18 research outputs found

    Wearable Platform for Automatic Recognition of Parkinson Disease by Muscular Implication Monitoring

    Get PDF
    The need for diagnostic tools for the characterization of progressive movement disorders - as the Parkinson Disease (PD) - aiming to early detect and monitor the pathology is getting more and more impelling. The parallel request of wearable and wireless solutions, for the real-time monitoring in a non-controlled environment, has led to the implementation of a Quantitative Gait Analysis platform for the extraction of muscular implications features in ordinary motor action, such as gait. The here proposed platform is used for the quantification of PD symptoms. Addressing the wearable trend, the proposed architecture is able to define the real-time modulation of the muscular indexes by using 8 EMG wireless nodes positioned on lower limbs. The implemented system “translates” the acquisition in a 1-bit signal, exploiting a dynamic thresholding algorithm. The resulting 1-bit signals are used both to define muscular indexes both to drastically reduce the amount of data to be analyzed, preserving at the same time the muscular information. The overall architecture has been fully implemented on Altera Cyclone V FPGA. The system has been tested on 4 subjects: 2 affected by PD and 2 healthy subjects (control group). The experimental results highlight the validity of the proposed solution in Disease recognition and the outcomes match the clinical literature results

    Evanescent Waveguide Sensor for On-Chip Biomolecular Detection

    Get PDF
    This work presents analysis and development of an evanescent waveguide sensor system, which integrates an amorphous silicon photodiode and a glass-diffused waveguide. Design of the system includes a study of thickness and refractive index of the transparent electrode of the diode, which are crucial parameters for the optimization of the optical coupling between the waveguide and the photodetector. Preliminary electro-optical measurements on the fabricated device show excellent system performances, and suggest its use for on-chip detection in lab-on-chip applications

    Biomimetic Sonar for Electrical Activation of the Auditory Pathway

    Get PDF
    Relying on the mechanism of bat’s echolocation system, a bioinspired electronic device has been developed to investigate the cortical activity of mammals in response to auditory sensorial stimuli. By means of implanted electrodes, acoustical information about the external environment generated by a biomimetic system and converted in electrical signals was delivered to anatomically selected structures of the auditory pathway. Electrocorticographic recordings showed that cerebral activity response is highly dependent on the information carried out by ultrasounds and is frequency-locked with the signal repetition rate. Frequency analysis reveals that delta and beta rhythm content increases, suggesting that sensorial information is successfully transferred and integrated. In addition, principal component analysis highlights how all the stimuli generate patterns of neural activity which can be clearly classified. The results show that brain response is modulated by echo signal features suggesting that spatial information sent by biomimetic sonar is efficiently interpreted and encoded by the auditory system. Consequently, these results give new perspective in artificial environmental perception, which could be used for developing new techniques useful in treating pathological conditions or influencing our perception of the surroundings

    Electrical Impedance Spectroscopy (EIS) characterization of saline solutions with a low-cost portable measurement system

    Get PDF
    Electrical Impedance Spectroscopy (EIS), a powerful technique used for wide range of applications, is usually carried out by means of benchtop instrumentation (LCR meters and ìmpedance analyzers), not suited for in-the-field measurements performed outside a laboratory.In this paper a new portable electronic system for EIS on liquid and semi-liquid media is presented that is capable to produce an electrical fingerprint of the sample under investigation. The proposed system was used for the characterization of four different saline solutions (NaCl, Na2CO3, K2HPO4 and CuSO4). A multi-frequency approach, based on the measurement of maximum value of the impedance imaginary component and its corresponding frequency, was tested for the first time to discriminate different saline solutions. The results show that the proposed method is capable to discriminate the different solutions and to measure the concentration (R2 = 0.9965) independently of the type of saline solution. Keywords: Impedance Spectroscopy, Measurement, Frequency, Sensor, Portable syste

    Operation of a novel large area, high gain, single stage gaseous electron multiplier

    Get PDF
    The operation of a novel large area micro-patterned gaseous electron multiplier, made from a 125 micron thick copper claded kapton foil, the COBRA_125, is presented. The COBRA_125 is equiped with 3 independent electrodes which allow to establish 2 independent multiplication regions in a single micro-patterened gaseous electron mutiplier. We report on the operation of a COBRA_125 with an active area of 100×100 mm2. Charge gains above 104 and energy resolutions in the range 18%–20% were achieved in a mixture of Ar-CH4 (90%–10%) by irradiation with X-rays from 55Fe source. Gain and energy resolutions were stable over the detector area, with maximum deviation from the average values of 8% and 15%, respectively

    Runtime adaptive iomt node on multi-core processor platform

    Get PDF
    The Internet of Medical Things (IoMT) paradigm is becoming mainstream in multiple clinical trials and healthcare procedures. Thanks to innovative technologies, latest-generation communication networks, and state-of-the-art portable devices, IoTM opens up new scenarios for data collection and continuous patient monitoring. Two very important aspects should be considered to make the most of this paradigm. For the first aspect, moving the processing task from the cloud to the edge leads to several advantages, such as responsiveness, portability, scalability, and reliability of the sensor node. For the second aspect, in order to increase the accuracy of the system, state-of-the-art cognitive algorithms based on artificial intelligence and deep learning must be integrated. Sensory nodes often need to be battery powered and need to remain active for a long time without a different power source. Therefore, one of the challenges to be addressed during the design and development of IoMT devices concerns energy optimization. Our work proposes an implementation of cognitive data analysis based on deep learning techniques on resource-constrained computing platform. To handle power efficiency, we introduced a component called Adaptive runtime Manager (ADAM). This component takes care of reconfiguring the hardware and software of the device dynamically during the execution, in order to better adapt it to the workload and the required operating mode. To test the high computational load on a multi-core system, the Orlando prototype board by STMicroelectronics, cognitive analysis of Electrocardiogram (ECG) traces have been adopted, considering single-channel and six-channel simultaneous cases. Experimental results show that by managing the sensory node configuration at runtime, energy savings of at least 15% can be achieved

    Wearables and Internet of Things (IoT) Technologies for Fitness Assessment: A Systematic Review

    Get PDF
    Wearable and Internet of Things (IoT) technologies in sports open a new era in athlete?s training, not only for performance monitoring and evaluation but also for fitness assessment. These technologies rely on sensor systems that collect, process and transmit relevant data, such as biomark ers and/or other performance indicators that are crucial to evaluate the evolution of the athlete?s condition, and therefore potentiate their performance. This work aims to identify and summarize recent studies that have used wearables and IoT technologies and discuss its applicability for fitness assessment. A systematic review of electronic databases (WOS, CCC, DIIDW, KJD, MEDLINE, RSCI, SCIELO, IEEEXplore, PubMed, SPORTDiscus, Cochrane and Web of Science) was undertaken according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. From the 280 studies initially identified, 20 were fully examined in terms of hardware and software and their applicability for fitness assessment. Results have shown that wearable and IoT technologies have been used in sports not only for fitness assessment but also for monitoring the athlete?s internal and external workloads, employing physiological status monitoring and activity recognition and tracking techniques. However, the maturity level of such technologies is still low, particularly with the need for the acquisition of more?and more effective?biomarkers regarding the athlete?s internal workload, which limits its wider adoption by the sports community.4811-99FE-2ECD | Luis Paulo RodriguesN/

    Very Low Power Neural Network FPGA Accelerators for Tag-Less Remote Person Identification Using Capacitive Sensors

    Get PDF
    Human detection, identification, and monitoring are essential for many applications aiming to make smarter the indoor environments, where most people spend much of their time (like home, office, transportation, or public spaces). The capacitive sensors can meet stringent privacy, power, cost, and unobtrusiveness requirements, they do not rely on wearables or specific human interactions, but they may need significant on-board data processing to increase their performance. We comparatively analyze in terms of overall processing time and energy several data processing implementations of multilayer perceptron neural networks (NNs) on board capacitive sensors. The NN architecture, optimized using augmented experimental data, consists of six 17-bit inputs, two hidden layers with eight neurons each, and one four-bit output. For the software (SW) NN implementation, we use two STMicroelectronics STM32 low-power ARM microcontrollers (MCUs): one MCU optimized for power and one for performance. For hardware (HW) implementations, we use four ultralow-power field-programmable gate arrays (FPGAs), with different sizes, dedicated computation blocks, and data communication interfaces (one FPGA from the Lattice iCE40 family and three FPGAs from the Microsemi IGLOO family). Our shortest SW implementation latency is 54.4 µs and the lowest energy per inference is 990 nJ, while the shortest HW implementation latency is 1.99 µs and the lowest energy is 39 nJ (including the data transfer between MCU and FPGA). The FPGAs active power ranges between 6.24 and 34.7 mW, while their static power is between 79 and 277 µW. They compare very favorably with the static power consumption of Xilinx and Altera low-power device families, which is around 40 mW. The experimental results show that NN inferences offloaded to external FPGAs have lower latency and energy than SW ones (even when using HW multipliers), and the FPGAs with dedicated computational blocks (multiply-accumulate) perform best

    Tiny ML in Microcontroller to Classify EEG Signal into Three States

    Get PDF
    This thesis investigates how to implement an own-built neural network for electroencephalography signals classification on an STM32L475VG microcontroller unit. The original dataset is analyzed and processed to better understand the brain signals. There is a comparison between three machine learning algorithms (linear support vector machine, extreme gradient boosting, and deep neural network) in three testing paradigms: specific-subject, all-subject, and adaptable to select the most appropriate approach for deploying on the microcontroller. The implementation procedure with detailed notation is presented, and the inference is also performed to feasible observation. Finally, possible improvement solutions are proposed within a clear demonstration.This thesis investigates how to implement an own-built neural network for electroencephalography signals classification on an STM32L475VG microcontroller unit. The original dataset is analyzed and processed to better understand the brain signals. There is a comparison between three machine learning algorithms (linear support vector machine, extreme gradient boosting, and deep neural network) in three testing paradigms: specific-subject, all-subject, and adaptable to select the most appropriate approach for deploying on the microcontroller. The implementation procedure with detailed notation is presented, and the inference is also performed to feasible observation. Finally, possible improvement solutions are proposed within a clear demonstration
    corecore