189 research outputs found

    Self-Optimization of Internet Services with Dynamic Resource Provisioning

    Get PDF
    Self-optimization through dynamic resource provisioning is an appealing approach to tackle load variation in Internet services. It allows to assign or release resources to/from Internet services according to the varying load. However, dynamic resource provisioning raises several challenges among which: (i) How to plan a good capacity of an Internet service, i.e.~a necessary and sufficient amount of resource to handle the Internet service workload, (ii) How to manage both gradual load variation and load peaks in Internet services, (iii) How to prevent system oscillations in presence of potentially concurrent dynamic resource provisioning, and (iv) How to provide generic self-optimization that applies to different Internet services such as e-mail services, streaming servers or e-commerce web systems. This paper precisely answers these questions. It presents the design principles and implementation details of a self-optimization autonomic manager. It describes the results of an experimental evaluation of the self-optimization manager with a realistic e-commerce multi-tier web application running in a Linux cluster of computers. The experimental results show the usefulness of self-optimization in terms of end-user's perceived performance and system's operational costs, with a negligible overhead

    FEW : file management for portable devices

    Get PDF
    Comunicação apresentada ao International Workshop on Software Support for Portable Storage (IWSSPS), San Francisco, 2005.In recent years, an increasing number of portable devices with large amounts of storage have become widely used. In this paper, we present the early design of the FEW system, a system that aims to ease file management in the new mobile environment. To this end, the system will manage file replicas stored in fixed and portable storage devices. It will provide an automatic mechanism to establish new file replicas by analyzing file system activity. The system will automatically and incrementally synchronize all file replicas exploring the available network connectivity and the availability of portable storage devices. To merge concurrent updates, operational transformation techniques will be used.FCT/MCES POSI/FEDER - Project #59064/2004

    Isolation Without Taxation: {N}ear-Zero-Cost Transitions for {WebAssembly} and {SFI}

    Get PDF
    Software sandboxing or software-based fault isolation (SFI) is a lightweight approach to building secure systems out of untrusted components. Mozilla, for example, uses SFI to harden the Firefox browser by sandboxing third-party libraries, and companies like Fastly and Cloudflare use SFI to safely co-locate untrusted tenants on their edge clouds. While there have been significant efforts to optimize and verify SFI enforcement, context switching in SFI systems remains largely unexplored: almost all SFI systems use \emph{heavyweight transitions} that are not only error-prone but incur significant performance overhead from saving, clearing, and restoring registers when context switching. We identify a set of \emph{zero-cost conditions} that characterize when sandboxed code has sufficient structured to guarantee security via lightweight \emph{zero-cost} transitions (simple function calls). We modify the Lucet Wasm compiler and its runtime to use zero-cost transitions, eliminating the undue performance tax on systems that rely on Lucet for sandboxing (e.g., we speed up image and font rendering in Firefox by up to 29.7\% and 10\% respectively). To remove the Lucet compiler and its correct implementation of the Wasm specification from the trusted computing base, we (1) develop a \emph{static binary verifier}, VeriZero, which (in seconds) checks that binaries produced by Lucet satisfy our zero-cost conditions, and (2) prove the soundness of VeriZero by developing a logical relation that captures when a compiled Wasm function is semantically well-behaved with respect to our zero-cost conditions. Finally, we show that our model is useful beyond Wasm by describing a new, purpose-built SFI system, SegmentZero32, that uses x86 segmentation and LLVM with mostly off-the-shelf passes to enforce our zero-cost conditions; our prototype performs on-par with the state-of-the-art Native Client SFI system

    Behind the Last Line of Defense -- Surviving SoC Faults and Intrusions

    Get PDF
    Today, leveraging the enormous modular power, diversity and flexibility of manycore systems-on-a-chip (SoCs) requires careful orchestration of complex resources, a task left to low-level software, e.g. hypervisors. In current architectures, this software forms a single point of failure and worthwhile target for attacks: once compromised, adversaries gain access to all information and full control over the platform and the environment it controls. This paper proposes Midir, an enhanced manycore architecture, effecting a paradigm shift from SoCs to distributed SoCs. Midir changes the way platform resources are controlled, by retrofitting tile-based fault containment through well known mechanisms, while securing low-overhead quorum-based consensus on all critical operations, in particular privilege management and, thus, management of containment domains. Allowing versatile redundancy management, Midir promotes resilience for all software levels, including at low level. We explain this architecture, its associated algorithms and hardware mechanisms and show, for the example of a Byzantine fault tolerant microhypervisor, that it outperforms the highly efficient MinBFT by one order of magnitude

    Exploring Superpage Promotion Policies for Efficient Address Translation

    Get PDF
    Address translation performance for modern applications depends heavily upon the number of translation entries cached in the hardware TLB (translation look-aside buffer). Therefore, the efficiency of address translation relies directly on the TLB hit rate. The number of TLB entries continues to fall further behind the growth of memory consumption for modern applications. Superpages, which are pages with larger sizes, can increase the efficiency of the TLB by enabling each translation entry to cover a larger memory region. Without requiring more TLB entries, using superpages can increase the TLB hit rate and benefit address translation. However, using superpages can bring overhead. The TLB uses a single dirty bit to mark a page as dirty during address translation before modifying the page, so the granularity of the dirty bit corresponds to the coverage of the translation entry. As a result, the OS (operating system) will pay extra I/O effort when it allocates or writes an underutilized superpage back to disk. Such extra overhead can easily surpass the address translation benefits of superpages. This thesis discusses the performance trade-offs of superpages by exploring the design space of superpage promotion policies in the OS. A data collection infrastructure is built based on QEMU with kernel instrumentation on FreeBSD to collaboratively collect both memory accesses and kernel events. Then, the TLB behavior of Intel Skylake x86 family processors is simulated. The simulation has been validated to be faithful and consistent with the real-world performance. Last, this thesis evaluates and compares both TLB performance benefits and I/O overheads among the superpage promotion policies to discuss the trade-offs in the design space

    Secure and Privacy-Preserving Data Aggregation Protocols for Wireless Sensor Networks

    Get PDF
    This chapter discusses the need of security and privacy protection mechanisms in aggregation protocols used in wireless sensor networks (WSN). It presents a comprehensive state of the art discussion on the various privacy protection mechanisms used in WSNs and particularly focuses on the CPDA protocols proposed by He et al. (INFOCOM 2007). It identifies a security vulnerability in the CPDA protocol and proposes a mechanism to plug that vulnerability. To demonstrate the need of security in aggregation process, the chapter further presents various threats in WSN aggregation mechanisms. A large number of existing protocols for secure aggregation in WSN are discussed briefly and a protocol is proposed for secure aggregation which can detect false data injected by malicious nodes in a WSN. The performance of the protocol is also presented. The chapter concludes while highlighting some future directions of research in secure data aggregation in WSNs.Comment: 32 pages, 7 figures, 3 table
    • …
    corecore