

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

MSc THESIS

Tiny ML in Microcontroller to Classify
EEG Signal into Three States

Thuy T. Pham

Supervisor (or supervisors): Van-Tam Nguyen,
Professor at Telecom ParisTech, France

ATHENS

SEPTEMBER 2022

MSc THESIS

Tiny ML in Microcontroller to Classify
EEG Signal into Three States

Thuy T. Pham

S.N.: 7115192100007

Supervisor (or supervisors): Van-Tam Nguyen,
Professor at Telecom ParisTech, France

ABSTRACT

This thesis investigates how to implement an own-built neural network for

electroencephalography signals classification on an STM32L475VG microcontroller unit.

The original dataset is analyzed and processed to better understand the brain signals.

There is a comparison between three machine learning algorithms (linear support vector

machine, extreme gradient boosting, and deep neural network) in three testing

paradigms: specific-subject, all-subject, and adaptable to select the most appropriate

approach for deploying on the microcontroller. The implementation procedure with

detailed notation is presented, and the inference is also performed to feasible

observation. Finally, possible improvement solutions are proposed within a clear

demonstration.

SUBJECT AREA: Signal processing, machine learning, embedded system

KEYWORDS: electroencephalography, artificial neural network, STM32 microcontroller,

 SVM, XGBoost

Erasmus Mundus Joint Master’s Degree
“SMART Telecom and Sensing NETworks” (SMARTNET) (2019/2021 intake)

Aston University, Triangle, B4 7ET / Birmingham, UK
Email: aipt_smartnet@aston.ac.uk / Web-site: smartnet.astonphotonics.uk/

Acknowledgement

This Master Thesis has been accomplished in the framework of the European Funded
Project: SMART Telecom and Sensing Networks (SMARTNET) - Erasmus+
Programme Key Action 1: Erasmus Mundus Joint Master Degrees – Ref. Number 2017
– 2734/001 – 001, Project number - 586686-EPP-1-2017-1-UK-EPPKA1-JMD-MOB,
coordinated by Aston University, and with the participation of Télécom SudParis,
member of IP Paris and National and Kapodistrian University of Athens.

mailto:aipt_smartnet@aston.ac.uk
http://smartnet.astonphotonics.uk/

ACKNOWLEDGEMENT

Khi ngồi viết những dòng này, em biết rằng hành trình hai năm của mình với SMARTNET
sắp đi tới hồi kết. Thời gian trôi qua chẳng chờ đợi ai, nhưng kỷ niệm là thứ sẽ còn tồn
tại mãi mãi!

Cảm ơn SMARTNET đã tin tưởng và cho em cơ hội để có thể thực hiện hóa ước mơ của
mình. Em không nghĩ rằng mình lại có thể “sống sót” qua những thử thách khắc nghiệt
trong suốt khóa học này: những khó khăn lúc làm visa, lo chỗ ăn ở; gần một năm trời chỉ
quanh quẩn với căn phòng vì dịch Covid, những môn học mà em chưa bao giờ được tiếp
xúc, những đề thi dài 10, 11 trang giấy…^_^ Nhưng có lẽ, chính những thử thách ấy đã
rèn luyện em trưởng thành và tự tin hơn trong cuộc sống. SMARTNET không chỉ là một
chương trình học đơn thuần mà với em đó là một gia đình, nơi có các bạn từ khắp nơi
trên thế giới cùng nhau chia sẻ những khoảnh khắc, có những thầy cô thân thiện cởi mở
và nhiệt tình với sinh viên. Cảm ơn tất cả những gì thuộc về SMARTNET!

Em cũng muốn gửi lời cảm ơn chân thành nhất tới thầy Văn-Tâm Nguyễn, người đã
hướng dẫn cũng như định hướng cho em trong suốt quá trình thực hiện thực tập. Không
chỉ là kiến thức học thuật mà những kiến thức đời sống, thầy đều chia sẻ nhiệt tình với
em, giúp em không cảm thấy tự ti trong nghiên cứu. Bên cạnh đó, em cũng xin cảm ơn
sự hỗ trợ tận tình từ các thầy cô trong bộ môn COMELEC, Telecom Paris; đặc biệt là
thầy Germain Pham – người luôn luôn truyền những năng lượng tích cực, dạy em những
kiến thức rất hữu ích trong đề tài này.

Những lời tri ân này em cũng xin gửi tới tất cả các thầy cô, những điều phối chương trình
trong SMARTNET, đặc biệt là tại Telecom SudParis và NKUA. Chặng đường này của
em sẽ không thể nào hoàn thiện được nếu không có sự giảng dạy và hỗ trợ từ mọi người.

Cảm ơn những người bạn luôn sát cánh, động viên và “lôi kéo” mình đi ăn trong những
lúc stress nặng nề. Cảm ơn Juhyun Kim và Rilwanu Kasno – được làm bạn với hai người
là một trong những thành công lớn của mình trong chương trình thạc sỹ này :D.

Cuối cùng, con xin cảm ơn gia đình ở Việt Nam, cảm ơn bố mẹ và em trai đã luôn ủng
hộ sự lựa chọn của con, luôn quan tâm, lo lắng và giúp con có một tinh thần mạnh mẽ
trong lần đầu tiên xa nhà. Con sắp hoàn thành chặng đường này rồi để về thăm gia đình
mình rồi ạ!

Thank you so much! Merci beaucoup! Ευχαριστώ από τα βάθη της καρδιάς μου!
SMARTNET.

PHẠM TRỌNG Thủy

CONTENTS

1. INTRODUCTION .. 9

1.1 Related work ..9

1.2 Project duration ... 10

2. BACKGROUND ... 11

2.1 Electroencephalography ... 11

2.2 Machine learning classifiers ... 12
2.2.1 Linear Kernel Support Vector Machine (SVM) .. 13
2.2.2 Extreme Gradient Boost (XGBoost) .. 14

2.3 Artificial neural networks .. 14
2.3.1 The perceptron .. 14
2.3.2 Activation functions ... 15
2.3.3 Training the network .. 16

2.4 Machine learning on microcontrollers .. 16
2.4.1 Fixed-point quantization .. 17
2.4.2 The STM32L475 discovery kit... 17

3. IMPLEMENTATION ... 19

3.1 Dataset .. 19

3.2 Data processing ... 20

3.3 Model training .. 21

3.4 Neural network deployment and inference ... 22

4. RESULTS ... 23

4.1 Specific-subject paradigm .. 23

4.2 All-subject paradigm ... 24

4.3 Adaptable paradigm .. 25

4.4 Inference ... 26

5. CONCLUSION AND FUTURE WORK ... 28

ABBREVIATIONS - ACRONYMS ... 29

ANNEX Ι .. 30

REFERENCES .. 35

LIST OF FIGURES

Figure 2-1: 4 typical dominant brain normal rhythms [13] .. 11

Figure 2-2: EEG signal processing pipeline [15] .. 12

Figure 2-3: Confusion matrix for 3 classes .. 13

Figure 2-4: SVM mechanism illustration [19] ... 13

Figure 2-5: An ANN with multiple hidden layers .. 14

Figure 2-6: A perceptron schematic ... 15

Figure 2-7: Activation functions: Sigmoid (left), ReLu (right) ... 16

Figure 2-8: Post-quantization in an ANN layer ... 17

Figure 2-9: The B-L475E-IOT01A discovery kit [35] .. 18

Figure 3-1: The general work flow of implementing neural network on microcontroller . 20

Figure 3-2: Feature extraction step .. 20

Figure 3-3: Neural network diagram .. 21

Figure 3-4: Validation flow overview [33] ... 22

Figure 3-5: Flowchart of implemented AI model on STM32L475VG 22

Figure 4-1: Accuracy in SVM method .. 23

Figure 4-2: Accuracy in XGBoost method ... 23

Figure 4-3: Accuracy varies with number of electrodes in SVM 24

Figure 4-4: Accuracy varies with number of electrodes in XGBoost 24

Figure 4-5: Accuracy of NN over each record of 1st subject .. 25

Figure 4-6: Accuracy of NN over each record of 2nd subject .. 25

Figure 4-7: Accuracy results of XGBoost in adaptable paradigm 26

Figure 4-8: Testing inference ... 27

Figure 5-1: Transformer model’s performance .. 28

LIST OF TABLES

Table 2-1: Board specification ... 18

Table 3-1: Sample data ... 19

Table 4-1: The accuracy results for all-subject paradigm .. 24

Table 4-2: The cross-accuracy report .. 27

Table 4-3: Execution time per layer ... 27

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 9

1. INTRODUCTION

Using electroencephalography (EEG) signals in neuroscience and brain disease
diagnosis was started in the first half of the twentieth century. Even today, the principles
of operation have unchanged, but the field of study for electroencephalography signals
has now considerably broadened along with the development of science and technology.
Many patterns were found between electroencephalography signals and studies of motor
activity, mental state, and brain activity. However, the valuable information extracted from
the electroencephalography is still limited. Science in this area is still in the early stages
of development.

The evolution of machine learning has made significant strides in the previous ten years,
influencing several industries, including signal processing for EEG. Among them, neural
network (NN) is a flourishing tool for working with EEG signals. Thousands of publications
about NN applications for EEG signals were published in various areas, such as
diagnosing diseases, lie recognition, researching the physiology process, image
classification, control artifacts, etc. However, the research on implementing NN for EEG
application on embedded systems is limited. This thesis will deal with designing NN for
EEG classification and implementing NN on an embedded system as the STM32
microcontroller.

1.1 Related work

For the comfort of understanding, the related work will be divided into two domains: the
first is works about neural networks in EEG signal recognition/classification, and the
second is works about machine learning on microcontrollers.

In [1], the authors used machine learning to automatically detect alertness/drowsiness
from the combination of EEG and electrooculography signals. An efficient extremely
learning machine (ELM) was employed for state classification. The proposed algorithm
performed a high accuracy and also computed in a fast speed. The best state-detection
accuracy when using ELM within radial basis function is 97.3%.

Xiaojun Bi et al. [2] applied deep learning for EEG spectral images to detect the early
Alzheimer’s disease. EEG data was collected from 12 Alzheimer and Mild Cognitive
Impairment patients to build a whole dataset with 12000 EEG spectral images with
32 × 32 resolution. The outcome was impressive with 95.04% accuracy, and it had a
better performance compared with SVM method.

Another work on proposing a Brain-Computer Interface system for mental state
recognition based on real time EEG signals was introduced by Li et al. in [3]. A k-NN
classifier built using the Self-Assessment Manikin (SAM) model identified three different
degrees of attentiveness. Although the average accuracy peak is 57.03% but the
method’s advanced aspects are low latency in computation and real-time.

EEG data recorded from six people on the cognitive tasks was analyzed and classified
by the SVM algorithm in [4]. The multiclass SVM classifiers were designed to detect five
cognitive activities for each participant. The average accuracy estimated for all candidates
was 93.33±8.16%. However, there was not a standard paradigm for all participants, and
this work is only used for studying with the less practical contribution.

Aci et al. [5] developed a passive brain-computer interface using machine learning
approaches for observing the attention states of human being. They designed the SVM
model to classify three attention levels (focused, unfocused, and drowsy), then made a
comparison with two other methods as k-Nearest Neighbor and Adaptive Neuro-Fuzzy
System. The results were promising for the future work when the individual’s attention
identification reached 96.7% (best), and 91.72% (average) accuracy.

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 10

The volume of Internet of Things (IoT) devices is growing explosively with more than 75
billion connections to the Internet by 2025 as estimated [6]. It makes the trending of
shifting computation to the edge devices is becoming reasonable. Additionally, this
pattern is applicable to machine learning methods, particularly for inference runs, which
requires significantly less processing power than the earlier training phase [7].

Several industry giants released the platforms to support implementing machine learning
on embedded systems such as: Google has the Tensoreflow Lite, which supplies the
powerful engines to convert the original models into the simplified and lighter version;
ARM also released a free library that is only compatible with their Cortex-M processors;
even STMicroelectronics introduced the X-CUBE-AI extension for STM32CubeIDE
software to deploy deep neural networks on STM 32-bit microcontrollers feasibly.

A convolutional neural network on STM Nucleo-L476RG for human presence detection
was presented by Cerutti et al. [8]. They used the Cortex Microcontroller Software
Interface Standard Neural Network (CMSIS-NN) library for maximizing the NN efficiency.
The network performed 76.7% of accuracy while solely used 6 kB of RAM, and consumed
16.5 mW in steady mode.

A substance detector named MobileNet-Single Shot Detector (SSD) was introduced by
Zhang et al. [9], and used the well-known Caffe framework in a deep convolutional NN.
That model was implemented on NanoPi2, using Samsung Cortex-A9 Quad-Core
1.4GHz, and 1 GB DDR3 RAM.

Emotion detection by a bracelet which could run multilayer NN was published by Magno
et al. [10]. The power measurement proved that application could fit the mW power ARM
Cortex M4F microcontroller. The emotion was detected with 100% of accuracy
surprisingly while using only 2% of available memory.

Several examples were presented in [11] to give the fundamental knowledge of tiny
machine learning. These projects were deployed on Arduino Nano 33 BLE Sense board,
STM32F746G Discovery kit, and SparkFun Edge board.

There are a bunch of works on implementing NN on embedded systems, however most
of them used the robust edge devices (e.g., Cortex-A9, Raspberry PI, Cortex-A53). A
great work in [7] showed the effort to compensate the lack of works on mainstream
microcontrollers.

1.2 Project duration

The time duration for this project is from 2nd May, 2022 to 31st August, 2022 (including
holidays and weekends). The time estimation is an approximate evaluation and could be
affected by exteriors (hardware and software resources such as boards, devices for
collecting the own dataset; or project scope, etc.)

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 11

2. BACKGROUND

This chapter will supply the basic concepts about electroencephalography signals,
machine learning classifiers, neural networks, and edge device computation. A section
on electroencephalography which includes definition and fundamental features will be
presented. Furthermore, there are parts describing the conventional classifying methods
in machine learning. Lastly, embedded deployment contexts such as number
representations and quantization will be investigated.

2.1 Electroencephalography

Electroencephalography (EEG) is the study of capturing and figuring out the electrical
activity generated from the brain’s surface. When the brain receives the impact from
senses such as sight, hearing, taste, etc. it will produce the biological electrical signals
which was transmitted through the neural system. Electrical activity can be recorded with
electrodes placed on the scalp; each electrode as considered as a channel will capture
the electrical pulse in each specific area. Depending on the application, the number of
electrodes can be used in range of 2 to 512.

The EEG is recorded and displayed as waveforms of varying frequency and amplitude
measured in voltage [12]. EEG consists of mainly 4 standard patterns: delta (0.5-4 Hz),
theta (4-8 Hz), alpha (8-12 Hz), beta (13-30 Hz) as shown in Figure 2-1. Delta and theta
signals are often monitored while human is in drowsy or asleep state. Graphic chart
shows the amplitudes varies from 0.5 – 1.5 mV and reaches several millivolts at peaks.
However, these values on scalp are within 10 – 100 µV regularly.

Figure 2-1: 4 typical dominant brain normal rhythms [13]

As proven, each frequency band for brain activity is identified with particular cognitive
function. There is a considerable quantity of information in EEG signals which indicates
the spatial, temporal, and spectral aspects. These benefits make EEG an alternative
option to consider in not only neuroscience but also clinical treatments and disease
diagnosis. However, in contrast, the EEG method also pays the cost of data processing
complexity due to high dimensionality, non-stationary, and a low signal-to-noise ratio.
Following the technology tendency, machine learning has been considered as a sufficient
solution to engage in natural challenges of EEG approach.

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 12

In order to determine the user’s mental state, raw EEG signals must be processed into
the group of these signals. The two basic steps of a pattern recognition approach that is
typically used to accomplish this translation are as follows:

• Feature extraction: the initial signal processing phase, tries to characterize the
EEG signals by a small number of relevant values referred to “features” [14]. Such
features should exclude noise and other irrelevant information when capturing the
information included in EEG signals that is pertinent to describing the mental states
to be identified. The arrangement of all extracted features into a single vector is
called a feature vector.

• Classification: the second stage is where a class is assigned to a set of features
derived from the signals. This class is appropriate for the type of identified mental
state. Each classification algorithm is named as “classifier”.

For example, the imagined left-right hand movement labeled process is shown in Figure
2-2. There are two mental states (imagined right hand and imagined left-hand
movements) are distinguished. Band power features, or the strength of the EEG signal in
a particular frequency range, are common characteristics that can be used to distinguish
them from EEG signals. The following step is using a Linear Discriminant Analysis (LDA)
classifier to detect the states.

Figure 2-2: EEG signal processing pipeline [15]

2.2 Machine learning classifiers

Machine learning frequently encounters categorization problems, where the model must
give anticipated class labels to a set of input data. Binary classification is used when there
are only two classes from which to choose, and multi-class classification is used when
there are more than two groups [16]. The classification accuracy is good parameter for
evaluating performance and one can get additional details through monitor a confusion
matrix. The confusion matrix plays a role as highlight potential issues such as whether
the model frequently conflates two classes. Each row of the matrix corresponds to the
instances in an actual class while the columns represent the classes that the model
predicted [17]. The illustration of a confusion matrix is shown in Figure 2-3.

It is crucial that the input data must be balanced for categorization accuracy to be
significant and pertinent. It means that each class should appear in the training dataset
equally about time, number of samples, etc. A bias toward one class maybe occurred
through an imbalanced class distribution. In the worst scenario, the accuracy of model
will only perform the underlying class distribution [18]. There are some alternative indices
using for measuring model’s performance as precision and recall. Along with accuracy,
precision and recall can also be estimated through true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN) quantities.

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 13

Figure 2-3: Confusion matrix for 3 classes

The following equations will be used for calculating each type of metric:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Equation 2-1

Lastly, F1-score is defined as the metric that regard to both precision and recall with
expression as:

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 Equation 2-2

In next subsections, some widely used classifiers in machine learning will be discussed
briefly. They all support for classification effectively and belong to supervised learning
algorithms.

2.2.1 Linear Kernel Support Vector Machine (SVM)

The SVM is a supervised machine learning model used for both classification and
regression aims [19]. However, SVMs are usually applied in classification issues than by
computing the hyperplane that best separates a dataset into two subsets. The
advantages of SVMs are memory efficiency and able to determine the complex constraint
between data samples. However, if the dataset is massive and noisy, the time execution
will increase [20]. The simplest implementation of SVM is a linear kernel while the linear
model only performs the first order function: 𝑦 = 𝑤 ∗ 𝑥 + 𝑏, where w and b are the support
vector and the bias correspondingly.

Figure 2-4: SVM mechanism illustration [19]

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 14

2.2.2 Extreme Gradient Boost (XGBoost)

XGBoost is a tree-based algorithm that also belongs to the supervised machine learning
class as SVMs [21]. Although using the same tree-based algorithm as Gradient Boosting
approach, XGBoost has a different way of building a tree decision where it drives the best
node division through Similarity Score and Gain values. The node split that achieves the
highest Gain is the best choice for the tree [22].

2.3 Artificial neural networks

Artificial neural network (ANN) is a concept that was presented in mid-1940s and was
defined as “… a computing system made up of a number of simple, highly interconnected
processing elements, which process information by their dynamic state response to
external inputs.” – by Dr. Robert Hecht-Nielsen – the inventor of the first neurocomputer
[23]. Many ideas supposed that artificial neural networks were first inspired by neurology
and biological information processing. Simply, ANNs are composed of several
computational layers; each layer is made of multiple artificial nodes, which play a role as
biological neurons of the human brain. The nodes interact with each other by links and
each link is presented by a weight. The input of ANNs can be the raw data or features,
then the nodes will do computations on input data and pass the results to other neurons.
Output at each neuron is defined as activation or node value. Figure 2-5 shows the simple
architecture of neural network that consists of several dense layers. A dense layer or a
fully connected layer takes responsible for connects all outputs from every node from the
previous layer to the inputs of neurons in the next layer.

Figure 2-5: An ANN with multiple hidden layers

ANNs have the ability to learn, which happens through changing the weight values. It is
one of the most impressive and renowned machine learning algorithms, which can be
deployed in a diversity of applications, such as natural language processing (NLP), image
recognition, prediction of stocks, medical analysis or disease diagnosis, etc.

Deep learning was introduced as the branch of machine learning area using artificial NNs.
The definition of deep can be understood as neural networks include multiple (hidden)
layers in its architecture [24], or maybe it associated with the deeper understanding
through learning on data directly rather than using handcrafted features as input. There
are variety of deep-learning architectures such as: deep NNs, deep reinforcement
learning, convolutional NNs and transformer, however these frameworks are out of this
work scope, but can be recognized for future improvements and implementations.

2.3.1 The perceptron

The fundamental block of most artificial neural networks is a single neuron – the
perceptron as considered. The perceptron is also known as a single-layer neural network
that composes of input values, weights and bias, net sum, and an activation function.
Basically, it calculates the output y from input signals 𝑥1, 𝑥2, … , 𝑥𝑛 by multiplying each

input 𝑥𝑛 with a specific weight 𝑤𝑛 then adding them together into the weighted sum [25].

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 15

The bias is optional to put in the sum. Lastly, an activation function is used to map the
data to the final output. The schematic of a perceptron is illustrated in Figure 2-6.

From the schematic, the output can be formed consequently as:

𝑦 = 𝜑(𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + ⋯ + 𝑤𝑛𝑥𝑛 + 𝑏) Equation 2-3

Where 𝜑 is an arbitrary activation function. Moreover, the formular can be rewritten in a
matrix form:

𝑦 = 𝜑(𝑿𝑻𝑾 + 𝑏) Equation 2-4

With: 𝑿𝑻 = [𝑥1 𝑥2 … 𝑥𝑛] and 𝑾𝑻 = [𝑤1 𝑤2 … 𝑤𝑛].

Figure 2-6: A perceptron schematic

As consequently, the neuron can only solve the linear problems when missing the
activation function. So that non-linear features of activation functions can help the ANN
to be able to deal with more complicated problems and performing arbitrary functions.

2.3.2 Activation functions

There are 2 common activation functions used in NNs: the Sigmoid function, and Rectified
Linear Unit or ReLu function as Figure 2-7. The Sigmoid function (Equation 2-5) is suitable
for solving probabilistic problems. However, an unexpected issue for this precise function
is the vanishing gradient problem. Briefly, the gradient will be strikingly small at the ends
of the output space due to the function’s derivation, the weights in neural networks can
be updated barely. This cause leads the neural network to work less effectively or even
stop for further training.

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 Equation 2-5

To compensate for the disadvantage of the Sigmoid function, in 2010, Vinod Nair and
Geoffrey E. Hinton introduced the new activation function: ReLu [26]. The ReLu (Equation
2-6) is a non-linear function that if the input is positive, the output will be unchanged and
if the input is below zero, it will output zero. This function is also the most used function
at the moment because of its simplicity and efficiency.

𝑓(𝑥) = max (0, 𝑥) Equation 2-6

At notion, in the last layer of neural networks, a Softmax function (Equation 2-7) is often
handled because the sum of all output values equals 1 and can be described as a
probability distribution. The summation of data will be arranged in the range of 0 to 1 and
represents the predicted output of the neural networks.

𝑓(𝑧) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐾
𝑗=1

 Equation 2-7

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 16

Figure 2-7: Activation functions: Sigmoid (left), ReLu (right)

2.3.3 Training the network

The training of the network is the loss function optimization step, also called a cost
function. The loss function indicates the error of the network, then the purpose of
optimization is to minimize the value of the loss function. Equation 2-3 shows the
relationship between input and output through the set of weight values. Determining the
correct weight values is done by using the concept gradient descent of the loss function.
If the gradient descent vector moves toward the negative gradient, the loss will be
reduced as quickly as possible.

There are two main stages in the training process: the training phase and the validation
phase. The original data set is separated into two subsets; the training set gives the
parameters to the network for learning, and error estimation will be executed through
validation data. The ratio between two subsets is defined as the validation split. The usual
ratio is 80 percent for training data and the remaining amount for validation evidently.

Another significant aspect that needs to be considered carefully in the training process is
hyperparameters adjustment. Several factors can be used for optimizing the neural
networks: structure of the neural networks, kernel size, learning rate, etc. Especially when
implementing a neural network on microcontrollers that has restrained memory, the
arrangement of hyperparameters is extremely essential.

2.4 Machine learning on microcontrollers

Nowadays, the trend to expand machine learning in edge devices and microcontrollers is
attractive to more researchers, especially in Internet of Things (IoT), sensor fusion, and
synthetics sensors areas. Conventionally, all the steps of machine learning have been
completed on the cloud or the server computers, which have powerful computation
abilities and limitless storage. However, this method creates many concerns: latency,
scalability, and privacy [27], [28]. Dividing the computation portions to the edge devices
helps to alleviate the shortcomings of the approach. For example, data privacy will be
secured since less data is sent to the server and mostly done on the devices.
Furthermore, the bandwidth is also retained because fewer frequency resources are used
for transmitting data.

In contrast to sufficient pros, there are still limitations to deploy machine learning on
embedded devices. Due to resource-scarce property, the complex computation and large
memory size are obstacles in machine learning deployment on microcontrollers.
Typically, there are some target applications that are already invested in as activity
recognition, voice recognition, and simple classification.

In this work, the current method for implementing machine learning on microcontrollers is
to first train a model (neural network) on the computer or the cloud, then convert model
to a simplified version, offload it on the target device, finally perform the inference.
Tensorflow Lite platform is a tool from Google to convert a neural network model and an

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 17

proper open source library CMSIS-NN is specifically manipulated for microcontrollers with
Cortex-M processor in implementing optimized neural network algorithms [29].

2.4.1 Fixed-point quantization

In order to represent data, there are two frequent ways: fixed-point format and floating-
point format. In deep learning, the 32-bit floating-point format is utilized mostly due to the
good accuracy. The drawback of this format are the memory occupation and complexity
of operation. Otherwise, fixed-point numbers are often applied to perform values on
microcontrollers and digital signal processors (DSP) for productivity and reducing the
memory. The technique converting 32-bit floating-point numbers to the fixed-point
numbers is called quantization.

Impressively, the only difference between a fixed-point number and its floating-point
counterpart is the range that each one represents. The range of fixed-point numbers is
always linear. It can conserve that the smallest error will always be well-defined and
constant as the step between two successive values. Moreover, the real numbers
performed by fixed-point numbers will be stored as integers in the memory with limited
resolution. As defined in CMSIS library [30], Q-notation is used to express the schema
for converting these integers to real numbers, or vice versa. Q-notation is form of 𝑄𝑥. 𝑦
that x is number of bits for integer part (also include sign bit) while y specifies for decimal
part. The range of representable values depends on what kind of notation used. In
general, the value ranges can be expanded from −2𝑥−1 to 2𝑥−1 − 2−𝑦 (signed number)
[31].

Post-training quantization is one of the quantization approaches that can be used. This
strategy is easy to put into practice; there is no changes to training procedure required.
Quantization of learnable parameters and quantization of activations make up post-
training quantization process. The first class – quantization of weights and biases, is
simplified because these parameters are set, and the quantization range is accessible
determined. As shown in Figure 2-8, the activation quantization depends on the input
data, and is also needed to bypass the de-quantization of weights and biases in previous
steps.

Figure 2-8: Post-quantization in an ANN layer

In this work, only quantization of weights and biases stage is invested and deployed.
Because the model after quantization has sufficient memory size to implement on
microcontrollers.

2.4.2 The STM32L475 discovery kit

It is essential to choose an algorithm to operate on an embedded device. However,
parallelly selecting an optimal hardware solution is also tricky. The criteria for hardware
choice are according to accuracy, energy consumption, and cost [32]. Several
microcontrollers can be used for artificial intelligence applications but invoking the
algorithms on them requires more effort. Nevertheless, microcontrollers are excellent
choices if they can run networks that are not too large for rare data fusion activities [28].
The X-CUBE-AI [33], which is only compatible with STMicroelectronics microcontrollers,
is a valuable tool for facilitating the deep neural networks implementation on
microcontrollers. The tool is an extension of the STM32CubeMX environment, which

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 18

enables automatic conversion of pre-trained NNs to scarce-resource hardware.
Moreover, X-CUBE-AI also improves libraries by modifying layers and mitigating the
number of weights. It helps the model is slighter and more friendly in term of memory.
Among some tiny hardware for IoT purposes recommended on the Tensorflow Lite site
[29], STM32 microcontrollers are a great option. Therefore, in this work, the
microcontroller STM32L475VG based on an Arm Cortex M4 core is chosen for executing
inference. Its features include, among other things, 80 MHz of maximum operating
frequency, 1 MB of flash memory, 128 kB RAM memory including 32 kB with hardware
parity check, 5 embedded universal synchronous/asynchronous receiver transmitter
(USART) using baud rate up to 204 Kbaud [34]. As any Arm Cortex-M4 processors, this
microcontroller features a floating-point unit (FPU) and using ultra-low-power. The peak
current in the Standby mode is 420 nA, which proves that it also meets the requirement
of hardware choice.

Table 2-1: Board specification

Board MCU
Clock
speed

Flash
memory

SRAM Cost

STM32 B-L475E-
IOT01A1

32-bit Arm
Cortex-M4

80 MHz 1 MB 128 kB $53

Figure 2-9: The B-L475E-IOT01A discovery kit [35]

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 19

3. IMPLEMENTATION

This chapter describes the details of the using dataset firstly. In the next step, the signal
processing procedure and training phase (including NN training) are presented in different
scenarios. Finally, implementing a neural network on the microcontroller is illustrated as
well as evaluating and verifying criteria.

Due to unexpected causes, the self-collected dataset was not done then the used dataset
in this project is available on [36].

3.1 Dataset

The data collection was built for monitoring the attention states in human being using
passive EEG Brain-computer Interfaces (BCI). The original dataset of 25-hour EEG
recordings from 5 individuals engaged in a low-intensity control task was used in this
investigation. The task entailed using the “Microsoft Train Simulator” program to control
a computer-simulated train. In each experiment, participants used the simulation tool to
drive the train for 35 to 55 minutes over a mostly nondescript route [5]. Each person joined
7 experiments, in which 2 first exams were used for subject familiarize with the process,
and the last 5 records were helpful data. All the EEG data was collected by EMOTIV
device.

However, there were some points needed paid attention to:

• Total number of records is 34 instead of 35 because the last participant only took
6 experiments. All the export files are available as .mat format that can be imported
to Matlab or Python.

• There are 3 mental states labeled in dataset: the focused, the unfocused and the
drowsy state. Time distribution for each state is: the focused was measured during
first 10 minutes, then the unfocused occupied the next 10 minutes, lastly the
remaining slot was taken by the drowsy.

• The 14 channels feasible in the dataset are AF3, F7, F3, FC5, T7, P7, O1, O2, P8,
T8, FC6, F4, F8, and AF4. However, only 7 channels named F7, F3, P7, O1, O2,
P8, and AF4 have non-corrupt data. It is the reason this work only considered them
as the proper channels for processing.

• The sampling frequency is 𝐹𝑠 = 128 𝐻𝑧.

Table 3-1: Sample data

Cnt Intp
Chan.

F7
Chan.

F3
Chan.

P7
Chan.

O1
Chan.

O2
Chan.

P8
Chan.
AF4

X Y

30 0 4332.8 5312.8 4566.7 4651.8 4338.5 4445.6 4486.7 1571 1716

31 0 4334.4 5315.4 4569.2 4655.4 4343.6 4451.8 4485.1 1572 1717

32 0 4343.1 5319.5 4569.7 4662.6 4349.7 4465.6 4485.1 1572 1718

33 0 4340.5 5319.5 4561.5 4659 4351.3 4465.1 4489.2 1572 1717

34 0 4331.8 5316.4 4555.4 4651.8 4343.1 4459.5 4490.3 1572 1718

35 0 4328.7 5309.7 4554.9 4651.8 4329.2 4453.8 4481 1573 1720

36 0 4327.2 5302.6 4552.3 4650.3 4327.7 4445.6 4473.1 1572 1720

37 0 4324.1 5300 4549.7 4645.1 4331.8 4442.6 4464.6 1571 1720

38 0 4324.1 5301 4551.3 4643.1 4328.7 4439 4455.9 1569 1720

39 0 4326.7 5302.6 4551.8 4643.1 4327.7 4435.4 4446.7 1568 1716

40 0 4325.1 5302.6 4553.3 4643.1 4334.9 4440 4446.7 1566 1717

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 20

With Cnt = sample counter; intp = indicate if data is interpolated; X, Y = gyroscope axis.

The general block diagram of implementing neural network for EEG classification on
microcontroller (Figure 3-1) shows that raw data needs to be processed before training
the machine learning models.

Figure 3-1: The general work flow of implementing neural network on microcontroller

Thus, the next subsection will present the data processing procedure.

3.2 Data processing

The flowchart of data processing was inspired by the original work in [5] with illustration
as shown in Figure 3-2.

Figure 3-2: Feature extraction step

Processing the time-series signals as EEG signal can be solved through several
approach. One of the most convenient tools is Fourier transform. In this step, EEG signals
in each channel will be represented in time-frequency domain, using a Fourier-related
transform – the short-time Fourier transform (STFT). Because the continuous EEG
signals were sampled thus it can be considered that the obtained data is discrete-time
data. The discrete-time STFT can be expressed as [37]:

𝑆𝑇𝐹𝑇{𝑥[𝑛]}(𝑚, 𝜔) ≡ 𝑋(𝑚, 𝜔) = ∑ 𝑥[𝑛]𝑤[𝑛 − 𝑚]𝑒−𝑗𝜔𝑛

∞

𝑛=−∞

 Equation 3-1

Here, 𝑥[𝑛] is the EEG signal in single channel, 𝑤[𝑛] is window while m is discrete and 𝜔
is continuous. The spectrogram is calculated by raising the STFT magnitude to the power
of 2:

𝑆(𝑚, 𝜔) = |𝑋(𝑚, 𝜔)|2 Equation 3-2

STFT is calculated for each channel. The STFT’s characteristic is dividing the time signal
into equal length segments and then computing the Fourier transform in each segment.
Hence, after doing STFT for each ∆𝑇 = 15 second fragment, the Blackman window was
applied to subside the EEG signal at two sides of each segment. The Blackman window
function is described as [38]:

𝑤(𝑘) = {0.42 − 0.5𝑐𝑜𝑠
2𝜋𝑘

𝑀 − 1
+ 0.08𝑐𝑜𝑠

4𝜋𝑘

𝑀 − 1
, 0 ≤ 𝑘 < 𝑀

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 Equation 3-3

With 𝑀 = 𝐹𝑠 . ∆𝑇 is the total time points in the window, and k is discrete-time index.

After determining STFT in each channel, the achieved spectrum represents power density

distributed over
𝑛𝑓𝑓𝑡

2
+ 1 frequencies with 𝑛𝑓𝑓𝑡 is fast discrete Fourier transform length.

The bandwidth of each sub-carrier is 𝜔𝑙 = 𝑙𝐹𝑠/𝑛𝑓𝑓𝑡 where l is in range 0 to 𝑛𝑓𝑓𝑡/2. The

following steps as binning frequency and frequency range restriction, will be explained
details below.

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 21

In this work, the necessary parameters are given: 𝑛𝑓𝑓𝑡 = 2048, 𝑀 = 128 . 15 = 1920.

Thus 𝜔𝑙 = 0.0625𝑙 𝐻𝑧 with l changed from 0 to 1024. Binning 16 sub-carriers into the
0.5Hz frequency bin by using average, the frequency band of EEG signal after STFT
spreads from 0 to 64 Hz with step equals 0.5 Hz. The frequency range was limited in
range of 0 to18 Hz. Thus, there are only 36 frequencies at the final product of signal
processing step. Finally, the spectrogram was softened through a smoothing window. As
discussed in [5], the temporal width of STFT’s window and the smoothing window is
essential parameter. The selection for these parameters was done by experiments, and
the choice of 15-second gave a good compromise.

There are 7 channels in each EEG record, the final feature vector was composed by
forming the spectrum distribution from all 7 channels into a single. The feature vector
used for training neural network has the dimension of 36 . 7 = 252.

3.3 Model training

The training stage was completed in Python running on Google Colaboratory (or Google
Colab). As mentioned in subsection 3.1, the lengths of three mental states are
unbalanced. The drowsy class is kept for only first 10-minute period (which will be
explained more in the next section) to avoid the bias effect in the classified prediction.
The evolution of this work performs through 3 evaluation paradigms specifically as:

• Specific-subject paradigm: the classifiers were trained for each subject individually
based on that participant’s data records only. The sub-dataset will be split into 80%
for the training and 20% for validation (or testing). For each participant, there is a
mental state detector was used.

• All-subject paradigm: in this case, a single classifier was built for all subjects. 80%
data of all EEG records was randomly chosen for the training stage, and the
remaining data is spent for evaluation.

• Adaptable paradigm: Beside the implementation neural network on microcontroller
purpose, other target of EEG mental detector is having a model which can predict
at good accuracy for the new data. In this situation, the dataset was divided into 3
subsets: training, validation and testing set with special ratio. The training set was
selected from randomly three participants’ data, the data of 2 resting people will
take responsible one for the validation data, and other one for testing set.

Unlike SVM or XGBoost which can be utilized from the supporting libraries, deep neural
network is built through the Tensorflow and its wrapper Keras packages [39], [40]. The
model composed of one Flatten layer (which reshapes the input), two fully connected
layers with the ReLu activation function, followed by a single dense layer with a softmax
activation function. The neural network architecture can be observed in Figure 3-3.

Figure 3-3: Neural network diagram

The model has total of 85263 parameters of size; therefore, it could pretty fit the
STM32L475VG kit specifications. During the training phase, the optimizer algorithm
Adam was used to mitigate the cross-entropy loss between true labels and predictions.
In order to avoid overfitting, an early stopping was utilized with the patience of 2 epochs.
The total epochs are 100, and batch size was fixed as default. Finally, the check-point

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 22

function was used to save the best weight model. The model can be saved in some
formats as: SavedModel – a Tensorflow model saved on disk, Keras model – a model
created using the high level Keras Application Programming Interface (API), or Keras H5
format – a light-weight version of SavedModel format supported by Keras API [41]. The
model built in this work was in Keras H5 format because X-CUBE-AI supports to import
3 types of models into STM32 microcontrollers: Keras, TFLite and ONNX (Open Neural
Network Exchange). Coincidently, the saved model has light size so that it does not
require the conversion step.

3.4 Neural network deployment and inference

Finally, the trained neural network was deployed into microcontroller for the mental state
classification. The details of this step will be described in the section ANNEX Ι. In short
term, after configuring all the peripherals, connectivity standard, etc. the model needs to
be validated in two mechanisms supported by X-CUBE-AI tool: validation on desktop and
validation on target. The aims of these works are comparing the original deep learning
model with its generated X86 C model (runs on the host/computer) and C model (runs on
the microcontroller).

Figure 3-4: Validation flow overview [33]

The program was written in C and using Hardware Abstraction Layer (HAL) in
STM32CubeIDE – the development environment for ST microcontrollers. At specified
times, a test data in .txt format will be sent from the computer (with Linux operating
system) to the board, the microcontroller will run the AI model and gives the prediction.
There are 2 ways for displaying the result: by LED on the board or display on the
computer’s interface. The board communicated with the computer through USART
protocol.

Figure 3-5: Flowchart of implemented AI model on STM32L475VG

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 23

4. RESULTS

This chapter presents the results of classifiers on three paradigms and also evaluates the
contribution of each EEG channel in distinguishing the different attention states. Finally,
comparing different method’s results will explain this work orientation.

4.1 Specific-subject paradigm

The performances of classifiers are evaluated in terms of accuracy. Only SVM and
XGBoost are tested in this pattern.

Figure 4-1: Accuracy in SVM method

Figure 4-2: Accuracy in XGBoost method

Figure 4-1 and Figure 4-2 show the accuracy of SVM and XGBoost for the specific-subject
situation. As observed in the bar charts, the average accuracy for SVM lasts from 99.44
to 99.88%, and XGBoost is even more successful with a slightly higher 99.79 to 99.94%.
These results can be explained clearly because the classifier was used for training and
test sets of one subject. The data was homogenous for all records of each participant.

Moreover, the channels have been estimated the weights to monitor which electrode
contributes more valuable data for mental state detection. The procedure of this task is,
each channel was ranked in list of weight values, the electrode with smallest portion will
be removed permanent from dataset. The new data set will be spent for training the

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 24

models. This process repeated until only one channel left. The channels were listed in a
decreasing order as: F7 – F3 – O2 – P7 – O1 – P8 – AF4. The below figures will present
the accuracy done by two algorithms SVM and XGBoost.

Figure 4-3: Accuracy varies with number of electrodes in SVM

Figure 4-4: Accuracy varies with number of electrodes in XGBoost

4.2 All-subject paradigm

In this case, there is a small difference of feeding models. In particular, the whole dataset
was divided into two subsets (training and testing sets) by split function with ratio of 80:20
randomly, then fed to train SVM and XGBoost. While protocol of selecting dataset for
neural network is: choosing one of the participant’s recording files as testing set, all
remaining files is occupied for training set. The performance of SVM and XGBoost is
given in Table 4-1.

Table 4-1: The accuracy results for all-subject paradigm

Method Accuracy

SVM 99.72%

XGBoost 99.56%

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 25

 About neural network, the results of prediction were expressed as shown in below
figures.

Figure 4-5: Accuracy of NN over each record of 1st subject

Figure 4-6: Accuracy of NN over each record of 2nd subject

Obviously, the obtained accuracy is good enough to classify the mental attention states
when considering about values. It only proves that the model can work. However, its
efficiency is still questionable. Although the training and testing sets were separated, the
two subsets were still mixed in learning features. For example, if the testing set is one
record of 1st participant, and all others were used for the training set, the model will learn
the features from the 1st person apparently and test exactly on that person. It increases
the prediction rate but gives less scientific contribution.

4.3 Adaptable paradigm

The last paradigm results will explain why the neural network is essential and beneficial
for EEG signals classification task rather than conventional approaches. Because the

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 26

XGBoost’s accuracy is better than SVM’s so this task only acknowledges XGBoost and
neural network performance. Firstly, the XGBoost’s achievement in classification is
presented through Figure 4-7

Figure 4-7: Accuracy results of XGBoost in adaptable paradigm

It is effortless to analyze that the accuracy dropped drastically to compare with two
previous examinations, just from 24.4 to 52.65% (41.2% on average). Precisely, three
sets of data were manipulated for the neural network: training set (occupies the data of
first three people), validation set (occupies the data of fourth person), and the testing set
(occupies the last participant). The accuracy is only 33.34%.

The possible cause for the low rates could be the dataset is not large enough. Thus, the
models do not have a sufficient number of features to learn. One of common solutions for
the scarce dataset is using data augmentation to increase data volume. Because of the
personal computer’s limitation, only jittering and scaling transformations were applied to
enlarge the dataset. In a compressed explanation, jittering is the step that adds the noise
into the original signals, and scaling is the step that scales each time series by a constant
amount. The argument to adjust jittering and scaling quantities is standard deviation 𝜎.

Although applying data augmentation method, XGBoost did not show a significant
improvement. The average accuracy stayed at 44.14%. In contrast, the neural network
performed the significant jump. By tuning the standard deviation to shape the fit dataset,
accuracy of the neural network increased approximately 26% up to 59.75% with the
deviation pair of 0.3 and 0.05 for the jittering and scaling correspondingly.

For this work, the neural network showed the domination to the conventional approach,
even with simple architecture. From here on, only discussion and analysis of the built
neural network will be presented.

4.4 Inference

The neural network after deploying into microcontroller will be evaluated based on the
accuracy, time execution and memory consumption. As mentioned above, the model
needs to validated through X-CUBE-AI extension. For testing inference, another neural
architecture was built with more simple structure. It consists of 2 dense layers (252 and
3 nodes corresponding) instead of 3 layers as illustrated Figure 3-3. On basis, the
procedure on running inference is remained.

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 27

The accuracy here is the cross accuracy between the reference and C model, as shown
in Table 4-2. Because the model was kept the original size (~269 kB), there was not the
effects from quantization step; thus, the cross-accuracy reached 100%. It means that the
C-model’s performance is exactly same as the reference model.

Table 4-2: The cross-accuracy report

Output Accuracy RMSE Mean Std

X-cross 100% 0.000000116 0.000000001 0.000000118

With RMSE = Root Mean Square Error, Std = Standard deviation

The total time execution is dependent on the device workload. Hence, on time evaluation
criterion, only time execution per each layer in percent was assumed.

Table 4-3: Execution time per layer

c_id Layer type Time (ms)* %

0 Dense 0.127 92.5%

1 NL 0.003 2.2%

2 Dense 0.003 2.5%

3 NL 0.004 2.9%

 0.138 ms

*: accurate to 3 decimal places

The first layer captured a large portion of time due to its size being dominant over other
layers. The last concern is memory usage which is approximately 269 kB for both flash
and RAMs. The total parameters in the C-model are 64515 items, and multiply-and-
accumulate operations are 64812.

Figure 4-8: Testing inference

Figure 4-8 illustrated whole procedure of performing inference. The board is ready to
receive data from the computer. After data sent from computer, the AI model will run and
give the prediction. In this demonstration, the drowsy state was detected and notified by
displaying on the computer via an SSH and telnet client – PuTTY. The green LED on the
board also indicates the drowsy state (as defined in program).

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 28

CONCLUSION AND FUTURE WORK

This work presented a deployment of EEG signal classification on a microcontroller,
principally on STM32L475VG microcontroller from STMicroelectronics. It performs the
comparison between three supervised machine learning algorithms (SVM, XGBoost, and
neural network). The conventional methods gave better accuracy with the homogenous
data (dataset from only one subject). While in the more logical and natural case as the
Adaptable paradigm, neural network took the preference.

The neural network could classify three mental states focused, unfocused, and drowsy,
and be implemented on the STM32 IOT kit by handling the STM X-CUBE-AI package.
The model was also evaluated for performance in time execution, accuracy, and memory
usage. In advance, this work proves that the application of brain signal study is possibly
accomplished on scarce-resource devices. In terms of practice, I believe this work can be
a good practical lab for students in tiny machine learning courses.

However, there are some problems needed to invest: 1). the network accuracy is still low
(approximate 60%), and 2). The data is still processed manually before feeding the
network. To deal with these issues, I proposed the possible solutions:

i). Building the own dataset with more participants: as proven, with the enriched
dataset (after augmentation), the neural network performed a better outcome. The own
dataset creation is a time-consuming task but it brings more benefits and has deeper
vision for researching.

ii). Manipulating or designing an architecture for neural networks combining the
new data processing approach: the model implemented in this work was very simple in
both structure and algorithm. Thus, the ideas of new architectures to improve
performance is necessary. However, the complex model will increase the computing
complication and size of the model. How to balance these constraints is also the future
work to develop this work.

I also tested the built model named Vision Transformer from [42], [43] for this work, and
the result was surprising. The model ran during 200 epochs, and the obtained accuracy
for the Adaptable paradigm reached 71.76%. It was a promising achievement. The train,
validation losses, and confusion matrix are presented below:

Figure 0-1: Transformer model’s performance

The best quality of this approach is it used the raw data (in time series) as input. Thus, it
does not need to do the feature extraction step manually. That is why this direction is so
natural and promising. However, the size of pre-trained model is large (approximate 12.6
MB), it prevented the implementation for the STM32L475VG with only 1 MB flash. This
issue can be done with quantization or pruning techniques in future work.

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 29

ABBREVIATIONS - ACRONYMS

ANN Artificial Neural Network

BCI Brain-Computer Interface

CMSIS Cortex Microcontroller Software Interface Standard

DSP Digital Signal Processor

EEG Electroencephalography

FN False Negative

FP False Positive

FPU Floating Point Unit

HAL Hardware Abstraction Layer

IoT Internet of Things

k-NN k-Nearest Neighbors

LDA Linear Discriminant Analysis

NLP Natural Language Processing

NN Neural Network

SAM Self-Assessment Manikin

STFT Short-time Fourier Transform

SVM Support Vector Machine

TN True Negative

TP True Positive

USART Universal Synchronous/Asynchronous Receiver Transmitter

XGBoost Extreme Gradient Boosting

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 30

ANNEX Ι

A. Creating a project on X-CUBE-AI and inference performance for the pre-trained
neural network on STM32L475VG

The work flow took inspiration from [44], however the difference comes from the
configuration for microcontroller and the .c program.

1. Pre-trained model

The neural network was trained on Google Colab then saved in .h5 format to computer
as named my_model.h5.

2. X-CUBE-AI installation

In STM32CubeIDE interface, choose Help > Manage embedded software packages.
A pop-up window appears, select the STMicroelectronics tab. Click the drop-down arrow
of X-CUBE-AI then select the suitable version. The most recent version will be chosen
usually, but this work selected version 7.1.0. Then click Install.

This extension will be downloaded and installed automatically after click, just accept the
license agreement then close the pop-up window.

3. Configuration

To start the new project in STM32CubeIDE, select File > New > STM32 project. The
Target Selection window will be open, in Board Selector, find B-L475E-IOT01A1.

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 31

Click Next, put the project name then click Finish. Choose Yes if the system asks to
initialize peripheral as default. However, this work only configures the essential pins.
Particularly, pins PB6 and PB7 were set for USART1 transmit and receive. 2 pins PB14
and PA5 are connected with LEDs also selected. In Categories tab, choosing Timers
with TIM16, USART1 in Connectivity, and select CRC (cyclic redundancy check) in
Computing for AI applications.

The values in timer were set: Prescaler = 80 – 1 = 79 (for 80 MHz system clock) and
Counter Period = maximum value of 16-bit timer = 65535.

In the tab Software Packs of Pinout & Configuration, click down arrow and choose
Select Components. In option STMicroelectronics.X-CUBE-AI ensure that all
components are activated. For Device Application, choose Not selected, if choose other
options, they are default modes of STM32CubeIDE, you can not modify the code in
programming.

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 32

Click STMicroelectronics.X-CUBE-AI in Software Packs of Categories tab, click Add
Network. Select type of model is Keras, give model a name as network. Then scroll down,
click Analyze to see overview of neural network model. The complexity, used Flash and
used RAM are also statistical and display in the interface.

Next step is modifying parameters in tab Clock Configuration.In PLL Source Mux block,
switch the input to the high-speed internal clock as HIS. The clock speed was set at 80
for label HCLKB then press “enter”, the CubeMX will calculated all the relevant
parameters automatically to build an 80 MHz system clock.

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 33

Click File > Save then Yes if asked to generate code.

The project tree will be display. The network was converted into C-array by X-CUBE-AI.

Any necessary modification or to execute program will be implemented in main.c function.

At notion, if there is syntax printf in the program, it will appear the error because printf and
variants do not support floating point values by default in STM32CubeIDE. Thus, click
Project > Properties > C/C++ Build > Settings > Tool Settings > MCU GCC Complier
> Miscellaneous. In the Other flags put the command: -u_printf_float

Executing this step for both Debug and Release configurations. Then save the code.

The final step is connecting board with computer through cable (communicate with ST-
Link first). Then click Project > Build Project.

The details of code were uploaded on Github:

https://github.com/thuypt1402/Intership_code

However, due to privacy of project, this repository is set private status.

https://github.com/thuypt1402/Intership_code

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 34

B. Visualization of model

C. Memory Usage in Graph

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 35

REFERENCES

[1] L. Chen, Y. Zhao, J. Zhang, and J. Zou, “Automatic detection of alertness/drowsiness from
physiological signals using wavelet-based nonlinear features and machine learning,” Expert Systems
with Applications, vol. 42, no. 21, pp. 7344–7355, Nov. 2015, doi: 10.1016/j.eswa.2015.05.028.

[2] X. Bi and H. Wang, “Early Alzheimer’s disease diagnosis based on EEG spectral images using deep
learning,” Neural Networks, vol. 114, pp. 119–135, Jun. 2019, doi: 10.1016/j.neunet.2019.02.005.

[3] Y. Li, X. Li, M. Ratcliffe, L. Liu, Y. Qi, and Q. Liu, “A real-time EEG-based BCI system for attention
recognition in ubiquitous environment,” in Proceedings of 2011 international workshop on Ubiquitous
affective awareness and intelligent interaction - UAAII ’11, Beijing, China, 2011, p. 33. doi:
10.1145/2030092.2030099.

[4] J. K. Nuamah and Y. Seong, “Support vector machine (SVM) classification of cognitive tasks based
on electroencephalography (EEG) engagement index,” Brain-Computer Interfaces, vol. 5, no. 1, pp.
1–12, Jan. 2018, doi: 10.1080/2326263X.2017.1338012.

[5] Ç. İ. Acı, M. Kaya, and Y. Mishchenko, “Distinguishing mental attention states of humans via an EEG-
based passive BCI using machine learning methods,” Expert Systems with Applications, vol. 134, pp.
153–166, Nov. 2019, doi: 10.1016/j.eswa.2019.05.057.

[6] “IoT devices installed base worldwide 2015-2025,” Statista.
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/ (accessed
Sep. 11, 2022).

[7] F. Sakr, F. Bellotti, R. Berta, and A. De Gloria, “Machine Learning on Mainstream Microcontrollers,”
Sensors, vol. 20, no. 9, p. 2638, May 2020, doi: 10.3390/s20092638.

[8] G. Cerutti, R. Prasad, and E. Farella, “Convolutional Neural Network on Embedded Platform for
People Presence Detection in Low Resolution Thermal Images,” in ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United
Kingdom, May 2019, pp. 7610–7614. doi: 10.1109/ICASSP.2019.8682998.

[9] Y. Zhang, S. Bi, M. Dong, and Y. Liu, “The Implementation of CNN-Based Object Detector on ARM
Embedded Platforms,” in 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure
Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data
Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech), Athens, Aug. 2018, pp. 379–382. doi:
10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00074.

[10] M. Magno, M. Pritz, P. Mayer, and L. Benini, “DeepEmote: Towards multi-layer neural networks in a
low power wearable multi-sensors bracelet,” in 2017 7th IEEE International Workshop on Advances
in Sensors and Interfaces (IWASI), Vieste, Italy, Jun. 2017, pp. 32–37. doi:
10.1109/IWASI.2017.7974208.

[11] “Supplemental material TinyML,” TinyML Book, Dec. 12, 2019. https://tinymlbook.com/supplemental/
(accessed Sep. 11, 2022).

[12] “Normal EEG Waveforms: Overview, Frequency, Morphology,” Mar. 2022, Accessed: Aug. 26, 2022.
[Online]. Available: https://emedicine.medscape.com/article/1139332-overview

[13] S. Sanei and J. A. Chambers, EEG signal processing, Reprinted with corrections. Chichester: John
Wiley & Sons, Ltd, 2009.

[14] A. Bashashati, M. Fatourechi, R. K. Ward, and G. E. Birch, “A survey of signal processing algorithms
in brain–computer interfaces based on electrical brain signals,” J. Neural Eng., vol. 4, no. 2, pp. R32–
R57, Jun. 2007, doi: 10.1088/1741-2560/4/2/R03.

[15] F. Lotte, “A Tutorial on EEG Signal-processing Techniques for Mental-state Recognition in Brain–
Computer Interfaces,” in Guide to Brain-Computer Music Interfacing, E. R. Miranda and J. Castet,
Eds. London: Springer London, 2014, pp. 133–161. doi: 10.1007/978-1-4471-6584-2_7.

[16] J. Brownlee, “4 Types of Classification Tasks in Machine Learning,” Machine Learning Mastery, Apr.
07, 2020. https://machinelearningmastery.com/types-of-classification-in-machine-learning/

[17] “Confusion matrix,” Wikipedia. Aug. 31, 2022. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Confusion_matrix&oldid=1107701525

[18] J. Brownlee, “8 Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset,” Machine
Learning Mastery, Aug. 18, 2015. https://machinelearningmastery.com/tactics-to-combat-
imbalanced-classes-in-your-machine-learning-dataset/

[19] “Support Vector Machines: A Simple Explanation,” KDnuggets. https://www.kdnuggets.com/support-
vector-machines-a-simple-explanation.html/

[20] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: from theory to algorithms.
New York, NY, USA: Cambridge University Press, 2014.

[21] S. Dobilas, “XGBoost: Extreme Gradient Boosting — How to Improve on Regular Gradient
Boosting?,” Medium, Feb. 05, 2022. https://towardsdatascience.com/xgboost-extreme-gradient-
boosting-how-to-improve-on-regular-gradient-boosting-5c6acf66c70a

Deep Learning in FPGA or Microcontroller to classify EEG/ECG signals for a brain training application

T.Pham 36

[22] J. H. Friedman, “Greedy function approximation: A gradient boosting machine.,” Ann. Statist., vol. 29,
no. 5, Oct. 2001, doi: 10.1214/aos/1013203451.

[23] “Artificial Intelligence - Neural Networks.”
https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_neural_networks.htm

[24] “Deep learning,” Wikipedia. Sep. 02, 2022. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Deep_learning&oldid=1108086973

[25] “Perceptron in Machine Learning - Javatpoint,” www.javatpoint.com.
https://www.javatpoint.com/perceptron-in-machine-learning (accessed Sep. 05, 2022).

[26] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann Machines,” p. 8.
[27] J. Chen and X. Ran, “Deep Learning With Edge Computing: A Review,” Proc. IEEE, vol. 107, no. 8,

pp. 1655–1674, Aug. 2019, doi: 10.1109/JPROC.2019.2921977.
[28] M. Merenda, C. Porcaro, and D. Iero, “Edge Machine Learning for AI-Enabled IoT Devices: A Review,”

Sensors, vol. 20, no. 9, p. 2533, Apr. 2020, doi: 10.3390/s20092533.
[29] “TensorFlow Lite | ML for Mobile and Edge Devices,” TensorFlow. https://www.tensorflow.org/lite
[30] “ARM Developer Suite AXD and armsd Debuggers Guide.”

https://developer.arm.com/documentation/dui0066/d
[31] “Q (number format),” Wikipedia. Sep. 03, 2022. [Online]. Available:

https://en.wikipedia.org/w/index.php?title=Q_(number_format)&oldid=1108245902
[32] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang, “Hardware for machine learning: Challenges

and opportunities,” in 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego, CA,
USA, Apr. 2018, pp. 1–8. doi: 10.1109/CICC.2018.8357072.

[33] “X-CUBE-AI - AI expansion pack for STM32CubeMX - STMicroelectronics.”
https://www.st.com/en/embedded-software/x-cube-ai.html

[34] “stm32l475vg.pdf.” Accessed: Sep. 06, 2022. [Online]. Available:
https://www.st.com/resource/en/datasheet/stm32l475vg.pdf

[35] “B-L475E-IOT01A - STM32L4 Discovery kit IoT node, low-power wireless, BLE, NFC, SubGHz, Wi-
Fi - STMicroelectronics.” https://www.st.com/en/evaluation-tools/b-l475e-iot01a.html

[36] “EEG data for Mental Attention State Detection.” https://www.kaggle.com/datasets/inancigdem/eeg-
data-for-mental-attention-state-detection

[37] “Short-time Fourier transform,” Wikipedia. Aug. 16, 2022. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Short-time_Fourier_transform&oldid=1104785770

[38] “Blackman window - MATLAB blackman.” https://www.mathworks.com/help/signal/ref/blackman.html
[39] “TensorFlow,” TensorFlow. https://www.tensorflow.org/
[40] “Module: tf.keras | TensorFlow v2.9.1,” TensorFlow.

https://www.tensorflow.org/api_docs/python/tf/keras (accessed Sep. 07, 2022).
[41] “Model conversion overview | TensorFlow Lite,” TensorFlow.

https://www.tensorflow.org/lite/models/convert (accessed Sep. 08, 2022).
[42] A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems,

2017, vol. 30. Accessed: Sep. 08, 2022. [Online]. Available:
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-
Abstract.html

[43] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,”
2020, doi: 10.48550/ARXIV.2010.11929.

[44] “TinyML: Getting Started with STM32 X-CUBE-AI,” Digi-Key Electronics.
https://www.digikey.com/en/maker/projects/f94e1c8bfc1e4b6291d0f672d780d2c0 (accessed Sep.
09, 2022).

