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The applications for Unmanned Aerial Vehicles are numerous and cover a 

range of areas from military applications, scientific projects to commercial activities, 

but many of these applications require substantial human involvement. This work 

focuses on the problems and limitations in cooperative Unmanned Aircraft Systems to 

provide increasing realism for cooperative algorithms.  The Consensus Based Bundle 

Algorithm is extended to remove single agent limits on the task allocation and 

consensus algorithm. Without this limitation the Consensus Based Grouping 

Algorithm is proposed that allows the allocation and consensus of multiple agents 

onto a single task. Solving these problems further increases the usability of 

cooperative Unmanned Aerial Vehicles groups and reduces the need for human 

involvement. Additional requirements are taken into consideration including 

equipment requirements of tasks and creating a specific order for task completion. 

The Consensus Based Grouping Algorithm provides a conflict free feasible solution 

to the multi-agent task assignment problem that provides a reasonable assignment 



 

 ii 

without the limitations of previous algorithms. Further to this the new algorithm 

reduces the amount of communication required for consensus and provides a robust 

and dynamic data structure for a realistic application. Finally this thesis provides a 

biologically inspired improvement to the Consensus Based Grouping Algorithm that 

improves the algorithms performance and solves some of the difficulties it 

encountered with larger cooperative requirements. 
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Chapter 1: Introduction 

This thesis investigates the problems with current task assignment and 

consensus algorithms for cooperative Unmanned Aircraft Systems (UAS). In 

particular, it addresses the limitations of consensus algorithms and develops 

extensions to existing algorithms to eliminate some of these limitations. 

This chapter is an introduction to the main thesis. A brief background section 

describes aspects of autonomous systems and provides useful background information 

for the thesis. Some of the major contributions of this work are also presented along 

with the general layout and structure of the thesis.  

1.1 INTRODUCTION 

The subject of modern unmanned systems is challenging and engaging. Whilst 

much theoretical work from ground robotics can be directly applied to Unmanned 

Aerial Vehicles (UAV), there are still aspects that need to be accounted for as well as 

increased complexity. UAVs provide a larger scope for application than their ground 

counterparts which shows in their increasing use throughout the world (Fahlstrom & 

Gleason, 2012; Kreps & Kaag, 2012; Papadales & Downing, 2005). However, 

currently this is limited to military and research applications outside commercial 

airspace or with strict limits and surveillance. Unmanned systems encompass many 

areas of research such as machine learning, artificial intelligence, path planning, task 

allocation, control systems and many more.   

UAVs are commonly visualised as robotic planes flying themselves around 

completing tasks on their own. In reality the operation of unmanned aircrafts around 

the world still requires significant human supervision. For an autonomous system to 

be beneficial it must be capable of operating in a wide variety of missions and be able 

to perform required tasks competently and consistently. For example, if the police 

force wants to use a UAV for surveillance of riots or crimes they cannot simply let a 
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UAV operate by itself (Gogarty & Hagger., 2008). Working in commercial airspace 

requires that all unmanned vehicles have a remote operator with a license to run the 

vehicle (McCarley & Wickens, 2005). Even then there are strict limits on its 

operation, but ignoring these points it would still be too dangerous for a UAV to run 

unsupervised given current knowledge. These missions are often complex with 

difficult operations due to the dynamic environments; a UAV must add no extra risk 

to any other users over and above that which a human pilot would have added.  

The rise in the use of UAVs is becoming prevalent throughout the world. 

UAVs are finding valuable usage in performing military tasks that fall into the 

categories of the dull, dirty and dangerous (Schneiderman, 2012) (Hirschfeld et al., 

1993) (Connelly et al., 2006). Dull missions can be thought of as those which require 

repetitive and tedious actions over long periods of time where human error can easily 

creep in from exhaustion. Dirty tasks will often require complicated processes and 

decision making that would be better suited to the precision of a computer. As 

expected some tasks contain potentially harmful activities that are dangerous in their 

nature or if performed incorrectly would be fatal to human pilots. UAVs take 

advantage of the better sustained alertness of machines over that of human pilots in 

addition to lower political and human cost if the mission fails. Lower risk and higher 

confidence in mission success are two strong motivators for continued expansion of 

UAS.  

The applications for UAVs are numerous and cover a range of areas from 

military applications, scientific projects to commercial activities. As technology 

advances the future of UAVs looks increasingly towards civilian activities (Martinez-

Val & Perez, 2009) (Campoy et al., 2009). Common applications include surveillance 

of power lines or pipes (Jiang et al., 2013) (Larrauri et al., 2013) (Dewi, 2005), 

disaster monitoring (Tuna et al., 2012) (Maza et al., 2011) and search and rescue 

operations (Tomic et al., 2012) (Zhao et al., 2012) (Lin & Goodrich, 2009). With 
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improvements in the cooperative abilities of UAVs there is a movement towards an 

increase in the use of multiple UAVs for complex tasks like tracking and surveillance 

(Li et al., 2012) (Chen & Wu, 2012) (Hirsch et al., 2012) (Hirsch et al., 2011). As the 

applications for UAVs increase so too does their need to cooperate to perform bigger 

and more complex tasks. Applications are wide and varied and can apply to both 

military and civil areas, many applications spanning both sections. For example a 

search and rescue application can be very useful for both military and civil areas. The 

monitoring of a disaster area for civil use can be used in military applications by 

monitoring a bomb site for example. A large portion of research into UAVs is being 

dedicated to increasing their cooperative abilities (Zhu et al., 2013) (Nakamura et al., 

2013) to solve new complex problems or provide better and faster solutions to 

existing problems. 

1.2 PROBLEM STATEMENT 

Creating a UAV to cover all situations and problems is difficult due to 

hardware and software limitations (Pastor et al., 2007) and so it is far easier to use 

UAVs dedicated to solving a precise problem. A reconnaissance UAV needs to be 

lightweight and mobile whilst being able to carry state-of-the-art photography and 

video equipment (Kontogiannis & Ekaterinaris, 2013), limiting any additional 

equipment it can carry.  However upon doing this the UAV’s ability to solve a wide 

variety of tasks in a dynamic environment is reduced. With a diverse selection of 

UAVs that can form teams and work together to complete tasks the limitation of any 

one UAV can be mitigated. Using multiple UAVs will improve the efficiency with 

which a number of tasks can be performed by completing tasks in parallel. A system 

that allows heterogeneous agents to assign and complete tasks together increases the 

flexibility of the system, which is an aspect of producing higher autonomy (Müller, 

2012). 
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Of particular interest within the area of UAV cooperation is the Task 

Assignment Problem (TAP) which assigns a finite number of agents to complete a 

finite number of tasks as efficiently as possible. This problem can be solved with a 

centralized or decentralized solution but current research investigates decentralized 

solutions that are more feasible for real world adoption. Many researchers have solved 

the TAP using auction algorithms (Sujit & Beard, 2007) (Hoeing et al., 2007) where 

agents make bids for tasks and receive assignments based on their bids by a single 

auctioneer. One such solution that makes use of auction algorithms is the Consensus 

Based Auction Algorithm (CBAA) (Choi et al., 2009). The CBAA brings agents to a 

consensus on the allocation of tasks by enforcing agreement upon the solution rather 

than the information set. Whilst task allocation for an individual agent is relatively 

simple, the difficulty comes with consensus between all agents when using a 

decentralized algorithm. The CBAA succeeds in giving a conflict free solution that 

has superior convergence and performance to other auction algorithms performing at 

a polynomial-time that scales well with the size of the network and/or the number of 

tasks.  However the CBAA focuses only on single agents completing single tasks or 

in the case of the Consensus Based Bundle Algorithm (CBBA) a single agent 

completing multiple tasks. Research has been done on using the CBBA with 

heterogeneous agents to create heterogeneous teams that can perform complex 

missions in real-time dynamic environments (Ponda et al., 2010 ) (Whitten et al., 

2011). An extension has already been made to the CBBA that accounts for 

cooperative tasks; however this extension is limited to ‘Required Duo Tasks’ (Choi et 

al., 2010 ) that require cooperation from two agent types. The work proposed in this 

research aims to create a theoretically unlimited requirement on cooperation. This 

research introduces multi-agent tasks that can be solved by multiple heterogeneous 

UAVs working together, where modifications must be made to current task allocation 

and consensus algorithms to account for these new constraints. 
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1.3 OBJECTIVES 

This research will investigate the challenges associated with the assignment of 

multi-agent tasks to groups of cooperating agents. The objectives of this research are 

as follows:  

• Investigate solutions to the multi-agent task assignment problem. 

• Develop a solution to handle multi-agent task assignments with a focus on 

robustness, performance and scalability. 

• Improve task assignment algorithms to function with complex task 

requirements such as equipment and task dependencies.  

• Improve the existing data structure in the CBBA for use in a dynamic 

environment with heterogeneous agents 

• Investigate the potential use of animal behaviours in multi-agent systems 

The proposed algorithm will provide a solution to the assignment and 

consensus of a decentralised group of agents representing UAVs. The solution will 

provide a conflict free solution with a similar performance to the CBBA despite the 

additional complexity of the assignments. The performance of the algorithm can be 

measured from the quality of assignments created based on a scoring function as well 

as the computational run time of the algorithm. Furthermore the algorithm will 

provide a framework for introducing complex requirements on tasks including 

equipment and task dependencies. Finally by investigating the cooperative behaviours 

in animal species improvements can be created to increase the quality of assignments 

and remove some issues found in the assignment algorithms. 

1.4 DOCUMENT LAYOUT 

This thesis is divided into several chapters. The rest of Chapter 1 outlines the 

research area and some useful background knowledge. Chapter 2 describes the 

previous work and knowledge relevant to the research topic including the Consensus 

Based Auction and Bundle Algorithm which are the founding algorithms for this 
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work. Chapter 3 details the development and results of the Consensus Based 

Grouping Algorithm developed from the Consensus Based Bundle Algorithm to 

achieve greater cooperative behaviours in performing complex tasks. This chapter 

also includes additional limitations on the task requirements including equipment and 

task dependencies. During the development of the grouping algorithm a new dynamic 

bid storage system is developed to reduce communication and increase consistency 

between UAVs, this research is presented in Chapter 4. Biologically inspired 

improvements are made to the CBGA to improve its performance, the development 

and results of these improvements are documented in Chapter 5. Finally Chapter 6 

closes the report with comments about the work so far, and the future work and 

applications this research can lead to.  

1.5 BACKGROUND 

To fully understand this research it will be necessary to include some 

background information on relevant topics. The topics are required to understand the 

literature, current work and the research. 

1.5.1 Unmanned Aerial Vehicles 

A UAV is an aircraft that flies without a human crew on board. The 

abbreviation UAV has been expanded in some cases to Unmanned Aircraft Vehicle 

System (UAVS). In the United States, the Federal Aviation Administration has 

adopted the generic class UAS to reflect the fact that these are not just aircraft, but 

systems, including ground stations and other elements. To distinguish UAVs from 

missiles, a UAV is defined as a reusable, un-crewed vehicle capable of controlled, 

sustained, level flight. This definition separates them from cruise missiles, which are 

not considered UAVs, because, like many other guided missiles, the vehicle itself is a 

weapon that is not reused. 
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Historically, UAVs were simple drones (remotely piloted aircraft), but 

autonomous control is increasingly being employed in UAVs. Their operations are 

generally limited to military applications primarily due to limits and regulations on 

their use in commercial airspace (Dalamagkidis et al., 2012). Currently, military 

UAVs perform reconnaissance as well as attack missions. While many successful 

drone attacks have been reported, they are also prone to collateral damage and/or 

erroneous targeting, as with many other weapon types. UAVs are also used in a small 

but growing number of civil applications but are often limited to private land and 

outside of public airspace. 

Currently, common UAS have basic autonomous flight capabilities such as 

waypoint following (Chao et al., 2010), altitude and airspeed hold, and automated 

launch and retrieval (Garratt et al., 2007). Although the capabilities of these systems 

are formidable, the key distinction is that these are integrated systems rather than 

merely aircraft. They require a support infrastructure which contains ground stations, 

communication links, and human operators. Often the system requires at least two 

human operators for flight operations: one to manage flight paths and the avionics 

systems, and another to operate the camera system. Personnel required for launch, 

retrieval, and ground tasks may further increase this number. Although these systems 

succeed in shielding the human operator from the dangers present in these missions, 

the amount of human interaction required for these autonomous systems exceeds that 

of their manned counterparts. 

1.5.2 Autonomous Systems 

The majority of this work falls in the category of autonomous systems. This is an 

ambiguous term as it can refer to certain types of networks or indeed any system 

which has decision making abilities. This thesis works with the definition of 

autonomous systems for robotics where autonomous is defined as operating without 
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outside control or existing independently. These systems contain one or more robotic 

devices such as vehicles, aircraft or simpler devices like arms. Within the system 

these devices are referred to as agents. For these agents to be considered autonomous 

they are expected to perform a desired task in potentially dynamic environments 

without continuous human guidance. There are different levels of autonomy, for 

example, some factory robots are considered autonomous but within the strict 

confines of their environment resulting in what would be considered a low level of 

autonomy.  Compared to the high level of autonomy the Mars rover ‘Curiosity’ has, 

which is necessary due to the delay between the system and the controller; this is 

more important for tasks where speed is essential and the reaction time of controllers 

is not adequate, as experienced when the rover first landed on Mars  (Cruzen & 

Thompson., 2013). 

  

 

Figure 1.1: ALFUS detailed model for agent autonomy (Huang et al., 2005) with an 

approximation on the autonomy level of the BigDog system and the Curiosity. 

As there is such a broad range of autonomy levels it is useful to define a 

method to determine the approximate autonomy of a given system. The autonomy 

levels for unmanned systems (ALFUS detailed model) (Huang et al., 2005), takes into 
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consideration the mission complexity, environmental difficulty and human 

independence as shown in Figure 1.1. Task complexity and adaptability to 

environment are among the key aspects as well as the collaboration with human 

operators, such as their levels of involvement and types of interaction. It also takes 

into account performance factors (Huang et al., 2005) including mission success rate, 

response time and precision. Figure 1.1 plots a possible autonomy level for the Mars 

rover Curiosity and the rough terrain quadruped robot BigDog. Curiosity would score 

highly in all areas requiring many autonomous systems to function, even simple tasks 

become more complex when commands take over 2.5 hours to receive and 

acknowledge (Lutz, 2011). Comparatively the BigDog system is overall less 

autonomous but contains higher levels of autonomous algorithms for navigating 

difficult and dynamic terrain, such as path planning, navigation and stabilising 

algorithms (Wooden et al., 2010). The overall concept for measuring each attribute is 

shown in Figure 1.2, where as a system relies less on human supervision and is able to 

deal with dynamic environments and missions, its level of autonomy increases. 
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Figure 1.2: ALFUS summary model for defining autonomy levels in autonomous 

systems (Huang et al., 2005). 

As well as the overall autonomy of a system, the underlying algorithms that 

control the agents can be similarly classified. Figure 1.3 shows the three levels for 

autonomy algorithms; strategic, tactical and dynamics and control (Lum, 2009). The 

strategic phase usually deals with tasks such as mission planning and task allocation. 

These algorithms are considered “low bandwidth” because compared to the other 

levels they run infrequently. The tactical phase deals with specialised responsibilities 

dealing with short term goals for instance path following or target observation. Finally 

the dynamics and control level deals with the inner control systems that often run 

continuously such as state stabilisation, an autonomous aircraft may need to 

constantly adjust its flight equipment to account for changing winds. Any high 

autonomy agent will require algorithms from all three levels. This hierarchical 
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structure of autonomy and the challenges it involves has been studied by groups like 

Passino et al (Antsaklis et al., 1989). 

 

  

Figure 1.3: Hierarchical levels of autonomy algorithms (Lum, 2009). 

Often, the terms “autonomous systems" and “autonomous algorithms" are 

used inter-changeably. The distinction made in this work is that autonomous 

algorithms are the routines which manage specific tasks without human interactions 

and autonomous systems are comprised of many sub-systems including hardware and 

autonomous algorithms. The autonomous system may refer to a single actual agent or 

the entire team and infrastructure to manage a group of agents. 

 

1.5.3 Multi-Agent Systems 

A multi-agent system can simply be a system that contains multiple intelligent 

agents. This field has become a very important research area within artificial 

intelligence and robotics, allowing the development and analysis of sophisticated AI 

problem-solving and control architectures (Innocenti et al., 2010). With the increasing 
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complexity and intelligence in robotics, cooperation has become a fundamental 

feature of multi-agent systems. The work reported in this thesis is focused on in 

cooperative systems; Figure 1.4 shows a proposed classification of multi-agent 

systems (Farinelli et al., 2004). It categorises a multi-agent system based on how 

coordinated the system is, showing how much coordination is achieved by the system. 

 

Figure 1.4: Multi-agent system taxonomy (Farinelli et al., 2004). 

The first level, cooperation, distinguishes between cooperative systems and 

non-cooperative systems. It defines whether the agents cooperate to accomplish a 

task. A cooperative system is one where the agents work together to complete a global 

task. Competition is usually merged in with cooperative systems when using multi-

agent systems.  

The second level deals with agent knowledge; this defines the type of 

knowledge agents have about their team mates. Aware agents have some knowledge 

about the other agents in their team, for instance, their location or current activity. 

Unaware agents have no knowledge about their team mates and act only on their own 

knowledge. Unaware systems are simpler than aware systems, however it must be 
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noted that knowledge is not equivalent to communication. A multi-agent system can 

be aware even though there is no direct communication among the agents. 

Coordination describes the actions of agents when cooperating on a task. 

Strong coordination means agents act to achieve a task based on the actions of the 

other agents such that the whole group becomes coherent. There are different ways 

the agents can take into account the actions of the others and it comes down to the 

cooperation protocol which is a set of rules that the agents follow in order to interact 

with each other in the environment. Weak coordination will produce agents that act to 

achieve the team goal but without considering what the other agents are doing. 

The final level is the organisation level, which comprises of the structure and 

organisation of the multi-agent system. A centralised system has a leader that 

organises the other agents to complete the goal; the other agents act in accordance 

with what the leader tells them to do. A weak centralised system still uses a leader to 

complete the goal however in this system the leader can change or have multiple 

leaders. A distributed or decentralised system is comprised of agents that together 

organise themselves, and there is no central area where all decisions are made. 

This research is about creating cooperative, coordinated and, most 

importantly, decentralised agents that can solve the problems provided and come to a 

conflict free consensus that is focused on maximising the group performance. 

Additionally this research will explore the effects of differing levels of knowledge on 

the agents ranging from full global knowledge and communication to only allowing 

local knowledge, with information communicated between agents.  

 

1.5.4 Eusociality 

Evolution is a process that gradually changes species over millions of years to 

adapt and survive in their environment. The goal of any animal species is to survive 

and reproduce, where evolution refines each species to complete those goals by 
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removing weaknesses and adapting their bodies and behaviours to the environment. 

With the power of adaption that comes from evolution scientists have made use of 

many areas of biology to create robust and adaptive systems, for instance using 

evolution itself in the form of genetic algorithms for machine learning (Goldberg & 

Holland, 1988) or the creation of robotics inspired by biology (Liu & Sun, 2012). 

 

 

Figure 1.5: Levels of social organisation for animal species. 

The emergence of cooperation and altruism were once thought of as 

impossible through evolution by natural selection, but scientists have shown 

conditions under which reciprocity cooperation can evolve (Axelrod & Hamilton, 

1981). With the powerful filtering of weaknesses and strengths by evolution 

cooperative animal species make excellent tools to extract cooperative algorithms or 

beneficial concepts. Social animals that often show aspects of cooperative behaviour 

can be split into different levels of sociality; eusocial, presocial, subsocial and 

parasocial.  
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Figure 1.6: The process of evolution by natural selection and random gene mutation. 

Figure 1.5 shows the various levels of social organisation with humans 

categorised as presocial and being preceded by various types of insects at the eusocial 

level. Eusociality is defined by a number of characteristics; cooperative care of the 

young, overlapping generations of adults within the group and a division of labour 

into reproductive groups and non-reproductive groups (Plowes, 2010). For a species 

to be considered eusocial they must possess each of these characteristics with many 

species failing at the division of labour. Eusocial species make excellent resources for 

studying cooperative animal behaviours because of the method of their reproduction 

and subsequent evolution. Species evolve by passing on their genes where a gene is 

the biological code for a characteristic that an animal possesses, such as an insect’s 

colour. Should that specific characteristic aid the animal in its survival then it is more 

likely to survive and reproduce thus propagating that gene down the generations until 
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it becomes a predominant gene in the species as shown in Figure 1.6. For non-

eusocial species the genes that are passed on are stored in each individual animal 

creating a selective pressure towards individual survival. Furthermore, whilst these 

species may cooperate each individual does so for selfish reasons, because 

cooperation increases the individual’s odds for survival.  In comparison eusocial 

species have their genes passed on only by one member in a group such as the queen 

ant in an ant colony. This form of reproduction means that for the majority of 

individuals, their only goal is the survival of the colony and specifically the queen; an 

individual ant is willing to sacrifice its life if it means the queen survives and 

reproduces. 

When analysing cooperative behaviours it seems that eusocial species would 

provide more suitable results, as the only concern of a group of cooperative robots is 

achieving the goal set out, and that sacrifice of individual performance for the greater 

good of the team is a desirable trait. 
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Chapter 2: Literature Review 

The work presented in this thesis covers many fields of research. Many of 

these subjects are well studied and extensive literature exists regarding relevant 

methods and techniques. This chapter highlights some of the related work done by 

others in specific areas related to this research. The limitations of these approaches are 

not detailed here. Instead, as the corresponding topic is discussed in the thesis, the 

deficiencies of these methods are outlined which illustrate the advantages and thus, 

the need for the methods developed in this dissertation. 

2.1  CENTRALISED AND DECENTRALISED SYSTEMS 

Centralisation comes from network theory; centralised networks are a type of 

network where all users connect to a central server, which is the acting agent for all 

communications. When applied to multi-agent systems all relevant sensors and agent 

information required in decision making are sent to a central hub or a single agent 

acting as the leader of the group. This central point in the multi-agent system collects 

the relevant situational awareness of all agents such as location or health status. With 

this information decisions can be made and communicated to the rest of the agents in 

the network. Task allocation deals strictly with centralised systems. 

Centralisation makes decision making easier with complete system knowledge 

but in reality there is far too much information required. In practice, consideration of 

factors such as communication bandwidth, interference and delay is needed. This 

leads to using decentralised systems where the decision making is split across all 

agents. Each agent in the system will make its own decisions rather than a collective 

leader or central hub. However, decentralised systems must solve another problem: 

consensus. With each agent making its own decisions it is very easy for conflicts to 

arise as multiple agents attempt the same task. To avoid conflict in the system 

consensus must be reached between the agents as to who will do which tasks. 
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 Within the field of robot formation control, the team formation can be 

controlled as a centralised system where there is monitoring and control of all robots 

to place them in specifically desired positions, or by a decentralised system when 

there is no supervisor and feedback is only detected by the relative position of each 

robot in respect to their neighbours. The centralised formation control can be a good 

strategy for a small team of robots, when it is implemented using a single computer 

and a single sensor to monitor and control the whole team. However, when 

considering a team with a large number of robots, the need for a greater 

computational capacity and a large communication bandwidth could make it advisable 

to use a decentralised formation control. Yamaguchi et al. present a distributed control 

scheme and shows simulations for final static formations (Yamaguchi et al., 2001). 

Fierro et al. proposes a hierarchical control structure that allows the switching of 

controllers in order to have a stable formation, based on sensing their relative 

positions to neighbouring robots, under a strategy of distributed control (Fierro et al., 

2002). 

Research by Claes and Holvoet shows that with a multi-agent exploration 

model, the overhead introduced by the decentralised system is higher (Claes & 

Holvoet, 2011). When comparing communication in decentralised and centralised 

systems this is often to be expected. The researchers argue that a decentralised system 

offers benefits of scalability. Even though the total message count in the decentralised 

system is higher than that of the centralised one, it spreads the communication 

overhead more evenly over the system. The centralised system, on the contrary, 

focuses all messages along with most computations in one central location. A 

decentralised method allows more freedom and autonomy for multi-agent systems and 

gives a robust solution that is required when dealing with autonomous multi-agent 

systems. 
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2.2 TASK ALLOCATION AND CONSENSUS 

2.2.1 Task Allocation 

With an increasing focus on the cooperative use of multi-robot systems, multi-

robot coordination has received significant attention. Cooperative multi-robot systems 

allow for the execution of an increased number, variety and complexity of tasks. With 

this the importance of multi-robot task allocation (MRTA) has emerged. The 

advantages of self-organising groups of robots have led to MRTA becoming a key 

research issue in its own right. As cooperative multi-robot systems are created, the 

question “which robot should execute which task?” is inevitably asked (Bellingham et 

al., 2001). 

The assignment problem or task allocation problem is a combinatorial 

optimisation problem that attempts to find the least-cost solution between two disjoint 

sets (Lo, 1998). In its general form, the problem is as follows: 

 

“There are a number of agents and a number of tasks. Any agent 

can be assigned to perform any task, incurring some cost that may 

vary depending on the agent-task assignment. It is required to 

perform all tasks by assigning exactly one agent to each task in such 

a way that the total cost of the assignment is minimized.” 

 

There is a set of agents              and a set of tasks            . An 

agent has a cost associated with it for completing each task. Let     be the non-

negative cost of assigning the  th
 agent to the  th

 task. The objective is to assign each 

task to one agent in such a way as to minimize the overall cost of completing all the 

tasks.  Define a binary variable     where       to indicate agent   is assigned to 

task  . Otherwise      . Then the total cost of the assignment is equal to ∑    
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                          . A valid task allocation must satisfy the following 

constraints: 

 

 A task allocation must be correct. For each agent     must be assigned to no 

more than one task. 

 A task allocation must be complete. For each task     must have exactly one 

agent assigned.  

For an assignment to be efficient the task allocation must be valid and the cost 

is minimized, i.e.  

 

           ∑                              (2.1) 

 

Once the assignment is solved, agents will be assigned tasks such that the cost 

of completing each task is minimised. Many solutions exist for the task allocation 

problem (Wright, 1990) (Burkard et al., 2009) including practical solutions for use in 

UAVs (Jin et al., 2003) (Richards et al., 2002), however these solutions are 

centralised requiring a central agent or hub to perform the assignments. In this way, 

solving the task assignment problem for a decentralised system creates additional 

problems. 

 

2.2.2 Task Consensus 

Task allocation requires a central hub or a designated leader in order for a 

group of agents to decide on the correct allocation. For the task allocation problem to 

be solved in a decentralised system where each agent makes their own decisions about 

their assignments, it requires that agents come to a consensus on assignments. Task 

consensus is the process of agents communicating their desired assignments to each 

other and agreeing or coming to a consensus on the correct assignments. 
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Although group consensus can be found in many social animal species 

(Conradt & Roper, 2005), coming to a consensus is a difficult process even for 

humans who have the ability to easily adapt to unforeseen problems. Consensus 

decision-making is a group decision making process that attempts to provide a 

unanimous decision for all participants of the group. There are many different 

methods groups can use to come to a consensus (Schweiger et al., 1986) but the 

following concepts form some unifying principles for consensus decision making. 

Agreement Seeking 

Consensus decision-making is a process that seeks agreement across the 

group. Individuals may initially have different choices but must ultimately agree on 

one decision through the process of consensus decision-making. Failure to 

unanimously agree on a decision would be defined as a conflict, whereas the decision 

making process should come to a conflict free solution. 

Inclusive 

All members of the group should provide input into the decision making 

process such that conflicting information or decisions can be removed or dealt with. 

Collaborative 

Consensus decision-making is a collaborative process where the group comes 

to an agreed decision. All members of the group contribute towards the decision 

making process without one central leader making decisions for the group. 

Cooperative 

Participants in the consensus process should attempt to reach the best decision 

possible for the group taking into account information from all members. At times the 

best decision for the group may not be the optimum decision for an individual. 
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Although the process of consensus between two humans is complicated, it can 

be broken down into some key steps. These basic steps provide a method for 

formulating the decision making process as seen in Figure 2.1.  

 

 

Figure 2.1: Flowchart of basic consensus decision making process for a group of 

people. 

Discussion of the problem: The problem is discussed with the goal of identifying the 

current situation; the goal is for each member involved to gather as much information 

as they can such that they can form their own decisions on the matter. 

Formation of a proposal: Based on the discussion a formal decision is proposed 

either for the group as a whole or for a specific individual’s decision. 

Call for consensus:  Each member determines whether they agree with the proposed 

decision. 
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Identification and addressing of concerns: If a consensus is not achieved problems 

with the proposal are raised and points of conflict explained. 

Modification of the proposal: Depending on the degree of conflict with the original 

decision either a modification of the decision can be proposed or the group rejects the 

decision and returns to discussion of the problem.  

 

Although the decision making process between a group of humans is more 

complicated, containing much back and forth discussion, the basic idea can be 

translated into an agent based group decision making process. The key steps shown in 

Figure 2.2 outlines what stages must be incorporated into an agent based consensus. 

 

Figure 2.2: Flowchart of basic consensus decision making for an agent in an agent 

based system. 
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In multi-robot systems a decentralised solution for the task allocation problem 

would provide a more suitable solution for a real world application. This is even more 

valid for UAS where operational distances can cover large areas that could leave a 

central hub out of communication range or provide a single point of failure in a leader 

system. A decentralised solution for the MRTA would provide a robust and dynamic 

solution for a self-organising autonomous system. For decentralized systems, 

cooperating agents often require a globally consistent situational awareness (Ren et 

al., 2007). In a dynamic environment with sensor noise and varying network 

topologies, maintaining a consistent situational awareness throughout the group can 

be very difficult. Consensus algorithms are used in these cases to enable the group to 

converge on some specific information set before generating a plan (Beard & 

Stepanyan, 2003). Examples of typical information sets could be detected target 

positions, target classifications, and agent positions. Various consensus approaches 

have been shown to guarantee convergence over many different dynamic network 

topologies (Hatano & Mesbahi, 2004) (Wu, 2006) (Tahbaz-Salehi & Jadbabaie, 

2006). 

A variety of consensus based task allocation algorithms have been developed 

that provide provably conflict free solutions with superior convergence properties and 

performance (Choi et al., 2009). Further, these algorithms have been extended to 

provide robust solutions for specific situations and requirements (Ponda et al., 2010 ) 

(Di Paola et al., 2011 ) such as time constraints (Mercker et al., 2010) and dynamic 

uncertain environments (Bertuccelli et al., 2009). The consensus based algorithms 

provide excellent frameworks to develop solutions to the multi-agent task assignment 

problem. 
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2.2.3 Consensus Based Auction Algorithm 

The Consensus Based Auction Algorithm (CBAA) solves single assignment 

problems by using both auction and consenus algorithms in a decentralized system 

(Choi et al., 2009). The algorithm contains two phases that alternate until assignments 

and consensus are achieved. The first phase of the algorithm is the auction process, 

while the second is a consensus algorithm that is used to converge on a winning 

solution. The CBAA, by iterating between the two phases can exploit the benefits of 

both auction and consensus algorithms. Robustness and computational efficiency are 

achieved from the auction algorithm whilst the decentralized consensus algorithm can 

exploit network flexibility and converge on a conflict free solution. The CBAA  has 

been shown to provide a conflict free, feasible solution, which  previous algorithms 

were unable to account for. 

Phase 1: The Auction Process 

The first phase of the algorithm is the auction process. Here, each agent   

places a bid on a task   asynchronously with the rest of the agents. All agents store 

and update 2 vectors of length    where    is the number of tasks in the simulation, 

both are initialized as zero vectors. The first vector    records the task list for agent   

where         if agent   has been assigned to task  , and   if not. The second vector 

is the winning bids list    which keeps an as up-to-date as possible estimate of the 

highest bid made for each task thus far, this vector is used primarily in phase 2. Using 

        as the bid that agent   places for task  , and            be the availability 

vector whose  th
 entry is 1 if task   is available to agent  . The list of valid tasks    can 

be generated using 

       (       )      (2.2) 
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where       is the indicator function that is 1 if the argument is true and 0 otherwise. 

Algorithm 1 in Figure 2.3 shows the procedure of agent  ’s phase 1 at iteration   

where one iteration consists of a single run of phase 1 and phase 2. With a 

decentralized system each agent’s iteration count can be different allowing each agent 

to run with different iteration periods. An unassigned agent  , which can be defined as 

having ∑       , first computes a valid task list   . If there are valid tasks, it then 

selects a task    giving it the maximum score based on the current list of winning bids 

(line 7 of algorithm 1, Figure 2.3), and updates its task    and winning bids list    

accordingly. If it is the case that an agent has already been assigned a task ∑       , 

this selection process is skipped and the agent moves to phase 2.  

 

 

Figure 2.3: Task allocation algorithm of the CBAA (Choi et al., 2009). 

Phase 2: The Consensus Process 

The second phase of the CBAA is the consensus section of the algorithm. Here 

agents make use of a consensus strategy to converge on the list of winning bids and 

use that list to determine the winner in the bidding. This allows agents to converge on 

a conflict free solution over all tasks. 

Algorithm 1: CBAA Phase 1 for agent   at iteration   

1:   procedure SELECT TASK (                     
2:                     
3:                     
4:       if ∑           then 

5:                 (          )       

6:           if      then 
7:                                  

8:                    
      

9:                    
         

 

10:        end if 
11:     end if    
12: end procedure 
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Phase 2 involves communicating the winning bid list for an agent to all other 

agents within communication range.      is a symmetric adjacency matrix showing 

communication links between agents where           if a link exists between 

agents   and   at time  , and   otherwise. Agents   and   are said to be neighbours if 

such a link exists. It is assumed that every node has a self-connected edge; in other 

words,            . 

During each iteration of phase 2 of the algorithm, agent   receives the list of 

winning bids    from every neighbour in range. The procedure of phase 2 is shown in 

algorithm 2 (Figure 2.4) when agent  ’s  th
 iteration corresponds to   in real time. The 

consensus is performed on the winning bids list    based on the winning bids lists 

received from each neighbour    for all agents   such that       in a way that agent 

  replaces     values with the largest value between itself and its neighbours (line 4). 

Additionally an agent will lose its assignment if it finds that it is outbid by others for 

the task it had selected (line 6). 

If two agents place the same winning bid for a task the winner cannot be 

determined randomly because each agent decides the winner independently and 

knowledge must be coherent across the group. A number of solutions exist for this 

problem; one such solution is to communicate an agent’s unique identification 

number along with the bid data and using it to break any ties. 

 

Figure 2.4: Consensus algorithm of the CBAA (Choi et al., 2009). 

Algorithm 2: CBAA Phase 2 for agent   at iteration   

1:   SEND    to   with          
2:   RECEIVE    from   with          
3:   procedure UPDATE TASK            |                  

4:                                     

5:            
                    

    

6:       if      
   then 

7:                
      

8:       end if  
9:   end procedure 
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The CBAA converges on a conflict free solution to the single assignment 

problem with provable score performance of at least 50% of the value of the optimal 

solution (Choi et al., 2009). The optimal score is the maximum score achievable from 

valid assignments of agents to tasks. With perfect information the optimal score for 

the single-agent task assignment problem can be calculated using the implicit 

coordination algorithm (Alighanbari, 2004). Assuming agents have accurate 

knowledge of their situational awareness the CBAA provides the same performance 

score of a sequential greedy algorithm a centralised solution for the task assignment 

problem. 

 

2.2.4 Consensus Based Bundle Algorithm 

The major downside to the CBAA is that whilst at a specific time in the 

simulation each agent can select the optimal task for it to complete, it does not take 

into account future selections. When a number of tasks are located close to each other 

a single agent can perform all the tasks rather than sending an agent to each task. 

Researchers addressed the problem by grouping assignments into bundles for bidding 

(Shehory et al., 1998) (Berhault et al., 2003) (Andersson et al., 2000) (De Vries & 

Vohra, 2003) providing the multi-assignment problem where each agent bids for 

multiple tasks. Each assignment combination or bundle was treated as a single item 

for bidding which led to complicated winner selection methods. The CBAA was 

extended to the multi-assignment problem developing the Consensus Based Bundle 

Algorithm (CBBA) (Choi et al., 2009). In the CBBA each agent has a list of tasks 

potentially assigned to it, but the auction process is carried out at the task level rather 

than at the bundle level as previous algorithms had been. Similar to the CBAA the 

CBBA contains two distinct phases for controlling the allocation and consensus of 

tasks. 
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Phase 1: The Bundle Construction 

During the first phase an agent internally builds up a single bundle containing 

all the tasks it plans to complete and updates it as the assignment process progresses. 

Each agent continually adds tasks to its bundle until it is incapable of adding any 

others. Agents carry two lists of tasks: the bundle   , with a path   . Tasks are added 

to the end of an agents bundle in the order of their assignment; while the path contains 

the order in which those tasks will be completed. The cardinality of    and    cannot 

be greater than the maximum assignment size, without any limitation of assignment 

size the cardinality is equal to the number of tasks   . Using   
   as the total reward 

value for agent   performing the tasks along the path   , if a task   is added to the 

bundle   , it incurs the marginal score improvement of 

 

         {
  

     |  |
  

       
    

   
   

       

         
 (2.3) 

 

Where | | denotes the cardinality of the list, and   denotes the operation that 

inserts the second list right after the  th
 element of the first list. A task is inserted into 

the current path at all possible locations to find the greatest score improvement. The 

first phase of the CBBA is summarized in algorithm 3 in Figure 2.5. Each agent 

carries four vectors: a winning bid list   , a winning agent list   , a bundle    and the 

corresponding path   . The difference between    and    is that in the CBBA an agent 

needs to know not only if it is outbid on the task it selects but who is assigned to each 

task as well; this enables better assignments based on more sophisticated conflict 

resolution rules. 

 



 

 30 

 

Figure 2.5: Task allocation algorithm for the CBBA (Choi et al., 2009). 

Phase 2: Conflict Resolution 

Similarly to the CBAA, the CBBA runs a consensus phase to remove agents 

bidding for the same task and unify group knowledge. In the case of the CBAA agents 

made bids for single tasks, if they received a higher winning bid for that task from one 

of their neighbours they would release it and re-assign themselves to another task. 

However the CBBA deals with multiple assignments where bids are made based on 

their current bundle of tasks. If an agent loses an assignment they must not only 

release the task in question but also any tasks scheduled to be completed after that 

task, where the marginal score values for the proceeding tasks are no longer valid. But 

this method of releasing tasks makes convergence more complicated as other agents 

might have made incorrect observations about the maximum bids. To prevent this, 

information about when agents last communicated with each other must also be 

transferred so in this way agents can work out if bid data for an agent is out of date. 

 In the consensus phase of the CBBA three vectors are communicated. The 

winning bid list   , the winning agent list    and    containing the last update time an 

Algorithm 3: CBBA Phase 1 for agent   at iteration  : 

1:    procedure BUILD BUNDLE                          
2:                   
3:                   
4:                   
5:                  
6:        while |  |     do           

7:                    |  |  
       

    
            

8:                 (       )      

9:                              

10:                
          

         

11:                       
12:                    

     

13:              
         

 

14:              
      

15:         end while 
16:     end procedure 
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agent had with all other agents. When assignments are communicated the time vector 

   is calculated as 

 

     {
   

                
       

         
 (2.4) 

 

where    is the previous message reception time when an agent is in communication 

range, otherwise the agent uses the last update time of one of its neighbours who has 

had communication with the target. 

With the addition of the time vector    an agent can determine when its bid 

data is out of date by comparing the update time for the agent it has received 

communication from. For example, if two agents   and   both think agent   is 

assigned to task   such that             but that         meaning that each agent 

has a different winning bid value for  , by comparing     with     agents can 

determine whose bid is out of date and update their information.  

When agent   receives bid data from agent   about task   there are three 

possible actions agent   can take 

1)                         

2)                     

3)                        

Table 2.1 outlines the decision rules for all combinations of bid comparisons 

when receiving a communication message. The first column contains who the agent 

 , the sender, believes is assigned to task  . The second column contains who the 

receiver, agent  , thinks is assigned to the task. Finally depending on the combination 

of sender to receiver assignments, the final column displays the action the receiver 

will take depending on the agents involved, the bids placed and the update time of 
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each agent’s data. As agents iterate between the two phases they will gradually 

converge on a conflict free solution, an overview of the CBBA converging on a 

conflict free assignment can be seen in Appendix A.1. 

When the number of assignments an agent is allowed is limited to 1, the 

CBBA will produce the same result as the CBAA, so in this respect the CBBA can 

also guarantee 50% optimality for the single-assignment problem. Additionally 

because the multi-assignment problem can be treated as a single assignment problem 

with an additional combinatorial number of agents the minimum 50% performance 

guarantee can also be applied to the multi-assignment problem (Choi et al., 2009). 

Table 2.1: Consensus decision table for the CBBA (Choi et al., 2009). 

Sender’s (agent  ’s)     Receiver’s (agent  ’s)     Receiver’s Action (default: leave) 

  

                    

         

                                    

            

  

        

        

                         

           

        

                              

  
                  
           

                    

          
                              
                              

                             

                       

     

        

         

                          

           

 



 

 33 

Scoring Functions 

The CBBA provides a conflict free assignment on the assumption that the 

scoring function it uses satisfies a diminishing marginal gain (DMG). The marginal 

score improvement of a task described in (2.1) shows that the score improvement for 

agent   doing task   is         but that this score is dependent on the current bundle   . 

If the scoring function satisfies DMG it can be said that the value of a task does not 

increase as other tasks are added to the set before it. This can be formally described as 

 

                                       (2.5) 

where   denotes an empty task and      is the function that adds the second list after 

the first list. The value of an assigned task     with the bundle    does not gain any 

increased value when another task is added to the bundle         . Many reward 

functions in autonomous search and exploration robotics are consistent with DMG 

(Bertuccelli et al., 2009). The CBBA uses a time-discounted reward that satisfies 

DMG as follows 

 

   
   ∑   

 
       (2.6) 

 

where   is the time discount rate,   
 
     is the estimated time of arrival for agent   

travelling along with the path    to arrive at task location   and    is the fixed reward 

for performing task  . This creates a time discounted reward where performing a task 

later will result in a reduced reward (Alighanbari, 2004). In search and rescue 

scenarios where uncertainty grows with time, the time discounted reward models the 

reduced expected reward for visiting a location later rather than earlier. Distance is 

not factored into the cost because travel time is sufficient at modelling the discounted 

reward and still satisfies the triangular inequality for distance between task locations 

such that 
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            (2.7) 

 

results in an agent taking longer to travel between tasks thus arriving at each task later 

than if the agent travelled over a shorter path. This inequality further discounts the 

score value such that for all non-negative    the scoring function   
   does satisfy 

DMG. With this assumption, the CBBA provides a decentralised task-allocation 

algorithm addressing the multi-assignment problem to produce a conflict free 

solution. 

 

2.2.5 Task Allocation with Duo Cooperation Restraints 

An extension to the CBBA developed part of a solution to the multi-agent task 

allocation problem, extending the algorithm to deal with “duo tasks” that are defined 

as tasks requiring one or two agents. The algorithm was extended to solve missions 

with heterogeneous networked agents, where tasks are given a specific number of 

agents required for their completion. There are quantifiable advantages to using 

multiple UAVs for tasks that could be undertaken with a single UAV. For instance, 

search and rescue operations can be done with a single UAV but multiple UAVs 

would speed the process up among other advantages (Bernard et al., 2011) unlike 

computer parallelisation which rarely achieves twice the speed for twice the 

computing. In other situations a task might require multiple UAVs where a single 

UAV would not be sufficient, for example, two UAVs carrying heavy building 

material together (Willmann et al., 2012). This leads to three types of tasks defined as 

the following: 

1) Solo Task (    : Referred to as single-agent tasks are tasks that require one agent to 

complete them. Additional agents assigned to the task are unacceptable providing no 

increase in the score of the assignment and would be classed as producing a conflict 

in the assignment. 
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2) Preferred Duo Tasks (    ): A task that can be completed by either one or two agents. 

The assignment of a single agent is acceptable and provides the same reward as a solo 

task. Assigning two agents to the task provides a greater reward. 

3) Required Duo Tasks (     : Similar to the Preferred Duo Tasks however a single 

assignment is unacceptable and provides no reward. Instead these tasks require two 

agents of differing types to complete the task. 

 

 

Figure 2.6: Decentralised task elimination for agent   for the assignment and 

consensus of cooperative duo tasks (Choi et al., 2010 ). 

The assignment algorithm for cooperative duo tasks is displayed in Figure 2.6 

and uses a method of decentralised task elimination to remove and re-distribute agents 

amongst the remaining valid tasks. The inside loop of the algorithm (lines 6-10) runs 

the regular CBBA with additional task restriction such as an agent cannot assign itself 

to both the leader and follow role for a duo task. Once the inner CBBA has converged 

all agents have the same situational awareness about the status of each task because of 

the conflict free properties of the CBBA. The process of task elimination is used to 

remove any tasks that either have no assignments or an incorrect number of 

assignments for the required duo tasks. With the invalid tasks removed the CBBA is 

Algorithm 4: Decentralized task elimination for agent i      

1:   Initialise invalid tasks set:      .  
2:   Initialise outer-loop iteration count:       . 
3:   while                 do 
4:       Eliminate invalid tasks:                      .   

5:                  . 
6:       while CBBA not converged do 
7:            CBBA bundle construction phase. 
8:            CBBA conflict resolution phase. 
9:            Check CBBA convergence. 
10:     end while 

11:     Identify invalid tasks:           |(         )                     

12: end while 
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run again with the restricted pool of tasks, this allows agents with spare time to assign 

to the second slot of preferred duo tasks providing an improved solution. 

The algorithm successfully allows the assignment of duo tasks and provides an 

improvement in score over the CBBA when using preferred duo tasks. However the 

algorithm is limited to two agent requirements and the use of vectors for the winning 

bid and agent lists causes problems where agents must be explicitly forbidden from 

assigning themselves to each and every other part of a duo task they are assigned to. 

This system would provide difficulties expanding the algorithm for agent 

requirements greater than two. 

 

2.2.6 Task Allocation via Coalition Formation 

A method of multi-agent cooperation involves the assignment of tasks to 

groups of cooperating agents called coalitions (Shehory & Kraus, 1998) (Lau & 

Zhang, 2003) (Amgoud, 2005). This situation involves tasks that can be split up into 

many sub-tasks that may not be satisfied by a single agent. This problem takes a set of 

agents              and a set of tasks             where agents must work out 

how best to form coalitions so as to maximise the overall reward from completing 

tasks. Each task   contains a fixed number   of subtasks   with each subtask requiring 

a specific capability value     and providing a reward of   . Every agent   has an 

associated vector                   , where     is the capability value of the agent 

performing a sub task  . Coalitions are defined as groups of agents working towards a 

common goal each coalition is given a value based on the sum of the capabilities of 

the group. Agents in coalitions can then work together to complete various tasks and 

subtasks.  

Task allocation via coalition formation follows three general phases: 
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1) Generate the collation structures; here the agents form a collation in order 

to coordinate at completing a task or set of tasks. 

2)  Discuss the structure amongst the agents to determine which one is most 

suitable. 

3) Distributing the sub-tasks over the agents of the coalition. 

The structure of coalitions depends on the specific problem; it might be that 

tasks are independent or that agents must belong to only one or multiple coalitions. It 

is assumed that agents are co-operative and interested in maximising the overall score 

of the system, therefore the objective function is the sum of all fulfilled tasks as seen 

in (2.8) where    is the non-negative integer for high-demand meaning a task can be 

repeated as many times as resources will allow or a boolean value where the task can 

only be completed once.    is the total resources available for the subtask   
 

Maximize 

 

Subject to 

∑    

  

   

 

∑     

  

   

            

(2.8) 

Various solutions to this problem exist depending on the specific task settings, 

consider that each task can only be completed once, agents have limited resources and 

the reward is fixed. A standard greedy approach does not provide a good solution as 

the capabilities of each agent are limited. Instead coalitions are constructed iteratively 

by maximising the  coalition value (Lau & Zhang, 2003). This approach has two 

steps that are iterated between, firstly the coalition capability values are computed for 

each possible coalition, then secondly the coalition with the highest value among all 

tasks is formed and the task that is assigned to the coalition removed from the task 

list. This process is alternated until no more tasks are left or a coalition with sufficient 

value cannot be formed. 
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Task allocation via coalition formation allows agents to pool resources 

together and complete tasks with their related sub-tasks that a single agent would be 

unable to do. However, coalition formation assumes global communication and whilst 

it can function with some delay the quality of assignments is reduced as delay 

increases. In addition the population of agents cannot change during the formation 

process and would not function with unknown agents that are discovered as the 

assignment proceeds. Finally many solutions for achieving coalition formation 

assume global knowledge of the goals (Shehory & Kraus, 1998). Whilst each task can 

be defined as a multi-agent task, it is always broken down into single-agent sub tasks 

such that coalitions are formed to complete the multi-agent task but agents are still 

only being assigned to single-agent tasks. 

 

2.3 EUSOCIAL ANIMAL BEHAVIOURS 

Eusocial animals, like the majority of ant species, a number of bee species and 

a few wasp species have some similarities to that of robotic cooperative systems. 

Unlike most animals, eusocial species focus on the group rather than the individual. 

An ant, for instance, has evolved to put the success of the colony ahead of itself, in the 

case where for example ants have been shown to use self-sacrificial defences to 

protect the nest (Tofilski et al., 2008). Similarly with a cooperative system an 

individual agent should focus on maximising the performance of the group as a whole 

rather than its own performance. Ant nests allocate specific workers to specific tasks 

without any central or hierarchical control (Anderson & Ratnieks, 1999). Whilst the 

task allocation is individual centric and the decision is made by an individual it must 

still be beneficial to the group. Some decisions will reduce an agent’s contribution but 

overall increase the team’s performance, the allocation algorithm must account for 

both loss of time and score by not fully allocating multi-agent tasks.  Detrain and 
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Deneubourg (Detrain & Deneubourg, 2006) show how if-then rules embedded in ant 

behaviours, however simple in their logic, ultimately produce efficient group-level 

responses for objectives like resource acquisition and risk avoidance. Further, that 

these behavioural rules coupled with self-organising processes provide a robust and 

efficient method for problem solving. A difficulty encountered with multi-agent tasks 

is that agents can become confined to tasks that no other agents plan to assist with. 

When a multi-agent task has insufficient assignments the task cannot be completed 

and will not score, thus wasting the contribution of agents assigned. 

Bees are another eusocial species that show collective intelligence in the 

organisation and allocation of tasks for the survival of the colony. Bees perform task 

partitioning where a task is split up into a number of steps that are performed by 

multiple bees (Arathi & Spivak, 2001) where each bee has a specific part of the 

overall task to achieve. This focuses the hive on the task and its division rather than 

the individual performing the task. As part of a “hygienic behaviour” worker bees 

remove diseased brood cells from the hive, if left the infection would spread and 

destroy the colony. This requires two operations, the removal of the cap on the cell 

followed by removing the diseased brood. Individual bees will focus either on 

removing the cap or removing the cell and together will complete the tasks rather than 

each individual removing a cap then removing the diseased cell. Bee colonies show 

complex cooperative behaviours for the organisation and allocation of workers in the 

hive. Multiple systems have been proposed that show how bee colonies come to 

collective decisions in tasks such as the allocation of workers to nectar sources with 

changing environmental conditions (Seeley et al., 1991) (Biesmeijer & de Vries, 

2001) (Cox & Myerscough, 2003). The similarities between the multiple systems are 

that global coordination of the workers happens despite individual bees relying on 

local information. The self-organising model of these colonies shows the 

amplification of random noise into structured patterns and that collective problem 
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solving capabilities can emerge when individuals have limited information processing 

abilities (Deneubourg et al., 1991). With a great deal of research focused on the 

foraging abilities of honey bees, Johnson examined the self-organisation of the 

internal hive where bees would perform over 15 tasks varying in exigency, often 

localised to specific regions of the hive (Johnson, 2009). Johnson proposed an agent 

based self-organisation model that explained the fluid task-allocation dynamics 

observed in the hive. Using a form of task-quitting the bees are able to track changes 

in task demand at the group level whilst individually using local information. As bees 

become insensitive to certain stimuli for a period of time after quitting a task it 

allowed bees to redistribute the colony resources to high demand areas. Figure 2.7 

shows the developed task-quitting algorithm, where agents can be at one of three 

behavioural states; working, patrolling or inactive. Whilst in a specific behavioural 

state the bees will perform tasks related to it, where a working bee is either busy or 

not. At each time step, bees either quit or remain in their current behaviour state based 

on a quitting probability. The quitting probability was developed such that the agent 

bees would stay in a state on average as long as was empirically observed in the bee 

hives. Johnson was able to show that frequent task quitting can allow colonies to track 

variation in task demand in a changing environment. This process allows bees to re-

assign themselves to high priority areas and would be useful in solving the problem of 

agents being assigned to multi-agent tasks that are not reaching the correct 

requirements. 
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Figure 2.7: Task allocation algorithm using a task quitting method for the allocation 

of bees throughout a hive (Johnson, 2009). At each time step, bees either remain in 

their behavioural state or quit based on a quitting probability. When a bee quits its 

current activity it chooses randomly one of the other two states (Work, Patrol, and 

Inactive). Working bees are either busy or not busy, busy bees complete tasks in their 

location, when there are no tasks at a bees location the bee is not busy and instead 

moves randomly to find work. 

An environmental change in a bee hive such as an increase in the temperature 

creates an increase in new assignments to the task of “fanning” that cools down the 

hive and larva. Johnson (Johnson, 2009) showed that using this method of frequent 

task quitting resulted in a similar change in assignments between the real colonies and 

the simulated ones. Additionally Johnson showed that by decreasing the probability of 

bees quitting their current task the allocation of bees to the tasks with the highest 

demand was greater but that the hives response to changing task demands, such as 

environmental changes, was much lower. Essentially the bee’s use of task quitting 

causes a sacrifice in work output but it increases the hives ability to deal with and 

adapt to a changing environment. 
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2.4 CONCLUSIONS 

This Chapter provided a detailed description of current solutions for the 

single-agent task assignment problem. Furthermore, the limitations of these solutions 

for multi-agent task assignments were discussed. Whilst the CBBA provides a conflict 

free solution with 50% optimality for the single-agent task assignment problem, it has 

limited capabilities in solving the multi-agent assignments as well as difficulties 

scaling the solution for increasing agent requirements. Behaviours observed in 

eusocial species show promise at providing stronger assignments in task allocation 

algorithms. Using the CBBA a dynamic and scalable solution to the multi-agent task 

assignment problem can be provided that removes the limitations of previous 

solutions. To achieve these goals new assignment and consensus algorithms will need 

to be developed for multi-agent tasks where single agent tasks can continue to be 

handled by the CBBA. Furthermore to allow the new algorithm to function with 

dynamically added tasks or agents, as well as handle heterogeneous agents, will 

require a modification of how the CBBA structures its assignment data. These 

changes to the CBBA will increase the complexity of tasks that agents can deal with 

as well as provide potential practical applications in the future.  
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Chapter 3: Consensus Based Grouping Algorithm 

This chapter addresses the problem of multi-agent task assignments for UAVs, 

which are defined as tasks that require multiple agents. The algorithm is an extension 

of the Consensus Based Bundle Algorithm that converges to a conflict free, feasible 

solution which previous algorithms were unable to account for. Furthermore the 

algorithm takes into account heterogeneous agents and task dependencies such that 

groups of UAVs with differing equipment or sensors can self-organise in order to 

complete series of complex tasks. 

The CBBA (Choi et al., 2009) was created to solve an extension of the TAP 

where agents queue up tasks they will complete: individual agents take available tasks 

and compute every permutation given their current queue of tasks or “bundle”, where 

the highest rewarded permutation becomes their bid for that task. In this way, agents 

continually remove and revise new tasks as other agents find they can create a more 

valuable sequence with that task. Thus, the CBBA gives a conflict free solution with a 

guaranteed 50% optimality to the multi-assignment problem. 

Extensions of the problem can be developed that simulate realistic situations 

by designing complex tasks with stricter requirements. The consensus algorithm 

needs to be developed in order to handle these new tasks, including tighter task 

selection and higher cooperative decision making. The requirements that are 

examined are multi-agent, equipment requirements and task dependencies, where a 

multi-agent task is defined as one which requires more than one agent to complete, an 

example of which would be using two UAVs to carry construction material 

(Willmann et al., 2012). A task that requires specific equipment would require unique 

agents; Merino et al (Merino et al., 2005) looked at using multiple heterogeneous 

agents for cooperative fire detection. Task dependencies are defined as tasks that 
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require other tasks to be completed before they can start, creating a list of tasks that 

must be completed in a certain order. 

Two solutions for the multi-agent task allocation problem (Choi et al., 2010 ; 

Manisterski et al., 2006) both have their limitations that make them unsuitable. 

Firstly, the creators of the CBBA extended their algorithm for heterogeneous 

cooperation (Choi et al., 2010 ); this extension solved duo cooperation constraints 

where a simulation would contain two agent types that solve three different types of 

tasks. Solo tasks required one type of agent; preferred duo tasks scored greater for the 

assignment of two different agents and required duo tasks needed one of each agent 

type. However, this solution is limited to two agents and the proposed solution here 

will allow any number of agent requirements to be assigned to tasks. Secondly, 

another solution to the multi-agent problem (Manisterski et al., 2006) used a central 

solver to group related tasks into a set and assign enough agents to complete them. 

However, using a centralized algorithm will not provide a robust and feasible solution 

for real world applications. This chapter provides a solution for the decentralised 

assignment of multi-agent tasks that require any number of agents for their 

completion.  Solving this problem can increase the cooperation of UAVs to an 

improved autonomous operational level further reducing the need for human 

interaction. To achieve this, agents need to develop an increased awareness of what 

other agents are planning more so than is required for the CBBA. Agents must plan 

their own schedules around that of others and come to complex agreements on task 

order. As the complexity of decision making increases so too does the requirement for 

information needed to make a decision and the underlying communication required 

(Nodine et al., 2001). Using the framework set up by the CBBA the algorithm is 

extended to account for the existing limitations; this extension leads us to the 

Consensus Based Grouping Algorithm (CBGA). 
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3.1 PROBLEM 

The CBBA is limited to single-agent tasks and is unable to handle further 

restrictions on which agents can complete those tasks; the duo-task extension is 

similarly limited to multi-agent tasks for two agents. This chapter develops an 

algorithm that can deal with and provide a conflict free solution to the following 

restraints.  

 Tasks require        agents 

 Tasks require specific equipment or sensors 

 Tasks can have an order of completion 

 Tasks have a time window in which they must be started 

Agents will need to form groups containing the correct equipment before 

being able to complete a task. Additionally tasks can require a specific order of 

completion. The CBGA will provide a conflict free solution to this problem with 

some small assumptions on the network connectivity and scoring scheme. 

 

3.1.1 Single-Agent Task Assignment Problem 

The single-agent task assignment problem is a combinatorial optimization 

problem that tries to find the least-cost solution between two disjoint sets. There is a 

set of agents              and a set of tasks            . The objective of the 

task assignment problem is to find a conflict free matching set of agents to tasks that 

maximises a global reward. With a valid assignment each agent       can be assigned 

up to a maximum of    tasks and each task       must have no more than one agent 

assigned. 

An agent has a reward associated with it for completing a task. Let     be the 

non-negative reward of assigning the     agent to the     task. The objective is to 

assign each task to one agent in such a way as to maximise the overall reward from 
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completing all the tasks.  There is a binary variable     where       to indicate 

agent   is assigned to task  , otherwise      . The global reward or assignment score 

is the sum of all local rewards, where each local reward is the function of tasks 

assigned to an agent. Then the local reward generated by agent   is equal to (3.1) 

where         is the path dependant reward of agent   completing task   on the path   . 

  

 ∑          

  

   

 (3.1) 

 

 For an assignment to be efficient the task allocation must be valid and the 

reward is maximised as (3.2). 
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(3.2) 

 

The single assignment problem emerges when      which can be solved 

with the CBAA. If      then multi-assignments are allowed creating the multi-

assignment problem with a solution provided by the CBBA, although the CBBA also 

provides the same solution as the CBAA for the single assignment problem.  

 

3.1.2 Multi-Agent Task Assignment Problem 

The task assignment problem is extended to cover the addition of multi-agent tasks. 

Each agent   can be assigned to multiple tasks as part of the CBBA, conversely each 

task   can similarly have multiple agents assigned to it. Agents will now need to store 
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a matrix of bid data that will allow agents to track multiple winners for a multi-agent 

task where the task requires multiple agents. The winning agent matrix will now take 

the form       , which translates to agent   thinks agent   is assigned to task   with 

a winning bid value of     . 

Tasks now contain an agent requirement    that specifies how many agents are 

required for the task  . With multiple agents potentially being assigned to a task the 

algorithm will not limit each task   to a single assignment. Instead for a task 

assignment to be valid (3.3) must be true for a given task  , where      determines an 

agent’s own knowledge about its assignments and avoids double counting 

assignments where           with a conflict free solution.  

 

 ∑       

  

   

 (3.3) 

 

It is assumed that       such that agents will have no limit on the number 

of tasks they can assign themselves to. Combining the task assignment problem from 

(3.2) with the restriction for multi-agent tasks in (3.3) for an assignment to be efficient 

the task allocation must be valid and the reward is maximised as 
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(3.4) 

where    is the binary value for task validity equal to 1 when a task is valid or 0 when 

a task is invalid depending on the task requirements. A multi-agent task can be 
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determined valid using (3.3) by having the correct number of assignments. If the task 

has less than the required number the requirements have not been met so the task is 

considered as having failed providing no score. A failed task is not considered a 

conflict and no cost is associated with failing other than the indirect cost of not 

receiving a reward for the assignments. 

 

3.1.3 Restricted Task Assignments 

In additional to the constraints in (3.4) further requirements and restrictions 

are added to tasks that must be satisfied, each task will require specific types of agents 

or a specific set of equipment before the assignment can be considered valid. There is 

a list of    pieces of equipment                 found in the assignments where 

    is a list of equipment that agent   has such that      . Similarly task   requires a 

specific list of equipment     where      , if        then it is assumed any agent 

can bid on the task. When            agent   can bid on task   because it contains 

at least one piece of equipment required. A valid assignment is worked out using 

 

      {   |      }        (3.5) 

 

where “ ” is the set complement that returns the list of equipment in     that is not 

found in the current assignment {   |      }. When (3.5) is true task j has a valid 

assignment with the correct equipment. If the equipment list     for each agent is 

limited to a single piece of equipment such that |   |       then the problem is 

limited to agents of different types and that |   |    . In this case each task requires 

multiple agents of a specific type. 

When making assignments with task planning from the CBBA tasks are only 

available for bidding when all requirements have been met, agents should be able to 

plan all tasks in advance. When tasks have time restrictions for their completion it 
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becomes imperative to assign as many tasks as possible at the beginning of the 

simulation, waiting until after the pre-requisites of a task have been completed could 

lead to no time being available or agent close enough to complete it. However if 

agents assume an assigned task will be completed they can prepare ahead of time to 

complete the follow up task and it does not necessarily have to be the same agent 

performing the following task. 

Therefore a set of task prerequisites    are created for each task   such that 

     and that      . The set    contains which tasks must be completed before the 

related task   can be attempted. When      task   has no prerequisites and 

availability is limited to the highest bidder as before. Assuming that the existence of a 

bid for a preceding task will result in the completion of that task then a task with 

prerequisites is valid when 

 

                     (3.6) 

thus when (3.6) is true agent   can bid on task   where all prerequisite tasks   have 

valid assignments. With multiple prerequisite tasks the order of completion does not 

matter except in the case that those tasks also have their own prerequisite. However, 

these pre-conditions are assumed to be unchanging such that by completing another 

task or fulfilling a prerequisite task does not add, remove or change other pre-

conditions. In reality the task of attacking a target might require a task prerequisite to 

find the target in an area, if the target is unfound then the following attack task is now 

unnecessary. Tasks and their prerequisite tasks are assumed to be static such that the 

conditions set out at the beginning of a simulation for each task are not changed 

during the simulation. 

Finally each task has a start and end time in which the task must begin, an agent can 

calculate valid tasks for assignment using  
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           (3.7) 

where   
      is the estimated arrival time of agent   at task   along the path   . If the 

agent can arrive before the end time      then it can be assigned to the task. 

Additionally it cannot finish a task until after the start time with each task taking a 

length of time to complete. 

 

3.2 THE PROPOSED CBGA 

The Consensus Based Grouping Algorithm is a solution to the multi-agent task 

assignment problem where tasks can require multiple agents before they can be 

completed. Agents make bids on valid tasks and send this data to their neighbours. All 

agents receive bids from their neighbours and validate that data with their own 

removing conflicts and converging on a single global solution as assignment data 

propagates through the networked agents. The CBGA is split similarly to the CBBA 

into two phases; first the bundle construction phase where agents fill their bundle with 

tasks they will complete, secondly the consensus phase where agents come to an 

agreement on which agents are participating in each task. 

 

3.2.1 Local Data 

Table 3.1 displays the data each agent stores during a simulation to perform 

assignment and consensus on tasks. The data that agent   sends to agent   when they 

are within communication distance             are displayed in Table 3.2. An agent 

  sends all the winning bids that it knows about where            contains every 

combination of agent to task bids that agent   has. Similarly the winning agent matrix    is 

communicated which can be seen in Table 3.3. Along with this agent update times are 

sent allowing agents to know how old information is that they are being sent. Because 

all winning bid data is sent to an agent’s neighbour winning bids will eventually 
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propagate to every agent connected in the communication network even though two 

agents might be outside each other’s direct communication range. The equipment 

each agent has is assumed to be known by other agents, in a team of cooperating 

UAVs this information would already be known or in the case of discovering new 

agents the information would be communicated on first contact. Similarly the 

equipment requirement on tasks is assumed to be known. 

Table 3.1: Data stored on each agent  . 

Stored Data Symbol Description 

Bundle    

List of tasks the agent has currently assigned to itself. 

Ordered based on when tasks were added to the agent’s 

assignments. 

Path    

Similar to the bundle a list of tasks the agent has currently 

assigned itself. Ordered by the order in which an agent will 

complete the tasks. 

Winning Bid Matrix    
Matrix containing the winning bid each agent has made to 

each task according to agent  . 

Winning Agent Matrix    
Matrix containing the winning assignments where 1 means 

an agent is assigned to a task otherwise 0. 

Agent Update Times    
List of last update time from each agent in time t. 

Equipment List     
List of equipment an agent has or the agents type when 

limited to one instance. 

Table 3.2: Data communicated by each agent  . 

Communicated Data Symbol Description 

Winning Agents    
The agents that agent   thinks are assigned to each task. 

Winning Bids    
The winning bids matrix that agent   thinks have been 

made for each task 

Agent Update Times    
List of last update time from each agent in time t. 
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Table 3.3: Winning agent matrix    for agent   storing the binary values for winning 

assignments between agents and tasks. The winning bid list    is stored in exactly the 

same except that it contains the winning bid. 

Winning Agent Matrix (  ) 

Tasks 

      …   

A
g
en

ts
 

                 …      

                 …      

… … … … … … 

                 …      

 

 

3.2.2 Phase 1: Bundle Construction 

 In phase 1 each agent constructs a bundle of tasks              and the 

ordered path for those tasks             . Bundle and path construction works 

similarly to the development in the CBBA (Choi et al., 2009) but with the new task 

restrictions limiting the valid tasks for bidding. During the bundle phase an agent 

builds up a bundle of tasks it plans to complete by calculating the marginal 

improvement of each task and selecting the task with the greatest improvement. After 

adding the best task to its bundle it repeats the process for the rest of the tasks, 

continuing until no more tasks are valid or all tasks have been added. 

An agent determines which task it will add next to the bundle by calculating 

the marginal score improvement of a task. Each task provides a fixed reward    for 

each agent, multi-agent tasks provide the same reward for every agent assigned 

therefore creating higher rewards for such tasks. As with the CBBA an agent places a 

bid on a task based on the marginal score improvement it can achieve given the 

agent’s current bundle. Because tasks are given time windows for their completion a 

time discounted reward for the entire simulation is not viable, a task should not supply 

a reduced reward because it starts later than another. Instead the time discounted 
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reward should apply from the start time of the task not the simulation time. Thus the 

reward for an agent   completing task   is worked out as 

 

             
     

              (3.8) 

 

where       is the time discounted reward and   
             calculates the 

time difference between agent  ’s arrival at task   given path    and the start time 

       of the task. Thus as an agent receives the maximum reward by arriving on 

time, arriving later provides a reduced reward. However, the distance an agent travels 

to a task will provide an increasing cost such as the fuel requirement to travel or the 

additional risk encounter over long journeys. The distance discounted reward is 

calculated as 

 

          
        (3.9) 

 

where   
      is the non-negative estimated distance agent   will travel to task   on the 

current path    and    is the cost associated with traveling. This provides a further 

discounted reward for completing a specific task. 

 

   
    ∑(             ) (3.10) 

 

The overall score for agent   completing an assignment is calculated in (3.10), 

with the use of both time and distance discounted rewards makes the scoring function 

satisfy DMG because of triangular inequality. The time and distance discounted 

reward can model the degradation of an expected reward for completing a task that is 

further away or for arriving at the task late.  

As with the CBBA when a task   is added to the bundle    the marginal score 

improvement     is calculated as 
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         {
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 (3.11) 

 

where    is the operation that slots the second list into position   of the first list and 

therefore   
       

 is the score for slotting task   into position   in the path   . The 

position of task   in path    that provides the highest score improvement is used as an 

agent’s bid for the task  . Agents are only able to bid on valid tasks such that if an 

agent or task does not meet the task requirements in (3.5) and (3.6) then their bid for 

that task will not be considered.  

Before a bid selection the list of score improvements     must be compared to 

the current highest placed bids to create the valid bid list    . In the CBBA this 

process simply compared an agent’s bid to the current winning bid found in    , the 

valid bid list was generated using 

 

       (       )      (3.12) 

 

where       is one if the argument is true otherwise it is equal to zero. However, the 

multi-agent requirement on tasks will require a change in this process. With single-

agent tasks there was only one bid for comparison and an agent either provided a high 

enough bid or did not and thus replaced the previous bid. Multi-agent tasks allow 

multiple assignments so long as the number of assignments does not exceed the 

number of agents required for the task   . In addition multi-agent tasks do not require 

that an agent beat all the assigned bids, by beating and replacing the smallest bid the 

overall reward from a task will increase.  

 When      a task is considered a single-agent task and as such bid 

comparison will not change. If      then the task is a multi-agent task with two 

situations, either the number of assigned agents is less than the required number or the 

task is full in which case the agent must out bid another agent for the task. The 
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number of agents that agent   thinks are assigned to a task   can be calculated as the 

summation of all assigned agents in an agent’s winning bid matrix, where a task is 

considered full when the number of assigned agents is equal to    as shown in (3.13). 

 

 ∑        

  

   

 (3.13) 

 

If (3.13) is satisfied then a task is considered full and therefore an agent must 

provide a bid higher than some other agent assigned to the task. Finding and replacing 

the minimum bid will gradually provide a higher scoring assignment. An agent can 

assign a bid to a task when (3.14) is true and in the case of tied scores agent ID is used 

to determine the winner. 

 

        (    )       (3.14) 

 

When either (3.13) or (3.14) are true then an agent has a valid bid for the 

multi-agent task   and the valid bid list is updated with      . Once an agent has 

generated the marginal score improvement for each valid task it must then select the 

best task to be added to the bundle. The highest bid in     that complies with the valid 

bid list     is placed in agent  ’s bundle and added to location   in the path   . The 

agent updates it’s own bid lists      and      before re-calculating all score 

improvements and adding another task to the bundle. This process is repeated until an 

agent can no longer add any more tasks to its bundle because either the bundle is full 

or there are no more valid tasks to bid on. Figure 3.1 shows a summary of the bundle 

construction phase for an agent  . 
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Figure 3.1: Bundle phase for CBGA. 

3.2.3 Phase 2: Consensus 

Phase 2 of the algorithm takes communications received from neighbouring 

agents and analyses their knowledge of assignments to come to a consensus. In the 

CBBA each agent would send their winning agent and winning bid list, with the 

CBGA because of the existence of multi-agent tasks agents are now sending a matrix 

of assignments instead of a single list. Each agent communicates their winning agent 

matrix   , winning bid matrix    and the time stamp    displaying the last information 

Algorithm 5: CBGA Bundle Construction for agent    at iteration  : 

1:    procedure BUILD BUNDLE                                  
2:                   
3:                   
4:                   
5:                  
6:        while |  |     do           

7:                    |  |  
       

    
        

8:           for      
9:               if      then 

10:                if     ∑     
  
       

11:                          

12:                else if        (    )       then 

13:                          

14:                else 
15:                          

16:                end 
17:            else 

18:                      (    ∑     
  
   ) 

19:            end 
20:        end 
21:                           

22              
          

         

23:                      
24:                   

     

25:             
         

 

26:             
      

27:      end while 
28:  end procedure 
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update from each neighbouring agent. The data sent and received under a limited 

communication network can be seen in Figure 3.2.  

 

Figure 3.2: Data sent and received between agent A and its neighbours, a link between 

two agents represents that those agents are within communication distance and thus 

can communicate data between each other. 

As agents receive assignment data from neighbours they will build up and 

store assignment matrixes for each neighbour where        shows that agent   

thinks that agent   is assigned to task   with a corresponding bid      from the 

winning bid matrix. The consensus algorithm can be seen in Figure 3.3 and is split 

into two sections, the first section (line 4-6, Figure 3.3) deals with tasks that require a 

single agent, using    to determine the number of agents required for task  . Tasks 

requiring a single agent will require the same consensus algorithm as found in the 

CBBA (Choi et al., 2009) including the same decision table found in Table 2.1. The 

consensus algorithm assumes only valid bids are made during the bundle construction 

algorithm, thus no changes are required for single-agent tasks. The second section 

(line 7-25, Figure 3.3) contains the multi-agent consensus part of the CBGA where 

    , which is split into two phases; the first correlates the receiver’s current 

information with that of the sender. Secondly the receiver takes new information from 
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the sender and merges it with its own data to produce a consistent set of agreed 

information. The CBBA used a table for determining whether to update, leave or reset 

information; with the extended problem this becomes problematic. When another 

agent has differing assignments it does not necessarily require leaving or updating the 

information as done in the CBBA, the information could merge causing both agents to 

be correct. Further complications come when equipment requirements are taken into 

account. The algorithm is split into two phases to best handle the incoming 

information, by correcting each agent’s information the agent can merge incoming 

data better by not having to account for mistakes in its own data. 

 

 
Figure 3.3: Conflict resolution for the CBGA for multi-agent task. 

Algorithm 6: Conflict Resolution for Agent i      

1:   send   ,    and    to agent   with             

2:   receive   ,    and    from agent   with            

3:   for       
4:       if        then  

5:           Consensus from CBBA 

6:       else 

7:            for                   

8:                if                then 

9:                               

10:                             

11:              end 

12:          end 

13:          for                   

14:              if                            then 

15:                  if (∑        )     then 

16:                               

17:                               

18:                  else if                  then 

19:                           ,           

20:                           ,           

21:                  end 

22:              end 

23:          end 

24:     end sik =           

25: end 
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The first phase (7-11, Figure 3.3) takes all the winning assignments the 

receiver   has for task   by checking for the existence of             and 

compares how correct that information is with the sender. If the agent assigned is the 

sender or the sender has received a more recent update from the assigned agent using 

       , then the sender’s information is more up to date thus their data will be 

more accurate. This could be either that a better bid was placed or that the agent is no 

longer assigned to the task. Either way the receiver will replace its bid data for that 

assigned agent   with the senders bid data. After comparing all the assignments 

receiver   has for task  , the receiver can be sure its assignments for that task are 

accurate, however, the sender may have new assignments that are better than the 

current assignments dealt with in the next phase. 

During the second phase (12-23, Figure 3.3) the receiver’s information is 

updated with new assignments from the sender. From the first phase an agent knows 

that all of its assignments, according to the sender, are currently up to date. Following 

this the receiving agent can proceed through each new assignment and evaluate 

whether the new bid is better. When the sender   has an agent   assigned to task   

that is not the receiver nor is it assigned by   because phase 1 has dealt with this 

situation already and the sender has a better update time the new assignment can be 

validated. Two situations can occur, either the multi-agent task still has space, in 

which case the assignment will be added, or the task is full and the bid must be 

compared. The receiver checks all bids assigned to find the minimum bid, which is 

then compared to the new assignment keeping the highest bid of the two competing 

assignments.  

When the algorithm replaces an agent in a current group it must replace an 

agent that is carrying at least one piece of identical equipment, if the task requires 

specific equipment, as the bidding process will not let a group form without meeting 

the required equipment list. There is still space in an assignment if ∑           
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  , but the new assignment must contribute to the correct equipment list. The current 

equipment list is calculated as {   |      } which provides the set of equipment of 

all assigned agents. Thus agent   can be assigned if          {   |      } that is 

true if there is still a requirement for an agent m with specific equipment     without 

the need to replace an assigned agent. If there are not available spaces in the group 

then another agent must be replaced using 

 

 (           )                  (3.15) 

 

to find, if feasible, an agent with the same equipment as agent   but with a lower 

contribution score thus replacing that agent would provide an overall higher score. If 

these conditions are met then the algorithm can replace the lower scored agent.  

If two agents both place the same bid for a task there is the chance of the agents 

creating a deadlock. This can be created by both agents refusing to leave the task with 

the assumption that the other agent has lost and will leave, alternatively they could 

both assume they have lost, leaving the task and re-assigning later. To avoid any 

chance of deadlocking there must be a system in place to prevent such situations. The 

agent with the highest ID is given priority that provides a systematic way for all 

agents to agree on the winner in the case of tied bids. 

 The consensus phase continues checking the assignment data received for each 

bid until finally the agent updates its time stamp     with the current simulation time. 

The CBGA iterates between the bundle phase and the consensus phase until all agents 

involved coverage to the same conflict free solution. A brief assignment involving the 

CBGA and multi-agent tasks can be seen in Appendix A.2. 
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3.3 PERFORMANCE 

3.3.1 Methodology 

The CBGA is extended from a Matlab implementation of the CBBA; the 

algorithms are tested and compared using simulated experiments. The simulation 

parameters are kept as close as possible to the setup used in previous research (Choi et 

al., 2009) (Choi et al., 2010 ). The three main variables examined are the number of 

agents, number of tasks and number of agents required for each task. Changing these 

variables explores a large breadth of possible assignment situations, for example, 

testing consensus on tasks that require a large number of agents resulting in an 

assignment that requires significant cooperation. Covering a range of possible 

simulation parameters helps defend the algorithms performance and use at 

theoretically any number of agents, tasks and agent requirements of those tasks. With 

the increased complexity of the requirements of tasks it is important to consider the 

effect this has on the communication between agents. In the potential practical 

application of this algorithm communication bandwidth is an important aspect to test. 

The tasks have increased complexity in their requirements; requiring a longer decision 

making process with more information to communicate to achieve consensus and thus 

an overall increase is expected in the communication requirements, however, this 

should only be a linear increase on a per assignment basis. 

Comparisons with existing methods are difficult as previous algorithms solve 

a specific aspect of the multi-agent task assignment problem. The extension of the 

CBBA for multi-agent tasks that solves ‘duo’ tasks performs a comparison of the 

percentage score improvement over the single agent solution provided by the CBBA. 

A similar comparison is made between the CBBA and the CBGA, although the 

experiments are setup to be as similar as possible there are still some differences 

between the two setups. However this comparison still has some value in showing the 
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possible improvement and strengths of the new algorithm and at the very least can 

indicate a similar quality of assignments produced by the CBGA. 

3.3.2 Test Scenario 

Specific scenarios were randomly generated to test different aspects of the 

CBGA in dealing with different requirements. Additionally comparisons were drawn 

with the original CBBA and the CBBA solution to duo tasks. Comparing the 

algorithms each test contains 20 tasks with a varying number of agents where    

        . The simulation environment is a 3-D space of size       (      

      ) with agents randomly placed on the floor and tasks randomly placed 

anywhere in the environment. Tasks are given a random start time window that lasts 

5m within which agents must begin the task, additionally each task takes 5m to 

complete. The time-distance discounted reward in (3.10) is used to define the scoring 

function with a fixed reward       , time-discount       and distance discount 

     . Each agent moves at a constant speed of 20 m/s. 

The objective of each experiment is to maximise the total assignment score 

where a higher score is indicative of a better assignment from a shorter travel 

distance, timely task completion and greater number of valid assignments. The overall 

score of each experiment is the sum of the scoring function for each agent’s path. 

Multi-agent tasks defined as requiring more than one agent will reward a fixed score 

to each agent involved signifying the difficulty and importance of such tasks. Both the 

amount of agents required and the specific equipment needed is modified to test the 

quality of assignments under certain circumstances. Observations will be made on the 

overall impact on the score and the number of communications agents require to come 

to a consensus. Communication between agent   and agent   where assignment data is 

sent is counted as a single communication step. Each specific experiment setup is run 

100 times as is consistent with experimental data for the CBBA and the CBBA with 
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duo tasks (Choi et al., 2009) (Choi et al., 2010 ). For each experiment the average 

score and communication data is plotted to show trends, agent movement during a 

typical experiment is also shown to display the algorithm assigning agents correctly to 

the available tasks and to draw discussion on assignment quality. 

Table 3.4: Icon key for agent path graphs. 

 Agent start locations, different colours represent 

different type i.e an agent with a different piece or 

set of equipment. 

 An agent’s path through a simulation, agents of the 

same type are coloured the same. 

 Task location, the crosses represent the start and 

end time window of when agents can attempt to 

start the task. Tasks with differing requirements are 

coloured and labelled differently. 

 

Figure 3.4: Plot of agent paths and their assignments in X Y and Z. 

Agents complete tasks in a three dimensional environment to effectivly 

simulate UAVs, all agents begin a simulation at a random location on the ground. 

Figure 3.4 shows the paths of ten agents completing twenty multi-agent tasks where 

task 1 requires two agents of type A and task 2 requires three agents of type B. 

Displaying the agent paths in this way does not provide enough useful information 
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and it is problematic to visualise the order in which agents are completing tasks or 

which agents are doing a task.  

 

Figure 3.5: Plot of agent paths and their assignments through time in X and Y. 

Figure 3.5 improves the display of agent’s paths by removing one dimension 

and introducing time; this alleviates some of the problems and helps produce a better 

image of agent movement through the simulation. All agents begin the simulation on 

the ground plane, as time progresses agents move upwards through the graph, 

although this is not necessarily upwards in the 3D environment. Whilst this method of 

presenting the data is better than focusing on the pure coordinates of agent actions, it 

is still partially difficult to see what is happening although it provides a clearer 

picture.  The most important information required to visualise the simulation is a 

metric of movement over time, reducing the number of dimensions displayed down to 

one is sufficient enough to convey movement through the simulation whilst still 

differentiating between each agent (excluding when agents move together between 

tasks). Figure 3.6 displays only the x coordinate of each agent as it changes through 

time displayed on the y axis. With each task having a specific time window in which 

it can be started this method provides a better way to visualise the activity in the 

simulation. An important property to note is that two tasks could be displayed in a 
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similar area on the graph but in practise are potentially very far from each other, 

generally this is not a problem and overall this method works well for displaying 

movement and activity. Whilst the simulation displayed in Figure 3.5 is quite 

complicated Figure 3.6 cleans up most of the difficulties allowing an easier 

visualisation of the movement and assignments of agents through the simulation, this 

method will be used to display agent assignments throughout this thesis. 

 

Figure 3.6: Plot of agent paths and their assignments through time and position X. 

 

3.3.3 Multi-Agent Task Allocation 

The CBGA algorithm is first tested to determine if it can come to a conflict 

free assignment for a number of situations that test the single and multi-agent task 

assignments. A conflict free solution is defined as an assignment in which all agents 

agree with the agent to task assignments. A conflict is said to have occurred if, for 

example, two agents are assigned to a task that only requires one agent. Although the 

algorithm has been created for multi-agent tasks the algorithm must still function for 

single-agent tasks, Figure 3.7 shows the algorithm succesfully assigning agents for 

single-agent tasks and providing a conflict free solution. It can be seen that each task 
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requiring only one agent has exactly one agent assigned to it over the duration of the 

experiment. 

 

 

Figure 3.7: Agent paths with position (X) over time ( ). Both experiments show 

conflict free solutions for single-agent tasks. First experiment (left) has three agents 

completing fifteen tasks. Second experiment (right) has ten agents completing twenty 

tasks. 

Multi-agent tasks are tested to show that agents are able to correctly assign 

multiple agents to a task. In Figure 3.8 it is shown that the CBGA can succesfully 

converage on a solution for tasks requiring two agents. Upon completing the first 

assignment agents often move as a group to complete further tasks for the most 

efficent assignments. The second experiment in Figure 3.8 shows another multi-agent 

assignment, however, this time the number of agents       does not split evenly 

with the multi-agent requirement          . Interestingly rather than leaving an 

agent on the side line the CBGA uses the spare agent to marginally improve the score 

provided by some of the tasks. The second experiment in Figure 3.8 provides an 

assignment score of 2777, removing the spare agent ‘A8’ the total assignment score is 

reduced to 2653.  

In some cases, as seen in the second experiments, agents can switch between 

multi-agent tasks where the optimal choice would be to stay with the same agents and 

continue to complete multi-agent tasks together. This is casued by the way agents 

individually build up their own bundle of tasks to complete. An agent might add a 
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task close to its starting location as it would receive a high reward for completing that 

task, upon adding other tasks to the bundle that are earlier on the agents path can 

produce situations where agents split up. This situation could be avoided by focusing 

assignment of tasks to tasks that can be completed first but this would provide its own 

set of problems where agents would travel unnecessary distances simply because the 

task scehdueled earlier. Both situations have their advantages and disadvantages 

primairly casued by the method of bundle creation.  

 

  

Figure 3.8: Agent paths with position (X) over time ( ). Both experiments show 

conflict free solutions for multi-agent tasks. First experiment (left) has four agents 

completing fifteen multi-agent tasks that require two agents each. The second 

experiment (right) has ten agents completing fifteen tasks that require three agents 

each. 

It is also necessary to show that both systems can function together, that the 

algorithm can handle both single-agent tasks and multi-agent tasks in the same 

simulation. Figure 3.9 confirms that agents can assign the correct number to each task, 

specifically looking at tasks 3, 4 and 5 it shows how two agents group together to 

complete task 5 that requires two agents, then instead of both going to task 4, one of 

the agents completes task 3 en route then reunites with the previous agent to complete 

task 4. This experiment also shows that the algorithm does not necessarily need to use 

every available agent; here agent 2 is not required at all because a better score is 

produced by not using this agent. 
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Figure 3.9: Agent paths with position (X) over time ( ). Four agents complete three 

single-agent and three multi-agent tasks that require two agents each.  

 

Figure 3.10: Agent paths with position (X) over time ( ). Eight agents complete two 

different types of multi-agent tasks. Task 1 requires three agents and task 2 requires 

six agents. 

Finally Figure 3.10 illustrates that the algorithm can handle larger group 

requirements. This experiment contains two different tasks, one requiring three agents 
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to see how many agents are going to each task, but using Table 3.5 it shows the final 

conflict free assignment that the agents converged on. In this particular experiment 

agent 1 and 5 both finish after they have completed task 1. 

Table 3.5: Winning assignment bids for the experiment displayed in Figure 3.10 

where each task provides a fixed reward of        modified by the cost of travel 

calculated from the marginal score improvement (3.11). 

 

 
Agents 

A1 A2 A3 A4 A5 A6 A7 A8 

T
a
sk

s 

T1 99.6   99.6 99.5    

T2    95.9  95.9 95.9  

T3 95.7   95.7 94    

T4  94.6 94.8 97.1  97.1 97 94.7 

T5 94.3   94.2 94.2 93.1 93.9 95.3 

T6  95.4 93.7 92.9  92.9 92.9 90 

Investigating the effects of assignment and consensus of multi-agent tasks 

comparisons are made between the previous algorithm the CBBA and the extended 

algorithm the CBGA. The CBBA is used to solve single-agent tasks and the CBGA is 

used to solve multi-agent tasks, in addition comparisions are drawn to a setup 

involving both multi-agent and single agent tasks.  

 

Figure 3.11: Comparision of average score and number of communication steps for 

consensus between the CBBA, CBGA and using both. Experiments contain twenty 

randomly generated tasks and multi-agent tasks require two agents. 
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Figure 3.11 has three experiments plotted that tested both algorithms, single-

agent tasks use the CBBA and multi-agent tasks use the CBGA. The first experiment 

used just the CBBA where each task required a single agent to complete it. The 

second experiment tested the CBGA by requiring two agents to complete each task 

the assignments are seen in Figure 3.12. The final experiment used both types of tasks 

making the agents reach a consensus on assignments for ten multi-agent tasks and ten 

single-agent tasks. In the experiment the multi-agent tasks initially provide lower 

scores than the single-agent tasks but as the number of agents increases a greater 

increase in score is observed. Interestingly the total number of communication steps 

actually decreases with the introduction of multi-agent tasks, this is significant when 

noted that the tasks in the second experiment double the total number of assignments 

required for consensus from twenty assignments to forty because each multi-agent 

task requires two agents instead of one agent thus two assignments. 

 

 

Figure 3.12: Cross section of agents movement through time ( ) and the X axis to 

complete twenty multi-agent tasks.  Each task requires two agents for completion. 
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0 and 20 each agent assigns and completes its initial task along with another agent. 

After completing the first task agents commonly stay together for succeeding tasks, 

with the closest task yielding the highest reward neither agent needs to dispute the 

best choice. Occasionally two groups may attempt the same task, which will then 

require consensus but overall each self-made group continues through the simulation 

effectively as one entity. With 5 agents mean communication steps decreased 

significantly (decrease of 14 steps) between the CBBA (24 ± 8 steps) single agent 

tasks and the CBGA (10 ± 2 steps) multi-agent tasks as shown in Figure 3.11. At 10 

agents mean communication steps for consensus decreased further (decrease of 24 

steps) showing a significant communication drop for consensus from single agent 

tasks (47 ± 14 steps) to multi-agent tasks (23 ± 4 steps). Improvements are significant 

to p < 0.01 for statistical significance at 1%.  

 

Figure 3.13: Computational times for running each experiment in Figure 3.11 CBBA 

assigns only single-agent tasks, the CBGA assigns multi-agent tasks and mix requires 

both the CBGA and CBBA. 
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alternatively the CBGA had to solve 40 assignments because each task required 2 

agents. Comparing computational time and the number of communication steps; the 

CBGA takes a longer time to compute the consensus when receiving new 

assignments, but requires less overall communication between agents to achieve the 

final consensus. This increase in computational run time is still acceptable as the base 

CBBA converges very quickly (Choi et al., 2010 ).  

The preferred duo cooperation algorithm (Choi et al., 2010 ) was developed to 

address a limited version of the multi-agent task assignment problem. A test scenario 

was setup where tasks were classed as “preferred duo” which meant they required one 

agent and would reward a score of 100, however if a second agent assisted with the 

task they would receive an additional reward of 50 for a total score of 150. This was 

compared to the CBBA assigning agents to single-agent tasks rewarding a score of 

100. Naturally this was always going to provide an improvement over the CBBA 

because the preferred duo tasks provide a higher potential score per task. Figure 3.14 

shows the resulting improvement of the preferred duo algorithm over the CBBA. 

Using a similar setup the CBGA was tested where tasks required two agents and gave 

a reward of 150, comparing the resulting improvement or reduction in score over the 

CBBA and its single-agent tasks rewarding a score of 100.  

 

Figure 3.14: Percentage score improvement by using the preferred duo cooperation 

(left) (Choi et al., 2010 ) and the CBGA (right) over the original CBBA where darker 

squares show lower or no improvement and lighter squares show a higher 

improvement. 
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Figure 3.15: Difference in percent score improvement by using the CBGA over the 

CBBA preferred duo cooperation where darker squares show a decline in score and 

lighter squares show an improvement in score. 

Whereas the preferred duo algorithm provides an improvement across the 

board the comparison between CBBA and CBGA shows poorer percentage score 

improvement with smaller agent numbers. This loss is caused by the inability for the 

CBGA to let a specific task be completed by either 1 or 2 agents as found with the 

preferred duo tasks. With small agent numbers compared to the total number of tasks 

completing two single-agent tasks in the CBBA provides a score of 200; however the 

CBGA cannot do this as agents are forced to complete the task in teams of two only 

providing a score of 150. Once the ratio of agents to tasks is greater the cooperation of 

agents becomes more rewarding with less unassigned tasks. The preferred duo scoring 

gives an advantage over the CBGA scoring better at high task to agent ratios. This 

issue is still prevalent at increased agent numbers but is offset by the assignment 

quality of the CBGA, showing percentage increases of up to 20% over the preferred 

duo cooperation as can be seen in Figure 3.15. These results show a greater 

performance improvement at higher levels of cooperativeness, where the best scores 
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are achieved by cooperatively completing as many tasks as possible because there is a 

shortage of tasks.  

 

 

Figure 3.16: Implementation of a sequential greedy algorithm to solve the multi-agent 

task assignment problem in a centralised system.  

In Figure 3.16 a centralised solution to the multi-agent task assignment 

problem is presented that sequentially adds the greediest assignment at each iteration. 

The sequential greedy algorithm calculates the best marginal score improvement for 

every combination of task  ̃ to agent  ̃ given the agents current path   ̃. If the 

assignment is valid such that a multi-agent task is not full and the marginal score 

improvement is better than any other score then the assignment is added. The 

algorithm repeats this process of calculating the marginal scores and adding the best 

until eventually there are no more valid score improvements and the algorithm ends. 

Algorithm 7: Sequential Greedy Algorithm for Multi-Agent Assignments     

1:   while      

2:                   

3:       for  ̃           

4:           for  ̃           

5:               if  ̃    ̃ 

6:                     ̃ ̃    

7:               else 

8:                     ̃ ̃       |  ̃|  ̃
  ̃    ̃ 

    ̃
  ̃    ̃    

9:               end if  

10:             if    ̃ ̃  ∑   ̅ ̃ 
  
 ̅             ∑   ̃  ̃

  
       

11:                 y =    ̃ ̃  ∑   ̅ ̃ 
  
 ̅   

12:                    ̃    ̃ 
13:             end if 

14:         end for      

15:     end for 

16:                   
       

 

17:                  
18:               

    

19: end while 
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This provides a greedy centralised solution to the multi-agent task assignment 

problem. 

The CBBA was shown to provide the same solution as a centralised greedy 

algorithm; similarly the CBGA will be shown, with experimental results, to provide a 

similar result to a centralised solution.  Consider the sequential greedy algorithm for 

multi-agent assignments (SGAMA) in Figure 3.16 that sequentially adds the best 

score improving task agent pair at that point in time. Continually updating the 

marginal score improvements of each agent the best agent task pair is added until no 

further improvement for the solution is found. This algorithm is a centralised solution 

where a central hub is given access to every agent’s scoring scheme and is able to add 

tasks to any agent’s bundle and path.  

 

  

Figure 3.17: Average assignment score achieved by the CBGA and the SGAMA 

completing 20 tasks with    agents (left) and 20 agents completing    tasks. 

Figure 3.17 shows how the CBGA provides very similar results to the 

SGAMA. Although the resultant assignments are similar the results are not exactly 

the same with small variation in the averages. Nevertheless neither produces a 

statistically different result. However, comparisons with the SGAMA reveal a flaw 

with the CBGA as shown in Figure 3.18. As the number of agents required per task     

increases the CBGA scores similarly to the SGAMA until the ratio of agent 
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requirements     to the number of agents    is such that 
  

    
  . At this point the 

CBGA provides a significantly worse score than the centralised solution. The 

assignment graph shows that agents are producing a number of invalid, although still 

conflict free, assignments that produce no score. This problem is caused by agents 

maximising individual score over the teams focus on completing multi-agent tasks. 

Chapter 5 will examine this situation and develop a solution. 

  

Figure 3.18: Average assignment score achieved by the CBGA and the SGAMA 

when agent requirements    are increased with 10 agents and 20 tasks (left). 

Assignment of 10 agents to 20 tasks with each task requiring 10 agents (right). 

 

Figure 3.19: Comparison of the average number of communication steps and number 

of bids required to come to a consensus as the number of agents required per task 

increases. Experiments had 10 agents completing 20 tasks with increasing agent 

numbers required on tasks. 
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Figure 3.20: Effect on average communication steps and bid data as both the number 

of agents and required agents for multi-agent tasks increases. 

Testing the effects of agent requirments on tasks Figure 3.19 shows the 

average number of bids requied to come to a consenus on assignments as well as 

showing the number of communication steps it took. The number of agents and tasks 

are fixed at 10 and 20 respectively and with each set of experiments the number of 

agents needed for each task was increased. It can be seen that as the agent requirement 

increases the average communication steps decreases, a communication step is 

defined as the number of instances of receiving a communication message from 

another agent. The average number of bids has less correlation with the agent 

requirement, introducing some multi-agent tasks increases the number of bids for 

consensus but as the requirement increases closer to the maximum number of agents 

in the simulation the bids required drops. It seems likely that the overall decrease in 

bids and communications made is a result of the poor performance of the CBGA due 

to the low ratio of agent requirements to the number of agents. The decline observed 

in Figure 3.19 is consistant with the drop in performance from the centralised 

algorithm in Figure 3.18. Changing the number of agents in each set of experiments to 

match the required agents for tasks, a direct correlation is observed in Figure 3.20 
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between the communication steps and number of bids for consensus. This suggests 

that by increasing the number of agents each time to match the required agents per 

task both sets of data increase with a strong correlation to each other. 

  

3.3.4 Restricted Task Assignments 

Introducing heterogenous agents and further requirements on tasks increases 

the complexity of tasks. Initially tasks are limited to one type of agent and agents have 

one piece of equipment that defines their type |   |   . Figure 3.21 presents two 

simulations that were run where the system was populated with two different tasks 

each requiring a different type of agent, here the blue agents complete the blue tasks 

and the green agents complete the green tasks. This functionality continues to work 

with the inclusion of multi-agent requirements as can be seen in the second 

experiment where each task requires two of the specified agents. 

  

Figure 3.21: Agent paths with position (X) over time ( ). First experiment (left) 

shows two different types of agents completing two different types of single-agent 

tasks. The second experiment (right) shows the same group of agents and tasks except 

the tasks are now multi-agent tasks requiring two agents each. 

Extending this experiment tasks can specify how many agents of a given type 

it requires, the two experiments in Figure 3.22 display tasks that specifically require 

one of each agent type such that               where         and |   |  

|   |     
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Figure 3.22: Two experiments both with multi-agent tasks that require two agents one 

of type A and one of type B.  

 

Figure 3.23: Comparison of average score and number of communication steps 

required to reach a consensus for tasks that require multiple different heterogeneous 

agents. 
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agent A and B, finally the third task is another multi-agent task that requires all three 

agents. Agents are split evenly between the three types with extra agents created 

firstly as type A then type B. A split of 8-6-6 is created between the three tasks A, AB 

and ABC. The results in Figure 3.23 show that when the restrictions on tasks are high 

the number of comunications required for consensus is lower as seen from experiment 

3. With multi-agent tasks the assignment score does not always improve linearly in 

relation to the number of agents in the simulation, in the case of experiment 3 the 

significant increases in score are observed by examining the introduction of an 

additional agent of type C. This addition allows more of the multi-agent tasks to be 

completed that provide a better score for the team thus providing a more significant 

increase in score. Figure 3.24 shows a typical assignment of experiment 3 with 

reduced tasks for visual clarity. A reduction in the communication required to meet a 

consensus is observed from Figure 3.23 for experiment 3 where a task requires all 

three equipped agent types. These results might be a consequence of the time 

constraints on the tasks which will limit the available options from the maximum 20 

tasks down to a much easier to manage set of the earliest obtainable. 

 

Figure 3.24: Agent’s paths through time for 3 agent types (A,B,C) completing 3 

different types of tasks (TA, TB, TC). 
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In Figure 3.24, for equipment dependant multi-agent tasks, it is seen how 

agent C has very little choice in its assignments and causes no conflict with other 

agents because it must depend on its teammates to arrive and aid in its tasks. Agent A 

freely moves between its tasks and, when required, aids its teammates. The reduced 

options for each agent greatly reduces the length of communication time required 

between team mates. More importantly the reduced amount of conflicts caused helps 

agents come to a quick consensus with smaller communication exchanges. 

Figure 3.25 and Figure 3.26 show the introduction of tasks that have 

prerequisites where a specific task must be scheduled for completion before the task 

with the prerequisite requirement is assigned. Experiment 1 contains no tasks with 

prerequiste requirements such that          . Experiment 2 and 3 both have task 

dependancies on half the tasks where for 10 tasks     , 5 tasks require a specific 

task from the first group completed        and the final 5 tasks require the 

completion of a specific task from the second group for example       . It shows 

that compared to CBGA tasks found in experiment #1, the number of communication 

messages sent to reach a consensus is usually lower with the additional restrictions. 

By putting these prerequisite requirements on half the tasks in the simulation the 

number of tasks that agents find conflict over is reduced, with the follow up tasks 

having fewer conflicts. Experiment #2 contained a problem where the task time 

window for completion was randomly generated. In some cases this meant a task with 

requirements was set before that of the requirement. This error created a number of 

tasks that could never be achieved and therefore limited the overall score obtainable. 

Interestingly when these time limits were removed in experiment three, the average 

score decreased even though more tasks had become available. Perhaps due in part to 

the fact that only agents who were involved in the prerequisite would attempt the 

follow up task, but often they would be busy completing other tasks. Although in 

contrast after opening up accessibility on these tasks the overall communication levels 
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increased. When tasks are made accessible to everyone  points of conflict are 

amplified and therefore the number of communication steps required to come to a 

consensus is also increased. By limiting tasks to a small subset of agents the overall 

requirements on communication for consensus decrease. 

 

Figure 3.25: Comparison of total score and number of communication steps for tasks 

that require previous tasks completed. Experiment 1 used multi-agent tasks with no 

task dependency. Experiment 2 and 3 both added task dependencies but Experiment 3 

removed the time requirement on follow up tasks. 

 

Figure 3.26: Agents ‘A’ movement through time and the X axis. Tasks marked ‘B’ 

require the corresponding task ‘T’ to be completed first, similarly tasks marked ‘C’ 

require a corresponding task ‘B’ completed. 
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Figure 3.26 shows the successful assignment of tasks requiring previous tasks 

to be completed as well as each task requiring two agents. The CBGA can 

successfully handle multi-agent tasks as well as deal with other restricted assignments 

on tasks including equipment limits and task requirements.  

3.4 CONCLUSIONS 

This chapter presented an extension of the CBBA that solves the multi-agent 

task assignment problem with group, equipment and task based dependencies. 

Communication increases were expected with the introduction of multi-agent tasks, 

which require an increase in information to reach consensus. However, multi-agent 

tasks were in fact shown to require less communication messages in certain situations 

to come to a consensus. These results might be derived from the time constraints on 

tasks, which limit the available options from the maximum 20 tasks down to a more 

manageable set of the earliest obtainable tasks. Added to this with constraints on 

which agents can perform each task further reduces the set of achievable tasks for any 

one agent. The necessity to bid over tasks and form consensus gradually disappears as 

we tighten the restrictions on each task. In some cases agents do nothing as they are 

not required, although it is far better for the group as a whole if they do not move, 

therefore causing no cost on travel or an increase in communications. This situation 

potentially brings the overall average communication down, where the agents 

working towards tasks are communicating more than the averages would suggest. 

As the number of agents in the simulation increases the overall score reaches 

its full potential as agents complete all the available tasks. Eventually the only 

increase in score is caused by a greater chance of an agent starting near a task than is 

the case with fewer agents. For multi-agent problems agents group up and stick 

together to complete tasks, in some cases for the entire simulation as seen in Figure 

3.8. With increasingly complicated group and equipment requirements it is found that 
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groups continue to work together where possible, but often an agent will leave to 

complete another task and merge back again to work on a later task. In some respects 

it can be said that when cooperation is a requirement it in fact simplifies the problem 

rather than complicates it.  

Compared to a centralised solution in the SGAMA the CBGA performs almost 

identically in most situations, although this also highlighted a problem with the 

CBGA for a low ratio of agents required    to the number of agents    in the system. 

Agents are failing to agree on a single path when the number of agents and the 

required agents on tasks creates a single scoring path through the simulation.  

Figure 3.19 and Figure 3.20 show some correlation between the number of 

agents and the agent requirements on tasks for the number of bids taken to come to a 

consensus. When the number of agents equals the agent requirement        a 

steady increase in the number of bids required is observed, this is caused primarily 

from the increase in agents, for every extra agent in the simulation another set of bids 

needs to be communicated for consensus.  

The initial introduction of multi-agent tasks increases the communication and 

bids required for consensus but once the amount of agents each task is requesting is 

similar in size to the number of agents in the system both communication and bids 

reduce. When assigning 10 agents to complete tasks that require 10 agents each the 

only complication is in deciding which task to complete first, after this point all the 

agents can agree fairly straightforwardly which task is the next best. Whilst multi-

agent tasks reduce the overall communication steps required compared to single-agent 

tasks they increase the bid data needed, as the complexity of the multi-agent tasks 

increases though both communication steps and bid data decreases. Another issue 

with the solution to multi-agent tasks is the arrival times of each agent. Currently the 

time window for a task to start is small enough so that even if agents do not arrive at 

the same time the resulting delay is minimal and as agents can only assign themselves 
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to tasks they can start in time, the task is unaffected. However, if the start time for 

tasks was made greater or the start time was completely removed agents would then 

need to agree upon when they arrive at a task as well as who will be assigned to it. 

This issue adds a huge amount of complexity to the situation where agents must also 

communicate their earliest arrival time and must continually re-plan their assignment 

when other agents want to assign themselves to the task but with a later arrival time. 

Comparisons were made with an alternative method of solving multi-agent 

assignments, although the duo cooperation extension of the CBBA (Choi et al., 2010 ) 

is limited to solving tasks with duo agent requirements. The CBGA when similarly 

limited to duo tasks can score comparatively to the duo extension of the CBBA. 

Additionally the CBGA performs better when there are a larger number of agents in 

the simulation, such that there are enough agents in the system to complete all the 

tasks. In this case the preferred duo tasks are almost identical to the multi-agent tasks 

in the CBGA where the best scores are achieved in high quality assignments with two 

agents assigned to each task. Furthermore the CBGA also removes the limitation of 

up to two agents per task that the duo cooperation algorithm is limited to providing 

robust and conflict free assignments to complex cooperative requirements involving 

any number of agents.  
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Chapter 4: Dynamic Multi-Agent Consensus Storage 

Chapter 3 extended the consensus based bundle algorithm to deal specifically 

with multi-agent tasks, when the CBBA used two vectors to store an agent’s winning 

bid list and winning agent list (Choi et al., 2009), by extending the algorithm to solve 

multi-agent tasks the winning agent lists became inefficient and unnecessary. This 

chapter examines combining the bids list into a concise and dynamic storage for 

handling multi-agent tasks, additionally further changes allow the algorithm to handle 

a dynamic environment with knowledge sharing. This method provides improved 

communication and the flexibility of the algorithm to handle a dynamic environment 

with discoverable knowledge of agents and tasks. The CBBA requires all agents to 

function and store data in the exact same way including agreeing on task and agent 

indexes in the winning bid lists. When considering a dynamic environment where 

each agent can discover new agents and tasks independently it cannot be assumed task 

and agent data will cross-over directly. Furthermore in practice different UAVs will 

have software specific to their hardware (Pastor et al., 2007) (Valenti et al., 2007) 

(Tisdale et al., 2006) and may store their data in differing ways. The CBBA requires 

homogenous agents that store assignments in a specific format, any agent which is not 

conforming to the correct standard is unable to communicate their assignments to the 

other agents; in a practical application these requirements could be unfeasible. This 

chapter provides a solution for consenting data between different UAVs providing 

they can understand any communication messages about bidding data. 

 

4.1 PROBLEM 

Multi-agent tasks require multiple agents to complete them, when agents 

communicate between each other they need to store every agent assigned to a task and 

their current bid. When agreeing on the data they receive they need to know whether a 



 

 87 

task is at its maximum capacity i.e. whether a multi-agent task that requires 4 agents 

already has 4 agents assigned, and if it is, then the only agent it should replace is the 

agent with the smallest bid.  Storing knowledge about tasks that require multiple 

agents with a single vector is not sufficient for all the data. To create a consensus 

agents require the knowledge of all agents assigned to a task and their respective bids. 

With the CBBA task and agent information are stored locally at the beginning 

of the calculation and each agent uses two vectors that are stored and communicated 

between each agent, the winning bid list    and the winning agent list   . Data is 

linked between the two vectors by using a task ID, this is an increasing value that 

directly indexes the vectors            , similarly the agent IDs used also 

represent the agent index in a vector             , and this works in a simulation 

where all agents store data in exactly the same way, but in practice this should not be 

assumed.  

The extension to the CBBA for dealing with duo cooperative requirements 

continues to use vectors in the storage of bid data. Tasks that require two agents are 

split into two separate subtasks    and    with associated scores. However, it is 

possible for an agent to assign itself to both parts of the task and so restrictions must 

be placed such that (Choi et al., 2010 ) 

 

 
    

                           (      )  

    
                           (      )  

(4.1) 

 

where       is the marginal score improvement an agent   can achieve for task   which 

is modified to     
  that is equal to      if the second part of the task is not assigned by   

e.g.       ; otherwise the score improvement is set to 0 because the agent is 

participating in the other part of the task. This method works for duo tasks but 

becomes redundant if the system is scaled up to increasing number of agents 

becoming needlessly complicated. 
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The system proposed in chapter 3 converts the winning agent list     from the CBAA 

and the winning bid list     from the CBBA into matrices, where agent   stores 

        when agent   has a winning bid of 20 for task  . When these assignments 

are communicated another agent refers to        as agent   believes agent   is 

assigned to task  . This system allowed tasks to require any number of agents but the 

system contained some redundant data, the winning agent matrix      is unnecessary 

as each agent knows that another agent is assigned to a task by the existence of a 

winning bid. Additionally because each agent’s bid data is stored in a separate column 

and each agent also has access to the specific agent that made that bid. Finally the 

system continued to assume that agent and task IDs would be simple numerical 

scaling values such that agent     bid data would always be stored in     for every 

single agent. In a real life system each agent can be assumed to have a unique 

identification number but those numbers would not necessarily be in any order which 

is easy to store. 

When transferring this data storage system over to a multi-agent task assignment 

problem, difficulties are caused with consistency between agents and tasks. Different 

tasks can have varying number of agents assigned to them, for tasks that require 

multiple assignments a vector cannot store data about each assignment. Therefore, 

with the CBGA a new system of data storage must be developed that allows access to 

which agents are assigned to a task (as far as that agent is concerned) and what the 

current bids are with the agent they were made by. Furthermore the system needs to 

be dynamic allowing new tasks and agents to be added during the simulation, without 

conflict arising from the order data is added. 
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4.2 ALGORITHM 

4.2.1 Local Data 

Originally the winning bids list    and the winning agent’s list    are two 

vectors of length    where    is the number of tasks in the simulation as seen in 

Table 4.1. With these two vectors each agent can keep track of the highest bid for 

each task and which agent made that bid and therefore is assigned to the task. 

Table 4.1: Winning bid list and winning agent list used in the CBBA. 

Winning Bid List      

Tasks 

               

Agent                             

 

 

 

Winning Agent List      

Tasks 

              

Agent                            

 

Once tasks require multiple agents both vectors must be converted into 

matrices to keep track of multiple contribution bids and multiple winners. This gives 

two matrices of size       where    is the maximum number of agents in the 

system. However, this means agents must now communicate two matrices rather than 

two vectors as shown in Table 4.2.  
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Table 4.2: Winning bid matrix and winning agent matrix used for multi-agent 

assignments in CBGA. The winning agent matrix contains a binary value where 

      signifies agent   is assigned to task   with the winning bid of    . 

Winning Agent Matrix ( ) 

Tasks 

          …     

A
g
en

ts
 

                    …        

                             …          

… … … … … … 

                             …          

 

Winning Bid Matrix ( ) 

Tasks 

          …     

A
g
en

ts
 

                    …        

                             …          

… … … … … … 

                             …          

 

With the increased data required for analysing multi-agent tasks and the 

reduced number of total communications needed to achieve consensus, unnecessary 

data can be removed by merging the two matrices into a single matrix  . This matrix 

contains all the winning bids and is of size       where    is the number of 

agents in the simulation and    the number of tasks. What this allows agents to do is 

use the row to display tasks and the column to display agents and assume that the 

existence of a winning bid is an agent’s assignment to the task. Thus     corresponds 

to the bid agent   has made for task   otherwise 0 if the agent has not made a bid. As 

with the CBGA using the values in each column the current total score rewarded for a 

task can be determined as 
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    ∑         (4.2) 

 

where    is the score for completing task  . This score is only the current reward for 

the task based on the assignments, the task could ultimately score nothing if the 

correct requirements are not met or more agents could assign themselves to the task 

increasing the reward. An agent can determine the number of assignments on a 

current task by counting the number of valid bids in the winning matrix column where 

     . 

 

 ∑{
  
  

     

          

  

   

 (4.3) 

 

Using (4.3) to determine the number of assignments on a task removes the need for 

the original winning agent matrix    and if (4.3) is less than the required number of 

agents    then an agent can assign itself to the task assuming it meets any other 

requirements such as the correct equipment. 

Additionally in a dynamic system we cannot assume each agent will store data 

in the same order, in a dynamic environment where agents look after their own data 

new tasks or agents can be stored in their memory in different orders to that of a 

neighbour. Therefore we cannot use the matrix index of   as a reliable identifier for 

an agent or task. Agents therefore need to store a separate agent vector    that 

contains all known agent IDs and a task vector    containing all known task IDs by 

agent  . These two vectors are used as lookups to the assignment matrix  . With this 

new matrix agents can store data dynamically and build up a list of agent to task 

assignments as they discover new agents or tasks in the system. When a new agent or 

task is discovered an agent can create a new matrix column or row respectively and 

the ID is added to the appropriate task or agent vector. Agents can individually build 

up their assignment matrix in different orders but still store and exchange the data 



 

 92 

reliably. Update times from agents can continue to be stored in a vector    and are 

identified using the agent vector   . 

Table 4.3: Dynamic variable storage on agents, where      references the winning bid 

agent   believes agent   has made for task  . The connection is made using the offset 

of the agent and task in the associated lists. 

Task List    

1 2 3 …   

Assignment Matrix    

A
g
en

t 
L

is
t 
 

  1              …     

2             …     

3             …     

… … … … … … 

              …     

Using Table 4.3 an agent can access the bid agent 3 has made on task 2 by 

using         
which is equivalent to      but in the former case the agent and task id 

can equal anything and the winning bid can still be located, assuming agent and task 

IDs are unique. The difference between this method and the previous method is that 

the existence of a bid such that       can be assumed that agent   is assigned to 

task   otherwise there would be no bid. 

 

4.2.2 Communication 

The CBBA communicated three sets of data to nearby agents, the winning 

bids list   , the winning agent list    and the time stamp   . The data sent was not 

indexed and it was assumed that all agents would have the same setup i.e. that agent 

one was in the first row. In a dynamic environment it can be assumed agents may 

order their assignment matrix differently therefore the matrix cannot be directly 

communicated; using the index of a matrix for a task or agent may not equal the task 

or agent in the same index on another agent. Instead agents will transform the 
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assignment matrix into a     matrix where   is the number of assignments in    

sent to each agent. This matrix takes each individual assignment (those with a value 

greater than 0) and reforms them as              where   is the sender who thinks that 

agent   is assigned to task   with a bid of     . This message is used by the receiver to 

come to a consensus on the received winning assignments. If the receiving agent   

decides the bid sent from the sender agent   is valid it can update the assignment 

matrix with          . 

Table 4.4: Agent A1’s winning bid matrix and the related communication message. 

Highlighted cells show where the information is coming from for a specific 

assignment. Although task and agent IDs are in numerical order this is irrelevant for 

the working system. 

 Tasks List    for agent A1 

j j+1 j+2 j+3 j+4 j+5 j+6 j+7 

ID T1 T2 T3 T4 T5 T6 T7 T8 

 
 

 

Table 4.4 shows the process an agent A1 will go through when constructing 

their communication message for assignments. Each assignment found in the winning 

assignment matrix is added into the communication message for A1, using the agent 

list and task list the relevant IDs can be found for the winning assignment 

          where the agent equal to        is assigned to task       . The complete 

assignment message is                            . 

 Agent list    for agent A1 

i i+1 i+2 i+3 i+4 i+5 

ID A1 A2 A3 A4 A5 A6 

Assignments for A1 

Task Agent Bid 

T1 A1 99.6 

T1 A3 95.7 

T1 A5 94.3 

T2 A4 94.6 

T2 A6 95.4 

T3 A4 94.8 

… … … 

T8 A6 90 

Assignment Matrix    for agent A1 

 
Tasks 

j j+1 j+2 j+3 j+4 j+5 j+6 j+7 

A
ge

n
ts

 

  99.6   99.6 99.5    

i+1    95.9  95.9 95.9  

i+2 95.7   95.7 94    

i+3  94.6 94.8 97.1  97.1 97 94.7 

i+4 94.3   94.2 94.2 93.1 93.9 95.3 

i+5  95.4 93.7 92.9  92.9 92.9 90 
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On initial communication with an agent their ID   and equipment list     is 

sent to enable agents to calculate when equipment requirements are met for a task or 

what is still needed. As in the CBBA the time stamp vector    is sent once per 

communication as well as all the assignments in an agents winning assignment list 

          . Using this method the amount of data sent per agent when dealing with 

multi-agent tasks should reduce, however it is expected to increase when dealing with 

single-agent tasks. 

 

Table 4.5: Agent A1 able to add newly discovered agents to its knowledge base; a 

similar method can be used to add newly discovered tasks. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

An agent will always store its own assignments in the first row of the 

assignment matrix and the first column of its agent list. Additional agents it 

communicates with will be added to both the assignment matrix and the agent list 

when a first communication message is received as seen in Table 4.5. It is assumed 

that on first contact agents would exchange relevant information such as their ID and 

equipment list. This allows agents to build up their own agent list independently of 

any other agents but in a way that allows them to continue to communicate. When a 

 
Tasks 

j j+1 j+2 j+3 j+4 j+5 j+6 j+7 

A
ge

n
ts

 

i 99.6   99.6 99.5    

i+1    95.9  95.9 95.9  

i+2 95.7   95.7 94    

i+3  94.6 94.8 97.1  97.1 97 94.7 

i+4 94.3   94.2 94.2 93.1 93.9 95.3 

i+5  95.4 93.7 92.9  92.9 92.9 90 

…         

i+n 0 0 0 0 0 0 0 0 

 Agent List for A1  

i i+1 i+2 i+3 i+4 i+5 … i+n 

ID A1 A2 A3 A4 A5 A6 … An 
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winning assignment is received from another agent the winning agent’s ID is found in 

the receiver’s agent list and the index can be used to update the agent’s bid in the 

assignment matrix. In the case that the correct agent ID is not found a new agent is 

added to the agent list and assignment matrix. Therefore agents can continue to 

consensus on assignments even when they start with no knowledge of an agent and 

only receive assignments propagated from another agent. 

 

4.3 RESULTS 

An increase in the volume of data sent when considering single agent tasks is 

expected because the data required for a single bid is now larger, this increase will be 

equal to an extra vector in the worst case scenario. In the worst case scenario every 

task will have an assignment, the CBBA sends the winning agent list   , the winning 

bid list    and the update times   . Therefore the total data sent for the final round of 

bidding will equal to       . Compared to the CBGA which will now send three 

pieces of data for each assignment           and the update times    totalling     

  .  

However when looking at multi-agent tasks there will be a significant 

reduction in the data transferred and at a worst case scenario send a similar amount of 

data. With changes made to the data structures on each agent, comparisons can be 

made between the two different data storage methods. Adapting the original method 

to multi-agent tasks uses multiple matrices to store assignment data with each entire 

matrix being communicated. The new method uses the dynamic matrix for each agent 

with individually sent assignments in the form           .  
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Figure 4.1: The average amount of data sent in progressive steps through each 

iteration of the CBGA. Simulated experiments contain 10 agents completing 20 tasks 

requiring   agents per task. Data is calculated as an individual piece of information 

sent from one agent such as a single winning bid. 

Figure 4.1 shows that the new system reduces the amount of data sent for 

multi-agent tasks. Data sent with the new system gradually increases over the duration 

of the simulation. The old method involved sending the entire assignment data 

regardless of whether bids had been made.  With the new system redundant data is 

removed allowing agents to send only the required information. As consensus is 

achieved with the new system the amount of data sent becomes fixed where data sent 

becomes determined by the number of assigments required on each task equal to 

  ∑    
  
      . Similarly in the the worst case scenario where every agent is 

required for every task the old CBGA required          where as the new 

method would require more data at         .  

A set of experiments was set up to look at the effects of limited 

communication and agent knowledge discovery. The distance over which agents 

could communicate was increased in steps of 0.1 with 100 simulations run for each 

set and the average data between these simulations recorded. Figure 4.2 - 4.6 shows 

assignments where communication is limited, additionally each agent starts the 
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simulation with no knowledge about the other agents, knowledge is added through 

direct communication between agents and indirect communication where an agent 

shares its knowledge of other agents and assignments. 

 

 

Figure 4.2: Communication range limited to a distance of 1, overlapping circles and 

connected lines show connecting communication networks. Associated assignments 

for 10 agents completing 20 single-agent tasks (right). 

The resulting assignments from limiting communication to a distance of 1 are 

shown in Figure 4.2, the communication distances are shown and any overlapping 

circles show the available communication channels. Without being able to 

communicate to the entire group many agents assign themselves to the same tasks 

resulting in conflicting assignments and wasted effort. 

 

 

Figure 4.3: Communication range limited to a distance of 2, connected 

communications shown by connected lines. Associated assignments for 10 agents 

completing 20 single-agent tasks (right). 
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By increasing the communication distance to the point where most agents are 

connected as seen in Figure 4.3, assignments become clearer and conflict is less 

common with a number of agents not needing to do any assignments. However there 

still is not a complete connected communication channel where an agent has indirect 

communication with every other agent. In this case two groups of agents have 

communication and have solved the assignment as two separate groups. 

 

 

Figure 4.4: Communication range limited to a distance of 2.5, overlapping circles 

show connecting communication networks, blue link shows the networked agents. 

Associated assignments for 10 agents completing 20 single-agent tasks (right). 

Finally increasing communication such that every agent is connected in the 

network graph as shown in Figure 4.4 a complete conflict free assignment is now 

available. Multi-agent tasks function slightly differently; when agents have no 

communication with other agents they have no way to make any valid assignments 

and thus will not assign themselves to any tasks. However, for the few groups of 

agents in reachable communication distance with another will assign themselves as 

normal with its neighbours. As seen in Figure 4.5 three groups of two agents exist and 

perform assignment and consensus with each other, although because these sub-

groups have no contact with each other they will produce conflicting assignments 

with the other groups as is seen for individual agents in Figure 4.2. 
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Figure 4.5: Communication range limited to a distance of 1, overlapping circles show 

connecting communication networks, blue link shows the networked agents (left). 

Associated assignments for 10 agents completing 10 multi-agent tasks where      

(right). 

Figure 4.6 identifies that initially when a connected communication has not 

been achieved convergence time is faster than with a full connection but that the score 

achieved is diminished. This effect is seen because each connected group is smaller 

than the maximum number of agents in the simulation, they are able to come to a 

consensus on their knowledge at a faster rate but due to conflicting assignments that 

they are unaware of the overall score is reduced. As the simulations achieve a 

complete connected network the score continues to rise but the convergence time is 

greater than that of global communication. Namely this is caused by the travel 

distance of data where in a globally connected assignment all agents will bid for a 

task and often the best bid will succeed and not be replaced, whereas when the 

communication is only on a connected network the best bid will take longer than one 

round to propagate to all other agents. Such that the convergence time of a single bid 

will equal   where    is the maximum number of links between any two agents in a 

group such that             for a   agent assignment and when     and 

     would imply all 10 agents in a row only able to communicate with at most 

two neighbours and such that the two agents at the end of the links can only 

communicate with one other agent. In a case where one end agent provides the 
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highest bid for a task it would take 9 bidding rounds for this bid data to move through 

the network to the agent at the opposite end. 

 

 

Figure 4.6: Total Score and convergence time for consensus using the CBGA 

measured in the number of bid rounds required as the distance of communication 

increases. Markings for the approximate point where all agents are networked and 

when all agents can globally communicate with any other agent. Experiments use 10 

agents completing 20 multi-agent tasks where     . 

 

Figure 4.7: The effect on the number of communication steps and bids required in the 

CBGA for consensus as the distance of communication is increased. Markings for the 

approximate point where all agents are networked and when all agents can globally 

communicate with any other agent. Experiments use 10 agents completing 20 multi-

agent tasks where     . 
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This reasoning is supported in Figure 4.7 where the total required number of 

bids for consensus is at its highest just before a complete connected network is 

achieved and gradually drops until a global connection is reached. The number of 

communication steps continues to rise steadily where communications continue to 

happen even when no new information is presented.  Once global communication is 

achieved the increase in communication distance has no effect thus all recorded data 

for each set of experiments is the same. 

Using the CBBA as a baseline Figure 4.8 shows the bandwidth requirement 

for three sets of experiments where it can be seen how the amount of data sent and 

received increases as the number of agents required    is increased. The CBBA (blue 

line) was run with an increasing number of agents to complete 20 single-agent tasks. 

Comparisons are made between the bandwidth requirements of multi-agent tasks and 

that of single-agent tasks. Experiments were run using the CBGA for multi-agent 

tasks, one set required two agents per task (green line) and another required three 

agents per task (red line).  

 

 

Figure 4.8: Average data sent and received per agent to achieve a consensus for 

twenty tasks using the CBBA for single-agent tasks and the CBGA for two types of 

multi-agent tasks requiring two and three agents. 
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Figure 4.9: Average data sent and received per agent for each assignment where a 

multi-agent task requiring three agents will require three assignments. Consensus 

required on twenty tasks with the CBBA for single-agent tasks and the CBGA for two 

types of multi-agent tasks requiring two and three agents. 

Figure 4.8 shows multi-agent tasks using the new communication method 

requires more bandwidth when compared to single-agent tasks. These increases were 

expected as each multi-agent task requires more assignments than a single-agent task. 

With multi-agent tasks more information is needed to reach a consensus over single-

agent tasks, thus the amount of data sent and received increases. When allocating 

agents for twenty multi-agent tasks where          , the number of correct 

assignments required is double that of single agent tasks. In Figure 4.9 the data is 

adjusted to show the data sent or received per assignment, where the number of 

assignments to reach a consensus is equal to ∑   
  
    for    tasks. An increase in 

bandwidth can still be observed but the difference has been reduced by looking at 

bandwidth per assignment and in smaller assignments the CBBA has a larger 

bandwidth requirement per assignment. This difference can be attributed to the 

number of conflicting bids found during an assignment as seen in Figure 4.10. When 

the agent requirement on multi-agent tasks is similar to the number of agents in the 

system fewer conflicting bids are seen. With fewer conflicts assignments are quicker 

and thus the amount of overall data sent per assignment is reduced. As the number of 

agents increases relative to the agent requirement an increasing number of conflicts 
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arise. Overall the CBGA performs reasonably in terms of communication 

requirements in solving multi-agent tasks given the increased complexity of those 

tasks over single-agent tasks. 

 

Figure 4.10: The average number of conflicting bids per agent where a conflicting bid 

is defined as a bid for a task that is replaced by a better bid. Consensus required on 

twenty tasks with the CBBA for single-agent tasks and the CBGA for two types of 

multi-agent tasks requiring two and three agents. 

The duo cooperative extension of the CBBA splits each task into two separate 

sub tasks    and   . Both these subtasks must be recorded in the winning agent list    

and the winning bid list    as well as sending the agent update list   . These changes 

introduced by the duo cooperative algorithm almost doubles the amount of data each 

agent has to send. In the worst case scenario the amount of data sent will be equal to 

4     . However, the CBGAs worst case scenario requires   ∑    
  
      , 

which simplifed is       when     . This means in the worst case scenario the 

CBGA requires more data to be sent to communicate an assignment, but the CBBAs 

average case is very similar to its worst case where the entire assignment is sent at 

each iteration of the algorithm. Figure 4.11 shows that the CBGA provides a much 

lower average case that gradually increases as agents converge on a solution. The 
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primary cause of this is because not every task is assigned due to agent and time 

constraints.  

 

Figure 4.11: Comparision between the CBGA and the CBBA for duo tasks on the 

amount of data sent per agent to communicate an assigment at progressive iterations 

of each algorithm. Experiments contain 10 agents and 20 multi-agent tasks requiring 2 

agents each. 

 

4.4 CONCLUSIONS 

This Chapter provides an efficient method of storing data for the CBGA in 

order to reduce data when assigning multi-agent tasks in the multi-agent task 

assignment problem. Experimental data showed that the agents were able to acquire 

and share knowledge of other agents in the system to the point where, once all agents 

were connected, convergence to a solution was performable in a similar time to global 

broadcast and converged on the same solution. Additionally it is shown that the 

bandwidth increases from multi-agent tasks were as expected compared to single-
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in communications required for consensus are seen when moving from single-agent to 

multi-agent tasks; though the actual size of data required for consensus has increased. 

Further it can be seen how the assignment data is stored more efficiently and for 

multi-agent tasks less data is sent than the original method in Chapter 4. Adding to the 

constraints on which agents can perform each task further reduces the set of 

achievable tasks for any one agent.  
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Chapter 5: Biologically Inspired Improvements to the CBGA 

This chapter analyses research on biological cooperation to bring 

improvements to the multi-agent task assignment problem. The fields of robotics and 

artificial intelligence are moving increasingly towards biology to develop more 

sophisticated systems resulting in biologically inspired systems (Hinchey & Sterritt, 

2007). Many aspects of biology are used to develop biologically inspired systems 

because animals have evolved over long periods of time to adapt and survive in their 

environment.  The physiology of animal species can be used to develop new robots 

for specialised tasks (Bar-Cohen, 2006) such as looking at the movements of snakes 

to produce similar robots that can navigate challenging environments (Pettersen et al., 

2013) or the creation of micro air vehicles based on flying insects for example bees 

(Wood, 2008). The mental processes of animal behaviours and their social systems 

can help improve or develop artificial intelligence (Anderson & Donath, 1990) using 

the flocking behaviour of populations of animals for instance birds and fishes to 

create complex formation control from simple behaviours (Antonelli et al., 2010). 

This chapter specifically looks at various animal behaviours in eusocial species that 

can help improve the cooperative behaviours of agents when assigning and coming to 

a consensus on multi-agent tasks. Eusociality is the highest level of animal social 

organisation where focus is on the survival of the group but not necessarily the 

individual, containing animal species such as ants, bees and termites. Other levels of 

animal sociality are less useful when applied to robotic and AI in the area of 

cooperation because whilst many animal species are social and cooperative their 

evolved behaviours to do this are mostly selfish with their primary goal survival of the 

individual (Dawkins, 2006). Eusocial species like ants are better suited for 

cooperative robotic systems because members of the group have the same goal, the 

survival of the group, which sometimes comes at the expense of the individual. 
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Similarly with a cooperative group of UAVs the overall goal is to maximise the 

results the team produces rather than maximising the contribution of an individual in 

the group.  If an agent reduces its own result but in doing so increases the group’s 

result then that is the action it should take. 

Multi-agent tasks present a unique set of problems relating to team 

organisation and cooperation. The CBBA as the basis for this extension is focused 

entirely on the individual and improving its score which in turn improves the overall 

team score. In the case of multi-agent tasks a greater individual improvement is not 

necessarily the best improvement for the team where incomplete team assignments 

give no reward. Taking inspiration from collective animal behaviours of large groups 

like ants can be useful in developing algorithms for group decision making. With the 

inclusion of multi-agent tasks the developed algorithm has a greater focus on the 

agenda and score of other agents. Using the task quitting method from bee colonies 

(Johnson, 2009) and the team focused assignments of ant nests (Gordon, 1999) 

improvements in the cooperative assignment for multi-agent tasks can be compared. 

The reliance on decisions of other agents adds to the problem. To deal with this 

challenge, inspiration can be drawn from the cognitive behaviours of eusocial animals 

using their complex behaviours for group decision making (Plowes, 2010; al-Rifaie et 

al., 2012). 

5.1 PROBLEM 

The CBGA developed in chapter 3 provides a framework for the assignment 

and organisation of multi-agent tasks. However, at times the algorithm can provide 

unnecessary assignments or produce less than optimal assignments. Although 

producing the optimal result in a decentralised system is difficult and unfeasible 

changes can potentially be made to improve the assignments. This chapter will 
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implement two concepts derived from eusocial animal groups and test for 

improvements in assignments by implementing the following: 

 Team improving assignments 

 A method of task quitting  

With the implementation of these features comparisons to the CBGA without 

such features can be made. Any improvements will increase the effectiveness of the 

CBGA and will prove the usefulness of these adaptations found in eusocial species.  

5.1.1 Team Improving Assignments 

One of the unique features of a eusocial species is the self-sacrificial nature of 

the workers in the colony. In an ant colony each worker provides no contribution to 

the physical reproduction of the nest (Heinze, 1998), whilst worker ants provide 

function to the colony by completing various tasks the life of a single ant is inevitably 

unimportant. This leads to the self-sacrificial behaviour by ants when the colony is in 

danger (Tofilski et al., 2008), the individual value of an ant is not as important as the 

colony as a whole.  

Comparatively in the multi-agent task assignment problem the individual 

score of a single agent is not as important as the overall score of the team. In the 

CBBA agents would assign themselves to tasks based on which task would provide 

the greatest increase in score at a specific point in the agent’s path. Similarly when the 

CBBA was extended into the CBGA agents would continue to choose assignments 

based on the individual increase in score per task. 

 

 

         |  |  
       

   
            

      (       )      

                   

(5.1) 

 

Shown in (5.1) is a section of the assignment algorithm from the CBBA that 

chooses which task should be added to the current bundle. As seen here the primary 
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decision for which task should be added is the calculation of   , which provides the 

task with the highest individual increase that beats any current bid. Whilst this will 

provide conflict free assignments it will not always provide the best assignments. For 

example Figure 5.1 shows a simple situation where individual focused assignments 

will provide a lower score than team based assignments. In this situation task 2 

requires two agents for completion but the base reward is twice that of the single-

agent task 1, and with still more when costs are considered. Agent 1 works out its 

contribution to task 2 as lower than completing task 1 due to the travel distance, but 

had the calculation assumed the task would be completed then the team would 

produce a higher overall score at the expense of agent 1’s individual contribution to 

the team score. Additionally the current assignment leaves agent 2 travelling to a task 

that cannot be completed reducing the team score slightly from travel cost with no 

completion reward. 

 

Figure 5.1: An example situation where individual assignment priority will result in a 

lower score than a team focused assignment. Task 1 is a single-agent task and task 2 

is a multi-agent task that requires two agents. 

Modification to the assignment algorithm must be made to change the agent 

focus from maximising individual scores to taking into account the effect of the group 

score.  
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5.1.2 Task Quitting 

Another eusocial animal behaviour observed in bee hives is that of frequent 

task quitting helping to distribute assignments to high demand areas. Observation of 

bee colonies and experimental results showed that by implementing a system where 

agents quit their current task, agents were able to easily adapt to a changing 

environment (Johnson, 2009). Whilst the benefits observed are associated with 

adaption in a dynamic environment there is potential for these benefits to also address 

the changing demand on multi-agent tasks. Initially in the CBGA all tasks are 

unassigned and therefore the demand for assistance on each task is equal. After the 

first round of bids the demand for each task changes, the multi-agent tasks that have 

assignments but are yet to meet the correct assignments would be considered as in 

more demand than other tasks. The closer a multi-agent task is to being fully assigned 

the greater the demand is to complete this task over a single-agent task as the payoff 

for completing the assignment will be greater. For efficient assignments agents must 

fulfil the requirements of as many tasks as possible, every agent assigned to a task that 

is yet to meet its requirements is a wasted resource for the team. In combination with 

individual focused assignments agents can often assign themselves to a task that is 

rewarding for the individual but that no other agents can find time or justification to 

assign themselves to the task, in these situations the agent will be stuck on a task that 

ultimately will provide no score. The use of task quitting will allow agents to un-

assign themselves and re-evaluate their choices shifting assignments into higher 

demand tasks such as those which have more assignments and thus are contributing a 

greater reward. 

 

5.2 ALGORITHM 

The Consensus Based Grouping Algorithm developed in Chapter 3 is an 

extension of the consensus based bundle algorithm. The algorithm allows agents to 
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come to a consensus on multi-agent tasks, this section explains the modifications to 

the algorithm to improve the quality of assignments using the two concepts of task 

quitting and team based rewards from eusocial species. 

5.2.1 Team Improving Assignments 

In the CBBA agents assigned themselves to a task   that provides the greatest 

increase in score at a specific point in the agent’s path   . Using   
       

   
   an 

agent could determine its improved contribution to the total score by completing task 

  in position   of its path   . Calculating this improvement for every task would 

determine the best task to add to the agents bundle    as shown in (5.2). 

 

              |  |  
       

   
            (5.2) 

 

Similarly the CBGA calculates the score improvement using the same function 

but with additional requirements on calculating viable tasks. Differences between the 

two algorithms occur when calculating the conflicting winning bids. The CBBA 

containing only single-agent tasks can only ever have one agent assigned to each task, 

thus using (2.1) an agent must beat the current highest bid and if the agent is able to 

do so can potentially assign themselves to that task depending on if that bid is the 

overall highest out of agent  ’s possible task choices. An agent calculates     

containing a list of binary values for each task, where 1 is for those tasks with bids 

which are higher than the current bid, or 0 for failed bids. 

 

       (       )      (5.3) 

The CBGA deviates from this because an agent does not necessarily have to 

have the highest bid to win the assignment. An agent bidding on a multi-agent task 

can win in two ways, either the task team is not yet full thus any bid is acceptable or 

the task team is full in which case the agent simply needs to beat the minimum bid for 
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the task rather than the highest bid. Replacing the minimum bid in a tasks team 

creates the most improved marginal score gain and therefore gradually creates the 

highest scoring team for that task as each lowest bid is replaced with better bids. 

Figure 5.2 shows the algorithm for determining successful bids in the CBGA. 

 

 

Figure 5.2: Algorithm for determining valid task list     in the CBGA. 

Finally both the CBBA and the CBGA after filtering an individual’s bids 

down to the highest winning bids, chose the task with the greatest improvement to add 

to its bundle using (5.4) 

 

                    (5.4) 

 

The problem with the assignments in the CBGA is agents assume each task is 

of equal value, (5.3) must be modified to account for additional value in multi-agent 

tasks. Potential problems can occur if an agent consistently uses the team focused 

bidding throughout the assignment algorithm, such as consistently alternating between 

two assignments or multiple agents replacing each other in a task at alternating bid 

rounds. These cases of deadlocking can be avoided by only using the total score for 

Algorithm 8: Team focused bids for Agent        

1:   for       
2:       if        then 

3:                 (    ∑     
  
   ) 

4:       else  

5:           if (    ∑     
  
     ) then 

6:                     

7:           else if                      then 

8:                     

9:           else 
10:                   

11:         end 
12:     end 
13: end 
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the team as the final deciding factor in which task an agent should choose. Modifying 

(5.4) where an agent makes its final choice on a bid based on the highest individual 

improvement into (5.5) where the bids are first added to the current team score for 

that task. Taking into account any replaced bids and adding the current agent’s bid 

will produce the team score for that bid after this round of bidding, thus the agent can 

choose the task which provides the highest increase in score for the entire team rather 

than just the individual. Figure 5.3 shows the choice an agent makes between three 

tasks, with team focused bidding the agent should choose the team task that requires 

one more agent. 

 

            ∑                   (5.5) 

 

 

Figure 5.3: Comparison of the bidding decision between individual focused bidding 

(left) and team focused bidding (right). Agent ‘A1’ must decide between three 

different tasks, task one requires 1 agent and is already assigned, task 2 requires one 

agent and task 3 requires 3 agents with 2 assignments already. 

This method also gives higher priority to larger tasks that are closer to 

completion, for example, a task that requires five agents but currently only has four is 

a more valuable task to finish than a two agent task with only one agent assigned. 
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5.2.2 Task Quitting 

The purpose of a task quitting system is to move resources to higher demand 

areas, in the case of multi-agent task assignment task quitting will help remove agents 

from tasks with their requirements not met to assist in tasks that are closer to meeting 

the requirements. Agents should quit an assigned task if the following criteria are met: 

1. The task has unmet requirements 

2. The task quitting threshold has been reached 

3. The agent has not quit the task before 

 

Each agent will record the current time   of their assignment to a task   in 

their assignment time vector    , this allows agents to track the time passed since their 

assignment. The task quitting threshold   is the required amount of time that has 

expired since an agent was assigned to the task. If the assignment time has passed 

such that          for task  , then agent   will un-assign itself from the task, 

subsequently it will also release any tasks that follow as is done for outbid tasks 

because later assignments are dependent on previous tasks in the agent’s path. 

Additionally when new agents are assigned to a team task all the agents assigned 

should update their recorded assignment time to the current time, this prevents agents 

deadlocking where agents un-assign themselves at different times, never staying long 

enough for all the requirements to be met. Synchronising the assignment time of all 

agents assigned to the task allows the entire group to come to a consensus on when 

they should quit the task. Finally to preserve the convergence properties of the CBGA 

agents will only be allowed to quit a specific task once to re-evaluate its assignments. 

Without this limit situations can occur where there are too many agents for the multi-

agent tasks, spare agents could continually assign, quit and re-assign themselves to 

other tasks that they cannot complete preventing convergence.  
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As each task is added to an agent’s bundle using the bundle construction 

algorithm in Figure 3.1 an agent will record the time of the assignment using (2.1). 

 

             (5.6) 

 

The task quitting algorithm runs when agents clean up their assignments, as 

agents find out they have lost bids for tasks they will remove the lost task as well as 

any following tasks as those assignments are only valid for a specific path   . 

Similarly as an agent is removing outbid tasks it will check the assignment times of 

any unfilled multi-agent tasks using algorithm 3 displayed in Figure 5.4. 
 

 

Figure 5.4: Task quitting algorithm for the CBGA. 

Here agent   checks each task which it has made a bid on and is classified as a 

multi-agent task by use of      . In additional the agent checks that it has not 

already quit the specific task using     where     is a binary list of each task equal to 1 

when an agent   has already quit task  . For tasks that have incomplete assignments such 

that (∑        )     make ideal candidates for task quitting. Firstly for potential 

tasks to quit the agent checks if the task has been updated in the last cycle, any 

updates will reset the assignment time as progress is being made on completing the 

Algorithm 9: Task Quitting for Agent i      

1:   for       
2:       if                            then  

3:           if (∑        )     

4:               if  (               ) then 

5:                         

6:               else if           then 

7:                          

8:                         

9:               end 
10:         end 
11:     end         
12: end 
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task. Secondly, if         is true then the elapsed time since agent   was assigned 

to task  , is greater than the threshold value of   and so the agent will un-assign itself 

from the task. However the value for   must be determined, a higher value allows 

more time for other agents to assign themselves to a task but increases the time to 

come to a consensus, lower values allow for a quicker assignment but could 

potentially provide little benefit if agents quit a task too early. Once an agent has 

decided to quit a task assignment it updates its task quitting list       allowing the 

agent to track which tasks it has already quit allowing the algorithm to continue to 

converge on a solution. 

 

5.3 PERFORMANCE 

5.3.1 Test Scenario 

Each test contains a standard 20 tasks and 10 agents, unless otherwise 

specified, that have randomly generated characteristics such as location and task start 

times. The seed used to randomly generate each simulation is repeated for each 

specific set of experiments such that any environment set up for completion using one 

algorithm is also used when using other algorithms. The objective of each experiment 

is to maximise the total agent score. The overall score of each experiment is the sum 

of all rewards for completed tasks minus the cost of agents travelling to each task, 

where each task has a fixed score reward. Multi-agent tasks defined as requiring more 

than one agent will reward a score to each agent involved signifying the difficulty and 

importance of such tasks. Various experiments will be run so that comparisons can be 

made between the original CBGA and the developed algorithm with the biologically 

inspired functions (i.e. team improving and task quitting). Each specific experimental 

setup was run 100 times as in keeping with previous experiments. 



 

 117 

5.3.2 Results 

In order to analyse the effectiveness of the biologically inspired mechanisms, 

comparisons are made to the original CBGA as developed in Chapter 3. The resulting 

score for a simulation is an indication of the assignment quality where completing 

more assignments and reducing travel distance provides a greater score. Firstly the 

effect of introducing team focused bidding is tested by increasing the number of 

agents required for the tasks in each group of experiments. Tasks that require a greater 

number of agents provide increasingly complex assignments where more agents must 

come to a consensus on each individual task. As the number of agents required 

increases so too does the maximum potential score where a single-agent task scores at 

most 100 and a 4 agent task will score 400.  

 

Figure 5.5: Performance of the CBGA algorithm compared to the CBGA using Team 

focused bidding as the agent requirements      on tasks increases. 

Figure 5.5 shows the results of these simulations. Each point in this graph is 

the average result of 100 randomly generated simulations in which agent and task 

locations are randomly created as well as the time window in which each task must be 

performed. The team focused bidding shows an overall improvement over the base 
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CBGA once    4   , where the effect of team focused bidding is more noticeable 

due the increased cooperative requirements. The team bidding follows a similar 

pattern with the score dropping off after        . This is most likely due to the 

reduced number of feasible tasks, although there are 20 tasks there are now only 

enough agents for one task to be completed at any given time thus the majority of 

tasks will not be achievable and will produce a lower score despite each task being 

worth a greater reward. Looking at the spread of results in Figure 5.6 although the 

team focused bidding can produce a greater average score it is very inconsistent with 

the larger agent requirements, producing some very high scoring assignments but also 

producing some assignments with lower scores than the CBGA. This could be caused 

by agents failing to agree on which task they will assign themselves to, where only 

one task is completable at a time due to the ratio of agents (    to agent requirements 

(   . As this ratio decreases the margin for error is reduced where there are less agents 

spare to complete team assignments, for example, when      there are 4 agents 

spare from the 10 to help if the other 6 agents do not agree on which task to complete. 

This leads to inconsistent assignments where agents refuse to leave their assignment 

to assist others, which could be solved by the use of task quitting later. As shown in 

Figure 5.7 agents plan differing tasks and refuse to leave their task to assist, this is 

caused by how agents build up their individual assignments based on distance to their 

start location but not necessarily by which task they will complete first. Although 

even with the most optimal assignment a number of the tasks would still be unfeasible 

due to the time constraints and travel distances. 
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Figure 5.6: Performance with the result spread for the CBGA (left) and the CBGA 

with team focused bidding (right) with increasing agent requirement     . 

 

Figure 5.7: Assignment of 10 agents completing 20 tasks resulting in a score of 7295. 

Each task requires 10 agents to be completed; tasks that do not have all agents 

assigned are classed as failed tasks. 

 

With the introduction of task quitting to the CBGA Figure 5.8 shows that 

again this new addition to the algorithm is providing some improvements and 

similarly to the team focused bidding the improvements are shown after        . 

This is primarily caused by the ratio of number of agents in the simulation to the 

required agents per task. When    4 the ratio of agents to the requirement is now 

below 3 making it harder and more important to assign completed groups, similarly 
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once the ratio is below 2 a drop in score is observed after     . This reasoning is 

supported by the second graph in Figure 5.8, firstly, when the number of agents in the 

simulation is reduced to 8 the effect of task quitting is observed earlier with a very 

slight improvement at      where again the ratio of agents to required agents is 

below 3. Secondly, after     
  

 
 a drop is observed in the score of both algorithms 

but the task quitting continues to provide marginally better scores. 

  

Figure 5.8: Performance of the CBGA algorithm compared to the CBGA using task 

quitting where the number of agents is set to 10 (left) and when the number of agents 

is set to 8 (right) completing 20 multi-agent tasks.  

The distribution of results is more consistent with task quitting than with the 

team focused bidding but the spread of results are still greater than the original CBGA 

as seen in Figure 5.9. As with team focused bidding the algorithm provides the 

potential for high scoring assignments but in most cases produces scores worse than 

the original CBGA. Task quitting redistributes resources to higher demand areas, in 

this case the measurement for demand changes so that upon quitting a task the 

previous decision may no longer be valid. In comparison to CBGA the value of each 

task rarely changes resulting in agents reassigning to the same task. Task quitting 

works when an agent quits a task that was added to its bundle early on in the 

assignment, once it quits the task other better options might be available, but this 

situation does not happen often as can be seen by the small improvement generated by 

task quitting.  
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Figure 5.9: Performance of the CBGA using task quitting with the spread of results as 

the agent requirements      on tasks increases. Task quitting threshold   set to 1. 

The task quitting algorithm uses a threshold value   to determine how long an 

agent should wait before un-assigning itself from a task. Figure 5.10 displays the 

effect on assignment score by modifying the threshold value for differing 

communication distances. By reducing the distance over which agents can 

communicate increases the time it takes for an assignment to propagate to every agent 

in the simulation. This delay could potentially improve the performance of agents 

waiting longer before removing incomplete assignments; however the results in 

Figure 5.10 show this not to be the case. Across the board the changes in score due to 

the threshold value is minimal with a value of     producing slightly higher 

assignments on average. Lower scores from communication limits are due to some 

agents becoming separated from the main network of agents and thus not being able 

to cooperate with the main group. The results here suggest that task quitting can 

provide some increases in the score of assignments and that it is not important when 

an agent quits an incomplete task just that they do it at some point to allow better 

assignments to high demand tasks. 
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Figure 5.10: Performance of the task quitting algorithm as the task quitting threshold 

  is modified. Variation in communication distance to show any changes when 

consensus takes longer due to network spread. 

 

Figure 5.11: Performance of all variations of the CBGA with task quitting and team 

focused bidding, each simulation contains 10 agents and 20 tasks. 

Both the task quitting and team focused bidding show improvements over the 

CBGA but both provide high distribution of scores and fall into similar problems as 

the CBGA when assigning and coming to a consensus on high agent requirements. 

Task quitting requires a variable measurement of demand and team focused bids 

requires a way to take advantage of the changing information as a simulation goes on. 
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Combining the biologically inspired improvements with the CBGA (CBGABI) covers 

the short falls of both the improvements, task quitting alone is not a great 

improvement if agents does not recognise the value of completing tasks with 

assignments already. Further recognising the benefit of completing tasks with current 

assignments is unnecessary if agents cannot leave their current assignments. Figure 

5.11 displays the results of using both algorithms compared to the other three 

approaches, as before similar results are displayed with slight improvements as 

cooperative requirements are increased. Although a drop off in score is observed after 

     similar to the other variations this resulting drop is due to the number of agents 

and the requirement on the tasks. When      the group of ten agents can form into 

two teams of five completing more tasks overall than when     . Although tasks 

that require more agents provide a greater reward significantly fewer tasks are 

completed and that does not make up for the loss in quantity of tasks.  As well as the 

improvement in score the use of both algorithms provides less variance in results 

displayed in Figure 5.12, although still a greater variation than the base CBGA. 

 

Figure 5.12: Variance of results from assignments using the CBGA with both task 

quitting and team focused bidding. 
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Running the exact simulation as displayed in Figure 5.7 but now using both 

task quitting and team focused bidding shows a near optimal assignment in Figure 

5.13. Agents group up and stick together for the duration of the simulation as every 

agent is required to complete tasks. Previously agents would build up differing 

bundles based on their starting location and be unable to change their assignment. 

With the addition of task quitting agents can now build up an assignment as display in 

Figure 5.7 but quit the incomplete tasks and re-evaluate their task choice such that all 

the agents eventually decide upon an agreed conflict free solution. 

 

 

Figure 5.13: Assignment of 10 agents completing 20 tasks that require all 10 agents 

each the simulation setup is exactly the same as in Figure 5.7 but using task quitting 

to produce a score of 9391. 

Considering again the sequential greedy algorithm presented in Figure 3.16 

the CBGABI now scores slightly better than the SGAMA for a low number of agents 

but in general performs similarly. Figure 5.14 shows the average score for a group of 

agents completing a set of multi-agent tasks where           as the number of 

agents or tasks are changed.  
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Figure 5.14: Average assignment score achieved by the CBGA with biologically 

inspired improvements (CBGABI) and the SGAMA completing 20 tasks with    

agents (left) and 20 agents completing    tasks. 

 

Figure 5.15: Average assignment score achieved by the CBGABI and the SGAMA 

when agent requirements are increased with 10 agents and 20 tasks.  

With the biologically inspired improvements to the CBGA Figure 5.15 shows 

the previous problem observed in the CBGA assignment for a low ratio of agent 

requirement to agent numbers has been solved. Where previously the CBGA would 

assign agents to large multi-agent tasks but have no way to coordinate or redistribute 

all the agents to one path when the simulation would naturally limit the solution to 

one path due to    
  

 
 meaning only one task can be completed at any given time. 
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The CBGABI now provides a similar score to the centralised solution SGAMA but in 

a decentralised system. 

 

    

Figure 5.16: The effects of adding task quitting and team bidding to the CBGA for 

multi-agent tasks. Experiments used a varying number of agents completing 20 tasks 

where each task required 4 agents for successful completion. A bar plot displays the 

results and variation when       (right).  

 

When addressing multi-agent tasks using an algorithm that focuses on 

individual improvement, additional agent incentive is required to increase the 

effectiveness of multi-agent assignments. The overall scores generated by the 

variations of the CBGA with biologically inspired improvements can be seen in 

Figure 5.16. Using either task quitting or team rewards produced more complete 

assignments which in turn provided a higher score in 78% and 79% of cases 

respectively over the CBGA. Implementing task quitting on its own provides an 

average increase of 206 over the CBGA with an average score of 5962   708. 

Another improvement of 144 can be achieved by assigning with respect to the team 

rewards over task quitting producing an average score of 6106   601 but this 

improvement is only significant to p < 0.15. Further improvements are gained from 

using both functions where the CBGABI improved the score of the CBGA in 99% of 

cases seen in Figure 5.16. Providing an increase in the average score of the CBGA 

from 5756   722 to a mean score of 6216   634 with a statistical significance to p < 
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0.01. The biologically inspired improvements show a statistically significant 

improvement over the original CBGA developed in Chapter 3. 

 

5.4 CONCLUSIONS 

This chapter presented improvements to the CBGA based on biologically 

inspired animal behaviours. Aspects from the biological social structures in bees and 

ants were used to improve team focused consensus in multi-agent assignments. Using 

bee inspired task quitting (Johnson, 2009) agents can re-assign themselves to tasks 

which are more demanding by removing failed team assignments where requirements 

are not met. Results shown in Figure 5.8 that on average some small improvements 

are achieved using a method of task quitting but that on its own it creates additional 

problems and introduces a large variation in assignments. Using the method of task 

quitting in combination with team focused bidding as inspired by cooperative 

behaviours in ant colonies (Tofilski et al., 2008) (Anderson & Ratnieks, 1999) 

(Gordon, 1996) proves to provide consistent average score improvement over the 

CBGA. In particular it provides substantial improvements as seen in Figure 5.11 when 

there is a high cooperative demand over a majority of the agents in the simulation. 

These improvements solve a problem found with the original CBGA and bring the 

assignment quality up to a level equal to a centralised solution in the sequential 

greedy algorithm. Statistical results show that using these biologically inspired 

functions created statistically significant improvements to the multi-agent assignment 

problem. As well as improving the assignment quality of the CBGA these results also 

prove the usefulness of frequent task quitting in distributing agents to high demand 

areas in assignment problems. 
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Chapter 6: Conclusions and Future Work 

6.1 CONCLUSIONS 

The main purpose of this thesis has been to create a framework that provides a 

reasonable, robust and dynamic solution to the multi-agent task allocation problem. 

The CBGA was developed as an extension of the CBBA using a newly developed 

consensus algorithm for handling multi-agent tasks whilst still providing a conflict 

free solution. Further to this the research focused on creating a system that was 

relatable to real world problems such as the data structure of assignments between 

non-standard agents. This chapter outlines the contributions of this work as well as the 

limitations and problems with the current implementation. Finally the chapter ends 

with possible directions of further work to improve and extend the research. 

6.1.1 Key Contributions 

This thesis proposed the CBGA delivers a conflict free feasible solution to the 

multi-agent task assignment problem. Unlike previous implementations the CBGA is 

not limited to a specific number of agent assignments and provides a solution that can 

scale with the requirements. Results show that despite the increased complexity of the 

tasks a conflict free consensus can be reached within similar times as the single-agent 

task solutions. Furthermore the algorithm can compete with a centralised greedy 

solution.  

Additionally this research has improved the data structure of the consensus 

based algorithms with a focus on the real world application. The CBGA has structured 

its data and assignment messages to reduce the cost on the communication channel. 

Furthermore each agent can store its knowledge of assignments in a different manner 

to its neighbours, but still allowing the group of agents to understand and come to a 

consensus on each other’s information.  
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Taking biological inspiration from the task quitting behaviours found in bees 

this research integrated these mechanisms into the CBGA to improve the quality of 

assignments. Experiments demonstrated the usefulness of a quitting mechanism in the 

redistribution of agents to higher priority tasks. In addition this work also shows how 

the concept of task quitting can be used to shift the allocation of resources to high 

demand areas.  

6.1.2 Limitations 

As with most research the solutions provided in this thesis are not without 

some limitations and problems. The CBGA provides a conflict free solution to the 

multi-agent task assignment problem but it is not guaranteed to find an optimal 

solution. Although in a problem such as this optimality is not a necessity it does leave 

room for improvement resulting in better assignments. Additionally the equipment 

limits on tasks were fixed to a specific number of agents, in reality a task does not 

require a specific number of agents but rather a minimum number that have the 

required equipment to complete the task.  

 

6.2 FUTURE WORK 

The area of cooperative UAS is becoming progressively larger with huge 

applications for the use of UAVs in many fields. The current practical applications for 

UAVs are generally limited to single UAVs or small teams with limited 

cooperativeness between each other. This research has reached out further into the 

future to a time where multiple UAVs have a greater ability to cooperate together and 

created a foundation for the autonomous organisation of these UAVs. Although the 

practical application of this research is limited for the time being this is most certainly 

the direction in which UAS will head towards. 
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The CBGA provides a framework for multi-agent task allocation with which a 

conflict free solution can be produced; however, the algorithm has areas that can be 

further improved. Equipment dependencies were directly linked to the number of 

agent requirements such that the total amount of equipment needed for a task was the 

amount of agents required. An extension of this issue would be to remove the link 

between the number of agents and the required equipment. Such that the required 

number of agents varies and an agent can potentially bring multiple pieces of 

equipment to the task or for a particularly well equipped agent it could satisfy the task 

requirements on its own thus reducing the amount of resources allocated to the task 

and improving the overall score for the assignment. Additionally the algorithm used is 

a pre-planned assignment where assignments are decided on at the beginning of the 

simulation and conflicts dealt with then, whilst this will work in real time its ability to 

deal with dynamically changing assignments is restricted. If new tasks or agents are 

added part way through the assignment the only solution for re-addressing 

assignments is to run the assignment algorithm again with the new data, it seems 

reasonable that there should be a way to assimilate the new tasks and agents into a 

simulation without having to redo the entire assignment again. A system for simple 

task dependencies was added but in areas of AI planning sometimes a pre-condition 

that is satisfied can be removed before the follow up task is completed. In these 

situations on-the-fly adaptation would be required to reassess any pre-conditions and 

the validity of a current assignment. Finally one specific situation that can occur 

where the optimal solution is rarely chosen in its simplest form involves an agent that 

can accomplish two tasks. The first task provides a higher score but can be completed 

by other agents for a lower score; the second provides a lower score but cannot be 

reached by any other agent. In this situation both the CBBA and CBGA would fail to 

match the assignments optimally, agents would need to select their second best choice 

for the benefit of the team. This situation is easily solved in a centralised system but a 
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decentralised solution requires more information than is currently sent. A possible 

solution would involve agents communicating their potential bids for each task, in this 

way agents can determine which tasks no other agents can reach and thus determine if 

there is an improved score from assigning itself to that task. 

The algorithms proposed in this thesis were tested in simulations and their 

performance confirmed by the numerous simulation experiments and results. As with 

all simulations assumptions are made and conditions are simplified to a reasonable 

extent, practical implementations are required on real hardware to test the validity of 

the algorithm in a real environment as with any complex problem.  

As the field of UAS continues to grow and the practical applications for them 

extend, this research is necessary for the increasing cooperative behaviours required 

for robotics in real environments. UAVs are beginning to make their way into 

mainstream applications and their usage across the globe is increasing as restrictions 

lower and the problems surrounding their use are solved.  The abilities and 

applications of individual UAVs are significant and constantly improving, but as with 

many problems cooperation can expand the possibilities even further. This research 

helps provide a framework for the future use of cooperative autonomous UAVs. 

  



 

 132 

Publications 

Hunt, S., Meng, Q., & Hinde, C. J. (2012, January). An extension of the consensus-

based bundle algorithm for group dependant tasks with equipment dependencies. In Neural 

Information Processing (pp. 518-527). Springer Berlin Heidelberg. 

 

Hunt, S., Meng, Q., & Hinde, C. J. (2012, December). An Extension of the 

Consensus-Based Bundle Algorithm for Multi-agent Tasks with Task Based Requirements. 

In Machine Learning and Applications (ICMLA), 2012 11th International Conference 

on (Vol. 2, pp. 451-456). IEEE. 

 

Hunt, S., Meng, Q., Hinde, C., & Huang, T. (2014, April). A Consensus-Based 

Grouping Algorithm for Multi-agent Cooperative Task Allocation with Complex 

Requirements. Cognitive Computation, 1-13. Springer US.  



 

 133 

References 

Alighanbari, M., 2004. Task assignment algorithms for teams of UAVs in dynamic 

environments. PhD Thesis. Massachusetts Institute of Technology. 

al-Rifaie, M.M., Bishop, J.M. & Caines, S., 2012. Creativity and autonomy in swarm 

intelligence systems. Cognitive Computation, 4(3), pp.320-31. 

Amgoud, L., 2005. Towards a formal model for task allocation via coalition formation. In 

Proceedings of the fourth international joint conference on Autonomous agents and 

multiagent systems., 2005. 

Anderson, T.L. & Donath, M., 1990. Animal behavior as a paradigm for developing robot 

autonomy. Robotics and Autonomous Systems, 6(1), pp.145-68. 

Anderson, C. & Ratnieks, F.L., 1999. Task partitioning in insect societies. I. Effect of colony 

size on queueing delay and colony ergonomic efficiency. The American Naturalist, 154(5), 

pp.521-35. 

Andersson, A., Tenhunen, M. & Ygge, F., 2000. Integer Programming for Combinatorial 

Auction Winner Determination. In Fourth International Conference on MultiAgent Systems., 

2000. IEEE. 

Antonelli, G., Arrichiello, F. & Chiaverini, S., 2010. Flocking for multi-robot systems via the 

Null-Space-based Behavioral control. Swarm Intelligence, 4(1), pp.37-56. 

Antsaklis, P.J., Passino, K.M. & Wang, S.J., 1989. Towards Intelligent Autonomous Control 

Systems: Architecture and Fundamental Issues. Journal of Intelligent and Robotic Systems, 

1(4), pp.315-42. 

Arathi, H.S. & Spivak, M., 2001. Influence of colony genotypic composition on the 

performance of hygienic behaviour in the honeybee, Apis mellifera. Animal Behaviour, 62(1), 

pp.57 – 66. 

Argyle, M., Casbeer, D.W. & Beard, R., 2011. A multi-team extension of the consensus-

based bundle algorithm. In American Control Conference (ACC), IEEE., 2011. 



 

 134 

Axelrod, R. & Hamilton, W.D., 1981. The evolution of cooperation. Science, 211(4489), 

pp.1390-96. 

Bar-Cohen, Y., 2006. Biomimetics—using nature to inspire human innovation. Bioinspiration 

& Biomimetics, 1(1), p.1. 

Beard, R. & Stepanyan, V., 2003. Information consensus in distributed multiple vehicle 

coordinated control. In Proceedings. 42nd IEEE Conference on Decision and Control., 2003. 

Bellingham, J.S., Tillerson, M.J., Richards, A.G. & How, J.P., 2001. Multi-Task Assignment 

and Path Planning for Cooperating UAVs. In Cooperative Control: Models, Applications and 

Algorithms. Springer US. pp.23-41. 

Berhault, M. et al., 2003. Robot Exploration with Combinatorial Auctions. In Proceedings 

2003 IEEE/RSJ International Conference on Intelligent Robots and Systems., 2003. 

Bernard, M., Kondak, K., Maza, I. & Ollero, A., 2011. Autonomous transportation and 

deployment with aerial robots for search and rescue missions. Journal of Field Robotics, 

28(6), pp. 914-931. 

Bertuccelli, L.F., Choi, H.L., Cho, P. & How, J.P., 2009. Real-time multi-UAV task 

assignment in dynamic and uncertain environments. In AIAA Guidance, Navigation, and 

Control Conference., 2009. 

Biesmeijer, J.C. & de Vries, H., 2001. Exploration and exploitation of food sources by social 

insect colonies: a revision of the scout-recruit concept. Behavioral Ecology and Sociobiology, 

49(2-3), pp.89-99. 

Burkard, R.E., Dell'Amico, M. & & Martello, S., 2009. Assignment problems. Society for 

Industrial and Applied Mathematics. 

Campoy, P. et al., 2009. Computer vision onboard UAVs for civilian tasks. In Unmanned 

Aircraft Systems., 2009. Springer Netherlands. 

Chao, H., Cao, Y. & Chen, Y., 2010. Autopilots for small unmanned aerial vehicles: a survey. 

International Journal of Control, Automation and Systems, 8(1), pp.36-44. 



 

 135 

Chen, Y.M. & Wu, W.Y., 2012. Cooperative Electronic Attack for Groups of Unmanned Air 

Vehicles based on Multi-Agent Simulation and Evaluation. International Journal of 

Computer Science Issues, 9(2), pp.1-6. 

Choi, H., Brunet, L. & How, J.P., 2009. Consensus-Based Decentralized Auctions for Robust 

Task Allocation. IEEE Transactions on Robotics, 25(4), pp.912-26. 

Choi, H.-L., Whitten, A.K. & P, J., 2010. Decentralized task allocation for heterogeneous 

teams with cooperation constraints. In American Control Conference (ACC)., 2010. 

Claes, R. & Holvoet, T., 2011. Weighing Communication Overhead Against Travel Time 

Reduction in Advanced Traffic Information Systems. Progress in Artificial Intelligence, 1(2), 

pp.165-72. 

Connelly, J., Hong, W.S., Mahoney, R.B.J. & Sparrow, D.A., 2006. Current challenges in 

autonomous vehicle development. In Gerhart, G.R., Shoemaker, C.M. & Gage, D.W., eds. 

Unmanned Systems Technology VIII., May 2006. Proceedings of the SPIE. 

Conradt, L. & Roper, T.J., 2005. Consensus decision making in animals. Trends in Ecology & 

Evolution, 20(8), pp.449-56. 

Cox, M.D. & Myerscough, M.R., 2003. A flexible model of foraging by a honey bee colony: 

the effects of individual behaviour on foraging success. Journal of theoretical biology, 

223(2), pp.179-97. 

Cruzen, C. & Thompson., J.T., 2013. Advancing Autonomous Operations Technologies for 

NASA Missions. In IEEE Aerospace Conference., 2013. 

Dalamagkidis, K., Valavanis, K.P. & Piegl, L.A., 2012. On integrating unmanned aircraft 

systems into the national airspace system: issues, challenges, operational restrictions, 

certification, and recommendations. 2nd ed. Springer. 

Dawkins, R., 2006. The selfish gene. Oxford University Press. 

De Vries, S. & Vohra, R., 2003. Combinatorial Auctions: A survey. INFORMS Journal on 

computing, 15(3), pp.284-309. 



 

 136 

Deneubourg, J.L. et al., 1991. The dynamics of collective sorting robot-like ants and ant-like 

robots. In Proceedings of the first international conference on simulation of adaptive 

behavior on From animals to animats., 1991. 

Detrain, C. & Deneubourg, J.L., 2006. Self-organized structures in a superorganism: do ants 

“behave” like molecules? Physics of Life Reviews, 3(3), pp.162-87. 

Dewi, J., 2005. Power Line Inspection - a UAV concept. In The IEE Forum on Autonomous 

Systems., 2005. 

Di Paola, D., Naso, D. & Turchiano, B., 2011. Consensus-based robust decentralized task 

assignment for heterogeneous robot networks. In American Control Conference (ACC)., 

2011. 

Fahlstrom, P. & Gleason, T., 2012. Introduction to UAV systems. John Wiley & Sons. 

Farinelli, A., Iocchi, L. & Nardi, D., 2004. Multi-Robot Systems: A Classification Focused on 

Coordination. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 

34(5), pp.2015-28. 

Fierro, R., Song, P., Das, A. & Kumar, V., 2002. Cooperative control of Robot Formations. In 

Cooperative Control and Optimization. Springer US. pp.73-93. 

Garratt, M.A., Pota, H.R., Lambert, A. & Maslin, S.E., 2007. Systems for automated launch 

and recovery of an unmanned aerial vehicle from ships at sea. In Proceedings of the 22nd 

International UAV Systems Conference., 2007. 

Gogarty, B. & Hagger., M., 2008. The Laws of Man over Vehicles Unmanned: The Legal 

Response to Robotic Revolution on Sea, Land and Air. Journal of Law & Information 

Science, 19, pp.73-145. 

Goldberg, D.E. & Holland, J.H., 1988. Genetic algorithms and machine learning. Machine 

learning, 3(2), pp.95-99. 

Gordon, D.M., 1996. The Organization of Work in Social Insect Colonies. Nature, 380(6570), 

pp.121-24. 



 

 137 

Gordon, D.M., 1999. Interaction patterns and task allocation in ant colonies. In Information 

Processing in Social Insects. Birkhäuser Basel. pp.51-67. 

Hatano, Y. & Mesbahi, M., 2004. Agreement over Random Networks. IEEE Transactions on 

Automatic Control, 50(11), pp.1867-72. 

Heinze, J., 1998. Intercastes, intermorphs, and ergatoid queens: who is who in ant 

reproduction? Insectes Sociaux, 45(2), pp.113-24. 

Hinchey, M. & Sterritt, R., 2007. 99%(Biological) Inspiration. In Proceedings of the 4th 

IEEE International Workshop on Engineering of Autonomic and Autonomous Systems., 2007. 

Hirschfeld, R.A., Aghazadeh, F. & Chapleski., R.C., 1993. Survey of robot safety in industry. 

International Journal of Human Factors in Manufacturing, 3(4), pp.369-79. 

Hirsch, M.J., Ortiz-Peña, H.J. & Eck, C., 2012. Cooperative Tracking of Multiple Targets by 

a Team of Autonomous UAVs. International Journal of Operations Research and 

Information Systems (IJORIS), 3(1), pp.53-73. 

Hirsch, M.J., Ortiz-Pena, H. & Sudit., M., 2011. Decentralized Cooperative Urban Tracking 

of Mulitple Ground Targets by a team of Autonomous UAVs. In Proceedings of the 14th 

International Conference on Information Fusion., 2011. 

Hoeing, M., Dasgupta, P., Petrov, P. & O'Hara, S., 2007. Auction-based multi-robot task 

allocation in comstar. In Proceedings of the 6th international joint conference on Autonomous 

agents and multiagent systems., 2007. 

Huang, H.M., Pavek, K., Albus, J. & Messina, E., 2005. Autonomy Levels for Unmanned 

Systems Framework: an update. In Proceedings of the 2005 SPIE Defense and Security 

Symposium., 2005. 

Huang, H.M. et al., 2005. A framework for autonomy levels for unmanned systems (ALFUS). 

In Proceedings of the AUVSI’s Unmanned Systems North America., 2005. 

Innocenti, M., Pollini, L. & Bracci, A., 2010. Cooperative Path planning and Task 

Assignment for Unmanned Air Vehicles. Journal of Aerospace Engineering, 224(2), pp.121-

31. 



 

 138 

Jiang, W., Wenkai, F. & Qianru., L., 2013. An integrated measure and location method based 

on airborne 2D laser scanning sensor for UAV's power line inspection. In Fifth International 

Conference on Measuring Technology and Mechatronics Automation (ICMTMA)., 2013. 

Jin, Y., Minai, A.A. & Polycarpou, M.M., 2003. Cooperative real-time search and task 

allocation in UAV teams. In Decision and Control., 2003. 

Johnson, B.R., 2009. A Self‐Organizing Model for Task Allocation via Frequent Task 

Quitting and Random Walks in the Honeybee. The American Naturalist, 174(4), pp.537-47. 

Kontogiannis, S.G. & Ekaterinaris, J.A., 2013. Design, performance evaluation and 

optimization of a UAV. Aerospace Science and Technology, 29(1), pp.339–50. 

Kreps, S. & Kaag, J., 2012. The Use of Unmanned Aerial Vehicles in Contemporary Conflict: 

A Legal and Ethical Analysis. Polity, 44(2), pp.260-85. 

Larrauri, J.I., Sorrosal, G. & Gonzalez., M., 2013. Automatic system for overhead power line 

inspection using an Unmanned Aerial Vehicle — RELIFO project. In International 

Conference on Unmanned Aircraft Systems (ICUAS)., 2013. 

Lau, H.C. & Zhang, L., 2003. Task allocation via multi-agent coalition formation: Taxonomy, 

algorithms and complexity. In 15th IEEE International Conference on Tools with Artificial 

Intelligence., 2003. 

Lin, L. & Goodrich, M.A., 2009. UAV Intelligent Path Planning for Wilderness Search and 

Rescue. In IEEE/RSJ International Conference on Intelligent Robots and Systems., 2009. 

Li, D., Sun, X. & Li, X., 2012. Multi-UAVs Cooperative Target Tracking Control Law 

Design Based on Computer Vision. Journal of Systems Engineering and Electronics, 34(2), 

pp.364-68. 

Liu, Y. & Sun, D., 2012. Biologically inspired robotics. CRC Press. 

Lo, V.M., 1998. Heuristic Algorithms for Task Assignment in Distributed Systems. In IEEE 

Transactions on Computers., 1998. 

Lum, C., 2009. Coordinated Searching and Target Identification Using Teams of Autonomous 

Agents. ProQuest. 



 

 139 

Lutz, R., 2011. Software Engineering for Space Exploration. Computer, 44(10), pp.41-46. 

Manisterski, E., David, E., Kraus, S. & Jennings, N.R., 2006. Forming efficient agent groups 

for completing complex tasks. In Proceedings of the fifth international joint conference on 

Autonomous agents and multiagent systems., 2006. 

Martinez-Val, R. & Perez, E., 2009. Aeronautics and Astronautics: Recent Progress and 

Future Trends. Journal of Mechanical Engineering Science, 223(12), pp.2767-820. 

Maza, I. et al., 2011. Experimental Results in Multi-UAV coordination for Disaster 

Management and Civil Security Applications. Journal of Intelligent and Robotic Systems, 

61(1-4), pp.563-85. 

McCarley, J.S. & Wickens, C.D., 2005. Human factors implications of UAVs in the national 

airspace. Urbana-Champaign: University of Illinois. 

Mercker, T., Casbeer, D.W., Millet, P.T. & Akella, M.R., 2010. An extension of consensus-

based auction algorithms for decentralized, time-constrained task assignment. In American 

Control Conference (ACC)., 2010. 

Merino, L., Caballero, F., Martínez-de Dios, J.R. & & Ollero, A., 2005. Cooperative fire 

detection using unmanned aerial vehicles. In Proceedings of the International Conference on 

Robotics and Automation, IEEE., 2005. 

Müller, V.C., 2012. Autonomous cognitive systems in real-world environments: less control, 

more flexibility and better interaction. Cognitive Computation, 4(3), pp.212-15. 

Nakamura, S., Nakagawa, H., Tahara, Y. & Ohsuga, A., 2013. Towards solving an obstacle 

problem by the cooperation of UAVs and UGVs. In Proceedings of the 28th Annual ACM 

Symposium on Applied Computing., 2013. 

Nodine, M., Chandrasekara, D. & Unruh, A., 2001. Task Coordination Paradigms for 

Information Agents. In Proceedings of the 7th International Workshop on Agent Theories, 

Architectures and Languages., 2001. 

Papadales, B. & Downing, M., 2005. UAV science missions: A business perspective. In 

Infotech@Aerospace Conferences. Arlington, 2005. AIAA. 



 

 140 

Pastor, E., Lopez, J. & Royo, P., 2007. UAV Payload and Mission Control 

Hardware/Software Architecture. Aerospace and Electronic Systems Magazine, IEEE, 22(6), 

pp.3-8. 

Pettersen, K.Y., Liljebäck, P., Stavdahl, Ø. & Gravdahl, J.T., 2013. Snake Robots From 

Biology to Nonlinear Control. Nonlinear Control Systems, 9(1), pp.110-15. 

Plowes, N., 2010. An Introduction to Eusociality. Nature Education Knowledge, 1(11), p.7. 

Ponda, S. et al., 2010. Decentralized planning for complex missions with dynamic 

communication constraints. In American Control Conference (ACC)., 2010. 

Ren, W., Beard, R.W. & Atkins, E.M., 2007. Information Consensus in Multi-Vehicle 

Control. Control Systems, IEEE, 27(2), pp.71-82. 

Richards, A., Bellingham, J., Tillerson, M. & How, J., 2002. Coordination and control of 

multiple UAVs. In AIAA guidance, navigation, and control conference. Monterey, CA, 2002. 

Schneiderman, R., 2012. Unmanned Drones are Flying High in the Military/Aerospace 

Sector. Signal Processing Magazine, IEEE, 29(1), pp.8-11. 

Schweiger, D.M., Sandberg, W.R. & Ragan, J.W., 1986. Group approaches for improving 

strategic decision making: A comparative analysis of dialectical inquiry, devil's advocacy, and 

consensus. Academy of management Journal, 29(1), pp.51-71. 

Seeley, T.D., Camazine, S. & Sneyd, J., 1991. Collective decision-making in honey bees: how 

colonies choose among nectar sources. Behavioral Ecology and Sociobiology, 28(4), pp.277-

90. 

Shehory, O. & Kraus, S., 1998. Methods for task allocation via agent coalition formation. 

Artificial Intelligence, 101(1), pp.165-200. 

Shehory, O.M., Sycara, K. & Jha, S., 1998. Multi-agent coordination through coalition 

formation. In Intelligent Agents IV Agent Theories, Architectures, and Languages. Springer 

Berlin Heidelberg. pp.143-54. 

Sujit, P.B. & Beard, R., 2007. Multiple MAV Task Allocation using Distributed Auctions. In 

AIAA Guidance, Navigation and Control Conference and Exhibit., 2007. 



 

 141 

Tahbaz-Salehi, A. & Jadbabaie, A., 2006. On Consensus Over Random Networks. In 44th 

Allerton Conference on Communication, Control, and Computing., 2006. 44th Annual 

Allerton Conference. 

Tisdale, J. et al., 2006. The software architecture of the Berkeley UAV platform. In IEEE 

International Conference on Control Applications., 2006. 

Tofilski, A. et al., 2008. Preemptive Defensive Self‐Sacrifice by Ant Workers.. The American 

Naturalist, 172(5), pp.239-43. 

Tomic, T. et al., 2012. Toward a Fully Autonomous UAV: Research Platform for Indoor and 

Outdoor Urban Search and Rescue. Robotics & Automation Magazine, IEEE, 19(3), pp.46-56. 

Tuna, G. et al., 2012. Unmanned Aerial Vehicle-Aided Wireless Sensor Network Deployment 

System for Post-disaster Monitoring. In Emerging Intelligent Computing Technology and 

Applications. Springer Berlin Heidelberg. pp.298-305. 

Valenti, M. et al., 2007. Embedding health management into mission tasking for UAV teams. 

In American Control Conference. IEEE., 2007. Proceedings of the 2007 American Control 

Conference. 

Whitten, A.K., Choi, H.L., Johnson, L.B. & How, J.P., 2011. Decentralized task allocation 

with coupled constraints in complex missions. In American Control Conference (ACC)., 

2011. 

Willmann, J. et al., 2012. Aerial Robotic Construction Towards a New Field of Architectural 

Research. International Journal of Architectural Computing, 10(3), pp.439-60. 

Wood, R.J., 2008. The first takeoff of a biologically inspired at-scale robotic insect. IEEE 

Transactions on Robotics, 24(2), pp.341 - 347. 

Wooden, D. et al., 2010. Autonomous navigation for BigDog. In IEEE International 

Conference on Robotics and Automation (ICRA)., 2010. 

Wright, M.B., 1990. Speeding up the Hungarian algorithm. Computers & Operations 

Research, 17(1), pp.95-96. 



 

 142 

Wu, C.W., 2006. Synchronization and Convergence of Linear Dynamics in Random Directed 

Networks. IEEE Transactions on Automatic Control, 51(7), pp.1207-10. 

Yamaguchi, H., Arai, T. & Beni, G., 2001. A Distributed Control Scheme for Multiple 

Robotic Vehicles to Make Group Formations. Robotics and Autonomous systems, 36(4), 

pp.125-47. 

Zhao, Z., Ding, Q., Wang, Z. & Chen, L., 2012. A Coupled Approach to Wilderness Search 

and Rescue Problem Based on Cross-Entropy. In Proceedings of the 2012 International 

Conference on Electronics, Communications and Control., 2012. 

Zhu, S., Wang, D. & Low, C.B., 2013. Cooperative Control of Multiple UAVs for Source 

Seeking. Journal of Intelligent & Robotic Systems, 70(1-4), pp.293-301. 

 

 



 

 143 

Appendix A 

A.1 TASK ASSIGNMENT AND CONSENSUS WITH THE CBBA 

This section provides an insight into a typical assignment build up using the 

CBBA. Figure A.1 displays the initial layout of an example scenario involving 4 

agents and 5 single-agent tasks. 

 

 

Figure A.1: Initial set up of the example simulation with a top down view of the agent 

starting positions and their communication network (left) and the view of task 

positions and their time windows (right). 

Each agent individually constructs their own bundle of tasks they plan to 

complete. With no knowledge about any other agent’s bids each agent attempts to 

complete as many tasks as it can to produce the highest score possible. Figure A.2 

displays the initial path agents will take to complete their assignments, without any 

prior communication means every task produces a conflicting assignment. Table A.1 

shows the state of agent A1’s winning agent list    and winning bid list    containing 

the assignments it has initially decided to do. Table A.2 shows the data that A2 will 

send to both agents A1 and A3, for the initial round of consensus agent A1 will only 

have assignments from agent A2, assignments from other agents will need to 

propagate through the communication network where only valid winning bids will 

reach A1. 
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Figure A.2: Initial assignments before any communication and consensus has taken 

place. Agent paths offset to allow easier viewing of agents on the same path. 

Table A.1: Agent A1’s initial winning agent list    and winning bid list    after the 

bundle construction phase but before any consensus. 

Winning bid list    for agent A1 

 

Winning agent list    for agent A1 
          4              4    

               44                  

Table A.2: Agent A2’s winning agent list    and winning bid list    that is 

communicated to agent A1 and A3 after the bundle construction phase. 

Winning bid list    for agent A2 

 

Winning agent list    for agent A2 
          4              4    

               44                  

 

After each agent has received bid information from their neighbours each 

agent consensus the data with its own keeping only the highest bids and removing any 

other bids. When agent A1 receives the assignment data from agent A2 as seen in 

Table A.2, it determines that it has the better bid for task T1, however, it loses the 

assignments for tasks T2 and T3 because both agents provide the same score and in a 

tie break situation a higher agent ID determines the winning in this case      . 
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Once the winning data an agent has received has been merged with its own 

data through the consensus phase, agents return back to the bundle phase where any 

tasks they have lost are removed as well as any tasks that happen later in the agent’s 

path. Again each agent adds tasks to its own bundle that give it the greatest 

improvement in score, however, this time agents can only add tasks that can beat 

previous winning bids if such a bid exists. Figure A.3 displays the assignments of 

agents and tasks after the second iteration of the bundle phase. 

 

Figure A.3: Assignments after the second iteration of the bundle phase. Agent paths 

offset to allow easier viewing of agents on the same path. 

Table A.3: Agent A1’s winning agent list    and winning bid list    after the second 

iteration of the bundle construction phase. 

Winning bid list    for agent A1 

 

Winning agent list    for agent A1 
          4              4    

               44                    

Table A.4: Agent A2’s winning agent list    and winning bid list    that is 

communicated to agent A1 and A3 after the second iteration of the bundle 

construction phase. 

Winning bid list    for agent A2 

 

Winning agent list    for agent A2 
          4              4    

         44    44         4                 
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The assignment data for agent A1 in Table A.3 shows that agent A1 still 

thinks agent A2 is assigned to task T2 and T3, this information will be corrected once 

it receives another communication message from A2. Table A.4 shows the new 

assignment data that A2 has, in this the second round of communication it can be seen 

that agent A1 will now be given some information about the assignments of A3. 

Although it can be seen that the data is only partially valid but with each round 

assignments change less and valid assignments will propagate through the 

communication network. Figure A.4 shows the assignments at each round until finally 

all the agents converge on a single conflict free solution. 

 

 

Figure A.4: Agent assignments at successive iterations of the CBBA. Agent paths 

offset to allow easier viewing of agents on the same path. 
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A.2 TASK ASSIGNMENT AND CONSENSUS WITH THE CBGA 

This section provides the convergence of a multi-agent assignment created 

using the CBGA. Figure A.1 displays the initial layout of an example scenario 

involving 4 agents and 5 multi-agent tasks where        . This scenario is exactly 

the same as that found in Figure A.1 except this time each task is a multi-agent task 

requiring the CBGA to form assignments. 

 

 

Figure A.5: Initial set up of the example simulation with a top down view of the agent 

starting positions and their communication network (left) and the view of task 

positions and their time windows (right). 

 

Figure A.6: Initial assignments before any communication and consensus has taken 

place. Agent paths offset to allow easier viewing of agents on the same path. 
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The initial assignment displayed in Figure A.6 is the same first assignment as 

found with the CBBA, replacing the single-agent tasks with multi-agent tasks does 

not have any effect on how agents initially build their assignments. Each agent finds 

the path that provides the greatest individual improvement. Similarly the assignment 

matrices in Table A.5 and Table A.6 contain the same bids as found in the CBBA. 

Table A.5: Agent A1’s initial winning agent matrix    and winning bid matrix    after 

the bundle construction phase but before any consensus. 

Winning bid matrix    for agent A1 

 

Winning agent matrix    for agent A1 

           4               4    

                4                  

                          

                          

 4            4           

Table A.6: Agent A2’s winning agent matrix    and winning bid matrix    that is 

communicated to agent A1 and A3 after the bundle construction phase. 

Winning bid matrix    for agent A2 

 

Winning agent matrix    for agent A2 

           4               4    

                          

                4                  

                          

 4            4           

 

Figure A.7: Assignments after the second iteration of the bundle phase. Agent paths 

offset to allow easier viewing of agents on the same path. 
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Figure A.7 shows the assignments after the second bundle phase which is 

exactly the same as the previous assignments in Figure A.6. Because each multi-agent 

task allows two assignments, no agent has enough information to believe its 

assignments are not valid. Agent A1 believes only two agents are currently assigned 

to tasks T1, T2 and T3 as seen in Table A.7. Table A.8 shows that agent A2 knows 

that this is not true, however, because its ID is greater than A1 it has unassigned agent 

A1 and kept itself on all three tasks. 

Table A.7: Agent A1’s winning agent matrix    and winning bid matrix    after the 

second iteration of the bundle construction phase. 

Winning bid matrix    for agent A1 

 

Winning agent matrix    for agent A1 

           4               4    

                4                  

                4                  

                          

 4            4           

Table A.8: Agent A2’s winning agent matrix    and winning bid matrix    that is 

communicated to agent A1 and A3 after the second iteration of the bundle 

construction phase. 

Winning bid matrix    for agent A2 

 

Winning agent matrix    for agent A2 

           4               4    

                             

                4                  

        4    4               1 1   

 4            4           
 

At the third iteration of the CBGA the final solution has been reached as can 

be seen in Figure A.8 although insufficient time has elapsed such that agent A1 still 

has no information about agent A4’s assignments as seen in Table A.9. This 

assignment will still take a few more iterations before every agent converges on the 

same solution. Table A.10 shows that agent A2 is very close to having the complete 

assignment but is still missing the final assignment from A1. 
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Figure A.8: Final assignment of agents, agent paths offset to allow easier viewing of 

agents on the same path. 

Table A.9: Agent A1’s winning agent matrix    and winning bid matrix    after the 

third iteration of the bundle construction phase. 

Winning bid matrix    for agent A1 

 

Winning agent matrix    for agent A1 

           4               4    

                              

                4                  

        4    4               1 1   

 4            4           

Table A.10: Agent A2’s winning agent matrix    and winning bid matrix    that is 

communicated to agent A1 and A3 after the third iteration of the bundle construction 

phase. 

Winning bid matrix    for agent A2 

 

Winning agent matrix    for agent A2 

           4               4    

                             

                                

        4    4               1 1   

 4      4    4         4     1 1   
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