79 research outputs found

    The Requirements Editor RED

    Get PDF

    Combining Model-Driven Engineering and Cloud Computing

    Get PDF
    Service-orientation and model-driven engineering are two of the most dominant software engineering paradigms nowadays. This position paper explores the synergies between them and show how they can benefit from each other. In particular, the paper introduces the notion of Modeling as a Service (MaaS) as a way to provide modeling and model-driven engineering services from the cloud

    A Time-Triggered Constraint-Based Calculus for Avionic Systems

    Full text link
    The Integrated Modular Avionics (IMA) architec- ture and the Time-Triggered Ethernet (TTEthernet) network have emerged as the key components of a typical architecture model for recent civil aircrafts. We propose a real-time constraint-based calculus targeted at the analysis of such concepts of avionic embedded systems. We show our framework at work on the modelisation of both the (IMA) architecture and the TTEthernet network, illustrating their behavior by the well-known Flight Management System (FMS)

    Project-Team RMoD 2013 Activity Report

    Get PDF
    Activity Report 2013 Project-Team RMOD Analyses and Languages Constructs for Object-Oriented Application Evolutio

    Using ATL transformation services in the MDEForge collaborative modeling platform

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-42064-6_5In the last years, the increasing complexity of Model-Driven Engineering (MDE) tools and techniques has led to higher demands in terms of computation, interoperability, and configuration management. Harnessing the softwareas- a-service (SaaS) paradigm and shifting applications from local, mono-core implementations to cloud-based architectures is key to enhance scalability and flexibility. To this end, we propose MDEForge: an extensible, collaborative modeling platform that provides remote model management facilities and prevents the user from focussing on time-consuming, and less creative procedures. This demo paper illustrates the extensibility of MDEForge by integrating ATL services for the remote execution, automated testing, and static analysis of ATL transformations. The usefulness of their employment under the SaaS paradigm is demonstrated with a case-study showing a wide range of new application possibilities.Work supported by the Spanish MINECO (TIN2014-52129-R), the Madrid Region (S2013/ICE-3006), and the EU commission (#611125

    Proceedings of the joint track "Tools", "Demos", and "Posters" of ECOOP, ECSA, and ECMFA, 2013

    Get PDF

    Transforming Very Large Models in the Cloud: a Research Roadmap

    Get PDF
    International audienceModel transformations are widely used by Model-Driven Engineering (MDE) platforms to apply different kinds of operations over models, such as model translation, evolution or composition. However, existing solutions are not designed to handle very large models (VLMs), thus facing scalability issues. Coupling MDE with cloud-based platforms may help solving these issues. Since cloud-based platforms are relatively new, researchers still need to investigate if/how/when MDE solutions can benefit from them. In this paper, we investigate the problem of transforming VLMs in the Cloud by addressing the two phases of 1) model storage and 2) model transformation execution in the Cloud. For both aspects we identify a set of research questions, possible solutions and probable challenges researchers may face

    Model Driven Tool Interoperability in Practice

    Get PDF
    International audienceModel Driven Engineering (MDE) advocates the use of models, metamodels and model transformations to revisit some of the classical operations in software engineering. MDE has been mostly used with success in forward and reverse engineering (for software development and better maintenance, respectively). Supporting system interoperability is a third important area of applicability for MDE. The particular case of tool interoperability is currently receiving a lot of interest. In this paper, we describe some experiments in this area that have been performed in the context of open source modeling efforts. Taking stock of these achievements, we propose a general framework where various tools are associated to implicit or explicit metamodels. One of the interesting properties of such an organization is that it allows designers starting some software engineering activity with an informal light-weight tool and carrying it out later on in a more complete or formal context. We analyze such situations and discuss the advantages of using MDE to build a general tool interoperability framework

    Generative technologies for model animation in the TopCased platform

    Get PDF
    International audienceDomain Specific Modeling Languages (DSML) are more and more used to handle high level concepts, and thus bring complex software development under control. The increasingly recurring definition of new languages raises the problem of the definition of support tools such as editor, simulator, compiler, etc. In this paper we propose generative technologies that have been designed to ease the development of model animation tools inside the TopCased platform. These tools rely on the automatically generated graphical editors of TopCased and provide additional generators for building model animator graphical interface. We also rely on an architecture for executable metamodel (i.e., the TopCased model execution metamodeling pattern) to bind the behavioral semantics of the modeling language. These tools were designed in a pragmatic manner by abstracting the various model animators that had been hand-coded in the TopCased project, and then validated by refactoring these animators

    Leveraging formal verification tools for DSML users: a process modeling case study

    Get PDF
    15 pagesIn the last decade, Model Driven Engineering (MDE) has been used to improve the development of safety critical systems by providing early Validation and Verification (V&V) tools for Domain Specific Modeling Languages (DSML). Verification of behavioral models is mainly addressed by translating domain specific models to formal verification dedicated languages in order to use the sophisticated associated tools such as model-checkers. This approach has been successfully applied in many different contexts, but it has a major draw- back: the user has to interact with the formal tools. In this paper, we present an illustrated approach that allows the designer to formally express the expected behavioral properties using a user oriented language -- a temporal extension of OCL --, that is automatically translated into the formal language; and then to get feedback from the assessment of these properties using its domain language without having to deal with the formal verification language nor with the under- lying translational semantics. This work is based on the metamodeling pattern for executable DSML that extends the DSML metamodel to integrate concerns related to execution and behavior
    • …
    corecore