4. Adding to the

constraints on which agents can perform each task further reduces the set of

achievable tasks for any one agent.

 106

Chapter 5: Biologically Inspired Improvements to the CBGA

This chapter analyses research on biological cooperation to bring

improvements to the multi-agent task assignment problem. The fields of robotics and

artificial intelligence are moving increasingly towards biology to develop more

sophisticated systems resulting in biologically inspired systems (Hinchey & Sterritt,

2007). Many aspects of biology are used to develop biologically inspired systems

because animals have evolved over long periods of time to adapt and survive in their

environment. The physiology of animal species can be used to develop new robots

for specialised tasks (Bar-Cohen, 2006) such as looking at the movements of snakes

to produce similar robots that can navigate challenging environments (Pettersen et al.,

2013) or the creation of micro air vehicles based on flying insects for example bees

(Wood, 2008). The mental processes of animal behaviours and their social systems

can help improve or develop artificial intelligence (Anderson & Donath, 1990) using

the flocking behaviour of populations of animals for instance birds and fishes to

create complex formation control from simple behaviours (Antonelli et al., 2010).

This chapter specifically looks at various animal behaviours in eusocial species that

can help improve the cooperative behaviours of agents when assigning and coming to

a consensus on multi-agent tasks. Eusociality is the highest level of animal social

organisation where focus is on the survival of the group but not necessarily the

individual, containing animal species such as ants, bees and termites. Other levels of

animal sociality are less useful when applied to robotic and AI in the area of

cooperation because whilst many animal species are social and cooperative their

evolved behaviours to do this are mostly selfish with their primary goal survival of the

individual (Dawkins, 2006). Eusocial species like ants are better suited for

cooperative robotic systems because members of the group have the same goal, the

survival of the group, which sometimes comes at the expense of the individual.

 107

Similarly with a cooperative group of UAVs the overall goal is to maximise the

results the team produces rather than maximising the contribution of an individual in

the group. If an agent reduces its own result but in doing so increases the group’s

result then that is the action it should take.

Multi-agent tasks present a unique set of problems relating to team

organisation and cooperation. The CBBA as the basis for this extension is focused

entirely on the individual and improving its score which in turn improves the overall

team score. In the case of multi-agent tasks a greater individual improvement is not

necessarily the best improvement for the team where incomplete team assignments

give no reward. Taking inspiration from collective animal behaviours of large groups

like ants can be useful in developing algorithms for group decision making. With the

inclusion of multi-agent tasks the developed algorithm has a greater focus on the

agenda and score of other agents. Using the task quitting method from bee colonies

(Johnson, 2009) and the team focused assignments of ant nests (Gordon, 1999)

improvements in the cooperative assignment for multi-agent tasks can be compared.

The reliance on decisions of other agents adds to the problem. To deal with this

challenge, inspiration can be drawn from the cognitive behaviours of eusocial animals

using their complex behaviours for group decision making (Plowes, 2010; al-Rifaie et

al., 2012).

5.1 PROBLEM

The CBGA developed in chapter 3 provides a framework for the assignment

and organisation of multi-agent tasks. However, at times the algorithm can provide

unnecessary assignments or produce less than optimal assignments. Although

producing the optimal result in a decentralised system is difficult and unfeasible

changes can potentially be made to improve the assignments. This chapter will

 108

implement two concepts derived from eusocial animal groups and test for

improvements in assignments by implementing the following:

 Team improving assignments

 A method of task quitting

With the implementation of these features comparisons to the CBGA without

such features can be made. Any improvements will increase the effectiveness of the

CBGA and will prove the usefulness of these adaptations found in eusocial species.

5.1.1 Team Improving Assignments

One of the unique features of a eusocial species is the self-sacrificial nature of

the workers in the colony. In an ant colony each worker provides no contribution to

the physical reproduction of the nest (Heinze, 1998), whilst worker ants provide

function to the colony by completing various tasks the life of a single ant is inevitably

unimportant. This leads to the self-sacrificial behaviour by ants when the colony is in

danger (Tofilski et al., 2008), the individual value of an ant is not as important as the

colony as a whole.

Comparatively in the multi-agent task assignment problem the individual

score of a single agent is not as important as the overall score of the team. In the

CBBA agents would assign themselves to tasks based on which task would provide

the greatest increase in score at a specific point in the agent’s path. Similarly when the

CBBA was extended into the CBGA agents would continue to choose assignments

based on the individual increase in score per task.

 | |

 ()

(5.1)

Shown in (5.1) is a section of the assignment algorithm from the CBBA that

chooses which task should be added to the current bundle. As seen here the primary

 109

decision for which task should be added is the calculation of , which provides the

task with the highest individual increase that beats any current bid. Whilst this will

provide conflict free assignments it will not always provide the best assignments. For

example Figure 5.1 shows a simple situation where individual focused assignments

will provide a lower score than team based assignments. In this situation task 2

requires two agents for completion but the base reward is twice that of the single-

agent task 1, and with still more when costs are considered. Agent 1 works out its

contribution to task 2 as lower than completing task 1 due to the travel distance, but

had the calculation assumed the task would be completed then the team would

produce a higher overall score at the expense of agent 1’s individual contribution to

the team score. Additionally the current assignment leaves agent 2 travelling to a task

that cannot be completed reducing the team score slightly from travel cost with no

completion reward.

Figure 5.1: An example situation where individual assignment priority will result in a

lower score than a team focused assignment. Task 1 is a single-agent task and task 2

is a multi-agent task that requires two agents.

Modification to the assignment algorithm must be made to change the agent

focus from maximising individual scores to taking into account the effect of the group

score.

0 1 2 3 4 5
0

1

2

3

4

5

A1

A2

TA1

TB2

Agent

Task 1

Task 2

𝑐

𝑐

𝑐

X

Y

0 1 2 3 4 5
0

5

10

15

20

A1A2

TA1
TB2

Agent

Task 1

Task 2

X

T
im

e
(𝝉

)

 110

5.1.2 Task Quitting

Another eusocial animal behaviour observed in bee hives is that of frequent

task quitting helping to distribute assignments to high demand areas. Observation of

bee colonies and experimental results showed that by implementing a system where

agents quit their current task, agents were able to easily adapt to a changing

environment (Johnson, 2009). Whilst the benefits observed are associated with

adaption in a dynamic environment there is potential for these benefits to also address

the changing demand on multi-agent tasks. Initially in the CBGA all tasks are

unassigned and therefore the demand for assistance on each task is equal. After the

first round of bids the demand for each task changes, the multi-agent tasks that have

assignments but are yet to meet the correct assignments would be considered as in

more demand than other tasks. The closer a multi-agent task is to being fully assigned

the greater the demand is to complete this task over a single-agent task as the payoff

for completing the assignment will be greater. For efficient assignments agents must

fulfil the requirements of as many tasks as possible, every agent assigned to a task that

is yet to meet its requirements is a wasted resource for the team. In combination with

individual focused assignments agents can often assign themselves to a task that is

rewarding for the individual but that no other agents can find time or justification to

assign themselves to the task, in these situations the agent will be stuck on a task that

ultimately will provide no score. The use of task quitting will allow agents to un-

assign themselves and re-evaluate their choices shifting assignments into higher

demand tasks such as those which have more assignments and thus are contributing a

greater reward.

5.2 ALGORITHM

The Consensus Based Grouping Algorithm developed in Chapter 3 is an

extension of the consensus based bundle algorithm. The algorithm allows agents to

 111

come to a consensus on multi-agent tasks, this section explains the modifications to

the algorithm to improve the quality of assignments using the two concepts of task

quitting and team based rewards from eusocial species.

5.2.1 Team Improving Assignments

In the CBBA agents assigned themselves to a task that provides the greatest

increase in score at a specific point in the agent’s path . Using

 an

agent could determine its improved contribution to the total score by completing task

 in position of its path . Calculating this improvement for every task would

determine the best task to add to the agents bundle as shown in (5.2).

 | |

 (5.2)

Similarly the CBGA calculates the score improvement using the same function

but with additional requirements on calculating viable tasks. Differences between the

two algorithms occur when calculating the conflicting winning bids. The CBBA

containing only single-agent tasks can only ever have one agent assigned to each task,

thus using (2.1) an agent must beat the current highest bid and if the agent is able to

do so can potentially assign themselves to that task depending on if that bid is the

overall highest out of agent ’s possible task choices. An agent calculates

containing a list of binary values for each task, where 1 is for those tasks with bids

which are higher than the current bid, or 0 for failed bids.

 () (5.3)

The CBGA deviates from this because an agent does not necessarily have to

have the highest bid to win the assignment. An agent bidding on a multi-agent task

can win in two ways, either the task team is not yet full thus any bid is acceptable or

the task team is full in which case the agent simply needs to beat the minimum bid for

 112

the task rather than the highest bid. Replacing the minimum bid in a tasks team

creates the most improved marginal score gain and therefore gradually creates the

highest scoring team for that task as each lowest bid is replaced with better bids.

Figure 5.2 shows the algorithm for determining successful bids in the CBGA.

Figure 5.2: Algorithm for determining valid task list in the CBGA.

Finally both the CBBA and the CBGA after filtering an individual’s bids

down to the highest winning bids, chose the task with the greatest improvement to add

to its bundle using (5.4)

 (5.4)

The problem with the assignments in the CBGA is agents assume each task is

of equal value, (5.3) must be modified to account for additional value in multi-agent

tasks. Potential problems can occur if an agent consistently uses the team focused

bidding throughout the assignment algorithm, such as consistently alternating between

two assignments or multiple agents replacing each other in a task at alternating bid

rounds. These cases of deadlocking can be avoided by only using the total score for

Algorithm 8: Team focused bids for Agent

1: for
2: if then

3: (∑

)

4: else

5: if (∑

) then

6:

7: else if then

8:

9: else
10:

11: end
12: end
13: end

 113

the team as the final deciding factor in which task an agent should choose. Modifying

(5.4) where an agent makes its final choice on a bid based on the highest individual

improvement into (5.5) where the bids are first added to the current team score for

that task. Taking into account any replaced bids and adding the current agent’s bid

will produce the team score for that bid after this round of bidding, thus the agent can

choose the task which provides the highest increase in score for the entire team rather

than just the individual. Figure 5.3 shows the choice an agent makes between three

tasks, with team focused bidding the agent should choose the team task that requires

one more agent.

 ∑ (5.5)

Figure 5.3: Comparison of the bidding decision between individual focused bidding

(left) and team focused bidding (right). Agent ‘A1’ must decide between three

different tasks, task one requires 1 agent and is already assigned, task 2 requires one

agent and task 3 requires 3 agents with 2 assignments already.

This method also gives higher priority to larger tasks that are closer to

completion, for example, a task that requires five agents but currently only has four is

a more valuable task to finish than a two agent task with only one agent assigned.

X
0 1 2 3 4 5 0

1

2

3

4

5

A1

A4 A3

A2

TA1

TB2

TC3

Y

 Agent
Task 1
Task 2
Task 3

𝑐 4 𝒄𝟏𝟐 𝟗𝟎

𝑐

0 1 2 3 4 5 0

1

2

3

4

5

A1

A4 A3

A2

TA1

TB2

TC3

X

Y

 Agent
Task 1
Task 2
Task 3

𝑐 4 𝑐

𝒄𝟏𝟑 𝟖𝟎 𝟏𝟔𝟓

 114

5.2.2 Task Quitting

The purpose of a task quitting system is to move resources to higher demand

areas, in the case of multi-agent task assignment task quitting will help remove agents

from tasks with their requirements not met to assist in tasks that are closer to meeting

the requirements. Agents should quit an assigned task if the following criteria are met:

1. The task has unmet requirements

2. The task quitting threshold has been reached

3. The agent has not quit the task before

Each agent will record the current time of their assignment to a task in

their assignment time vector , this allows agents to track the time passed since their

assignment. The task quitting threshold is the required amount of time that has

expired since an agent was assigned to the task. If the assignment time has passed

such that for task , then agent will un-assign itself from the task,

subsequently it will also release any tasks that follow as is done for outbid tasks

because later assignments are dependent on previous tasks in the agent’s path.

Additionally when new agents are assigned to a team task all the agents assigned

should update their recorded assignment time to the current time, this prevents agents

deadlocking where agents un-assign themselves at different times, never staying long

enough for all the requirements to be met. Synchronising the assignment time of all

agents assigned to the task allows the entire group to come to a consensus on when

they should quit the task. Finally to preserve the convergence properties of the CBGA

agents will only be allowed to quit a specific task once to re-evaluate its assignments.

Without this limit situations can occur where there are too many agents for the multi-

agent tasks, spare agents could continually assign, quit and re-assign themselves to

other tasks that they cannot complete preventing convergence.

 115

As each task is added to an agent’s bundle using the bundle construction

algorithm in Figure 3.1 an agent will record the time of the assignment using (2.1).

 (5.6)

The task quitting algorithm runs when agents clean up their assignments, as

agents find out they have lost bids for tasks they will remove the lost task as well as

any following tasks as those assignments are only valid for a specific path .

Similarly as an agent is removing outbid tasks it will check the assignment times of

any unfilled multi-agent tasks using algorithm 3 displayed in Figure 5.4.

Figure 5.4: Task quitting algorithm for the CBGA.

Here agent checks each task which it has made a bid on and is classified as a

multi-agent task by use of . In additional the agent checks that it has not

already quit the specific task using where is a binary list of each task equal to 1

when an agent has already quit task . For tasks that have incomplete assignments such

that (∑) make ideal candidates for task quitting. Firstly for potential

tasks to quit the agent checks if the task has been updated in the last cycle, any

updates will reset the assignment time as progress is being made on completing the

Algorithm 9: Task Quitting for Agent i

1: for
2: if then

3: if (∑)

4: if () then

5:

6: else if then

7:

8:

9: end
10: end
11: end
12: end

 116

task. Secondly, if is true then the elapsed time since agent was assigned

to task , is greater than the threshold value of and so the agent will un-assign itself

from the task. However the value for must be determined, a higher value allows

more time for other agents to assign themselves to a task but increases the time to

come to a consensus, lower values allow for a quicker assignment but could

potentially provide little benefit if agents quit a task too early. Once an agent has

decided to quit a task assignment it updates its task quitting list allowing the

agent to track which tasks it has already quit allowing the algorithm to continue to

converge on a solution.

5.3 PERFORMANCE

5.3.1 Test Scenario

Each test contains a standard 20 tasks and 10 agents, unless otherwise

specified, that have randomly generated characteristics such as location and task start

times. The seed used to randomly generate each simulation is repeated for each

specific set of experiments such that any environment set up for completion using one

algorithm is also used when using other algorithms. The objective of each experiment

is to maximise the total agent score. The overall score of each experiment is the sum

of all rewards for completed tasks minus the cost of agents travelling to each task,

where each task has a fixed score reward. Multi-agent tasks defined as requiring more

than one agent will reward a score to each agent involved signifying the difficulty and

importance of such tasks. Various experiments will be run so that comparisons can be

made between the original CBGA and the developed algorithm with the biologically

inspired functions (i.e. team improving and task quitting). Each specific experimental

setup was run 100 times as in keeping with previous experiments.

 117

5.3.2 Results

In order to analyse the effectiveness of the biologically inspired mechanisms,

comparisons are made to the original CBGA as developed in Chapter 3. The resulting

score for a simulation is an indication of the assignment quality where completing

more assignments and reducing travel distance provides a greater score. Firstly the

effect of introducing team focused bidding is tested by increasing the number of

agents required for the tasks in each group of experiments. Tasks that require a greater

number of agents provide increasingly complex assignments where more agents must

come to a consensus on each individual task. As the number of agents required

increases so too does the maximum potential score where a single-agent task scores at

most 100 and a 4 agent task will score 400.

Figure 5.5: Performance of the CBGA algorithm compared to the CBGA using Team

focused bidding as the agent requirements on tasks increases.

Figure 5.5 shows the results of these simulations. Each point in this graph is

the average result of 100 randomly generated simulations in which agent and task

locations are randomly created as well as the time window in which each task must be

performed. The team focused bidding shows an overall improvement over the base

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

Base CBGA

Team Bids

Agents required for each task 𝑳𝒋

A
v

er
a

g
e

sc
o

re

 118

CBGA once 4 , where the effect of team focused bidding is more noticeable

due the increased cooperative requirements. The team bidding follows a similar

pattern with the score dropping off after . This is most likely due to the

reduced number of feasible tasks, although there are 20 tasks there are now only

enough agents for one task to be completed at any given time thus the majority of

tasks will not be achievable and will produce a lower score despite each task being

worth a greater reward. Looking at the spread of results in Figure 5.6 although the

team focused bidding can produce a greater average score it is very inconsistent with

the larger agent requirements, producing some very high scoring assignments but also

producing some assignments with lower scores than the CBGA. This could be caused

by agents failing to agree on which task they will assign themselves to, where only

one task is completable at a time due to the ratio of agents (to agent requirements

(. As this ratio decreases the margin for error is reduced where there are less agents

spare to complete team assignments, for example, when there are 4 agents

spare from the 10 to help if the other 6 agents do not agree on which task to complete.

This leads to inconsistent assignments where agents refuse to leave their assignment

to assist others, which could be solved by the use of task quitting later. As shown in

Figure 5.7 agents plan differing tasks and refuse to leave their task to assist, this is

caused by how agents build up their individual assignments based on distance to their

start location but not necessarily by which task they will complete first. Although

even with the most optimal assignment a number of the tasks would still be unfeasible

due to the time constraints and travel distances.

 119

Figure 5.6: Performance with the result spread for the CBGA (left) and the CBGA

with team focused bidding (right) with increasing agent requirement .

Figure 5.7: Assignment of 10 agents completing 20 tasks resulting in a score of 7295.

Each task requires 10 agents to be completed; tasks that do not have all agents

assigned are classed as failed tasks.

With the introduction of task quitting to the CBGA Figure 5.8 shows that

again this new addition to the algorithm is providing some improvements and

similarly to the team focused bidding the improvements are shown after .

This is primarily caused by the ratio of number of agents in the simulation to the

required agents per task. When 4 the ratio of agents to the requirement is now

below 3 making it harder and more important to assign completed groups, similarly

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

CBGA

Agents required for each task 𝑳𝒋

A
v

er
a

g
e

sc
o

re

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

Team Bids

Agents required for each task 𝑳𝒋

A
v

er
a

g
e

sc
o

re

0 1 2 3 4 5 0

20

40

60

80

100

120

X

T
im

e
(𝝉

)

 Agent
Completed Task

Failed Task

Unattempted Task

 120

once the ratio is below 2 a drop in score is observed after . This reasoning is

supported by the second graph in Figure 5.8, firstly, when the number of agents in the

simulation is reduced to 8 the effect of task quitting is observed earlier with a very

slight improvement at where again the ratio of agents to required agents is

below 3. Secondly, after

 a drop is observed in the score of both algorithms

but the task quitting continues to provide marginally better scores.

Figure 5.8: Performance of the CBGA algorithm compared to the CBGA using task

quitting where the number of agents is set to 10 (left) and when the number of agents

is set to 8 (right) completing 20 multi-agent tasks.

The distribution of results is more consistent with task quitting than with the

team focused bidding but the spread of results are still greater than the original CBGA

as seen in Figure 5.9. As with team focused bidding the algorithm provides the

potential for high scoring assignments but in most cases produces scores worse than

the original CBGA. Task quitting redistributes resources to higher demand areas, in

this case the measurement for demand changes so that upon quitting a task the

previous decision may no longer be valid. In comparison to CBGA the value of each

task rarely changes resulting in agents reassigning to the same task. Task quitting

works when an agent quits a task that was added to its bundle early on in the

assignment, once it quits the task other better options might be available, but this

situation does not happen often as can be seen by the small improvement generated by

task quitting.

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

CBGA

Task Quitting

Agents required for each task 𝑳𝒋

A
v

er
a

g
e

sc
o

re

1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Base CBGA

Task Quitting

Agents required for each task 𝑳𝒋

A
v

er
a

g
e

sc
o

re

 121

Figure 5.9: Performance of the CBGA using task quitting with the spread of results as

the agent requirements on tasks increases. Task quitting threshold set to 1.

The task quitting algorithm uses a threshold value to determine how long an

agent should wait before un-assigning itself from a task. Figure 5.10 displays the

effect on assignment score by modifying the threshold value for differing

communication distances. By reducing the distance over which agents can

communicate increases the time it takes for an assignment to propagate to every agent

in the simulation. This delay could potentially improve the performance of agents

waiting longer before removing incomplete assignments; however the results in

Figure 5.10 show this not to be the case. Across the board the changes in score due to

the threshold value is minimal with a value of producing slightly higher

assignments on average. Lower scores from communication limits are due to some

agents becoming separated from the main network of agents and thus not being able

to cooperate with the main group. The results here suggest that task quitting can

provide some increases in the score of assignments and that it is not important when

an agent quits an incomplete task just that they do it at some point to allow better

assignments to high demand tasks.

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

Task Quitting

Agents required for each task 𝑳𝒋

A
v

er
a

g
e

sc
o

re

 122

Figure 5.10: Performance of the task quitting algorithm as the task quitting threshold

 is modified. Variation in communication distance to show any changes when

consensus takes longer due to network spread.

Figure 5.11: Performance of all variations of the CBGA with task quitting and team

focused bidding, each simulation contains 10 agents and 20 tasks.

Both the task quitting and team focused bidding show improvements over the

CBGA but both provide high distribution of scores and fall into similar problems as

the CBGA when assigning and coming to a consensus on high agent requirements.

Task quitting requires a variable measurement of demand and team focused bids

requires a way to take advantage of the changing information as a simulation goes on.

1 2 3 4 5 6
5000

5200

5400

5600

5800

6000

6200

6400

6600

6800

7000

Broadcast

Comm = 4.5

Comm = 4.0

Comm = 3.5

A
v

er
a

g
e

sc
o

re

Task quitting threshold 𝜹

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

CBGA

Team Bids

Task Quitting

CBGABI

Agents required for each task 𝑳𝒋

A
v

er
a

g
e

sc
o

re

 123

Combining the biologically inspired improvements with the CBGA (CBGABI) covers

the short falls of both the improvements, task quitting alone is not a great

improvement if agents does not recognise the value of completing tasks with

assignments already. Further recognising the benefit of completing tasks with current

assignments is unnecessary if agents cannot leave their current assignments. Figure

5.11 displays the results of using both algorithms compared to the other three

approaches, as before similar results are displayed with slight improvements as

cooperative requirements are increased. Although a drop off in score is observed after

 similar to the other variations this resulting drop is due to the number of agents

and the requirement on the tasks. When the group of ten agents can form into

two teams of five completing more tasks overall than when . Although tasks

that require more agents provide a greater reward significantly fewer tasks are

completed and that does not make up for the loss in quantity of tasks. As well as the

improvement in score the use of both algorithms provides less variance in results

displayed in Figure 5.12, although still a greater variation than the base CBGA.

Figure 5.12: Variance of results from assignments using the CBGA with both task

quitting and team focused bidding.

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

CBGABI

Agents required for each task 𝑳𝒋

A
v

er
a

g
e

sc
o

re

 124

Running the exact simulation as displayed in Figure 5.7 but now using both

task quitting and team focused bidding shows a near optimal assignment in Figure

5.13. Agents group up and stick together for the duration of the simulation as every

agent is required to complete tasks. Previously agents would build up differing

bundles based on their starting location and be unable to change their assignment.

With the addition of task quitting agents can now build up an assignment as display in

Figure 5.7 but quit the incomplete tasks and re-evaluate their task choice such that all

the agents eventually decide upon an agreed conflict free solution.

Figure 5.13: Assignment of 10 agents completing 20 tasks that require all 10 agents

each the simulation setup is exactly the same as in Figure 5.7 but using task quitting

to produce a score of 9391.

Considering again the sequential greedy algorithm presented in Figure 3.16

the CBGABI now scores slightly better than the SGAMA for a low number of agents

but in general performs similarly. Figure 5.14 shows the average score for a group of

agents completing a set of multi-agent tasks where as the number of

agents or tasks are changed.

0 1 2 3 4 5 0

20

40

60

80

100

120

X

T
im

e
(𝝉

)

Agent

Completed Task

Unattempted Task

 125

Figure 5.14: Average assignment score achieved by the CBGA with biologically

inspired improvements (CBGABI) and the SGAMA completing 20 tasks with

agents (left) and 20 agents completing tasks.

Figure 5.15: Average assignment score achieved by the CBGABI and the SGAMA

when agent requirements are increased with 10 agents and 20 tasks.

With the biologically inspired improvements to the CBGA Figure 5.15 shows

the previous problem observed in the CBGA assignment for a low ratio of agent

requirement to agent numbers has been solved. Where previously the CBGA would

assign agents to large multi-agent tasks but have no way to coordinate or redistribute

all the agents to one path when the simulation would naturally limit the solution to

one path due to

 meaning only one task can be completed at any given time.

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

CBGA

SGAMA

Number of agents 𝑵𝒏

A
v

er
a

g
e

sc
o

re

10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

CBGABI

SGAMA

Number of tasks 𝑵𝒎

A
v

er
a

g
e

sc
o

re

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

CBGABI

SGAMA

CBGA

Agents required for each task 𝑳𝒋

A
v

er
a

g
e

sc
o

re

 126

The CBGABI now provides a similar score to the centralised solution SGAMA but in

a decentralised system.

Figure 5.16: The effects of adding task quitting and team bidding to the CBGA for

multi-agent tasks. Experiments used a varying number of agents completing 20 tasks

where each task required 4 agents for successful completion. A bar plot displays the

results and variation when (right).

When addressing multi-agent tasks using an algorithm that focuses on

individual improvement, additional agent incentive is required to increase the

effectiveness of multi-agent assignments. The overall scores generated by the

variations of the CBGA with biologically inspired improvements can be seen in

Figure 5.16. Using either task quitting or team rewards produced more complete

assignments which in turn provided a higher score in 78% and 79% of cases

respectively over the CBGA. Implementing task quitting on its own provides an

average increase of 206 over the CBGA with an average score of 5962 708.

Another improvement of 144 can be achieved by assigning with respect to the team

rewards over task quitting producing an average score of 6106 601 but this

improvement is only significant to p < 0.15. Further improvements are gained from

using both functions where the CBGABI improved the score of the CBGA in 99% of

cases seen in Figure 5.16. Providing an increase in the average score of the CBGA

from 5756 722 to a mean score of 6216 634 with a statistical significance to p <

4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

CBGA

Team Bids

Task Quitting

CBGABI

A
v

er
a

g
e

sc
o

re

Number of agents 𝑵𝒏

4000

4500

5000

5500

6000

6500

7000

7500

A
v

er
a

g
e

sc
o

re

CBGA Task

Quitting
Team

Bids
CBGABI

 127

0.01. The biologically inspired improvements show a statistically significant

improvement over the original CBGA developed in Chapter 3.

5.4 CONCLUSIONS

This chapter presented improvements to the CBGA based on biologically

inspired animal behaviours. Aspects from the biological social structures in bees and

ants were used to improve team focused consensus in multi-agent assignments. Using

bee inspired task quitting (Johnson, 2009) agents can re-assign themselves to tasks

which are more demanding by removing failed team assignments where requirements

are not met. Results shown in Figure 5.8 that on average some small improvements

are achieved using a method of task quitting but that on its own it creates additional

problems and introduces a large variation in assignments. Using the method of task

quitting in combination with team focused bidding as inspired by cooperative

behaviours in ant colonies (Tofilski et al., 2008) (Anderson & Ratnieks, 1999)

(Gordon, 1996) proves to provide consistent average score improvement over the

CBGA. In particular it provides substantial improvements as seen in Figure 5.11 when

there is a high cooperative demand over a majority of the agents in the simulation.

These improvements solve a problem found with the original CBGA and bring the

assignment quality up to a level equal to a centralised solution in the sequential

greedy algorithm. Statistical results show that using these biologically inspired

functions created statistically significant improvements to the multi-agent assignment

problem. As well as improving the assignment quality of the CBGA these results also

prove the usefulness of frequent task quitting in distributing agents to high demand

areas in assignment problems.

 128

Chapter 6: Conclusions and Future Work

6.1 CONCLUSIONS

The main purpose of this thesis has been to create a framework that provides a

reasonable, robust and dynamic solution to the multi-agent task allocation problem.

The CBGA was developed as an extension of the CBBA using a newly developed

consensus algorithm for handling multi-agent tasks whilst still providing a conflict

free solution. Further to this the research focused on creating a system that was

relatable to real world problems such as the data structure of assignments between

non-standard agents. This chapter outlines the contributions of this work as well as the

limitations and problems with the current implementation. Finally the chapter ends

with possible directions of further work to improve and extend the research.

6.1.1 Key Contributions

This thesis proposed the CBGA delivers a conflict free feasible solution to the

multi-agent task assignment problem. Unlike previous implementations the CBGA is

not limited to a specific number of agent assignments and provides a solution that can

scale with the requirements. Results show that despite the increased complexity of the

tasks a conflict free consensus can be reached within similar times as the single-agent

task solutions. Furthermore the algorithm can compete with a centralised greedy

solution.

Additionally this research has improved the data structure of the consensus

based algorithms with a focus on the real world application. The CBGA has structured

its data and assignment messages to reduce the cost on the communication channel.

Furthermore each agent can store its knowledge of assignments in a different manner

to its neighbours, but still allowing the group of agents to understand and come to a

consensus on each other’s information.

 129

Taking biological inspiration from the task quitting behaviours found in bees

this research integrated these mechanisms into the CBGA to improve the quality of

assignments. Experiments demonstrated the usefulness of a quitting mechanism in the

redistribution of agents to higher priority tasks. In addition this work also shows how

the concept of task quitting can be used to shift the allocation of resources to high

demand areas.

6.1.2 Limitations

As with most research the solutions provided in this thesis are not without

some limitations and problems. The CBGA provides a conflict free solution to the

multi-agent task assignment problem but it is not guaranteed to find an optimal

solution. Although in a problem such as this optimality is not a necessity it does leave

room for improvement resulting in better assignments. Additionally the equipment

limits on tasks were fixed to a specific number of agents, in reality a task does not

require a specific number of agents but rather a minimum number that have the

required equipment to complete the task.

6.2 FUTURE WORK

The area of cooperative UAS is becoming progressively larger with huge

applications for the use of UAVs in many fields. The current practical applications for

UAVs are generally limited to single UAVs or small teams with limited

cooperativeness between each other. This research has reached out further into the

future to a time where multiple UAVs have a greater ability to cooperate together and

created a foundation for the autonomous organisation of these UAVs. Although the

practical application of this research is limited for the time being this is most certainly

the direction in which UAS will head towards.

 130

The CBGA provides a framework for multi-agent task allocation with which a

conflict free solution can be produced; however, the algorithm has areas that can be

further improved. Equipment dependencies were directly linked to the number of

agent requirements such that the total amount of equipment needed for a task was the

amount of agents required. An extension of this issue would be to remove the link

between the number of agents and the required equipment. Such that the required

number of agents varies and an agent can potentially bring multiple pieces of

equipment to the task or for a particularly well equipped agent it could satisfy the task

requirements on its own thus reducing the amount of resources allocated to the task

and improving the overall score for the assignment. Additionally the algorithm used is

a pre-planned assignment where assignments are decided on at the beginning of the

simulation and conflicts dealt with then, whilst this will work in real time its ability to

deal with dynamically changing assignments is restricted. If new tasks or agents are

added part way through the assignment the only solution for re-addressing

assignments is to run the assignment algorithm again with the new data, it seems

reasonable that there should be a way to assimilate the new tasks and agents into a

simulation without having to redo the entire assignment again. A system for simple

task dependencies was added but in areas of AI planning sometimes a pre-condition

that is satisfied can be removed before the follow up task is completed. In these

situations on-the-fly adaptation would be required to reassess any pre-conditions and

the validity of a current assignment. Finally one specific situation that can occur

where the optimal solution is rarely chosen in its simplest form involves an agent that

can accomplish two tasks. The first task provides a higher score but can be completed

by other agents for a lower score; the second provides a lower score but cannot be

reached by any other agent. In this situation both the CBBA and CBGA would fail to

match the assignments optimally, agents would need to select their second best choice

for the benefit of the team. This situation is easily solved in a centralised system but a

 131

decentralised solution requires more information than is currently sent. A possible

solution would involve agents communicating their potential bids for each task, in this

way agents can determine which tasks no other agents can reach and thus determine if

there is an improved score from assigning itself to that task.

The algorithms proposed in this thesis were tested in simulations and their

performance confirmed by the numerous simulation experiments and results. As with

all simulations assumptions are made and conditions are simplified to a reasonable

extent, practical implementations are required on real hardware to test the validity of

the algorithm in a real environment as with any complex problem.

As the field of UAS continues to grow and the practical applications for them

extend, this research is necessary for the increasing cooperative behaviours required

for robotics in real environments. UAVs are beginning to make their way into

mainstream applications and their usage across the globe is increasing as restrictions

lower and the problems surrounding their use are solved. The abilities and

applications of individual UAVs are significant and constantly improving, but as with

many problems cooperation can expand the possibilities even further. This research

helps provide a framework for the future use of cooperative autonomous UAVs.

 132

Publications

Hunt, S., Meng, Q., & Hinde, C. J. (2012, January). An extension of the consensus-

based bundle algorithm for group dependant tasks with equipment dependencies. In Neural

Information Processing (pp. 518-527). Springer Berlin Heidelberg.

Hunt, S., Meng, Q., & Hinde, C. J. (2012, December). An Extension of the

Consensus-Based Bundle Algorithm for Multi-agent Tasks with Task Based Requirements.

In Machine Learning and Applications (ICMLA), 2012 11th International Conference

on (Vol. 2, pp. 451-456). IEEE.

Hunt, S., Meng, Q., Hinde, C., & Huang, T. (2014, April). A Consensus-Based

Grouping Algorithm for Multi-agent Cooperative Task Allocation with Complex

Requirements. Cognitive Computation, 1-13. Springer US.

 133

References

Alighanbari, M., 2004. Task assignment algorithms for teams of UAVs in dynamic

environments. PhD Thesis. Massachusetts Institute of Technology.

al-Rifaie, M.M., Bishop, J.M. & Caines, S., 2012. Creativity and autonomy in swarm

intelligence systems. Cognitive Computation, 4(3), pp.320-31.

Amgoud, L., 2005. Towards a formal model for task allocation via coalition formation. In

Proceedings of the fourth international joint conference on Autonomous agents and

multiagent systems., 2005.

Anderson, T.L. & Donath, M., 1990. Animal behavior as a paradigm for developing robot

autonomy. Robotics and Autonomous Systems, 6(1), pp.145-68.

Anderson, C. & Ratnieks, F.L., 1999. Task partitioning in insect societies. I. Effect of colony

size on queueing delay and colony ergonomic efficiency. The American Naturalist, 154(5),

pp.521-35.

Andersson, A., Tenhunen, M. & Ygge, F., 2000. Integer Programming for Combinatorial

Auction Winner Determination. In Fourth International Conference on MultiAgent Systems.,

2000. IEEE.

Antonelli, G., Arrichiello, F. & Chiaverini, S., 2010. Flocking for multi-robot systems via the

Null-Space-based Behavioral control. Swarm Intelligence, 4(1), pp.37-56.

Antsaklis, P.J., Passino, K.M. & Wang, S.J., 1989. Towards Intelligent Autonomous Control

Systems: Architecture and Fundamental Issues. Journal of Intelligent and Robotic Systems,

1(4), pp.315-42.

Arathi, H.S. & Spivak, M., 2001. Influence of colony genotypic composition on the

performance of hygienic behaviour in the honeybee, Apis mellifera. Animal Behaviour, 62(1),

pp.57 – 66.

Argyle, M., Casbeer, D.W. & Beard, R., 2011. A multi-team extension of the consensus-

based bundle algorithm. In American Control Conference (ACC), IEEE., 2011.

 134

Axelrod, R. & Hamilton, W.D., 1981. The evolution of cooperation. Science, 211(4489),

pp.1390-96.

Bar-Cohen, Y., 2006. Biomimetics—using nature to inspire human innovation. Bioinspiration

& Biomimetics, 1(1), p.1.

Beard, R. & Stepanyan, V., 2003. Information consensus in distributed multiple vehicle

coordinated control. In Proceedings. 42nd IEEE Conference on Decision and Control., 2003.

Bellingham, J.S., Tillerson, M.J., Richards, A.G. & How, J.P., 2001. Multi-Task Assignment

and Path Planning for Cooperating UAVs. In Cooperative Control: Models, Applications and

Algorithms. Springer US. pp.23-41.

Berhault, M. et al., 2003. Robot Exploration with Combinatorial Auctions. In Proceedings

2003 IEEE/RSJ International Conference on Intelligent Robots and Systems., 2003.

Bernard, M., Kondak, K., Maza, I. & Ollero, A., 2011. Autonomous transportation and

deployment with aerial robots for search and rescue missions. Journal of Field Robotics,

28(6), pp. 914-931.

Bertuccelli, L.F., Choi, H.L., Cho, P. & How, J.P., 2009. Real-time multi-UAV task

assignment in dynamic and uncertain environments. In AIAA Guidance, Navigation, and

Control Conference., 2009.

Biesmeijer, J.C. & de Vries, H., 2001. Exploration and exploitation of food sources by social

insect colonies: a revision of the scout-recruit concept. Behavioral Ecology and Sociobiology,

49(2-3), pp.89-99.

Burkard, R.E., Dell'Amico, M. & & Martello, S., 2009. Assignment problems. Society for

Industrial and Applied Mathematics.

Campoy, P. et al., 2009. Computer vision onboard UAVs for civilian tasks. In Unmanned

Aircraft Systems., 2009. Springer Netherlands.

Chao, H., Cao, Y. & Chen, Y., 2010. Autopilots for small unmanned aerial vehicles: a survey.

International Journal of Control, Automation and Systems, 8(1), pp.36-44.

 135

Chen, Y.M. & Wu, W.Y., 2012. Cooperative Electronic Attack for Groups of Unmanned Air

Vehicles based on Multi-Agent Simulation and Evaluation. International Journal of

Computer Science Issues, 9(2), pp.1-6.

Choi, H., Brunet, L. & How, J.P., 2009. Consensus-Based Decentralized Auctions for Robust

Task Allocation. IEEE Transactions on Robotics, 25(4), pp.912-26.

Choi, H.-L., Whitten, A.K. & P, J., 2010. Decentralized task allocation for heterogeneous

teams with cooperation constraints. In American Control Conference (ACC)., 2010.

Claes, R. & Holvoet, T., 2011. Weighing Communication Overhead Against Travel Time

Reduction in Advanced Traffic Information Systems. Progress in Artificial Intelligence, 1(2),

pp.165-72.

Connelly, J., Hong, W.S., Mahoney, R.B.J. & Sparrow, D.A., 2006. Current challenges in

autonomous vehicle development. In Gerhart, G.R., Shoemaker, C.M. & Gage, D.W., eds.

Unmanned Systems Technology VIII., May 2006. Proceedings of the SPIE.

Conradt, L. & Roper, T.J., 2005. Consensus decision making in animals. Trends in Ecology &

Evolution, 20(8), pp.449-56.

Cox, M.D. & Myerscough, M.R., 2003. A flexible model of foraging by a honey bee colony:

the effects of individual behaviour on foraging success. Journal of theoretical biology,

223(2), pp.179-97.

Cruzen, C. & Thompson., J.T., 2013. Advancing Autonomous Operations Technologies for

NASA Missions. In IEEE Aerospace Conference., 2013.

Dalamagkidis, K., Valavanis, K.P. & Piegl, L.A., 2012. On integrating unmanned aircraft

systems into the national airspace system: issues, challenges, operational restrictions,

certification, and recommendations. 2nd ed. Springer.

Dawkins, R., 2006. The selfish gene. Oxford University Press.

De Vries, S. & Vohra, R., 2003. Combinatorial Auctions: A survey. INFORMS Journal on

computing, 15(3), pp.284-309.

 136

Deneubourg, J.L. et al., 1991. The dynamics of collective sorting robot-like ants and ant-like

robots. In Proceedings of the first international conference on simulation of adaptive

behavior on From animals to animats., 1991.

Detrain, C. & Deneubourg, J.L., 2006. Self-organized structures in a superorganism: do ants

“behave” like molecules? Physics of Life Reviews, 3(3), pp.162-87.

Dewi, J., 2005. Power Line Inspection - a UAV concept. In The IEE Forum on Autonomous

Systems., 2005.

Di Paola, D., Naso, D. & Turchiano, B., 2011. Consensus-based robust decentralized task

assignment for heterogeneous robot networks. In American Control Conference (ACC).,

2011.

Fahlstrom, P. & Gleason, T., 2012. Introduction to UAV systems. John Wiley & Sons.

Farinelli, A., Iocchi, L. & Nardi, D., 2004. Multi-Robot Systems: A Classification Focused on

Coordination. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,

34(5), pp.2015-28.

Fierro, R., Song, P., Das, A. & Kumar, V., 2002. Cooperative control of Robot Formations. In

Cooperative Control and Optimization. Springer US. pp.73-93.

Garratt, M.A., Pota, H.R., Lambert, A. & Maslin, S.E., 2007. Systems for automated launch

and recovery of an unmanned aerial vehicle from ships at sea. In Proceedings of the 22nd

International UAV Systems Conference., 2007.

Gogarty, B. & Hagger., M., 2008. The Laws of Man over Vehicles Unmanned: The Legal

Response to Robotic Revolution on Sea, Land and Air. Journal of Law & Information

Science, 19, pp.73-145.

Goldberg, D.E. & Holland, J.H., 1988. Genetic algorithms and machine learning. Machine

learning, 3(2), pp.95-99.

Gordon, D.M., 1996. The Organization of Work in Social Insect Colonies. Nature, 380(6570),

pp.121-24.

 137

Gordon, D.M., 1999. Interaction patterns and task allocation in ant colonies. In Information

Processing in Social Insects. Birkhäuser Basel. pp.51-67.

Hatano, Y. & Mesbahi, M., 2004. Agreement over Random Networks. IEEE Transactions on

Automatic Control, 50(11), pp.1867-72.

Heinze, J., 1998. Intercastes, intermorphs, and ergatoid queens: who is who in ant

reproduction? Insectes Sociaux, 45(2), pp.113-24.

Hinchey, M. & Sterritt, R., 2007. 99%(Biological) Inspiration. In Proceedings of the 4th

IEEE International Workshop on Engineering of Autonomic and Autonomous Systems., 2007.

Hirschfeld, R.A., Aghazadeh, F. & Chapleski., R.C., 1993. Survey of robot safety in industry.

International Journal of Human Factors in Manufacturing, 3(4), pp.369-79.

Hirsch, M.J., Ortiz-Peña, H.J. & Eck, C., 2012. Cooperative Tracking of Multiple Targets by

a Team of Autonomous UAVs. International Journal of Operations Research and

Information Systems (IJORIS), 3(1), pp.53-73.

Hirsch, M.J., Ortiz-Pena, H. & Sudit., M., 2011. Decentralized Cooperative Urban Tracking

of Mulitple Ground Targets by a team of Autonomous UAVs. In Proceedings of the 14th

International Conference on Information Fusion., 2011.

Hoeing, M., Dasgupta, P., Petrov, P. & O'Hara, S., 2007. Auction-based multi-robot task

allocation in comstar. In Proceedings of the 6th international joint conference on Autonomous

agents and multiagent systems., 2007.

Huang, H.M., Pavek, K., Albus, J. & Messina, E., 2005. Autonomy Levels for Unmanned

Systems Framework: an update. In Proceedings of the 2005 SPIE Defense and Security

Symposium., 2005.

Huang, H.M. et al., 2005. A framework for autonomy levels for unmanned systems (ALFUS).

In Proceedings of the AUVSI’s Unmanned Systems North America., 2005.

Innocenti, M., Pollini, L. & Bracci, A., 2010. Cooperative Path planning and Task

Assignment for Unmanned Air Vehicles. Journal of Aerospace Engineering, 224(2), pp.121-

31.

 138

Jiang, W., Wenkai, F. & Qianru., L., 2013. An integrated measure and location method based

on airborne 2D laser scanning sensor for UAV's power line inspection. In Fifth International

Conference on Measuring Technology and Mechatronics Automation (ICMTMA)., 2013.

Jin, Y., Minai, A.A. & Polycarpou, M.M., 2003. Cooperative real-time search and task

allocation in UAV teams. In Decision and Control., 2003.

Johnson, B.R., 2009. A Self‐Organizing Model for Task Allocation via Frequent Task

Quitting and Random Walks in the Honeybee. The American Naturalist, 174(4), pp.537-47.

Kontogiannis, S.G. & Ekaterinaris, J.A., 2013. Design, performance evaluation and

optimization of a UAV. Aerospace Science and Technology, 29(1), pp.339–50.

Kreps, S. & Kaag, J., 2012. The Use of Unmanned Aerial Vehicles in Contemporary Conflict:

A Legal and Ethical Analysis. Polity, 44(2), pp.260-85.

Larrauri, J.I., Sorrosal, G. & Gonzalez., M., 2013. Automatic system for overhead power line

inspection using an Unmanned Aerial Vehicle — RELIFO project. In International

Conference on Unmanned Aircraft Systems (ICUAS)., 2013.

Lau, H.C. & Zhang, L., 2003. Task allocation via multi-agent coalition formation: Taxonomy,

algorithms and complexity. In 15th IEEE International Conference on Tools with Artificial

Intelligence., 2003.

Lin, L. & Goodrich, M.A., 2009. UAV Intelligent Path Planning for Wilderness Search and

Rescue. In IEEE/RSJ International Conference on Intelligent Robots and Systems., 2009.

Li, D., Sun, X. & Li, X., 2012. Multi-UAVs Cooperative Target Tracking Control Law

Design Based on Computer Vision. Journal of Systems Engineering and Electronics, 34(2),

pp.364-68.

Liu, Y. & Sun, D., 2012. Biologically inspired robotics. CRC Press.

Lo, V.M., 1998. Heuristic Algorithms for Task Assignment in Distributed Systems. In IEEE

Transactions on Computers., 1998.

Lum, C., 2009. Coordinated Searching and Target Identification Using Teams of Autonomous

Agents. ProQuest.

 139

Lutz, R., 2011. Software Engineering for Space Exploration. Computer, 44(10), pp.41-46.

Manisterski, E., David, E., Kraus, S. & Jennings, N.R., 2006. Forming efficient agent groups

for completing complex tasks. In Proceedings of the fifth international joint conference on

Autonomous agents and multiagent systems., 2006.

Martinez-Val, R. & Perez, E., 2009. Aeronautics and Astronautics: Recent Progress and

Future Trends. Journal of Mechanical Engineering Science, 223(12), pp.2767-820.

Maza, I. et al., 2011. Experimental Results in Multi-UAV coordination for Disaster

Management and Civil Security Applications. Journal of Intelligent and Robotic Systems,

61(1-4), pp.563-85.

McCarley, J.S. & Wickens, C.D., 2005. Human factors implications of UAVs in the national

airspace. Urbana-Champaign: University of Illinois.

Mercker, T., Casbeer, D.W., Millet, P.T. & Akella, M.R., 2010. An extension of consensus-

based auction algorithms for decentralized, time-constrained task assignment. In American

Control Conference (ACC)., 2010.

Merino, L., Caballero, F., Martínez-de Dios, J.R. & & Ollero, A., 2005. Cooperative fire

detection using unmanned aerial vehicles. In Proceedings of the International Conference on

Robotics and Automation, IEEE., 2005.

Müller, V.C., 2012. Autonomous cognitive systems in real-world environments: less control,

more flexibility and better interaction. Cognitive Computation, 4(3), pp.212-15.

Nakamura, S., Nakagawa, H., Tahara, Y. & Ohsuga, A., 2013. Towards solving an obstacle

problem by the cooperation of UAVs and UGVs. In Proceedings of the 28th Annual ACM

Symposium on Applied Computing., 2013.

Nodine, M., Chandrasekara, D. & Unruh, A., 2001. Task Coordination Paradigms for

Information Agents. In Proceedings of the 7th International Workshop on Agent Theories,

Architectures and Languages., 2001.

Papadales, B. & Downing, M., 2005. UAV science missions: A business perspective. In

Infotech@Aerospace Conferences. Arlington, 2005. AIAA.

 140

Pastor, E., Lopez, J. & Royo, P., 2007. UAV Payload and Mission Control

Hardware/Software Architecture. Aerospace and Electronic Systems Magazine, IEEE, 22(6),

pp.3-8.

Pettersen, K.Y., Liljebäck, P., Stavdahl, Ø. & Gravdahl, J.T., 2013. Snake Robots From

Biology to Nonlinear Control. Nonlinear Control Systems, 9(1), pp.110-15.

Plowes, N., 2010. An Introduction to Eusociality. Nature Education Knowledge, 1(11), p.7.

Ponda, S. et al., 2010. Decentralized planning for complex missions with dynamic

communication constraints. In American Control Conference (ACC)., 2010.

Ren, W., Beard, R.W. & Atkins, E.M., 2007. Information Consensus in Multi-Vehicle

Control. Control Systems, IEEE, 27(2), pp.71-82.

Richards, A., Bellingham, J., Tillerson, M. & How, J., 2002. Coordination and control of

multiple UAVs. In AIAA guidance, navigation, and control conference. Monterey, CA, 2002.

Schneiderman, R., 2012. Unmanned Drones are Flying High in the Military/Aerospace

Sector. Signal Processing Magazine, IEEE, 29(1), pp.8-11.

Schweiger, D.M., Sandberg, W.R. & Ragan, J.W., 1986. Group approaches for improving

strategic decision making: A comparative analysis of dialectical inquiry, devil's advocacy, and

consensus. Academy of management Journal, 29(1), pp.51-71.

Seeley, T.D., Camazine, S. & Sneyd, J., 1991. Collective decision-making in honey bees: how

colonies choose among nectar sources. Behavioral Ecology and Sociobiology, 28(4), pp.277-

90.

Shehory, O. & Kraus, S., 1998. Methods for task allocation via agent coalition formation.

Artificial Intelligence, 101(1), pp.165-200.

Shehory, O.M., Sycara, K. & Jha, S., 1998. Multi-agent coordination through coalition

formation. In Intelligent Agents IV Agent Theories, Architectures, and Languages. Springer

Berlin Heidelberg. pp.143-54.

Sujit, P.B. & Beard, R., 2007. Multiple MAV Task Allocation using Distributed Auctions. In

AIAA Guidance, Navigation and Control Conference and Exhibit., 2007.

 141

Tahbaz-Salehi, A. & Jadbabaie, A., 2006. On Consensus Over Random Networks. In 44th

Allerton Conference on Communication, Control, and Computing., 2006. 44th Annual

Allerton Conference.

Tisdale, J. et al., 2006. The software architecture of the Berkeley UAV platform. In IEEE

International Conference on Control Applications., 2006.

Tofilski, A. et al., 2008. Preemptive Defensive Self‐Sacrifice by Ant Workers.. The American

Naturalist, 172(5), pp.239-43.

Tomic, T. et al., 2012. Toward a Fully Autonomous UAV: Research Platform for Indoor and

Outdoor Urban Search and Rescue. Robotics & Automation Magazine, IEEE, 19(3), pp.46-56.

Tuna, G. et al., 2012. Unmanned Aerial Vehicle-Aided Wireless Sensor Network Deployment

System for Post-disaster Monitoring. In Emerging Intelligent Computing Technology and

Applications. Springer Berlin Heidelberg. pp.298-305.

Valenti, M. et al., 2007. Embedding health management into mission tasking for UAV teams.

In American Control Conference. IEEE., 2007. Proceedings of the 2007 American Control

Conference.

Whitten, A.K., Choi, H.L., Johnson, L.B. & How, J.P., 2011. Decentralized task allocation

with coupled constraints in complex missions. In American Control Conference (ACC).,

2011.

Willmann, J. et al., 2012. Aerial Robotic Construction Towards a New Field of Architectural

Research. International Journal of Architectural Computing, 10(3), pp.439-60.

Wood, R.J., 2008. The first takeoff of a biologically inspired at-scale robotic insect. IEEE

Transactions on Robotics, 24(2), pp.341 - 347.

Wooden, D. et al., 2010. Autonomous navigation for BigDog. In IEEE International

Conference on Robotics and Automation (ICRA)., 2010.

Wright, M.B., 1990. Speeding up the Hungarian algorithm. Computers & Operations

Research, 17(1), pp.95-96.

 142

Wu, C.W., 2006. Synchronization and Convergence of Linear Dynamics in Random Directed

Networks. IEEE Transactions on Automatic Control, 51(7), pp.1207-10.

Yamaguchi, H., Arai, T. & Beni, G., 2001. A Distributed Control Scheme for Multiple

Robotic Vehicles to Make Group Formations. Robotics and Autonomous systems, 36(4),

pp.125-47.

Zhao, Z., Ding, Q., Wang, Z. & Chen, L., 2012. A Coupled Approach to Wilderness Search

and Rescue Problem Based on Cross-Entropy. In Proceedings of the 2012 International

Conference on Electronics, Communications and Control., 2012.

Zhu, S., Wang, D. & Low, C.B., 2013. Cooperative Control of Multiple UAVs for Source

Seeking. Journal of Intelligent & Robotic Systems, 70(1-4), pp.293-301.

 143

Appendix A

A.1 TASK ASSIGNMENT AND CONSENSUS WITH THE CBBA

This section provides an insight into a typical assignment build up using the

CBBA. Figure A.1 displays the initial layout of an example scenario involving 4

agents and 5 single-agent tasks.

Figure A.1: Initial set up of the example simulation with a top down view of the agent

starting positions and their communication network (left) and the view of task

positions and their time windows (right).

Each agent individually constructs their own bundle of tasks they plan to

complete. With no knowledge about any other agent’s bids each agent attempts to

complete as many tasks as it can to produce the highest score possible. Figure A.2

displays the initial path agents will take to complete their assignments, without any

prior communication means every task produces a conflicting assignment. Table A.1

shows the state of agent A1’s winning agent list and winning bid list containing

the assignments it has initially decided to do. Table A.2 shows the data that A2 will

send to both agents A1 and A3, for the initial round of consensus agent A1 will only

have assignments from agent A2, assignments from other agents will need to

propagate through the communication network where only valid winning bids will

reach A1.

0 1 2 3 4 5
0

1

2

3

4

5

A1

A2

A3

A4

X

Y

0 1 2 3 4 5
0

20

40

60

80

100

120

A1 A2 A3 A4

T1

T2

T3

T4

T5

Agent

Task

X

T
im

e
(𝝉

)

 144

Figure A.2: Initial assignments before any communication and consensus has taken

place. Agent paths offset to allow easier viewing of agents on the same path.

Table A.1: Agent A1’s initial winning agent list and winning bid list after the

bundle construction phase but before any consensus.

Winning bid list for agent A1

Winning agent list for agent A1
 4 4

 44

Table A.2: Agent A2’s winning agent list and winning bid list that is

communicated to agent A1 and A3 after the bundle construction phase.

Winning bid list for agent A2

Winning agent list for agent A2
 4 4

 44

After each agent has received bid information from their neighbours each

agent consensus the data with its own keeping only the highest bids and removing any

other bids. When agent A1 receives the assignment data from agent A2 as seen in

Table A.2, it determines that it has the better bid for task T1, however, it loses the

assignments for tasks T2 and T3 because both agents provide the same score and in a

tie break situation a higher agent ID determines the winning in this case .

X

T
im

e
(𝝉

)

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

A1 A2 A3 A4

T1

T2

T3

T4

T5

X

T
im

e

Agent

Task

 145

Once the winning data an agent has received has been merged with its own

data through the consensus phase, agents return back to the bundle phase where any

tasks they have lost are removed as well as any tasks that happen later in the agent’s

path. Again each agent adds tasks to its own bundle that give it the greatest

improvement in score, however, this time agents can only add tasks that can beat

previous winning bids if such a bid exists. Figure A.3 displays the assignments of

agents and tasks after the second iteration of the bundle phase.

Figure A.3: Assignments after the second iteration of the bundle phase. Agent paths

offset to allow easier viewing of agents on the same path.

Table A.3: Agent A1’s winning agent list and winning bid list after the second

iteration of the bundle construction phase.

Winning bid list for agent A1

Winning agent list for agent A1
 4 4

 44

Table A.4: Agent A2’s winning agent list and winning bid list that is

communicated to agent A1 and A3 after the second iteration of the bundle

construction phase.

Winning bid list for agent A2

Winning agent list for agent A2
 4 4

 44 44 4

X

T
im

e
(𝝉

)

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

A1 A2 A3 A4

T1

T2

T3

T4

T5

Agent

Task

 146

The assignment data for agent A1 in Table A.3 shows that agent A1 still

thinks agent A2 is assigned to task T2 and T3, this information will be corrected once

it receives another communication message from A2. Table A.4 shows the new

assignment data that A2 has, in this the second round of communication it can be seen

that agent A1 will now be given some information about the assignments of A3.

Although it can be seen that the data is only partially valid but with each round

assignments change less and valid assignments will propagate through the

communication network. Figure A.4 shows the assignments at each round until finally

all the agents converge on a single conflict free solution.

Figure A.4: Agent assignments at successive iterations of the CBBA. Agent paths

offset to allow easier viewing of agents on the same path.

X

T
im

e
(𝝉

)

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

A1 A2 A3 A4

T1

T2

T3

T4

T5

Agent

Task

Iteration 3

X

T
im

e
(𝝉

)

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

A1 A2 A3 A4

T1

T2

T3

T4

T5

Agent

Task

Iteration 4

X

T
im

e
(𝝉

)

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

A1 A2 A3 A4

T1

T2

T3

T4

T5

Agent

Task

Iteration 5

X

T
im

e
(𝝉

)

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

A1 A2 A3 A4

T1

T2

T3

T4

T5

Agent

Task

Iteration 6

 147

A.2 TASK ASSIGNMENT AND CONSENSUS WITH THE CBGA

This section provides the convergence of a multi-agent assignment created

using the CBGA. Figure A.1 displays the initial layout of an example scenario

involving 4 agents and 5 multi-agent tasks where . This scenario is exactly

the same as that found in Figure A.1 except this time each task is a multi-agent task

requiring the CBGA to form assignments.

Figure A.5: Initial set up of the example simulation with a top down view of the agent

starting positions and their communication network (left) and the view of task

positions and their time windows (right).

Figure A.6: Initial assignments before any communication and consensus has taken

place. Agent paths offset to allow easier viewing of agents on the same path.

0 1 2 3 4 5
0

1

2

3

4

5

A1

A2

A3

A4

X

Y

0 1 2 3 4 5
0

20

40

60

80

100

120

A1 A2 A3 A4

T1

T2

T3

T4

T5

Agent

Task

X

T
im

e
(𝝉

)

X

T
im

e
(𝝉

)

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

A1 A2 A3 A4

T1

T2

T3

T4

T5

Agent

Task

 148

The initial assignment displayed in Figure A.6 is the same first assignment as

found with the CBBA, replacing the single-agent tasks with multi-agent tasks does

not have any effect on how agents initially build their assignments. Each agent finds

the path that provides the greatest individual improvement. Similarly the assignment

matrices in Table A.5 and Table A.6 contain the same bids as found in the CBBA.

Table A.5: Agent A1’s initial winning agent matrix and winning bid matrix after

the bundle construction phase but before any consensus.

Winning bid matrix for agent A1

Winning agent matrix for agent A1

 4 4

 4

 4 4

Table A.6: Agent A2’s winning agent matrix and winning bid matrix that is

communicated to agent A1 and A3 after the bundle construction phase.

Winning bid matrix for agent A2

Winning agent matrix for agent A2

 4 4

 4

 4 4

Figure A.7: Assignments after the second iteration of the bundle phase. Agent paths

offset to allow easier viewing of agents on the same path.

X

T
im

e
(𝝉

)

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

A1 A2 A3 A4

T1

T2

T3

T4

T5

Agent

Task

 149

Figure A.7 shows the assignments after the second bundle phase which is

exactly the same as the previous assignments in Figure A.6. Because each multi-agent

task allows two assignments, no agent has enough information to believe its

assignments are not valid. Agent A1 believes only two agents are currently assigned

to tasks T1, T2 and T3 as seen in Table A.7. Table A.8 shows that agent A2 knows

that this is not true, however, because its ID is greater than A1 it has unassigned agent

A1 and kept itself on all three tasks.

Table A.7: Agent A1’s winning agent matrix and winning bid matrix after the

second iteration of the bundle construction phase.

Winning bid matrix for agent A1

Winning agent matrix for agent A1

 4 4

 4

 4

 4 4

Table A.8: Agent A2’s winning agent matrix and winning bid matrix that is

communicated to agent A1 and A3 after the second iteration of the bundle

construction phase.

Winning bid matrix for agent A2

Winning agent matrix for agent A2

 4 4

 4

 4 4 1 1

 4 4

At the third iteration of the CBGA the final solution has been reached as can

be seen in Figure A.8 although insufficient time has elapsed such that agent A1 still

has no information about agent A4’s assignments as seen in Table A.9. This

assignment will still take a few more iterations before every agent converges on the

same solution. Table A.10 shows that agent A2 is very close to having the complete

assignment but is still missing the final assignment from A1.

 150

Figure A.8: Final assignment of agents, agent paths offset to allow easier viewing of

agents on the same path.

Table A.9: Agent A1’s winning agent matrix and winning bid matrix after the

third iteration of the bundle construction phase.

Winning bid matrix for agent A1

Winning agent matrix for agent A1

 4 4

 4

 4 4 1 1

 4 4

Table A.10: Agent A2’s winning agent matrix and winning bid matrix that is

communicated to agent A1 and A3 after the third iteration of the bundle construction

phase.

Winning bid matrix for agent A2

Winning agent matrix for agent A2

 4 4

 4 4 1 1

 4 4 4 4 1 1

X

T
im

e
(𝝉

)

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

A1 A2 A3 A4

T1

T2

T3

T4

T5

Agent

Task

