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ABSTRACT Human detection, identification, and monitoring are essential for many applications aiming to
make smarter the indoor environments, where most people spend much of their time (like home, office,
transportation, or public spaces). The capacitive sensors can meet stringent privacy, power, cost, and
unobtrusiveness requirements, they do not rely on wearables or specific human interactions, but they may
need significant on-board data processing to increase their performance. We comparatively analyze in terms
of overall processing time and energy several data processing implementations of multilayer perceptron
neural networks (NNs) on board capacitive sensors. The NN architecture, optimized using augmented
experimental data, consists of six 17-bit inputs, two hidden layers with eight neurons each, and one four-bit
output. For the software (SW) NN implementation, we use two STMicroelectronics STM32 low-power ARM
microcontrollers (MCUs): one MCU optimized for power and one for performance. For hardware (HW)
implementations, we use four ultralow-power field-programmable gate arrays (FPGAs), with different sizes,
dedicated computation blocks, and data communication interfaces (one FPGA from the Lattice iCE40 family
and three FPGAs from the Microsemi IGLOO family). Our shortest SW implementation latency is 54.4 us
and the lowest energy per inference is 990 nJ, while the shortest HW implementation latency is 1.99 us and
the lowest energy is 39 nJ (including the data transfer between MCU and FPGA). The FPGAs active power
ranges between 6.24 and 34.7 mW, while their static power is between 79 and 277 uW. They compare very
favorably with the static power consumption of Xilinx and Altera low-power device families, which is around
40 mW. The experimental results show that NN inferences offloaded to external FPGAs have lower latency
and energy than SW ones (even when using HW multipliers), and the FPGAs with dedicated computational
blocks (multiply-accumulate) perform best.

INDEX TERMS Indoor person identification, capacitive sensing, neural networks, hardware design, ultra-
low power FPGAs, hardware acceleration, embedded design optimization.

I. INTRODUCTION

People spend much time indoors (at home, in the office, in
shops, transportation, and other spaces), yet those environ-
ments are hardly aware of their occupants, and even less of
their identity, activities, intentions, or emotions. Most of the
time, the occupants still need to actively engage the environ-
ment for services or customization, e.g., by tuning knobs,

The associate editor coordinating the review of this manuscript and
approving it for publication was Qing Yang.
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pressing switches, wearing recognizable devices, or voice
commands.

Various indoor security and monitoring activities, such as
building and home automation, security, elderly care, patient
monitoring, assisted living, need real-time privacy-observant
tag- and interaction-less low-power low-cost means for
indoor human sensing, localization, identification, and infer-
ence of activity, intentions or emotions [1]. Technology
advances continuously reduce the footprint and increase
the availability, quality of service, and affordability of
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embedding adaptive intelligence in environments, objects,
and appliances [2], but effective indoor human sensing is still
lagging.

Various techniques have been proposed for indoor human
localization and identification. Video-, accelerometer-, and
image-based face and gait recognition are among the most
explored. Ubiquitous Wi-Fi network fields have also been
used, but for adequate quality they may incur higher deploy-
ment and equipment cost [3]. Other investigated sensing
techniques include pyroelectric infrared (PIR) [4], [5], ultra-
sonic [6], ultra-wideband (UWB) [7], footstep-induced struc-
tural vibrations [8], or electric potential [9].

Capacitive sensing of conductive and dielectric properties
of human body was also used for indoor person sensing
[10], [11], identification [1], [12], and localization [13]-[16].
Machine learning algorithms, and especially neural networks
(NN5s) trained on the abstract signatures of targets can be used
to improve sensor performance [17], [18].

It can be difficult to efficiently implement NNs on low-
resource low-power and low-cost embedded systems. In this
article, we train and optimize a NN for automatic indoor
human identification using augmented experimental mea-
surements from our previous work [1], then we comparatively
analyze several NN implementation and acceleration options
on low-resource very low-power embedded systems, with and
without hardware (HW) acceleration.

The rest of the article is organized as follows. Section II
discusses related work. Section III briefly presents the mea-
surement technique that we used to acquire the experimental
data in our previous work [1]. Section IV briefly presents
the NN architecture and optimization. Section V discusses
several NN implementation and acceleration options, includ-
ing communication. Section VI concludes the article and
discusses future work.

Il. RELATED WORK

We comparatively analyze several options for NN inference
acceleration on low-power MCUs and ultralow-power field-
programmable gate arrays (FPGAs) for automatic indoor
human identification using capacitive sensors. Although we
briefly describe the operation of the capacitive sensor used
to collect the experimental data, and NN training and archi-
tectural optimization, we focus on the performance of NN
implementation, mainly inference latency and energy.

NN inference requirements for computation, memory, and
energy may often restrict their applicability to resource-
constrained low-power real-time embedded systems [19].
Speed and energy are singled out by Guo et al. [20] as basic
metrics for efficient NN implementations. While graphical
processing units (GPUs) provide high performance compu-
tation at high energy cost, FPGAs can effectively accelerate
NN for significantly less energy.

FPGA NN implementations often finely tune data paths
and operators, along parallel execution. Braga e al. [21] com-
paratively analyze performance, resource utilization, power
consumption, and accuracy of NN HW and software (SW)
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implementations on Xilinx FPGAs using MicroBlaze soft
processor. Blaiech et al. [22] propose a method to improve
NN HW implementations timing and resource require-
ments, while Bahoura and Park [23] propose pipelined HW
implementations of non-linear NN to reduce critical paths.
Zhai et al. [24] present an accurate multi-layer perceptron NN
for gas classification implemented on Xilinx Zynq FPGAs
with fixed-point arithmetic. Latino et al. [25] propose a gen-
eral NN architecture optimized for intelligent position sensor-
based systems implemented on Xilinx FPGAs. Hariprasath
and Prabakar [26] propose a pipelined NN architecture for
multi-modal biometric pattern recognition implemented on
Xilinx Virtex-4 FPGA. In [27], Bettoni et al. accelerate a
CNN for image recognition up to 16 times than SoC GPU
using a Xilinx Zynq FPGA. Indoor face recognition for iden-
tification and localization often use FPGA NN implementa-
tions [28]. Dawwd and Mahmood propose in [29] an efficient
Xilinx Spartan-3E FPGA CNN implementation for video-
based face recognition.

Gabriel e al. [30] survey the use of Xilinx and Altera
FPGA families to optimize power consumption and process-
ing time in low-power sensor systems. Although most NN
HW implementations target resourceful Xilinx and Altera
FPGA families [21], the static and dynamic power consump-
tion of the most low-energy devices is often too high for long-
lasting battery-powered embedded sensors [34].

In this article, we explore several NN optimizations on
ultralow-power FPGAs that are specifically designed for
low duty cycle and tight energy constrained applications.
We comparatively analyze the performance of several SW
and HW embedded implementations of a NN for per-
son classification based on capacitive sensor measurements.
Specifically, our main contributions are

o NN architectural exploration and optimization using

experimental data from capacitive sensors for person
identification;

« SW NN implementation on two low-power MCUs, one

tuned for low power and one for performance;

« HW NN implementation on four ultralow-power FPGAs

with different dedicated blocks and size;

o Characterization of MCU-FPGA communication in

terms of time and energys;

o Comparative analysis of overall inference latency and

energy of all NN implementation options.

IIl. CAPACITIVE SENSOR FOR CONTACTLESS
PERSON IDENTIFICATION
Capacitive sensors are widely used mostly for ranges
shorter than sensor diagonal dimension. In our previous
research [14], we have explored the performance of capac-
itive sensors in load mode for deviceless indoor human local-
ization at much longer ranges, 10-20 times sensor diagonal
dimension.

Figure 1 shows the operating principle of capacitive sen-
sors in load mode. Sensor plate capacitance is made of
capacitances with the surrounding environment (e.g., Cpg),
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FIGURE 1. Operation principle of load-mode capacitive sensors. The
sensor plate forms capacitances with the surrounding environment (Cpg)
and the body of the person (Cpb). The latter changes with the distance
between the person and sensor, determining changes in the overall
capacitance of the sensor that can be measured.

including the capacitance Cpb, with the body of the person.
The latter changes with the distance between person and
sensor and determines measurable plate capacitance changes.

Plate capacitance can be measured through its reactance
at a known excitation frequency. Furthermore, if we mea-
sure sensor capacitance at multiple frequencies at the same
sensor—person distance, then capacitance variation with the
measurement frequency is mostly due to differences in per-
son body composition [32]. Hence, if we associate specific
capacitance-frequency patterns to specific persons, we can
then use the patterns to identify the persons [1].

A. PERSON IDENTIFICATION USING CAPACITIVE SENSORS
Figure 2 shows the circuit we used in our previous work [1]
to measure sensor plate capacitance at different frequencies.

FIGURE 2. Block schematic of the person identification capacitive sensor
based on the measurement of the reactance of the sensor plate
capacitance with the body of a person at multiple excitation frequencies.
The variation of the capacitance with the frequency is specific to body
composition and can identify the person.

Measurement frequency is applied to sensor plate
(of capacitance C) through a resistor R. An MCU controls
both the measurement frequency (using a sine wave gen-
erator) and R (selected with an analog multiplexer from

VOLUME 7, 2019

predefined values) which tunes the idle RC low-pass filter
cutoff frequency (no person in range) to the input frequency.
C changes when a person is in range and detunes the RC
filter. This changes its output amplitude, which we then use
as proxy for the C value. To measure the amplitude, we first
denoise the RC filter output (using a tunable band-pass filter),
and then convert it to DC using an RMS-to-DC converter.

In the following we use our experimental measurements
from [1], which were made for four different persons at six
frequencies spaced by one octave: 5 kHz, 10 kHz, 20 kHz,
40 kHz, 80 kHz, and 160 kHz.

B. EXPERIMENTAL DATA

In our previous work [1], we used the sensor shown in Fig-
ure 2 to indirectly measure the capacitance at each of the
six excitation frequencies for ten times for each of the four
persons. Figure 3 shows the RC filter attenuation of the carrier
frequencies.

FIGURE 3. Experimental results of ten measurements of the attenuation
of the low-pass RC filter (plate capacitance C and series resistor R) for
each of the four persons at the six chosen frequencies.

The RC filter attenuations deviate from the expected —3 dB
because of the presence and the specific body composition
of the person in front of the sensor. We can see that each
person has a specific ratio between the RC filter attenuations
at each of the six measurement frequencies. We will use these
attenuation patterns to identify the person.

IV. ARTIFICIAL NEURAL NETWORK OPTIMIZATION

Our previous comparative analysis of machine learning (ML)
classification algorithms for indoor person localization using
capacitive sensor data exposed significant performance vari-
ance [18]. Also, most of the best performing ML algorithms
may often require excessive resources from low-power low-
cost embedded target microprocessors.

In this work, we focus on the comparative analysis of
several implementation and acceleration options for artificial
NN [33] used to infer person identity from capacitive sensor
measurements. For this purpose, we consider a system made
of a low-power low-cost MCU that controls sensor operation,
handles data acquisition, and communication.
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We briefly introduce first how we trained and optimized
a typical multilayer perceptron NN, for which we will then
explore several implementation and acceleration options.

A. DATA SET GENERATION AND PREPARATION

We design and train the NN using augmented experimental
data, because we had only ten experimental sets per person,
which are insufficient for effective NN training.

We augment the data using Matlab R2017a following the
steps shown in Figure 4. First, we add Gaussian noise and
then we normalize the data values to improve NN training
convergence. We split the resulting data into three sub-sets:
one for NN training, one for NN training validation and
optimization, and one for testing the NN performance.

FIGURE 4. Experimental data preparation to be used for neural network
training, validation and optimization, and performance testing.

1) DATA SET AUGMENTATION

Neural networks require many training data samples to learn
the significant features and to avoid overfitting the specific
data sets used for training. Data augmentation is commonly
used to generate new data sets that preserve the key charac-
teristics of the original sets [34]. We use 24 Gaussian noise
generators, each tuned to the average and standard devia-
tion of the experimental data for a measuring point (defined
by a specific person ID and measurement frequency, see
Figure 3). With the parameters shown in Table 1, we gen-
erate 10,000 labelled six-tuples for each of the four persons
(40,000 tuples in total).

2) DATA SET NORMALIZATION

Input data normalization can significantly improve the con-
vergence rate of NN training [35], [36]. We set the min-
imum and maximum values of each six-tuple to zero and
one, respectively, then we scale the tuple intermediate values

102220

TABLE 1. Average values (AVG) and standard deviation (STD) of the ten
measurement capacitance values for each person at each frequency.

FIGURE 5. Normalized data set augmented to 40,000 tuples using
Gaussian random number generators set to same average and standard
deviation values as the experimental data.

accordingly, as shown in Figure 5. The normalization proce-
dure is lightweight, suitable for real-time execution.

3) DATA SET SPLIT

Typical data splits allocate 60—90% of tuples for the training
set, and the rest evenly between validation and testing sets.
We decided to split 70% for NN training, 15% for validation,
and 15% for testing, which is adequate for tuning most NNs.

B. NEURAL NETWORK TRAINING AND OPTIMIZATION
We use a simple multilayer perceptron NN architecture,
which is well suited for classification tasks. We set the NN
inputs and outputs as shown in Figure 6 to fit the application:
the six inputs are connected to the six sensor outputs, while
the output encodes the inferred person ID.

According to data set split ratios, we use 28,000 six-tuples
for NN training, 6,000 six-tuples for validation, and 6,000 six-
tuples for NN testing. Although advanced NN optimization
is outside the scope of this work, we present some basic
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FIGURE 6. Feedforward neural network with six inputs, one output, and
two hidden layers, each of variable number of neurons.

NN hyperparameter optimization, specifically the number
of hidden layers, neurons per layer, and neuron activation
function. We restrict the search to NNs with the same number
of neurons on each hidden layer. We optimize and test each
architecture ten times and report the averages.

First, we establish a NN performance baseline for each
NN architecture using the non-linear logistic sigmoid acti-
vation function (LogSig) for all hidden neurons. As shown
in Table 2, inference accuracy slightly improves when we use
more hidden layers or more neurons on each hidden layer.

TABLE 2. Average identification error for different neural network
architectures using the logistic sigmoid (LogSig) activation function.

Because the LogSig activation function requires significant
resources which are hard to find on resource-constrained
devices [37], [38], we replace it with the rectified linear unit
(ReLU). We note that the NN accuracy degrades only slightly
(see Table 3), which is acceptable for our purpose (to compare
different NN implementations). Hence, from now on we will
use only the ReLU function, while the output neuron always
uses a linear identity activation.

We also note that NN accuracy varies only slightly across
all explored NN architectures, so there is little to gain opti-
mizing it. Hence, we select a NN architecture with two hidden
layers of eight neurons each (see Table 4). It also seems
adequate to load the target devices for our analysis. Note
that the first hidden layer requires only six multiplications
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TABLE 3. Average identification error for different neural network
architectures using the rectified linear unit (ReLU) activation function.

TABLE 4. Parameters of the neural network selected for experiments.

ReLU

ReLU
Identity

because it has only six inputs, each connected to one of the
six sensor outputs, as shown in Figure 6.

V. NEURAL NETWORK IMPLEMENTATION

NNs can be implemented in SW (running on either general
(CPU) or specialized (GPU) processors), or in HW (either
reconfigurable (FPGA) or application-specific (ASIC)).
FPGAs can bring significant speed and energy improve-
ments for both high-end implementations [39]-[42] and
for energy- and processing-constrained embedded devices
[27], [43], [44], while preserving programmability. Since
most NN computations are embarrassingly parallel, they can
considerably benefit from FPGAs flexibility (e.g., resource
allocation, scheduling, data flow, data width).

We comparatively analyze several HW and SW imple-
mentations of the selected NN architecture. HW imple-
mentations exploit parallelization opportunities provided by
different ultralow-power FPGAs, while the SW implementa-
tion uses resources of different low-power microprocessors.
In our analysis, we are especially interested in trade-offs
between the latency and energy consumption, including the
MCU-FPGA communication overhead.

A. SOFTWARE IMPLEMENTATION ON DIFFERENT

ARM CORTEX M3 MICROCONTROLLERS

We implement the NN in SW on two ARM Cortex M3 MCUs
in STmicroelectronics STM32 family, one optimized for low
power, STM32L152RE [45], and another optimized for per-
formance, STM32F103RB [46]. First, we want to verify that
the NN processing on the embedded devices matches the
Matlab reference model. Second, we want to compare the NN
performance on MCU families optimized for different tasks.
Third, we want to establish a performance baseline for the
HW (FPGA) implementations.

102221



IEEE Access

M. Roukhami et al.: Very Low Power Neural Network FPGA Accelerators

Both MCUs use an ARM Cortex M3 core, include HW
multipliers, and their development boards allow to measure
current consumption during program execution. We use the
Keil uVision® toolset! to compile, debug, trace the execu-
tion, and measure the performance.

NN SW implementation calculates the forward propaga-
tion (inference) for the NN shown in Figure 6, with six inputs,
two hidden layers of eight neuron each and ReLLU activation
functions, and one output neuron with linear identity activa-
tion function.

FIGURE 7. Data flow within a neuron receives the input signals Input ,
mutiplies each by a neuron- and input-specific weight W j,,

the multiplication results are then added and passed through an
activation (transfer) function, which calculates the output of the neuron.

TABLE 5. Comparison of neural network software implementation
performance on two microcontrollers in different operation conditions.

1474/ 1474

1474/ 1474 | 1740/ 1831

184/ 184 92.1/92.1 | 54.4/28.6
1.85/4.00 3.60/6.80 | 8.60/23.9
3.0/33 3.0/33 33/33
5.55/132 10.8/22.4 | 28.4/78.9
1.02/2.43 0.99/2.06 | 1.54/2.26

Figure 7 shows the data flow of one neuron. SW implemen-
tation processes in sequence each input of each neuron in the
NN, starting with the first hidden layer, then the second, and
finally the output neuron, as follows

Table 5 shows the NN SW implementation performance
for the two MCU types, in different operation conditions.

IKeil uVision®toolset: http://www.keil.com/mdk5/uvision/
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Algorithm 1
//First hidden layer
For i = All neurons on first hidden layer do
For j = All inputs do
Product < input_data [j] * weights_0 [i][j]
Sum < Sum + Product
End for
Hidden_LO [i] < Sum + b0 [i]
If Hidden_LO [i] < O then
Hidden_LO [i] < 0
End if
Sum < 0
End for
/ISecond hidden layer
For i = All neurons on second hidden layer do
For j = All outputs of first hidden layer do
Product <— Hidden_LO [j] * weights_I [i][]]
Sum < Sum + Product
End for
Hidden_L1 [i] < Sum + bl[i]
If Hidden_L1 [i] < O then
Hidden_LI1 [i] < 0
End if
Sum < 0
End for
//Output layer
For i = All outputs of second hidden layer do
Product <— Hidden_LI [i] * weights_2[i]
Sum < Sum + Product
End for
Person_ID < sum + b2

The low-power MCU (STM32L152RE) achieves the min-
imum energy per NN inference (0.99 uJ) at 16 MHz clock
frequency. Inference energy at 8 MHz clock is just 3% higher
(1.02 w@J), most likely because the longer inference time
increases the static power contribution. At 32 MHz clock,
the NN inference energy is 56% higher (1.54 p©J) because
both the active power and the clock cycles for NN inference
increase: Active power is 2.6 times higher (from 10.8 mW
to 28.4 mW) and NN inference clock cycles increase 18%
(from 1474 to 1740 cycles) due to the higher FLASH latency
(1 wait state).

The performance-optimized MCU (STM32F103RB) con-
sumes more current and operates at higher supply volt-
age (3.3 V instead of 3.0-3.3 V for STM32L152RE) and
consumes more energy per NN inference in all operation
conditions.

B. HARDWARE IMPLEMENTATION ON FPGAS

Typical multilayer perceptron (feedforward, Figure 6) NN,
have one or more interconnected layers of neurons. The input
layer receives the input values which are incrementally pro-
cessed by the neurons on the hidden layers as they propagate
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TABLE 6. Comparison of computation resources (lookup tables (LUT) and
digital signal processors (DSP)) and static power (Pstatic) consumption
for some low-power FPGA families from several producers.

ICE40UPSK 5280 8 0.28
XC3S200 4320 12 41
XC3S8200A 4032 16 43
XC7A100T 162240 240 41
EP2C8 8256 18 40
AGLN250 6144 N/A 0.08
MIAGL600 13824 N/A 0.13
MI1AGL1000 24576 N/A 0.21

towards the output(s). Figure 7 shows the processing done
by each neuron. It multiplies each input by an associated
weight, then it passes the sum of the multiplication results
to the activation (transfer) function, which calculates the
neuron output.

Table 6 shows the main FPGA resources and static power
consumption for several low- and ultralow-power FPGA
families. We note that FPGAs from Lattice and Microsemi
consume much less static power compared to those form
Xilinx or Altera. Also, the Microsemi FPGAs consume less
static power than the Lattice, but the dedicated DSP (MAC)
blocks of the latter may implement calculations more effi-
ciently (we will analyze their effects later).

NNs usually have many neurons that require significant
computation for inference [47], and need design tradeoffs
between processing parallelization and pipelining to effi-
ciently use the limited resources of ultralow-power FPGAs.
Our NN has six inputs, two hidden layers of eight neurons
each, and one output neuron (see Table 4). First hidden layer
needs six multiplications, the second and the output layers
need eight. The activation functions (ReLU and identity)
need none.

In the following, we will consider for NN inference accel-
eration only the four ultralow-power FPGAs from Table 6,
which we will designate as: “LLAT” the Lattice iCE40 UPSK
device, “MS-S” the Microsemi IGLOO AGLN250 device,
“MS-M”’ the Microsemi IGLOO M1AGL600 device, and
“MS-L” the Microsemi IGLOO M1AGL1000 device.

We program the FPGAs using manually written functional
VHDL code compiled with the programming tools from the
FPGA producers.

1) IMPLEMENTATION ON LATTICE ICE40 FPGA

We use the largest device in the iCE40 UltraPlus ultralow-
power FPGA family from Lattice Semiconductor, the UP5K.
It is the only one with eight 16-bit x 16-bit multiply and
32-bit accumulator (MAC) blocks. It also has 5280 look-up
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FIGURE 8. Scheduling of neural network processing on Lattice

iCE40 UP5K and Microsemi IGLOO M1AGL600 FPGAs. Neurons are
processed sequentially, starting with the neurons on the first hidden layer
(NyH; = NgH,), then the neurons on the second hidden layer

(NyHy - NgH,), and the output neuron (N 4¢)-

tables (LUTs), 1024 kbit static random-access mem-
ory (SRAM), integrated serial peripheral interface (SPI) and
inter-integrated circuit (I2C) core blocks for communica-
tion [48].

We implement a generic neuron using the eight MAC
blocks to process in parallel the multiplication of the eight
inputs and weights, and LUTs to implement the eight-input
adder and the activation function (see Figure 7). We use
this generic neuron to process sequentially the whole NN
(see Figure 8), from first neuron on the first hidden layer,
(N1H; — NgHj), to last (eighth) neuron on last (second) hid-
den layer, N;jH, — NgH»). At the end, we process the output
neuron, changing only the activation function from ReLU to
linear identity.

This implementation uses all eight MAC blocks and
2047 of the 5280 LUTs (38.77%) available on the FPGA
device.

We prefer this implementation to vectorization because it
gives us more control on resource allocation and scheduling.

2) IMPLEMENTATION ON MICROSEMI IGLOO FPGAS

We select three devices in the IGLOO ultralow-power
FPGA family from Microsemi, AGLN250, M1AGL600,
MIAGL1000 [49]. AGLN250 has 6144 programmable
logic VersaTiles (which are like Xilinx configurable logic
blocks, Lattice lookup tables, or Altera logic elements),
MI1AGL600 has 13824 VersaTiles, and M1AGL1000 has
24576 VersaTiles. No IGLOO device has DSP blocks
(Table 6).

On AGLN250 we can implement two multipliers and two
eight-input adders (one for each activation function, ReLU
and linear identity). Each multiplier requires 1071 Versa-
Tiles, and control and other elements use 2747 VersaTiles
(see Table 7).

With less computing resources available, we can sup-
port less parallel processing on AGLN250 than on Lattice
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TABLE 7. Resources used to implement the neural network main
computing elements on FPGA devices in the Microsemi IGLOO family.

4889
2142 126 2621
(79.57%)
10031
8568 64 1399
(72.56%)
17842
17136 63 643
(72.60%)

FIGURE 9. Scheduling of the main computation resources (two
multipliers and one eight-input adder) in the processing of a neuron on
the Microsemi IGLOO AGLN250 FPGA.

iCE40 UP5K. As shown in Figure 9, we can schedule up
to two parallel multiplications. Hence, we need four clock
cycles to process all eight neuron inputs, and a clock cycle
to add the results using an eight-input adder and to calculate
the neuron activation (with ReLU or linear identity functions,
depending on neuron position in the NN).

On M1AGL600 we can implement eight multipliers, each
using 1071 VersaTiles (see Table 7). Control and other
elements require 1463 VersaTiles. This is less than the
2747 VersaTiles on AGLN250 mainly because higher paral-
lelism simplifies most elements (e.g., state space and multi-
plexer sizes). Because we can implement on M1AGL600 the
same computing resources as on Lattice iCE40 UP5K, we can
use on both the same parallelism and processing schedule,
as shown in Figure 8.

On M1AGL1000 we can implement 16 multipliers of 1071
VersaTiles each (see Table 7). Control and other elements take
706 VersaTiles, less than on M1AGL600 thanks to the higher
parallelism which simplifies most control elements. With
16 multipliers and two adders, we can compute in parallel two
neurons. As shown in Figure 10, we process the NN starting
from first two neurons on first hidden layer, NyH; and NoHy,
and up to last two neurons on last hidden layer, N7H, and
NgHj, followed by the output neuron (neurons on first hidden
layer run six parallel multiplications).
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FIGURE 10. Scheduling of neural network processing on Microsemi
IGLOO M1AGL1000 FPGA. Neurons are processed sequentially in pairs,
starting with the first two neurons in the first hidden layer (N, Hy,
NyH; - N;H;, NgH;), then the neurons in the second hidden layer
(N7Hy , Ny Hy = N7H,, NgH,), and finally the output neuron (Ng¢)-

3) HARDWARE IMPLEMENTATION RESULTS

Because of the limited available resources, the Microsemi
IGLOO AGLN250 FPGA cannot process completely in
parallel one neuron (see Figure 9). Hence, we must insert
registers to hold all multiplication results stable for the eight-
input adder (see Figure 7). The registers also split the longest
(critical) combinatorial data path, which increases both the
maximum clock frequency and the clock cycles needed for
one NN inference.

All other FPGAs can perform all neuron multiplica-
tions in parallel and do not need registers after multipliers
(see Figure 7). However, we implement on all FPGAs
both architectures to compare closer the performance of the
devices: with registers after neuron multipliers, or ‘“‘short
critical path” (SCP), and without registers after multipli-
ers, or “‘long critical path’” (LCP).

Table 8 shows the resource requested for the NN imple-
mentations on FPGAs for both architectures: SCP and LCP.
On Lattice iCE40 UP5K, we use all eight MAC blocks to
accelerate the neuron calculations, and about a third of the
available logic blocks for other functions. Microsemi IGLOO
FPGA family has no MAC blocks, hence we implement all
NN functions using generic logic blocks (VersaTiles) and we
tune the processing parallelism to fit the available resources
(FPGA resource occupation is 70-80% on all three devices).

As shown in Table 9, the FPGA power consumption has
a static component, which is consumed in any device mode,
and a dynamic component, which is consumed by the FPGA
elements activated for processing. Active power is the sum of
the static and dynamic powers. Microsemi IGLOO devices
have also a sleep mode (that preserves memory and output
pin states with the main clock stopped) and a Flash*Freeze
power mode (from which the FPGA can return active fast,
in less than us).
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TABLE 8. Resource occupation for the neural network hardware
implementations for both “short critical path” (SCP) and “long critical
path” (LCP) architectures. Implementation on Lattice iCE40 UP5K (LAT)
FPGA uses mostly hardware MAC blocks for processing and logic blocks
mostly for control, while on Microsemi IGLOO FPGAs (MS-S for AGLN250,
MS-M for M1AGL600, and MS-L for M1AGL1000) we use only logic blocks
to implement all NN functions.

2047 of 5280
(38.77%)
1724 | 323 8/8
2093 of 5280 (100%)
(39.64%)
1614 | 479
4889 of 6144
(79.57%) N/A
466 | 623
10031 of 13824
(72.56%)
9457 | 574
10212 of 13824
(73.87%)
9476 | 736
17842 of 24576
(72.60%)
17129 | 713
18674 of 24576
(75.98%)
17651 | 1023

N/A

N/A

TABLE 9. Components of power consumption for all FPGA devices (LAT
for Lattice iCE40 UP5K, MS-S for AGLN250, MS-M for M1AGL600, and
MS-L for M1AGL1000) for the neural network implementations for both
“short critical path” (SCP) and “long critical path” (LCP) architectures.

The smallest FPGA, AGLN250, consumes the least static
power. It also has the lowest dynamic and active power con-
sumptions for the SCP architecture, which is the only one
that it supports. For the LCP architecture instead, the Lat-
tice iCE40 UP5SK device has the lowest dynamic and active
powers. This can be due to both the use of dedicated MAC
blocks for computations, and because the iCE40 family uses
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TABLE 10. Performance of NN inference in terms of execution time and
energy consumption on the low-power FPGAs (LAT for Lattice iCE40 UP5K,
MS-S for AGLN250, MS-M for M1AGL600, and MS-L for M1AGL1000). Long
critical path (LCP) implementation (fully parallel processing of one
neuron) is not possible on AGLN250, hence we implement both the
“long” (LCP) and the “short” critical path (SCP) architectures on all FPGAs
to help performance comparison. Implementations on LAT and MS-M
have the same architectures and parallelism.

a 40-nm CMOS process while the IGLOO family uses a
130-nm CMOS process. The lower static power consumption
of IGLOO family FPGAs may be attributed mostly to the less
advanced CMOS technology node they use (130 nm), but its
analysis is beyond the scope of this work.

Table 10 shows the performance of one NN inference. Due
mostly to its dedicated MAC blocks and more advanced fab-
rication node, the Lattice iCE40 UP5K achieves the highest
clock frequency and the lowest energy consumption for both
NN implementation architectures, the SCP (45.82 MHz) and
the LCP (21.58 MHz). It also consumes the lowest active
power for the LCP architecture (6.24 mW), while the small-
est IGLOO FPGA, AGLN250, consumes the lowest active
power for the SCP architecture (7.58 mW). Thanks to the
higher implementation parallelism (see Figure 10), the largest
IGLOO FPGA, M1AGL1000, performs one NN inference in
the shortest time for both the SCP (0.80 us) and the LCP
(0.74 ps) architectures, but the Lattice iCE40 UP5K is very
close for the SCP architecture (0.81 us).

We also note that the LCP architecture, which processes
all neuron calculations in one clock cycle, is the most per-
formant. As expected, its maximum clock frequency is lower
than for SCP, at 21.58 MHz on Lattice iCE40 UP5K. But the
minimum NN inference energy is also much lower, 5.79 nJ on
the same device, while the inference time of 0.93 us is just
16% longer than the best of the SCP architecture, of 0.80 us.

To directly compare devices from different producers,
we implemented the same NN architecture and scheduling
on the Lattice iCE40 UP5K and the Microsemi IGLOO
MI1AGL600 FPGAs. While on both devices one NN infer-
ence needs 20 clock cycles for the LCP and 37 cycles for the
SCP architectures, the Lattice UPSK FPGA comes on top for
all other metrics for both SCP and LCP architectures (see
Table 10): higher maximum clock frequency (28% higher
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for LCP and 70% higher for SCP), lower active power
(58% lower for LCP and 27% lower for SCP), shorter NN
inference time (22% shorter for LCP and 41% shorter for
SCP), and lower NN inference energy (67% lower for LCP
and 57% lower for SCP). The performance difference is
expected considering that the Lattice iCE40 family uses a
more advanced 40-nm CMOS technology node (compared to
the 130-nm node for Microsemi IGLOO family) and has also
dedicated MAC blocks.

Comparing only the three IGLOO FPGAs (AGLN250,
M1AGL600, and M1AGL1000 which use the same fabrica-
tion technology), the most energy-efficient is the intermediate
one, M1AGL600, for both the SCP and LCP architectures.
Compared to it, using the same SCP architecture the smaller
AGLN250 needs 2.6 times more time per NN inference,
consumes 57% less active power, but 13% more energy. The
inference time on the larger M1AGL1000 device is 38%
shorter for LCP and 42% shorter for SCP but consumes 71%
more active power for LCP and 98% more for SCP, hence
7% more energy for LCP architecture and 16% more for SCP
(see Table 10). The differences are mostly due to the differ-
ent sizes of the non-computational logic (such as multiplex-
ers or control blocks) and to the use of more clock cycles than
computation parallelism ratios would imply. For instance,
MI1AGL600 has four times the multipliers of AGLN250
(see Table 8), yet the latter uses 4.4 times more clock cycles
(87 versus 20 cycles, see Table 10), while M1AGL1000 has
twice the multipliers of M1AGL600, yet the former needs
more than half of the clock cycles of the latter (12 versus
20 cycles for LCP architecture, and 21 versus 37 cycles
for SCP).

C. FPGA-MICROCONTROLLER COMMUNICATION

We must also consider the MCU-FPGA communication
energy when offloading the NN inference processing to
FPGAs. The NN expects six sensor data encoded on 17-bit
integers and encodes the inference result on a 4-bit integer.
Overall data transfer energy depends on bus type, data trans-
fer rate, and bus interface operation on MCU and FPGA.

TABLE 11. Communication ports available on the MCU and the FPGA
devices that we consider (LAT for Lattice iCE40 UP5K, MS-S for AGLN250,
MS-M for M1AGL600, and MS-L for M1AGL1000).

Table 11 shows the communication interfaces available on
each device that we consider (we include only the MCU with
the best performance). The MCU has HW support for SPI,
I2C, and universal asynchronous receiver-transmitter (UART)
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ports. The FPGAs have either dedicated SPI and I>C ports
(Lattice iCE40 family) or UART IP cores (Microsemi IGLOO
family). We can also implement ad-hoc parallel buses using
general purpose input/output (GPIO) pins.

SPI, I2C, and UART interfaces transfer data serially (the
UART implements the recommended standard 232 (RS-232)
protocol). Serial buses require few pins but transmit data bits
one at a time, often interleaved with protocol-specific over-
head. Generally, the communication protocol that supports
the higher clock frequency is preferred because it reduces the
overall communication time.

Parallel buses use more I/O pins. They transmit several data
bits in parallel and may reduce considerably the data transfer
time. The MCU and the FPGAs that we consider have enough
spare GPIO pins to implement a parallel bus.

We will comparatively analyze the overall energy con-
sumption for one NN inference of the MCU-FPGA system
when using the RS-232 (the only communication core sup-
ported by Microsemi IGLOO FPGA family), the SPI (the
fastest core supported by Lattice iCE40 FPGA family), the
parallel bus, or no FPGA acceleration (SW NN processing).

1) RS-232 SERIAL COMMUNICATION WITH IGLOO FPGA
Microsemi IGLOO family provides only UART cores
(on 521 VersaTiles) that can implement the RS-232 proto-
col for serial communication. The STM32L152RE UART
peripherals have direct memory access (DMA, see Figure 11),
meaning that the CPU can stay in low-power mode during
data transfer to save energy.

DMA

TX

GO ==

IGLOO FPGA (Nano or MIAGL)

MCU STM32L152

FIGURE 11. Block schematic of a UART RS-232 interface between the
microcontroller and the FPGA. Direct Memory Access (DMA) can transfer
data to and from the UART port without involving the CPU, which allows
to save energy.

Figure 12 shows the power consumption components dur-
ing a NN inference with data transferred over a bus. During
T, sensor data are transferred from MCU memory to FPGA
memory over a bus. During 73 , the result of the NN inference
is transferred from FPGA memory to MCU memory, over the
same bus. During 73 , only the FPGA is active to compute the
NN inference.

The CPU can sleep in low-power mode during almost
all T1-T»>—T3 periods, having the DMA subsystem handling
the UART-MCU memory transfers and the UART han-
dling the RS-232 protocol. The peripherals (UARTs and
GPIOs of the MCU and the FPGA, and DMA on the MCU)
consume power during both 77 and T3, to transfer data
between MCU and FPGA. The FPGA always consumes static
power, while its dynamic power depends on the workload (the
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FIGURE 12. Components of power consumption for one neural network
inference using data transfer between the microcontroller and an FPGA.

UART core during 77 and 73 , and the NN inference during
T>).

The duration of 77 and T3 is set to accommodate the data
transfer over the RS-232 line as follows:

T = (Nframes * bframe)/B (D

where:

o T is the RS-232 transmission time (T, T3);

o Nfiames 1s the number of transmitted data frames;

e Dframe 1s the number of bits in one data frame;

o B is the data frame Baud rate over the serial line, which
we set to the maximum supported by the MCU and the
FPGA UARTS,

B = 921.6 Kbit/s 2)

T1 needs to accommodate the serial transfer of the six
17-bit sensor values, each packed in three ten-bit RS-232
frames (made of eight bits of data, one start bit, and one stop
bit) for a total transfer of 180 bits. 73 needs to accommodate
the serial transfer of the four data bits of the inference result,
hence only one RS-232 ten-bit frame. With these considera-
tions, from (1) and (2) we obtain:

T — 6value - 3 frame/value - 10 bit /frame
921600 bit /s
= 1953 us
3)
T — 1 value - 1frame/value - 10 bit /frame
921600 bit /s
= 10.9 us “)

T is the duration of the NN inference on the target IGLOO
FPGA, which depends on the FPGA type (see Table 10).

As shown in Figure 12, power consumption during data
transfer periods 77 and T3 is given by:

Paatayanser = PCPUgeep + PUARTcy + PDMA + PGPIOVCy
+ PEPGAaic + PFPGAwymamic T PGPIORpGs  (5)
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where Pcpyy,,, is the CPU power in sleep mode, PyarTycy
is the power consumed by the UART peripheral of the CPU,
Ppua is the DMA subsystem power, PGpio,,c, 18 the power
consumed by the GPIO pins of the UART port of the CPU,
PFPGA i 18 the FPGA static power, PEPGA yuamic 18 the FPGA
dynamic power, and PGpioppg, 1s the power consumed by the
GPIO pins of the UART core of the FPGA.

We show in Table 12 the MCU-FPGA system energy
consumption. A relatively long data transfer time noticeably
increases the overall system energy consumption.

TABLE 12. Power and energy consumed by the system made of the
microcontroller and the FPGA (MS-S for AGLN250, MS-M for M1AGL600,
and MS-L for M1AGL1000), which exchange data over an RS-232 serial
line with UART interfaces.

2.01

0.331

0.696

0.254

0.079 0.131 0.213

7.50 14.9 25.5

0.58

0.014

210 207 207
0.845 0.846 0.864

2) SPI SERIAL COMMUNICATION WITH ICE40 FPGA

As shown in Table 11, only the Lattice iCE40 FPGA family
provides an SPI core (on 40 LUTs). On MCU, we will use the
DMA subsystem to transfer data between the MCU memory
and the SPI port to reduce the CPU energy consumption
(as we do for RS-232).

DMA
MOSI
MISO
CPU SPI Port e —¢x Core L T NN design
sciky SPI
MCU STM32L152 Lattice ICE40UPSK FPGA

FIGURE 13. Block schematic of an SPI interface between the
microcontroller and the FPGA. Direct Memory Access (DMA) transfers
data to and from the SPI port without involving the CPU to save energy.

Figure 13 shows the block schematic of MCU-FPGA SPI
communication.

The DMA subsystem handles data transfer between MCU
memory and SPI port to keep the CPU mostly in low-power
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sleep mode (see Figure 12). Peripherals (SPIs and GPIOs
of MCU and FPGA, and DMA on MCU) consume power
during both Tjand T3, when data is transferred between the
MCU and FPGA. The FPGA always consumes static power
and dynamic power depending on its activity (the SPI core
during7 and73 , and the NN inference during 7>).

Like for the RS-232 protocol, 77 and T3 are set to accom-
modate data transfer over the SPI bus as follows:

T= (Nframes * bframe)/B (6)

where:

o T is the SPI transmission time (T, 73);

o Nfiames 1s the number of transmitted data frames;

e Dfiame is the number of bits in one data frame;

o B is the data frame Baud rate over the serial line, which
we set to the maximum supported by both the MCU and
the FPGA SPI ports.

The FPGA SPI core can operate up to 25 Mbit/s.
STM32L152 MCU SPI is limited to 8 Mbit/s for 16 MHz
CPU clock, and 16 Mbit/s for 32 MHz CPU clock. Since
MCU consumption varies with the clock frequency, we will
analyze the overall energy consumption for both SPI speeds.

SPI data frames can hold up to 16 data bits. Each transfer
session has a 24-bit header (8-bit SPI command and 16-bit
data address). Hence, T} is set to the duration of the transfer
of the six 17-bit sensor values, each value packed in two
16-bit SPI frames, and the SPI session header. T3 is set to
the duration of the serial transfer of the four data bits of the
inference result, packed in one 16-bit SPI frame, plus the SPI
session header. With these considerations, from (6) we obtain
for 8 Mbit/s SPI speed

T 6value - 2 frame/value - 16 bit /frame + 24 bit
= 8 Mbit /s
=27 us 7
T Lvalue - 1frame/value - 16 bit /frame + 24 bit
3T 8 Mbit /s
=5us 8)

and half of these durations when doubling the SPI speed to
16 Mbit/s
Ty =27 us/2 =13.5 us )
T3 =5us/2=2.5us (10)
T, is the duration of the NN inference on the iCE40 FPGA
(see Table 10).

From Figure 12, we obtain the whole system power
consumption during data transfer periods 77 and 73 as

Paatayanger = PCPUgeep + PSPIncy + Ppma + PGrioycy

+ PrPGAguic + PFPGAdnanic T PGPIOFpGs (1)
where Pcpyy,,, is the CPU power in sleep mode, Pspiycy
is the power consumed by the SPI peripheral of the CPU,

Pppa is the DMA subsystem power, PGpio,,c, 15 the power
consumed by the GPIO pins of the SPI port of the CPU,
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TABLE 13. Power and energy consumed by the system made of the
microcontroller and the FPGA (LAT for Lattice iCE40 UP5K), which
exchange data over an SPI serial bus.

2.01 5.775
0.187 0.507
0.696 1.774
0.254 0.665
0.277
5.97
0.13 0.26
0.147 0.294
329 16.9
0.124 0.158

PFPGA 18 the FPGA static power, PEPGA jyqmic 15 the FPGA
dynamic power, and PGpioppg, is the power consumed by the
GPIO pins of the SPI core of the FPGA.

Table 13 shows the energy consumption of the MCU-
FPGA system using an SPI serial bus for data exchange,
for two SPI data rates. Data transfer takes significantly less
time than when using an RS-232 serial line, hence the overall
system energy consumption is reduced.

17 -

NN design (6) |
7

Ultra-low power FPGA 5)

(4

MCU STM32L152RE

FIGURE 14. Block schematic of a parallel interface between the
microcontroller (MCU) and the FPGA implemented using general purpose
(GPI10) pins. The interface uses two 16-bit MCU ports to transfer the input
(sensor) data, of which one port is reused to receive the inference result,
and some control lines.

3) PARALLEL COMMUNICATION WITH FPGA

Parallel communication can be implemented on all FPGAs
that we consider in our experiments (see Table 11)
using GPIO pins and little resource or protocol overhead.
Figure 14 shows the block schematic of a parallel com-
munication between the MCU and the FPGA. It uses two
16-bit MCU ports to transfer in parallel the 17 bits of each
input sample (their destination addresses within the FPGA
are implicit), and a few lines for protocol signaling. One of
the MCU ports is reused to receive the 4-bit NN inference
result.
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Unlike serial buses (see Figure 12), the parallel bus can
transfer one input sample in one CPU clock cycle. Hence,
we use the CPU to transfer the data between memory and
ports at full speed. The CPU and the GPIOs of the ports
consume power during 7 and 73 (see Figure 12). The FPGA
consumes static power, while its dynamic power depends on
the activity (the parallel port handler core during 77 and 73
(which is negligible) and the NN calculating the inference
during 77).

T, T, , and T3 have the same meaning as for serial buses.
T, depends on the target FPGA type, as shown in Table 10.
We measured that 77 takes 36 CPU clock cycles and 73 four
cycles. Hence, for 16 MHz CPU clock frequency, we have:

T, = 36c¢ycles/16 MHz = 2.25 us (12)

T3 = 4cycles/16 MHz = 0.25 us (13)
and half of these for 32 MHz CPU clock frequency:

T, = 36c¢ycles/32 MHz = 1.125 us (14)

T3 = 4cycles/32 MHz = 0.125 us (15)

From Figure 12, the power consumption during the data
transfer period 77 and 73 is given by:

Pdamtransfer = PCPUactive + PGPIOMCU + PFPGAstatic
+ PEPGAjynamic + PGPIOgpGs  (16)

where Pcpy,.,... 15 the CPU power in active mode, PGpioycy
is the power consumed by the GPIO pins of the parallel port
of the CPU, PrpGa,,. 18 the FPGA static power, PrpGa yamic
is the FPGA dynamic power, and PGpiosps, 1S the power
consumed by the FPGA GPIO pins used for the parallel bus.

Table 14 shows the energy consumption of the MCU-
FPGA system that uses a parallel bus for data exchange,
for two CPU clock frequencies. Data transfer time is very
short compared to serial buses, which reduces significantly
the overall system energy consumption.

D. DISCUSSION

When offloading the NN inference from the MCU to an
external FPGA, the communication between the MCU and
the FPGA using the RS-232 serial line has the highest
latency, 207 us—210 s, and the highest energy consumption,
845 nJ-864 nJ, because the data transfer time is dominant
(see Table 12). Data communication over the SPI reduces
latency by roughly an order of magnitude, to 16.9 £s—32.9 us,
and the overall system energy by 5-7 times, to 124 nJ-
158 nJ (see Table 13). With a parallel data communication,
the system is the most efficient, with latency lowered by
roughly another order of magnitude, between 1.99 us and
6.09 us, and the energy is reduced between 39 nJ and 90 nJ
(see Table 14).

The inference latency of the NN implemented in SW is
between 54.4 s and 92.1 ps, and the energy between 990 nJ
and 1530 nJ for the STM32L152RE MCU with clock fre-
quencies of 16 MHz and 32 MHz respectively (see Table 5).
SW NN latency is only better than the HW one with data
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TABLE 14. Power and energy consumed by the system made of a
microcontroller and an FPGA, which exchange data over a parallel bus.

communication over an RS-232 serial line. SW NN infer-
ence energy is however higher than any HW implementation,
including the data transfer energy.

Moreover, specialized blocks (like the Lattice iCE40 UPSK
(LAT) MACs) may improve the energy performance by more
than three times, even when a higher parallelism (exploiting
the available resources in Microsemi IGLOO M1AGL1000
(MS-L)) lowers the NN inference time (see Table 10).
It should be also noted that the Lattice FPGA uses a
more advanced CMOS technology node (40 nm) than the
Microsemi FPGAs (130 nm).

The experimental results show that processing the NN
inference on external ultralow-power FPGAs is more energy-
efficient than the SW processing of power-optimized MCUs,
even with HW multipliers. Speed-optimized MCUs are even
less efficient. Higher MCU-FPGA data transfer speeds may
significantly reduce the overall transfer energy and latency.
Parallel buses perform better for this reason and the energy
reduction due to shorter transfer time offsets the increase of
energy consumption due to the extra GPIOs that they use.

VI. CONCLUSION

We comparatively analyzed the performance of several SW
and HW implementations of a typical multilayer percep-
tron NN for person identification using capacitive sen-
sors. We optimized the NN architecture using augmented
experimental data from our previous experiment, and we
implemented the NN in SW on two low-power MCUs
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(one optimized for low power and one optimized for perfor-
mance), and two architectural options in HW (with different
critical path lengths), on four ultralow-power FPGAs with
different sizes and specialized blocks (MACs).

The experimental results show that the NN HW implemen-
tation is more efficient both as latency and energy, except
when using a slow MCU-FPGA communication (like the
RS-232), which may excessively increase the overall latency.
Using fast communication, FPGA acceleration of NN infer-
ence can reduce its latency and energy consumption by more
than an order of magnitude.

As future work we plan to integrate an ultralow-power
FPGA with a low-power MCU on a capacitive sensor to
analyze the dynamic behavior of the system, including the
operation under very low duty cycles.

We also plan to use high-level synthesis (HLS) techniques
to implement the NN on FPGA to explore more architectures
and computational models (e.g., vectorization) and compare
HLS implementation quality and manual optimization [50].
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