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Leveraging formal verification tools for DSML users:
a process modeling case study

Faiez Zalila, Xavier Crégut, and Marc Pantel

Université de Toulouse, IRIT – France
Email: firstname.lastname@enseeiht.fr

Abstract. In the last decade, Model Driven Engineering (MDE) has been used
to improve the development of safety critical systems by providing early Vali-
dation and Verification (V&V) tools for Domain Specific Modeling Languages
(DSML). Verification of behavioral models is mainly addressed by translating
domain specific models to formal verification dedicated languages in order to
use the sophisticated associated tools such as model-checkers. This approach has
been successfully applied in many different contexts, but it has a major draw-
back: the user has to interact with the formal tools. In this paper, we present an
illustrated approach that allows the designer to formally express the expected be-
havioral properties using a user oriented language — a temporal extension of
OCL —, that is automatically translated into the formal language; and then to
get feedback from the assessment of these properties using its domain language
without having to deal with the formal verification language nor with the under-
lying translational semantics. This work is based on the metamodeling pattern
for executable DSML that extends the DSML metamodel to integrate concerns
related to execution and behavior.

Keywords: Domain specific modeling languages, Model formal verification, Behav-
ioral properties, Translational semantics, Verification feedback

1 Introduction

TOPCASED1 is a project2 started in 2005 in the French “Aerospace Valley” cluster that
gathers academic and industrial partners [1]. TOPCASED is dedicated to the develop-
ment of an open source Computer Assisted Software Engineering (CASE) tool for the
development of safety critical aeronautics, automotive and space embedded systems.
Such developments will range from system and architecture specifications to software
and hardware implementation through equipment definition.

TOPCASED provides modeling languages, both domain specific (SAM, EAST-ADL,
SAE AADL, SDL3 and XSPEM4) and general purpose (SYSML, UML, etc.) and as-
sociated tools like graphical and textual editors, documentation generators, validation

1 Toolkit In OPen source for Critical Applications & SystEms Development, www.topcased.org
2 This work was funded by the French ministries of Industry and Research and the Midi-

Pyrénées regional authorities through the FUI TOPCASED, ANR OpenEmbedd, ITEA
SPICES and ITEA2 OPEES projects

3 Specification and Description Language: is an object-oriented formal language developed and
standardized by The International Telecommunication Standardization Sector (ITU-T)

4 OMG SPEM extended for execution



through model animation, verification through model checking, version management,
traceability, etc. TOPCASED relies on MDE generative technologies to define the lan-
guages and build all these tools for all these languages. It is thus an MDE platform
both for building system models and for building the platform itself. MDE technologies
used in TOPCASED for defining and tooling languages are centered around Ecore5 and
configuration models taken as inputs by generative or interpretative tools.

Because the TOPCASED toolkit addresses safety critical systems, Validation and
Verification activities are of primary importance and should be performed as early as
possible at design time on the various models, both to reduce the development costs and
to provide higher quality systems.

Validation is performed through model animation [2]: the designer builds a model
using a graphical editor and can execute it according to scenarios. The runtime data
produced by these executions is displayed as decorations of the graphical representation
of the model or thanks to a dedicated view. Model animation is thus very similar to
source level debugging for software. Scenario driven model execution runs through
a single path in the set of all possible executions for the model. The use of several
scenarios provides a coverage of the various possible executions but this validation is
usually not exhaustive.

On the contrary, verification aims to check whether a property holds for all possible
executions of the model. Model-checkers are dedicated tools for that purpose. These
tools usually rely on two formal verification languages: one to model the behavior of
the system and one to express the properties to check. For example, the TINA tool-
box [3], available in TOPCASED, relies on Time Petri nets (TPN) for the behavior and
State-Event Linear Temporal Logic (SE-LTL) for the properties. Thus, the use of such
model checking tools requires to translate the system business domain model into an
equivalent behavior model in the considered formal verification language and to ex-
press the system requirements as properties. Furthermore, results are obtained on the
formal side as execution traces and have to be translated back into the system domain.
This is a well-known technique called translational semantics. Nevertheless, even if
the translations are automated, they are often defined in an ad hoc way, specific to the
considered business domain. Furthermore, system requirements are most of the time di-
rectly written as formal properties, in the verification tool domain and not in the system
domain. Thus, the designer must have a good understanding of: a) the various domain
languages; b) the behavior and property languages from the various tools; and c) on the
translation scheme used to go from one to the other in both directions. Verification is
thus a difficult activity requiring many abilities that are generally not available to the ca-
sual business domain designer. Our purpose is to provide methods and tools in order to
ease the integration of model checking in MDE toolchain. This integration will provide
seamless verification facilities to the business domain designer without requiring him to
deal with target verification language and associated model-checkers. We will describe
a partly automated MDE driven tool chain for expressing the system requirements in the
business domain language, translating the requirements to model checking tools prop-
erty languages, and translating the failure execution traces back to the designer’s world.
Our contribution consists in reifying elements involved in the semantics of a DSML in

5 Ecore is the metalanguage of Eclipse Modeling Framework, www.eclipse.org/modeling/emf
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Fig. 1: General approach of a translational semantics with feedbacks

order to ease, and partially automate, the different translations that are summarized in
Figure 1. More precisely, it includes:

1. the use of MDE technologies on both sides, business and formal verification do-
mains based on a metamodel architecture that combines concerns related to model
execution, including runtime information and the stimuli that make the model evolve.
This metamodel guides the definition of the translational semantics and simplifies
the production of business domain feedback to the end-user.

2. a user dedicated language for the expression of business properties.
3. automatic translation of business properties into formal verification domain prop-

erties based on the translational semantics.
4. automatic translation of the verification results obtained in the verification domain

to the business domain. When a property does not hold, the obtained counter ex-
ample is presented to the user either as a business domain scenario or a snapshot of
the model completed with runtime information.

The approach is illustrated on a case study which concerns modeling of process using
a process description language derived from the SPEM OMG Standard [4].

The paper is organized as follows. Section 2 presents the case study from the end-
user viewpoint. It defines some constraints to assess and the expected feedback. Sec-
tion 3 describes the formalism used for modeling processes, the language of expression
of temporal constraints and extensions made on the DSML to be able to capture verifi-
cation results. Section 4 presents the formal language and tools. Section 5 describes all
required transformations for process verification and verification feedbacks. Section 6
considers related works and the last section concludes.

2 End-User Concerns

This section presents the business domain – process modelling – considered in the case
study and the concerns of end-users. We first present the kind of process models the
end-user wants to build. Then we explain the kind of properties he wants to check on
his models. Finally we describe the feedback the end-user expects from verification
tools in order to get insight on the errors the models may contain.



2.1 Business Models
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Fig. 2: A business development process

Figure 2 shows an example of a pro-
cess model. It corresponds to a sim-
plified development process com-
posed of four activities, each repre-
sented in an ellipse: Programming,
Designing, Test case writing and
Documenting. Arrows between ac-
tivities indicate dependencies: the
target activity depends on the source
activity. The label specifies the kind
of dependency. The word before the
“To” is the state that should have
been reached by the source activity
in order to perform the action on the
target activity, action which appears
after the “To”. For example, the “fin-
ishToStart” dependency between Designing and Programming means that Program-
ming can only be started when Designing has been finished. Documenting and Test-
CaseWriting can start once Designing is started (startToStart) but Documenting cannot
finish if Designing is not finished (finishToFinish). The dependencies put between Pro-
gramming and TestCaseWriting enforces a test driven development: programming can
only starts when test cases are already started and, obviously, test case writing can only
be finished when programming is finished in order to take into account test coverage.

Rounded rectangles represent the number of available resources (2 Designers, 3
Developers and 3 Computers). Dashed arrows indicate how many resources an activity
requires. Programming needs two developers and two computers. Resources are allo-
cated when an activity starts and freed when it finishes.

These processes are deliberately simplified to avoid overloading this presentation
but time constraints or hierarchical decomposition of activities could be added.

2.2 User verifications

To validate or to verify a model, the user may check that properties derived from the
system requirements hold on that model. We focus on behavioral properties, properties
that concern the evolution of the model over time. Static properties are also important
for the end user but they can easily be included in the editing tool using for example an
OCL checker.

The user may be interested in general properties not specific to a given process
model. For example, he may want to check whether a process model may finish or not
(P1). A process finishes if all its activities finish while respecting constraints imposed
by dependencies and resource allocation. If these properties hold, the user may want to
get a terminating scenario and use it to pilot the process execution.

The user may also want to verify properties that are specific to a particular process
model. As an example, he might want to know if in all cases Documenting is finished
before Designing is finished (P2).



2.3 Verification feedback
Once the end user has defined his model and expressed his requirements through prop-
erties, he wants to have feedback on the assessment of those properties. If a property
evaluates to true, then the requirement is fulfilled. But if a property evaluates to false,
the user expects to have feedback in order to understand why the property does not
hold. For example, a counter example may be exhibited. Obviously, this counter exam-
ple should be expressed at the business domain level.

For instance, using the example shown in Figure 2, property P1 does not hold and
there is indeed a deadlock during process execution. The user can be provided with a
counter example that explains the deadlock as a scenario like the one of Figure 3 which
lists the actions (start or finish) applied on activities. The deadlock is due to the fact
that Programming cannot be started because a Computer is missing. If a computer was
added, then the P1 requirement would hold. The property P2 does not hold. Indeed, it
is possible to finish Designing before Documenting is finished. A possible scenario is
shown on Figure 4 (counter-example). The user may want to play those scenarios using
a model animator like the one developed in the TOPCASED project [5].

Start Designing

Finish Designing

Start Documenting

Finish Documenting

Start TestCaseWriting

Fig. 3: A scenario from P1

Start Designing

Finish Designing

Start Documenting

Start TestCaseWriting

Finish Documenting

Fig. 4: A scenario from P2

3 Business Metamodeling

Metamodels generally focus on business domain concerns and do not take into account
other elements required to execute a model. As model execution may be of interest for
most of the modeling languages, especially in the context of safety critical systems, we
have defined a general solution to describe all the data required to define an execution
semantics for any executable modeling language [6]. It is a kind of metamodeling pat-
tern that may be used from design time to run time. This pattern has been applied in the
TOPCASED project to build animators [2] that allow validation of SysML/UML State
Machine and Activity diagrams or SAM (an automate-based language used by Airbus)
models. It is also helpful to ease the definition of forward and backward transforma-
tions toward verification languages in order to get back failure scenarios from model
checkers.

The pattern advocates to structure an executable DSML metamodel in such a way
that the different concerns are stressed: the business domain, the queries a user may ask
on a model to assess it satisfies its requirements (i.e. the model business properties), the
stimuli that make the model evolve. The corresponding XSPEM metamodel is shown
on Figure 5 and detailed in the next paragraphs.

3.1 XSPEM Domain Definition Metamodel (DDMM)
A metamodel defines the concepts (metaclasses) of the business domain addressed by
the DSML and the relationships between them (references). In the executable meta-



model pattern defined in TOPCASED, this reference metamodel is called the Domain
Definition MetaModel, DDMM . The DDMM of XSPEM is shown on Figure 5 (package
named DDMM at the bottom). It defines the concepts of process (Process) composed
of a set of (1) workdefinitions (WorkDefinition) that model the activities (described in
section 2.1) performed during the process, (2) worksequences (WorkSequence) that de-
fine dependency relationships between workdefinitions and (3) resources (Resource)
allocated to activities (Parameter).

Obviously, this metamodel could be extended with well-formedness rules for exam-
ple using OCL to express constraints not captured by the metamodel definition (names
of workdefinitions have to be unique, worksequences should not be reflexive, resources
counts should be positive, etc.). This aspect related to the static semantics of the DSML
is not in the scope of this paper.

3.2 XSPEM Query Definition Metamodel (QDMM) and Formal Expression of
Requirements

End users’ behavioral properties usually rely on information that is not directly available
in the DDMM because they only exist when the model is executed (runtime information).
For example, the previous properties rely on the state of a workdefinition: started or
finished. As usual, this information has to be reified. Thus, we have chosen to extend
the DDMM with a new metamodel which describes the queries the user can conduct
on his models. We call it QDMM (Query Definition MetaModel). For XSPEM, queries
such as isStarted and isFinished can be applied on a WorkDefinition (see top right of
Figure 5). A query isFinished is defined on Process in order to model the end-user
business requirement, (P1), defined in section 2.2.

To be checked, requirements of section 2.2 have to be formally expressed. OCL is
not well suited for that purpose because it only allows the specification of structural
properties and some Floyd-Hoare behavioral properties for methods. Nevertheless, it is
now a widely known language and a few temporal extensions of OCL have been pro-
posed in order to specify event-based behavioral properties whereas OCL only targets
function-based properties. We have chosen to rely on Temporal OCL and especially on
the proposal from [7] as the syntax of this extension is quite natural for OCL users.
It introduces usual future-oriented temporal operators such as always, sometimes, next,
existsNext as well as their past-oriented duals.

Here-after are the expression of the P1 and P2 requirements identified in section 2.2.
They rely on the DDMM but also on the queries defined in the QDMM.

context Process -- P1 requirement
inv isFinished:
eventually (self.workDefinitions->
forAll(a: WorkDefinition | a.isFinished())))

context Process -- P2 requirement
inv: always self.(getWD("Documenting").isFinished()
precedes self.getWD("Designing").isFinished());

context Process
def: getWD(WDName: String): WorkDefinition =
self.workDefinitions
->select(wd: WorkDefinition | wd.name = WDName)
->asList->first()
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Fig. 5: XSPEM Metamodels

We have build a TOCL text editor dedicated to the end-user thanks to the xText tool
from Eclipse Textual Modeling Framework (TMF) and the TOCL grammar of [7].

3.3 XSPEM Event Definition and Trace Management Metamodels (EDMM &
TM3)

The DDMM and QDMM allow to express the requirements but we also need to show
to the user the results obtained in the formal verification domain. A Snapshot can be
expressed using QDMM because it represents all runtime information of interest to the
user. To express the scenario corresponding to a counter example (like the one shown
in Figure 4) we define two other metamodels that also extend the DDMM. The first
one is the Trace Management Metamodel (TM3). It allows definition of a scenario as
a sequence of runtime events — a stimulus that makes the model evolve. The TM3 is
independent of any DSML. On the contrary, the Event Definition Metamodel (EDMM)
is specific to a DSML and defines its runtime events. For instance, runtime events for
XSPEM include “start a workdefinition” and “finish a workdefinition”.

4 Formal Level Metamodeling

In order to represent the semantic data and ease the exchange of verification results
with business domain models, the metamodeling pattern is also applied on the formal



language, TPN in the case of the TINA toolbox [3]. Like XSPEM, the TPN metamodel
is composed of several parts (figure 6). The DDMM describes a Petri net (PetriNet)
composed of nodes (Node) that denote places (Place) or transitions (Transition). Nodes
are linked together by arcs (Arc). Arcs can be normal ones or read-arcs (ArcKind). The
attribute initialtokenCount specifies the number of tokens consumed in the source node
or produced in the target one (in case of a read-arc, it is only used to check whether the
source place contains at least the specified number of tokens). Finally, a time interval
can be expressed on transitions.

The QDMM defines only one query corresponding to the number of token stored
in a place (tokenCount). We can define other queries like for example fireableTransition
corresponding to the set of fireable transitions in a petri net. The SDMM (State Definition
Metamodel) is an implementation of the QDMM, in this case a trivial implementation
that defines an attribute for each query.

Finally, the EDMM defines only one event FireTransitionEvent and, obviously, the
TM3 is the same as the one presented for XSPEM, as it is DSML-independent.

<<import>>
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Fig. 6: PETRINET metamodels

5 The transformation level

The last steps concern the transformation level of Figure 1. It consists first in defin-
ing the translational semantics, that is translating an XSPEM model into a Petri net
one. Then, TOCL properties have to be translated into LTL formulae so that they can
be checked by the TINA toolbox. Finally, results obtained on the formal verification
domain have to be translated back into the business domain. One can notice that busi-
ness metamodel (or model) TOCL invariants may be expressed to assert that they are
preserved by the translational semantics.

All these transformations are defined at the metamodel level. They have thus only
to be defined once by DSML and formal domain experts and the end-user can use them
for any of the XSPEM models.
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5.1 Translation XSPEM 2petrinet

Several translational semantics may be defined for XSPEM according to the level of
details in the execution that we want to model and the kind of properties we want to
assess. Thus, we advocate in [8] that defining the translational semantics should be
property-driven to favor the definition of a minimal semantics, that will allow to answer
to the questions the user may ask about his models.

As the QDMM metamodel records all the aspects of interest to the end user, the
expert has to verify that all the queries may be expressed using the formal language
translation. Thus, the QDMM can be used as a guide to write the translation. For ex-
ample, in the formal language, one should be able to determine if a workdefinition is
started or finished as these queries are part of the QDMM. A WorkDefinition is thus trans-
lated into four places characterizing its state (notStarted, started, running and finished)
linked by two transitions. These transitions model the actions that we want to observe
on a workdefinition: one can start a workdefinition and then finish it. A workdefinition
is considered started if it is either running or finished. This is recorded by the place
named started.

AWorkSequence becomes a read-arc6 from one place of the source workdefinition
(either started or finished) to a transition of the target workdefinition (either start or
finish) according to the kind of WorkSequence (linkKind attribute). A resource becomes
a place whose initial marking (initialtokenCount) corresponds to its count. Each Pa-
rameter element is translated into two arcs, the first one to take resources when the
concerned workdefinition starts and the second one to release them when the workdefi-
nition finishes.

Figure 7 contains the Petri net model resulting from the application of the transla-
tional semantics on a part of the XSPEM model from Figure 2 (Designing and Doc-
umenting workdefinitions and worksequences between them as well as the Developer
resource).

The ATL transformation language [9] has been used to implement this translational
semantics. First, an ATL module describes the transformation from an XSPEM model
to a Petri net model [10] (not shown here7). Then, an ATL query8 generates the textual

6 A read-arc only checks that there is enough tokens in the input place but those tokens are not
withdrawn when the transition is fired.

7 http://combemale.svn.enseeiht.fr/proto/fr.irit.acadie.xspem2tina/
8 This query is obviously independent of the translational semantics.
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syntax used by the TINA tools from a Petri net model. This part could be implemented
with any model to text language but it was simpler to rely on the same tool.

5.2 Translating TOCL to SE-LTL

Translating TOCL properties into LTL implies dealing with three main aspects. First,
temporal operators have to be translated. It is straightforward since LTL provides the
same kind of temporal operators. Second, OCL operators have to be evaluated, espe-
cially those that query the model. Finally, queries specified in XSPEM QDMM have to
be translated into LTL. The meaning of these queries obviously depends on the pre-
viously defined translational semantics. Thus, while defining the translational seman-
tics, the expert has to provide an ATL library called XSPEM_queries which defines all
queries as helpers returning the appropriate LTL formulae. For example the WorkDef-
inition query “isFinished” becomes a helper “isFinished()” that computes the string
“self.name + "_finished"”.

The TOCL to LTL transformation is composed of two stages (top of Figure 8). The
first one is a Higher Order Transformation (HOT-TOCL2ATL) that takes as input a
TOCL model and generates an ATL transformation, which is the one executed in the
second stage. This second transformation takes as input the business domain model
(conforming to XSPEM in our case study) upon which the TOCL properties handled in
the first stage will be run to generate the LTL formulae.

This transformation strategy results from two points. First, it is not possible in the
first stage to use the XSPEM_queries library because there is no reflexivity in ATL.
Second, several TOCL operators can be applied to each element of an input model. So,
ATL iteration rules must be generated to traverse the model.

One strong point is that the TOCL2LTL transformation is generic and automated.
It is only parametrized by the ATL module that provides the definitions of the QDMM
queries for the target formal property language.

Applied on P1, the TOCL2LTL transformation produces the following formulae:

<> (Designing_finished /\ Programming_finished
/\ TestCaseWriting_finished /\ Documenting_finished)

The formulae corresponding to P2 is:

[] ([] (- Designing_finished) U Documenting_finished)



5.3 Checking SE-LTL properties

Once the Petri net and the LTL formulae have been generated, the selt model checker
from the TINA toolbox is used. If the LTL formulae does not hold, it exhibits a counter-
example: a specific execution of the model that leads to a state where the property is
not satisfied. Figure 9 shows the counter example corresponding to the P1 property. It
consists of a sequence of states. A state is a snapshot of the model showing the places
marking. After each state, there is the transition fired to go to the next state. The example
shows a deadlock (last transition).

FALSE
state 0: Programming_notStarted Designing_notStarted Documenting_notStarted TestCaseWriting_notStarted computer*3

designer*2 developer*3
-Designing_start->
state 1: Programming_notStarted Designing_inProgress Designing_started Documenting_notStarted

TestCaseWriting_notStarted computer developer*3
-Designing_finish->
state 2: Programming_notStarted Designing_finished Designing_started Documenting_notStarted

TestCaseWriting_notStarted computer*3 designer*2 developer*3
-Documenting_start->
state 3: Programming_notStarted Designing_finished Designing_started Documenting_inProgress Documenting_started

TestCaseWriting_notStarted computer*2 designer developer*3
-Documenting_finish->
state 4: Programming_notStarted Designing_finished Designing_started Documenting_finished Documenting_started

TestCaseWriting_notStarted computer*3 designer*2 developer*3
-TestCaseWriting_start->

* [accepting] state 5: Programming_notStarted Designing_finished Designing_started Documenting_finished
Documenting_started TestCaseWriting_inProgress TestCaseWriting_started computer designer*2 developer*2

-deadlock->
state 5: Programming_notStarted Designing_finished Designing_started Documenting_finished Documenting_started

TestCaseWriting_inProgress TestCaseWriting_started computer designer*2 developer*2
[accepting all]

0.001s

Fig. 9: Selt output for P1 checked on example of Figure 2

5.4 Designer dedicated feedback

Model verification based on a translational semantics provides a significant advantage:
the reuse of existing sophisticated model checkers. But there is one significant draw-
back: results are obtained at the verification level and have to be translated back to the
business domain level. This section explains this translation.

Generating PETRINET scenario and trace Using xText, we analyze the output of the
selt model-checker and produce a PETRINET scenario and trace using the PETRINET
metamodels and the TM3 presented in sections 3 and 4. The PETRINET scenario cor-
responding to the counter example of Figure 9 is the following:

FireTransitionEvent Designing_start

FireTransitionEvent Designing_finish

FireTransitionEvent Documenting_start

FireTransitionEvent Documenting_finish

FireTransitionEvent TestCaseWriting_start

The same tool builds the PETRINET models that corresponds to each states of the
counter-example (not shown here).
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Translating PETRINET scenario to XSPEM scenario The PETRINET Scenario is
then transformed to an XSPEM Scenario. This transformation converts transition firing
events FireTransitionEvent to XSPEM events, either start (StartWD) or finish (Fin-
ishWD) a WorkDefinition. The naming convention defined in the Mapping ATL library
are used to decode the fired transition names and produce the corresponding XSPEM
events and their target workdefinitions. The XSPEM scenario corresponding to the pre-
vious PETRINET one is the one shown on Figure 3. To obtain the scenario of figure 4,
we have to check the negation of P2 because we want an example which satisfies P2.

The same approach is used to translate PETRINET snapshots (that is PETRINET
models) into XSPEM ones. It could be automated using traceability data between
source and target models generated during the transformation step.

6 Related Work

Translational semantics with feedbacking verification results: The main advantage of
translational semantics is the reuse of existing tools from the target technical space like
model-checkers. Its major issue is that it provides results in the target space that must
be translated back to the business domain space. Hegedus et al. [11] propose a method
based on a traceability mechanism of model transformations. It relies on a relation be-
tween elements of the source (BPEL) and the target (PETRINET) metamodel, imple-
mented by means of annotations in the transformation’s source code. The authors pro-
pose a technique for the back-annotation of simulation traces based on change-driven



model transformations from traces generated by SPIN model checker to the specific
animator named BPEL Animation Controller. However, in our approach, we try to gen-
erate a scenario (a set of events) that will be animated by a generic animator. In [12],
authors use traceability links of the transformation which generates Alloy models from
UML. The back-annotation transformation is automatically generated based on these
traceability links using a QVT-based implementation. Here, the back-annotation is sup-
ported for static model instances, and not for execution traces of Executable DSML
models like in our case. In [13], the authors define an approach named Arcade that
uses SPIN model checker for evaluating safety and liveness properties of a Domain
Reference Architecture that is translated to Promela language. Arcade interprets SPIN
counter-example and generates an Architecture Trace Diagram (ATD) that has two di-
mensions: a vertical dimension that represents time and a horizontal dimension rep-
resenting SPIN processes. Nevertheless, they do not define a high-level abstraction
between business level and formal level. Contrary to our work, we separate the two
domains (DSML and formal verification ones) and we hide all formal aspects by trans-
lating formal results to business ones. In [14], Pelliccione et al. present a software tool
platform for the model-based design and validation of software architectures, named
CHARMY, that offers an extension called SASIM deriving from Theseus approach [15].
Both translate the violation trace from SPIN model checker on a generated sequence
diagram and an animated UML state diagrams. vUML [16] also use the same approach.
CHARMY, Theseus and vUML are based on a very ad hoc approach that uses UML
diagrams and SPIN model checker. On the contrary, we rely on a generic approach that
can be applied to other DSML.

All the above approaches aim at verifying a specific DSML through formal tools by
translating business semantics into formal one and by feedbacking formal verification
results to the initial business level. However, our work provides a generic approach for
the verification of executable DSML. It is based on the explicit definition of the differ-
ent concerns involved in model execution (runtime information expressed as queries,
events) thanks to the executable DSML metamodelling pattern. Based on this pattern
and the translation semantics, generic transformations allow to translate user properties
to logical formulae and verification results back to business level.

Behavioral property Patterns: To verify BPEL service composition schemas, [17]
proposes a property specification language based on ontologies and named PROPOLS
which allows composition of the patterns defined in [18]. These patterns are close to
TOCL temporal operators and composition corresponds to OCL operators. Rather than
relying on a Query Definition MetaModel, a one to one mapping has to be defined for
each property item to the corresponding BPEL operation.

In [19], the authors provide a graphical tool named PSC (Property Sequence Chart),
to specify temporal properties as an extended notation of a selected subset of the UML
2.0 Interaction Sequence Diagrams. Theseus approach [15] uses SPIDER to translate
natural language properties to the property specification language of the targeted anal-
ysis tools. Both, PSC and SPIDER are specific approaches used in a specific domain
between UML and SPIN. User-oriented property languages, graphical or not, are an
important point to make formal verification accessible to end users. TOCL is certainly
not the best-suited language despite it is an extension of OCL, a well accepted lan-



guage in MDE. Nevertheless, we consider it can be used as a pivot language for more
user-oriented languages.

7 Conclusion

Using the XSPEM case study, this paper has illustrated a method to ease the integration
of verification tools for safety and liveness properties on executable models. It relies on
the executable DSML metamodeling pattern using a translation to the Time Petri nets
as formal verification language providing the semantics. This could be applied to any
other kind of formal language providing automated verification tools. We have recently
applied it to the FIACRE intermediate verification language [20], that abstracts several
existing verification toolsets such as TINA and CADP in order to factorize common
aspects and avoid redefining transformations for all toolsets. This experiment results
will be presented in a forthcoming paper. The integration is provided through QDMM
extension to the pattern and automated translations on the property side.

This approach has been designed for domain specific languages and this is a key
point to keep it simple. It is currently being experimented for several significantly dif-
ferent DSMLs (and sub-languages from general purpose languages) such as data flow
models, SAE AADL, SDL, UML and SYSML class, state machine, activity and com-
posite structure diagrams. But, it is still to be shown if it can scale up to more complex
languages or to languages that combine different models of computation.

These preliminary experiments allowed a first validation of our proposal for the
systematic construction of verification tools for behavioral properties expressed on a
DSML. We have chosen to rely on TOCL to express properties at the business domain
level because it is close to OCL. However, some early feedback have shown that it is still
not well suited to many end users. Therefore, we might need to investigate new user-
oriented language for expressing behavioral constraints. It is a problem that has already
been identified in [21]: the authors have defined a new dialect of linear temporal logic
more suitable for control engineers.

Finally, we propose to ease the feedback of verification results. We currently rely on
naming conventions. We are investigating the explicit construction of the links between
the business domain and verification models elements during the downward translation
so that they can be used during the upward feedback.
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