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1. Introduction 

In recent years, wireless sensor networks (WSNs) have drawn considerable attention from 

the research community on issues ranging from theoretical research to practical 

applications. Special characteristics of WSNs, such as resource constraints on energy and 

computational power and security have been well-defined and widely studied (Akyildiz et 

al., 2002; Sen, 2009). What has received less attention, however, is the critical privacy 

concern on information being collected, transmitted, and analyzed in a WSN. Such private 

and sensitive information may include payload data collected by sensors and transmitted 

through the network to a centralized data processing server. For example, a patient's blood 

pressure, sugar level and other vital signs are usually of critical privacy concern when 

monitored by a medical WSN which transmits the data to a remote hospital or doctor's 

office. Privacy concerns may also arise beyond data content and may focus on context 

information such as the location of a sensor initiating data communication. Effective 

countermeasure against the disclosure of both data and context-oriented private information 

is an indispensable prerequisite for deployment of WSNs in real-world applications (Sen, 

2010a; Bandyopadhyay & Sen, 2011). 

Privacy protection has been extensively studied in various fields such as wired and wireless 

networking, databases and data mining. However, the following inherent features of WSNs 

introduce unique challenges for privacy preservation of data and prevent the existing 

techniques from being directly implemented in these networks. 

 Uncontrollable environment: sensors may have to be deployed in an environment that is 
uncontrollable by the defender, such as a battlefield, enabling an adversary to launch 
physical attacks to capture sensor nodes or deploy counterfeit ones. As a result, an 
adversary may retrieve private keys used for secure communication and decrypt any 
communication eavesdropped by the adversary.  

 Sensor-node resource constraints: battery-powered sensor nodes generally have severe 

constraints on their ability to store, process, and transmit the sensed data. As a result, 

the computational complexity and resource consumption of public-key ciphers is 

usually considered unsuitable for WSNs.  
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 Topological constraints: the limited communication range of sensor nodes in a WSN 
requires multiple hops in order to transmit data from the source to the base station. 
Such a multi-hop scheme demands different nodes to take diverse traffic loads. In 
particular, a node closer to the base station (i.e., data collecting and processing server) 
has to relay data from nodes further away from base station in addition to transmitting 
its own generated data, leading to higher transmission rate. Such an unbalanced 
network traffic pattern brings significant challenges to the protection of context-
oriented privacy information. Particularly, if an adversary has the ability to carry out a 
global traffic analysis, observing the traffic patterns of different nodes over the whole 
network, it can easily identify the sink and compromise context privacy, or even 
manipulate the sink node to impede the proper functioning of the WSN. 

The unique challenges for privacy preservation in WSNs call for development of effective 

privacy-preserving techniques. Supporting efficient in-network data aggregation while 

preserving data privacy has emerged as an important requirement in numerous wireless 

sensor network applications (Acharya et al., 2005; Castelluccia et al., 2009; Girao et al., 2005; 

He et al., 2007; Westhoff et al., 2006). As a key approach to fulfilling this requirement of 

private data aggregation, concealed data aggregation (CDA) schemes have been proposed in 

which multiple source nodes send encrypted data to a sink along a converge-cast tree with 

aggregation of cipher-text being performed over the route (Acharya et al., 2005; Armknecht 

et al., 2008; Castelluccia et al., 2009; Girao et al., 2005; Peter et al., 2010; Westhoff et al., 2006). 

He et al. have proposed a cluster-based private data aggregation (CPDA) scheme in which the 
sensor nodes are randomly distributed into clusters (He et al., 2007). The cluster leaders 
carry out aggregation of the data received from the cluster member nodes. The data 
communication is secured by using a shared key between each pair of communicating nodes 
for the purpose of encryption. The aggregate function leverages algebraic properties of the 
polynomials to compute the desired aggregate value in a cluster. While the aggregation is 
carried out at the aggregator node in each cluster, it is guaranteed that no individual node 
gets to know the sensitive private values of other nodes in the cluster. The intermediate 
aggregate value in each cluster is further aggregated along the routing tree as the data 
packets move to the sink node. The privacy goal of the scheme is two-fold.  First, the privacy 
of data has to be guaranteed end-to-end. While only the sink could learn about the final 
aggregation result, each node will have information of its own data and does not have any 
information about the data of other nodes. Second, to reduce the communication overhead, 
the data from different source nodes have to be efficiently combined at the intermediate 
nodes along the path. Nevertheless, these intermediate nodes should not learn any 
information about the individual nodes' data. The authors of the CPDA scheme have 
presented performance results of the protocol to demonstrate the efficiency and security of 
the protocol. The CPDA protocol has become quite popular, and to the best of our 
knowledge, there has been no identified vulnerability of the protocol published in the 
literature so far. In this chapter, we first demonstrate a security loophole in the CPDA 
protocol and then proceed to show how the protocol can be made more secure and efficient.  

Some WSN application may not require privacy of the individual sensor data. Instead, the 
data aggregation scheme may need high level of security so that no malicious node should 
be able to introduce any fake data during the execution of the aggregation process. This 
requirement introduces the need for design of secure aggregation protocols for WSNs. 
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Keeping this requirement in mind, we also present a secure and robust aggregation protocol 
for WSNs where aggregation algorithm does not preserve the privacy of the individual 
sensor data but guarantees high level of security in the aggregation process so that a 
potential malicious insider node cannot inject false data during the aggregation process. 

The rest of this chapter is organized as follows. Section 2 provides a brief background 
discussion on the CPDA scheme. In Section 3, we present a cryptanalysis on CPDA and 
demonstrate a security vulnerability of the scheme. In Section 4, we present some design 
modifications of the CPDA scheme. Section 4.1 presents an efficient way to compute the 
aggregation operation so as to make CPDA more efficient. Section 4.2 briefly discusses how 
the identified security vulnerability can be addressed. Section 5 presents a comparative 
analysis of the overhead of the original CPDA protocol and its proposed modified version. 
Section 5.1 provides a comparison of the communication overheads in the network, and 
Section 5.2 provides an analysis of the computational overheads in the sensor nodes in the 
sensor nodes. Section 6 discusses the importance of security in designing aggregation 
schemes for WSNs. Section 7 presents some related work in the field of secure aggregation 
protocols in WSNs. In Section 8, a secure aggregation algorithm for WSNs is proposed.  
Section 9 presents some simulation results to evaluate the performance of the proposed 
secure aggregation protocol. Section 10 concludes the chapter while highlighting some 
future directions of research in privacy and security in WSNs.  

2. The CPDA scheme for data aggregation in WSNs 

The basic idea of CPDA is to introduce noise to the raw data sensed by the sensor nodes in a 
WSN, such that an aggregator can obtain accurate aggregated information but not 
individual sensor data (He et al., 2007). This is similar to the data perturbation approach 
extensively used in privacy-preserving data mining. However, unlike in privacy-preserving 
data mining, where noises are independently generated (at random) leading to imprecise 
aggregated results, the noises in CPDA are carefully designed to leverage the cooperation 
between different sensor nodes, such that the precise aggregated values can be obtained by 
the aggregator. The CPDA protocol classifies sensor nodes into two types: cluster leaders 
and cluster members. There is a one-to-many mapping between the cluster leaders and 
cluster members. The cluster leaders are responsible for aggregating data received from the 
cluster members. For security, the messages communicated between the cluster leaders and 
the cluster members are encrypted using different symmetric keys for each pair of nodes.  

The details of the CPDA scheme are provided briefly in the following sub-sections. 

2.1 The network model 

The sensor network is modeled as a connected graph G(V, E), where V represents the set of 
senor nodes and E represents the set of wireless links connecting the sensor nodes. The 
number of sensor nodes is taken as |V| = N. 

A data aggregation function is taken that aggregates the individual sensor readings. CPDA 

scheme has focused on additive aggregation function: 
1

( ) ( ),
N

i
i

f t d t


 where di(t) is the 

individual sensor reading at time instant t for node i. For computation of the aggregate 
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functions, the following requirements are to be satisfied: (i) privacy of the individual sensor 
data is to be protected, i.e., each node's data should be known to no other nodes except the 
node itself, (ii) the number of messages transmitted within the WSN for the purpose of data 
aggregation should be kept at a minimum, and (iii) the aggregation result should be as 
accurate as possible. 

2.2 Key distribution and management 

CPDA uses a random key distribution mechanism proposed in (Eschenauer & Gligor, 2002) 

for encrypting messages to prevent message eavesdropping attacks. The key distribution 

scheme has three phases: (i) key pre-distribution, (ii) shared-key discovery, and (iii) path-
key establishment. These phases are described briefly as follows. 

A large key-pool of K keys and their identities are first generated in the key pre-distribution 
phase. For each sensor nodes, k keys out of the total K keys are chosen. These k keys form a 

key ring for the sensor node. 

During the key-discovery phase, each sensor node identifies which of its neighbors share a 

common key with itself by invoking and exchanging discovery messages. If a pair of 
neighbor nodes share a common key, then it is possible to establish a secure link between 

them.  

In the path-key establishment phase, an end-to-end path key is assigned to the pairs of 

neighboring nodes who do not share a common key but can be connected by two or more 
multi-hop secure links at the end of the shared-key discovery phase. 

At the end of the key distribution phase, the probability that any pair of nodes possess at 
least one common key is given by (1). 

 
2(( )!)

1
( 2 )! !

connect

K k
p

K k K


 


 (1) 

If the probability that any other node can overhear the encrypted message by a given key is 
denoted as poverhear, then poverhear is given by (2). 

 overhear

k
p

K
  (2) 

It has been shown in (He et al., 2007) that the above key distribution algorithm is efficient for 
communication in a large-scale sensor network and when a limited number of keys are 
available for encryption of the messages to prevent eavesdropping attacks.  

2.3 Cluster-based private data aggregation (CPDA) protocol  

The CPDA scheme works in three phases: (i) cluster formation, (ii) computation of aggregate 
results in clusters, and (ii) cluster data aggregation. These phases are described below. 

Cluster formation: Fig. 1 depicts the cluster formation process. A query server Q triggers a 
query by sending a HELLO message. When the HELLO message reaches a sensor node, it elects 
itself as a cluster leader with a pre-defined probability p. If the value of p is large, there will be 
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more number of nodes which will elect themselves as cluster leaders. This will result in higher 
number of clusters in the network. On the other hand, smaller values of p will lead to less 
number of clusters due to fewer number of cluster leader nodes. Hence, the value of the 
parameter p can be suitably chosen to control the number of clusters in the network. If a node 
becomes a cluster leader, it forwards the HELLO message to its neighbors; otherwise, it waits for 
a threshold period of time to check whether any HELLO message arrives at it from any of its 
neighbors. If any HELLO message arrives at the node, it decides to join the cluster formed by its 
neighbor by broadcasting a JOIN message as shown in Fig. 2. This process is repeated and 
multiple clusters are formed so that the entire WSN becomes a collection of a set of clusters. 

 

Fig. 1. The query server Q sends HELLO messages for initiating the cluster formation 
procedure to its neighbors A, D, E and F. The query server is shaded in the figure. 

Computation within clusters: In this phase, aggregation is done in each cluster. The 
computation is illustrated with the example of a simple case where a cluster contains three 
members: A, B, and C, where A is the assumed to be the cluster leader and the aggregator 
node, whereas B and C are the cluster member nodes. Let a, b, c represent the private data 
held by the nodes A, B, and C respectively. The goal of the aggregation scheme is to 
compute the sum of a, b and c without revealing the private values of the nodes. 

 

Fig. 2. A and D elect themselves as the cluster leaders randomly and in turn send HELLO 
messages to their neighbors. E and F join the cluster formed by Q. B and C join the cluster 
formed with A as the cluster leader, while G and H join the cluster with D as the cluster 
leader. All the cluster leaders and the query server are leader. 
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As shown in Fig. 3, for the privacy-preserving additive aggregation function, the nodes A, B, 
and C are assumed to share three public non-zero distinct numbers, which are denoted as x, 
y, and z respectively. In addition, node A generates two random numbers r1A and r2A, which 
are known only to node A. Similarly, nodes B and C generate r1B, r2B and r1C, r2C respectively, 
which are private values of the nodes which have generated them. 

 

Fig. 3. Nodes A, B and C broadcast their distinct and non-zero public seeds x, y and z 
respectively 

Node A computes vAA, vBA, and vCA as shown in (3). 

 

2
1 2

2
1 2

2
1 2

A A A
A

A A A
B

A A A
C

v a r x r x

v a r y r y

v a r z r z

  

  

  

 (3) 

Similarly, node B computes vAB, vBB, and vCB as in (4). 

 

2
1 2

2
1 2

2
1 2

B B B
A

B B B
B

B B B
C

v b r x r x

v b r y r y

v b r z r z

  

  

  

 (4) 

Likewise, node C computes vAC, vBC, and vCC as in (5). 

 

2
1 2

2
1 2

2
1 2

C C C
A

C C C
B

C C C
C

v c r x r x

v c r y r y

v c r z r z

  

  

  

 (5) 
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Node A encrypts vBA and sends it to node B using the shared key between node A and 
node B. Node A also encrypts vCA and sends it to node C using the shared key between 
node A and node C. In the same manner, node B sends encrypted vAB to node A and vCB to 
node C; node C sends encrypted vAC and vBC to node A and node B respectively. The 
exchanges of these encrypted messages are depicted in Fig. 4. On receiving vAB and vAC, 
node A computes the sum of vAA (already computed by node A), vAB and vAC. Now, node 
A computes FA using (6). 

 

Fig. 4. Exchanges of encrypted messages among nodes A, B and C using shared keys 

 2
1 2( )A B C

A A A AF v v v a b c r x r x         (6) 

In (6), 1 1 1 1
A B Cr r r r   and 2 2 2 2

A B Cr r r r   . Similarly, node B and node C compute FB and 

FC respectively, where FB and FC are given by (7) and (8) respectively. 

 2
1 2( )A B C

B B B BF v v v a b c r y r y         (7) 

    2
1 2( )A B C

C C C CF v v v a b c r z r z           (8) 

Node B and node C broadcast FB and FC to the cluster leader node A, so that node A has the 
knowledge of the values of FA, FB and FC. From these values the cluster leader node A can 
compute the aggregated value (a + b + c) as explained below.  

The equations (6), (7), and (8) can be rewritten as in (9). 

 1U G F  (9) 
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In (9),  

2

2

2

1

1

1

x x

G y y

z z

 
 

  
 
  

, 1

2

a b c

U r

r

  
   
  

 and  TA B cF F F F .  

Since x, y, z, FA, FB, and FC are known to the cluster leader node A, it can compute the value 
of (a + b + c) without having any knowledge of b and c. 

In order to avoid eavesdropping attack by neighbor nodes, it is necessary to encrypt the 
values of vBA, vCA, vAB, vCB, vAC, and vBC. If node B overhears the value of vCA, then node B 

gets access to the values of vCA, vBA and FA. Then node B can deduce: A A A
A A B Cv F v v   . 

Having the knowledge of vAA, node B can further obtain the value of a if x, vAA, vAB and vAC 
are known. However, if node A encrypts vCA and sends it to node C, then node B cannot get 
vCA. With the knowledge of vBA, FA, and x from node A, node B cannot deduce the value of a. 
If node B and node C collude and reveal node A's information (i.e., vBA and vCA), to each 
other, then node A's privacy will be compromised and its private value a will be revealed. In 
order to reduce the probability of such collusion attacks, the cluster size should be as large 
as possible, since in a cluster of size m, at least (m - 1) nodes should collude in order to 
successfully launch the attack. Higher values of m will require larger number of colluding 
nodes thereby making the attack more difficult. 

Cluster data aggregation The CPDA scheme has been implemented on top of a protocol 
known as Tiny Aggregation (TAG) protocol (Madden et al., 2002). Using the TAG protocol, 
each cluster leader node routes the sum of the values in the nodes in its cluster to the query 
server through a TAG routing tree whose root is situated at the server.  

3. An Attack on the CPDA scheme 

In this section, we present an efficient attack (Sen & Maitra, 2011) on the CPDA aggregation 
scheme. The objective of the attack is to show the vulnerability of the CPDA scheme which 
can be suitably exploited by a malicious participating sensor node. The intention of the 
malicious node is to participate in the scheme in such a way that it can get access to the 
private values (i.e., a, b and c) of the participating sensor nodes. For describing the attack 
scenario, we use the same example cluster consisting of three sensor nodes A, B and C. Node 
A is the cluster leader whereas node B and node C are the cluster members. We distinguish 
two types of attacks: (i) attack by a malicious cluster leader (e.g., node A) and (ii) attack by a 
malicious cluster member (e.g., either node B or node C). These two cases are described in 
detail in the following sub-sections. 

3.1 Privacy attack by a malicious cluster leader node 

Let us assume that the cluster leader node A is malicious. Node A chooses a very large value 
of x such that x >> y, z. Since y and z are public values chosen by node B and node C which 
are broadcast in the network by node B and node C respectively, it is easy for node A to 
choose a suitable value for x. 

Nodes A, B and C compute the values of vAA, vBA, vCA, vAB, vBB, vCB, vAC, vBC, and vCC using (3), 
(4) and (5) as described in Section 2.3. As per the CPDA scheme, node A receives: 
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2
1 2

B B B
Av b r x r x   from node B. Since x is very large compared to b and r1B node A can 

derive the value of r2B using (10) where we consider integer division. 

 1
2 2 22 2

0 0
B B

B B BAv b r
r r r

xx x
        (10) 

Using the value of r2B as derived in (10), and using 2
1 2

B B B
Av b r x r x   , node A can now 

compute the value of r1B by solving (11). 

 
2

2
1 1 10

B B
B B BAv r x b

r r r
x x


      (11) 

In the same manner, node A derives the values of r1C and r2C from vAC received from node C. 

Since 1 1 1 1
A B Cr r r r   , and 2 2 2 2

A B Cr r r r   , as shown in (6), (7) and (8), node A can 

compute the values of r1 and r2 (r1B, r2B, r1C, and r2C are derived as shown above, and r1A and 
r2A were generated by node A). 

At this stage, node A uses the values of FB and FC received from node B and node C 
respectively as shown in (7) and (8). Node A has now two linear simultaneous equations 
with two unknowns:  b and c, the values of y and z being public. Solving (7) and (8) for b and 
c, the malicious cluster leader node A can get the access to the private information. 

3.2 Privacy attack by a malicious cluster member node 

In this scenario, let us assume that the cluster member node B is malicious and it tries to 
access the private values of the cluster leader node A and the cluster member node C. Node 
B chooses a very large value of y so that y >> x, z. Once the value of FB is computed in (7), 
node B derives the value of r2 and r1 using (12) and (13). 

 1
2 22 2

( )
0 0BF a b c r

r r
yy y

 
       (12) 

 
2

2
1 1 1

( )
0BF r y a b c

r r r
y y

  
      (13) 

As per the CPDA scheme, node B receives 2
1 2

C C C
Bv c r y r y   from node C. Since the 

magnitude of y is very large compared to c, r1C and r2C, it is easy for node B to derive the 
values of r2C and r1C using (14) and (15) respectively. 

 1
2 2 22 2

0 0
C C

C C CBv c r
r r r

yy y
        (14) 

 
2

2
1 1 10

C C
C C CBv r y c

r r r
y y


      (15) 

Using (12), (13), (14}) and (15) node B can compute 1 1 1 1
A B Cr r r r   and 2 2 2 2

A B Cr r r r   . 

Now, node B can compute the value of a using 2
1 2

B A A
Av a r y r y   (received from node A), 
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in which the values of all the variables are known except that of a. In a similar fashion, node 

B derives the value of c using 2
1 2

C C C
Bv c r y r y    (received from node C). 

Since the private values of the nodes A and C are now known to node B, the privacy attack 

launched by participating cluster member node B is successful on the CPDA aggregation 

scheme. 

4. Modification of the CPDA Scheme 

In this section, we present two modifications of CPDA scheme: one towards making the 
protocol more efficient and the other for making it more secure. 

4.1 Modification of CPDA scheme for enhanced efficiency 

In this section, a modification is proposed for the CPDA protocol for achieving enhanced 
efficiency in its operation. The modification is based on suitable choice for the value of x (the 
public seed) done by the aggregator node A. 

Let us assume that the node A chooses a large value of x such that the following conditions 
in (16) and (17) are satisfied. 

 2
2 1r x r x  (16) 

 1 ( )r x a b c    (17) 

In (16) and (17), 1 1 1 1
A B Cr r r r    and 2 2 2 2

A B Cr r r r   . Now, node A has computed the value 

of FA as shown in (6). In order to efficiently compute the value of (a + b + c), node A divides 
the value of FA by x2 as shown in (18). 

 1
2 2 22 2 2

( )
0 0AF a b c r x

r r r
x x x

 
        (18) 

Using (18), node A derives the value of r2. Once the value of r2 is deduced, node A attempts 
to compute the value of r1 using (19) and (20). 

 2
2 1( )AF r x a b c r x      (19) 

 
2 2 2

2 2 2
1

( ) ( ) ( ) ( )
0A A AF r x a b c F r x F r x

r
x x x x

    
       (20) 

Since, the values of FA, r2 and x are all known to node A, it can compute the value of r1 using 
(20). Once the values of r1  and r2 are computed by node A, it can compute the value of (a + b + c) 
using (6). Since the computation of the sum (a + b + c) by node A involves two division 
operations (involving integers) only (as done in (18) and (20)), the modified CPDA scheme is 
light-weight and it is much more energy-efficient hence much more energy- and time-efficient 
as compared to the original CPDA scheme. The original CPDA scheme involved additional 
computations of the values of FB and FC, and an expensive matrix inversion operation as 
described in Section 2.3. 
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4.2 Modification of the CPDA scheme for resisting the attack 

In this section, we discuss the modifications required on the existing CPDA scheme so that a 
malicious participant node cannot launch the attack described in Section 3. 

It may be noted that, the vulnerability of the CPDA scheme lies essentially in the 
unrestricted freedom delegated on the participating nodes for generating their public seed 
values. For example, nodes A, B and C have no restrictions on their choice for values of x, y 
and z respectively while they generate these values. A malicious attacker can exploit this 
freedom to generate an arbitrarily large public seed value, and can thereby launch an attack 
as discussed in Section 3.  

In order to prevent such an attack, the CPDA protocol needs to be modified. In this 
modified version, the nodes in a cluster make a check on the generated public seed values so 
that it is not possible for a malicious participant to generate any arbitrarily large seed value. 
For a cluster with three nodes, such a constraint may be imposed by the requirement that 
the sum of any two public seeds must be greater than the third seed.  In other words: x + y > 
z, z + x > y, and y + z > x. If these constraints are satisfied by the generated values of x, y and 
z, it will be impossible for any node to launch the attack and get access to the private values 
of the other participating nodes. 

However, even if the above restrictions on the values of x, y and z are imposed, the nodes 
should be careful in choosing the values for their secret random number pairs. If two nodes 
happen to choose very large values for their random numbers compared to those chosen by 
the third node, then it will be possible for the third node to get access to the private values of 
the other two nodes. For example, let us assume that nodes A and C have chosen the values 
of r1A, r2A and r1C, r2C such that they are all much larger than r1B and r2B - the private random 
number pair chosen by node B. It will be possible for node B to derive the values of a and c: 
the private values of nodes A and C respectively. This is explained in the following. 

Node B receives 2
1 2

A A A
Bv a r y r y   from node A and computes the values of r1A and r2A 

using (21) and (22). 

 1
2 22 2

0 0
A A

A ABv a r
r r

yy y
       (21) 

 
2

2
1 1 10

A A
A A ABv r y a

r r r
y y


      (22) 

In a similar fashion, node B derives the values of r1C and r2C from vBC received from node C. 

Now, node B computes 1 1 1 1
A B Cr r r r   and 2 2 2 2

A B Cr r r r   , since it has access to the values 

of all these variables. In the original CPDA scheme in (He et al., 2007), the values of FB and 

FC are broadcast by nodes B and C in unencrypted from. Hence, node B has access to both 

these values. Using (7) and (8), node B can compute the values of a and c, since these are the 

only unknown variables in the two linear simultaneously equations. 

In order to defend against the above vulnerability, the CPDA protocol needs further 
modification. In this modified version, after the values vAA, vAB, and vAC are generated and 
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shared by nodes A, B and C respectively, the nodes check whether the following constraints 
are satisfied: vAA + vAB > vAC, vAB + vAC > vAA, and vAC + vAA > vAB. The nodes proceed for 
further execution of the algorithm only if the above three inequalities are satisfied. If all 
three inequalities are not satisfied, there will be a possibility that the random numbers 
generated by one node is much larger than those generated by other nodes - a scenario 
which indicates a possible attack by a malicious node. 

5. Performance analysis  

In this section, we present a brief comparative analysis of the overheads of the original CPDA 

protocol and the proposed modified CPDA protocols that we have discussed in Section 4.1 

and Section 4.2. Our analysis is based on two categories of overheads: (i) overhead due to 

message communication in the network and (ii) computational overhead at the sensor nodes. 

5.1 Communication overhead 

We compare communication overheads of three protocols - the tiny aggregation protocol 

(TAG), the original CPDA protocol and the proposed modified CPDA protocols. In TAG, 

each sensor node needs to send 2 messages for the data aggregation protocol to work. One 

HELLO message communication from each sensor node is required for forming the 

aggregation tree, and one message is needed for data aggregation. However, this protocol 

only performs data aggregation and does not ensure any privacy for the sensor data. In the 

original CPDA protocol, each cluster leader node sends 4 messages and each cluster 

member node sends 3 messages for ensuring that the aggregation protocol works in a 

privacy-preserving manner. In the example cluster shown in Fig. 3, the 4 messages sent by 

the cluster leader node A are: one HELLO message for forming the cluster, one message for 

communicating the public seed x, one message for communicating vBA and vCA to cluster 

member nodes B and C respectively, and one message for sending the aggregate result from 

the cluster. Similarly, the 3 messages sent by the cluster member node B are:  one message 

for communicating its public seed y, one message for communicating vAB and vCB to cluster 

leader node A and cluster member node C respectively, and one message for 

communicating the intermediate result FB to the cluster leader node A. 

In contrast to the original CPDA protocol, the modified CPDA protocol in Section 4.1 
involves 3 message communications from the cluster leader node and 2 message 
communications from each cluster member node. The 3 messages sent by the cluster leader 
node A are: one HELLO message for forming the cluster, one message for broadcasting its 
public seed x, and one message for sending the final aggregate result. It may be noted that in 
this protocol, the cluster leader node A need not send vBA and vCA to the cluster member 
nodes B and C respectively. Each cluster member node needs to send 2 messages. For 
example, the cluster member node B needs to broadcast its public seed y, and also needs to 
send vAB to the cluster leader node A. Unlike in the original CPDA protocol, the cluster 
member node B does not send FB to the cluster leader. Similarly, the cluster member node C 
does not send FC to the cluster leader node A. In a cluster consisting of three members, the 
original CPDA protocol would involve 10 messages (4 messages from the cluster leader and 
3 messages from each cluster member). The modified CPDA protocol presented in Section 
4.1, on the other hand, would involve 7 messages (3 messages from the cluster leader and 2 
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messages from each cluster member) in a cluster of three nodes. Therefore, in a cluster of 
three nodes, the modified CPDA protocol presented in Section 4.1 will involve 3 less 
message communications. Since in a large-scale WSN the number of clusters will be quite 
high, there will be an appreciable reduction in the communication overhead in the modified 
CPDA protocol presented in Section 4.1. 

The secure version of the modified CPDA protocol presented in Section 4.2 involves the 
same communication overhead as the original CPDA protocol. However, if any node 
chooses abnormally higher values for its public seed or its private random numbers, the 
secure version of the modified CPDA protocol will involve 2 extra messages from each of 
the participating sensor nodes. Therefore, in a cluster of three nodes, the secure version of 
the modified CPDA protocol will involve 6 extra messages in the worst case scenario when 
compared with the original CPDA protocol.   

If pc is the probability of a sensor node electing itself as a cluster leader, the average number of 

messages sent by a sensor node in the original CPDA protocol is: 4 3(1 ) 3c c cp p p    . Thus, 

the message overhead in the original CPDA is less than twice as that in TAG. However, in the 
modified CPDA protocol presented in Section 4.1, the average number of messages 

communicated by a sensor node is: 3 2(1 ) 2c c cp p p    . As mentioned in Section 2.3, in 

order to prevent collusion attack by sensor nodes, the cluster size in the CPDA protocol should 

be as large as possible. This implies that the value of pc should be small. Since the value of pc is 
small, it is clear that the message overhead in the modified CPDA protocol presented in 

Section 4.1 is almost the same as that in TAG and it is much less (one message less for each 
sensor node) than that of the original CPDA protocol. In the secure version of the protocol in 

Section 4.2, the communication overhead, in the average case, will be the same as in the 
original CPDA protocol. However, in the worst case, the number of messages sent by a sensor 

node in this protocol will be: 6 5(1 ) 5c c cp p p    . This is 2.5 times the average 

communication overhead in the TAG protocol and 1.67 times the average communication 

overhead in the original CPDA protocol. The secure protocol, therefore, will involve 67% more 
overhead in the worst case scenario (where a malicious participant sensor node chooses 

abnormally higher values for its public seed as well as for its private random numbers).  

5.2 Computational overhead 

In this section, we present a comparative analysis of the computational overheads incurred 
by the sensor nodes in the original CPDA protocol and in the proposed efficient version of 
the protocol. 

Computational overhead of the original CPDA protocol: The computational overhead of 
the CPDA protocol can be broadly classified into four categories: (i) computation of the 
parameters, (ii) computation for encrypting messages, (iii) computation of the intermediate 
results, and (iv) computation of the final aggregate result at the cluster leader node. The 
details of these computations are presented below: 

i. Computation of the parameters at the sensor nodes: Each sensor node in a three member 
cluster computes three parameters. For example, the cluster leader node A computes 
vAA, vBA, vCA. Similarly, the cluster member node B computes vAB, vBB and vCB. We first 
compute the overhead due these computations. 
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Since 2
1 2

A A A
Av a r x r x   , for computation of vAA, node A needs to perform 2 addition, 2 

multiplication and 1 exponentiation operations. Hence, for computing vAA, vBA and vCA, 
node A needs to perform 6 addition, 6 multiplication and 3 exponentiation operations. 
Therefore, in a cluster consisting of three members, for computation of all parameters, 
the original CPDA protocol requires 18 addition, 18 multiplication and 9 exponentiation 
operations.  

ii. Computations for encrypting messages: Some of the messages in the CPDA protocol need 

to be communicated in encrypted form. The encryption operation involves 

computational overhead. For example, node A needs to encrypt vBA and vCA before 

sending them to nodes B and C respectively. Therefore, 2 encryption operations are 

required at node A. For a cluster consisting of three members, the CPDA protocol will 

need 6 encryption operations. 

iii. Computations of intermediate results: The nodes A, B, and C need to compute the 

intermediate values FA, FB and FC respectively for computation of the final aggregated 

result. Since 2
1 2( )A B C

A A A AF v v v a b c r x r x         and 1 1 1 1
A B Cr r r r    and 

2 2 2 2
A B Cr r r r   , for computing FA, node A will need to perform 4 addition operations. 

Therefore, for a cluster of three members, 12 addition operations will be needed. 

iv. Aggregate computation at the cluster leader: For computing the final aggregated result in a 

privacy-preserving way, the cluster leader node A needs to perform one matrix 

inversion operation and one matrix multiplication operation. 

The summary of various operations in the original CPDA protocol are presented in Table 1. 

 

Operation Type No. of operations 

Addition 

Multiplication 

Exponentiation 

Encryption 

Matrix multiplication 

Matrix inversion 

30 

18 

3 

6 

1 

1 

Table 1. Operation in the CPDA protocol 

Computational overhead of the modified CPDA protocol: The overhead of the efficient 

version of the CPDA protocol presented in Section 4.1 are due to: (i) computation of the 

parameters at the sensor nodes, (ii) computation of the intermediate result at the cluster 

leader node, and (iii) computation of the aggregated result at the cluster leader node. The 

details of these computations are presented below. 

i. Computation of the parameters at the sensor nodes: In the modified version of the CPDA 

protocol, the nodes A, B and C need to only compute vAA, vAB, and vAC respectively. As 

shown earlier, each parameter computation involves 2 addition, 2 multiplication and 1 

exponentiation operations. Therefore, in total, 6 addition, 6 multiplication, and 3 

exponentiation operations will be needed.  
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ii. Computations for encrypting messages: The nodes B and C will need to encrypt the 

messages vAB and vAC respectively before sending them to the cluster leader node A. 

Therefore, 2 encryption operations will be required. 

iii. Computation of intermediate result: The cluster leader node A will only compute FA in the 

modified CPDA. The cluster member nodes B and C need not perform any 

computations here. As discussed earlier, computation of FA needs 4 addition operations. 

iv. Aggregate computation at the cluster leader: For computation of the final result at the 

cluster leader node, 2 integer division and 2 subtraction operations will be required. 

v. The summary of various operations in the modified CPDA protocol are presented in 

Table 2. 
 

Operation Type No. of operations 

Addition 
Subtraction 
Multiplication 
Division 
Exponentiation 
Encryption 

10 
2 
6 
2 
3 
2 

Table 2. Operation in the proposed modified CPDA protocol 

It is clearly evident from Table 1 and Table 2 that the modified version of the CPDA protocol 

involves much less computational overhead than the original version of the protocol. 

6. Security requirements in data aggregation protocols for WSNs 

The purpose of any WSN deployment is to provide the users with access to the information 

of interest from the data gathered by spatially distributed sensor nodes. In most 

applications, users require only certain aggregate functions of this distributed data. 

Examples include the average temperature in a network of temperature sensors, a particular 

trigger in the case of an alarm network, or the location of an event. Such aggregate functions 

could be computed under the end-to-end information flow paradigm by communicating all 

relevant data to a central collector node. This, however, is a highly inefficient solution for 

WSNs which have severe constraints in energy, memory and bandwidth, and where tight 

latency constraints are to be met. As mentioned in Section 1 of this chapter, an alternative 

solution is to perform in-network computations (Madden et al., 2005). However, in this case, 

the question that arises is how best to perform the distributed computations over a network 

of nodes with wireless links. What is the optimal way to compute, for example, the average, 

min, or max of a set of statistically correlated values stored in different nodes? How would 

such computations be performed in the presence of unreliability such as noise, packet drops, 

and node failures? Such questions combine the complexities of multi-terminal information 

theory, distributed source coding, communication complexity, and distributed computation.  

This makes development of an efficient in-network computing framework for WSNs very 

challenging. 

Apart from making a trade-off between the level of accuracy in aggregation and the energy 
expended in computation of the aggregation function, another issue that needs serious 
attention in WSN is security. Unfortunately, even though security has been identified as a 

www.intechopen.com



 
Cryptography and Security in Computing 

 

148 

major challenge for sensor networks (Karlof & Wagner, 2003), most of the existing proposals 
for data aggregation in WSNs have not been designed with security in mind. Consequently, 
these schemes are all vulnerable to various types of attacks (Sen, 2009). Even when a single 
sensor node is captured, compromised or spoofed, an attacker can often manipulate the 
value of an aggregate function without any bound, gaining complete control over the 
computed aggregate. In fact, any protocol that computes the average, sum, minimum, or 
maximum function is insecure against malicious data, no matter how these functions are 
computed. To defend against these critical threats, in this chapter, an energy-efficient 
aggregation algorithm based on distributed estimation approach. The algorithm is secure 
and robust against malicious attacks in WSNs. The main threat that has been considered 
while designing the proposed scheme is the injection of malicious data in the network by an 
adversary who has compromised a sensor’s sensed value by subjecting it to unusual 
temperature, lighting, or other spoofed environmental conditions. In designing the 
proposed algorithm, a WSN is considered as a collective entity that performs a sensing task 
and have proposed a distributed estimation algorithm that can be applied to a large class of 
aggregation problems. 

In the proposed scheme (Sen, 2011), each node in a WSN has complete information about 

the parameter being sensed. This is in contrast to the snapshot aggregation, where the 

sensed parameters are aggregated at the intermediate nodes till the final aggregated result 

reaches the root. Each node, in the proposed algorithm, instead of unicasting its sensed 

information to its parent, broadcasts its estimate to all its neighbors. This makes the protocol 

more fault-tolerant and increases the information availability in the network. The scheme is 

an extension of the one suggested in (Boulis et al., 2003). However, it is more secure and 

reliable even in presence of compromised and faulty nodes in a WSN.  

In the following section, we provide a brief discussion on some of the well-known secure 

aggregation schemes for WSNs.  

7. Overview of some aggregation protocols for WSNs  

Extensive work has been done on aggregation applications in WSNs. However, security and 

energy- two major aspects for design of an efficient and robust aggregation algorithm have 

not attracted adequate attention. Before discussing some of the existing secure aggregation 

mechanisms, we present a few well-known aggregation schemes for WSNs.  

In (Heidemann, 2001), a framework for flexible aggregation in WSNs has been presented 
following snapshot aggregation approach without addressing issues like energy 
efficiency and security in the data aggregation process. A cluster-based algorithm has 
been proposed in (Estrin et al., 1999) that uses directed diffusion technique to gather a 
global perspective utilizing only the local nodes in each cluster. The nodes are assigned 
different level – level 0 being assigned to the nodes lying at the lowest level. The nodes 
at the higher levels can communicate with the nodes in the same cluster and the cluster 
head node. This effectively enables localized cluster computation. The nodes at the higher 
level communicate the local information of the cluster to get a global picture of the 
network aggregation. In (Madden et al., 2002), the authors have proposed a mechanism 
called TAG – a generic data aggregation scheme that involves a language similar to SQL 
for generating queries in a WSN. In this scheme, the base station (BS) generates a query 
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using the query language, and the sensor nodes send their reply using routes constructed 
based on a routing tree. At each point in the routing tree, the data is aggregated using 
some aggregation function that was defined in the initial query sent by the BS. In 
(Shrivastava et al., 2004), a summary structure for supporting fairly complex aggregate 
functions, such as median and range quires have been proposed. Computation of 
relatively easier function such as min/max, sum, and average are also supported in the 
proposed framework. However, more complex aggregates, such as the most frequently 
reported data values are not supported. The computed aggregate functions are 
approximate but the estimate errors are statistically bounded. There are also 
propositions based on programmable sensor networks for aggregation based on 
snapshot algorithms (Jaikaeo et al., 2000). In (Zhao et al., 2002), the authors have 
focussed their attention into the problem of providing a residual energy map of a WSN. 
They have proposed a scheme for computing the equi-potential curves of residual energy 
with certain acceptable margin of error. A simple but efficient aggregation function is 
proposed where the location approximation of the nodes are not computed. A more 
advanced aggregate function can be developed for this purpose that will encompass an 
accurate convex curve. For periodic update of the residual energy map, the authors have 
proposed a naïve scheme of incremental updates. Thus if a node changes its value 
beyond the tolerance limit its value is transmitted and aggregated again by some nodes 
before the final change reaches the user. No mechanism exists for prediction of changes 
or for estimation of correlation between sensed values for the purpose of setting the 
tolerance threshold. In (Goel & Imielinski, 2001), a scheme has been proposed for the 
purpose of monitoring the sensed values of each individual sensor node in a WSN. There 
is no aggregation algorithm in the scheme; however, the spatial-temporal correlation 
between the sensed data can be extrapolated to fit an aggregation function. The authors 
have also attempted to modify the techniques of MPEG-2 for sensor network monitoring 
to optimize communication overhead and energy. A central node computes predictions 
and transmits them to all the nodes.  The nodes send their update only if their sensed 
data deviate significantly from the predictions. A distributed computing framework is 
developed by establishing a hierarchical dependency among the nodes. An energy 
efficient aggregation algorithm is proposed by the authors in (Boulis et al., 2003), in 
which each node in a WSN senses the parameter and there is no hierarchical dependency 
among the nodes. The nodes in a neighbourhood periodically broadcast their information 
based on a threshold value.  

As mentioned earlier in this section, none of the above schemes consider security aspects in 

the aggregation schemes. Security in aggregation schemes for WSNs has also attracted 

attention from the researchers and a considerable number of propositions exist in the 

literature in this perspective. We discuss some of the well-known mechanisms below. 

A secure aggregation (SA) protocol has been proposed that uses the TESLA protocol (Hu & 

Evans, 2003). The protocol is resilient to both intruder devices and single device key 

compromises. In the proposition, the sensor nodes are organized into a tree where the 

internal nodes act as the aggregators. However, the protocol is vulnerable if a parent and 

one of its child nodes are compromised, since due to the delayed disclosure of symmetric 

keys, the parent node will not be able to immediately verify the authenticity of the data sent 

by its children nodes.  
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Przydatek et al. have presented a secure information aggregation (SIA) framework for sensor 

networks (Przydatek et al., 2003; Chan et al., 2007). The framework consists of three 

categories of node: a home server, base station and sensor nodes. A base station is a 

resource-enhanced node which is used as an intermediary between the home server and 

the sensor nodes, and it is also the candidate to perform the aggregation task. SIA 

assumes that each sensor has a unique identifier and shares a separate secret 

cryptographic key with both the home server and the aggregator. The keys enable 

message authentication and encryption if data confidentiality is required. Moreover, it 

further assumes that the home server and the base station can use a mechanism, such as 

μTESLA, to broadcast authenticated messages. The proposed solution follows aggregate-

commit-prove approach. In the first phase: aggregate- the aggregator collects data from 

sensors and locally computes the aggregation result using some specific aggregate 

function. Each sensor shares a key with the aggregator. This allows the aggregator to 

verify whether the sensor reading is authentic. However, there is a possibility that a 

sensor may have been compromised and an adversary has captured the key. In the 

proposed scheme there is no mechanism to detect such an event. In the second phase: 

commit- the aggregator commits to the collected data. This phase ensures that the 

aggregator actually uses the data collected from the sensors, and the statement to be 

verified by the home server about the correctness of computed results is meaningful. One 

efficient mechanism for committing is a Merkle hash-tree construction (Merkle, 1980). In 

this method, the data collected from the sensors is placed at the leaves of a tree. The 

aggregator then computes a binary hash tree staring with the leaf nodes. Each internal 

node in the hash tree is computed as the hash value of the concatenation of its two 

children nodes. The root of the tree is called the commitment of the collected data. As the 

hash function in use is collision free, once the aggregator commits to the collected values, 

it cannot change any of the collected values. In the third and final phase, the aggregator and 

the home server engage in a protocol in which the aggregator communicates the 

aggregation result. In addition, aggregator uses an interactive proof protocol to prove 

correctness of the reported results. This is done in two logical steps. In the first step, the 

home server ensures that the committed data is a good representation of the sensor data 

readings collected. In the second step, the home server checks the reliability of the 

aggregator output. This is done by checking whether the aggregation result is close to the 

committed results. The interactive proof protocol varies depending on the aggregation 

function is being used.  Moreover, the authors also presented efficient protocols for secure 

computation of the median and the average of the measurements, for the estimation of the 

network size, and for finding the minimum and maximum sensor reading. 

In (Mahimkar & Rappaport, 2004), a protocol is proposed that uses elliptic curve 

cryptography for encrypting the data in WSNs.  The scheme is based on clustering where all 

nodes within a cluster share a secret cluster key. Each sensor node in a cluster generates a 

partial signature over its data. Each aggregator aggregates its cluster data and broadcasts 

the aggregated data in its cluster.  Each node in a cluster checks its data with the aggregated 

data broadcast by the aggregator. A sensor node puts its partial signature to authenticate a 

message only if the difference between its data and aggregated data is less than a threshold. 

Finally, the aggregator combines all the partially signed message s to form a full signature 

with the authenticated result. 
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Deng et al. proposed a collection of mechanisms for securing in-network processing (SINP) for 
WSNs (Deng et al., 2003). Security mechanisms have been proposed to address the 
downstream requirement that sensor nodes authenticate commands disseminated from 
parent aggregators and the upstream requirement that aggregators authenticate data 
produced by sensors before aggregating that data. In the downstream stage, two techniques 

are involved: one way functions and TESLA. The upstream stage requires that a pair-wise 
key be shared between an aggregator and its sensor nodes.  

Cam et al. proposed an energy-efficient secure pattern-based data aggregation (ESPDA) protocol 
for wireless sensor networks (Cam et al., 2003; Cam et al., 2005; Cam et al., 2006a). ESPDA is 
applicable for hierarchy-based sensor networks. In ESPDA, a cluster-head first requests 
sensor nodes to send the corresponding pattern code for the sensed data. If multiple sensor 
nodes send the same pattern code to the cluster-head, only one of them is permitted to send 
the data to the cluster-head. ESPDA is secure because it does not require encrypted data to 
be decrypted by cluster-heads to perform data aggregation. 

Cam et al. have introduced another secure differential data aggregation (SDDA) scheme based 

on pattern codes (Cam et al., 2006b). SDDA prevents redundant data transmission from 

sensor nodes by implementing the following schemes: (1) SDDA transmits differential data 

rather than raw data, (2) SDDA performs data aggregation on pattern codes representing the 

main characteristics of the sensed data, and (3) SDDA employs a sleep protocol to 

coordinate the activation of sensing units in such a way that only one of the sensor nodes 

capable of sensing the data is activated at a given time. In the SDDA data transmission 

scheme, the raw data from the sensor nodes is compared with the reference data and the 

difference of them is transmitted in the network. The reference data is obtained by taking 

the average of previously transmitted data. 

In (Sanli et al., 2004 ), a secure reference-based data aggregation (SRDA) protocol is proposed for 

cluster-based  WSNs, in which raw data sensed by sensor nodes are compared with 

reference data values and then only difference data is transmitted to conserve sensor energy. 

Reference data is taken as the average of a number of historical (i.e. past) sensor readings.  

However, a serious drawback of the scheme is that does not allow aggregation at the 

intermediate nodes. 

To defend against attacks by malicious aggregator nodes in WSNs which may falsely 

manipulate the data during the aggregation process, a cryptographic mechanism has been 

proposed in (Wu et al., 2007). In the proposed mechanism, a secure aggregation tree (SAT), is 

constructed that enables monitoring of the aggregator nodes. The child nodes of the 

aggregators can monitor the incoming data to the aggregators and can invoke a voting 

scheme in case any suspicious activities by the aggregator nodes are observed.  

A secure hop-by-hop data aggregation protocol (SDAP) has been proposed in (Yang et al., 2006), 

in which a WSN is dynamically partitioned into multiple logical sub-trees of almost equal 

sizes using a probabilistic approach. In this way, fewer nodes are located under a high-level 

sensor node, thereby reducing potential security threats on nodes at higher level. Since a 

compromised node at higher level in a WSN will cause more adverse effect on data 

aggregation than on a lower-level node, the authors argue that by reducing number of 

nodes at the higher level in the logical tree, aggregation process becomes more secure. 
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In (Ozdemir, 2007), a secure and reliable data aggregation scheme – SELDA- is proposed 

that makes use of the concept of web of trust. Trust and reputation based schemes have been 

extensively used for designing security solutions for multi-hop wireless networks like mobile 

ad hoc networks (MANETs), wireless mesh networks (WMNs) and WSNs (Sen, 2010b; Sen, 

2010c; Sen 2010d). In this scheme, sensor nodes exchange trust values in their neighborhood 

to form a web of trust that facilitates in determining secure and reliable paths to aggregators. 

Observations from the sensor nodes which belong to a web of trust are given higher weights 

to make the aggregation process more robust. 

A data aggregation and authentication (DAA) protocol is proposed in (Cam & Ozdemir, 2007), 

to integrate false data detection with data aggregation and confidentiality. In this scheme, a 

monitoring algorithm has been proposed for verifying the integrity of the computed 

aggregated result by each aggregator node.  

In order to minimize false positives (a scenario where an alert is raised, however there is no 

attack), in a WSN, a dynamic threshold scheme is proposed in (Parkeh & Cam, 2007), which 

dynamically varies the threshold in accordance with false alarm rate. A data aggregation 

algorithm is also proposed to determine the detection probability of a target by fusing data 

from multiple sensor nodes.   

Du et al. proposed a witness-based data aggregation (WDA) scheme for WSNs to assure the 

validation of the data fusion nodes to the base station (Du et al., 2003). To prove the validity 

of the fusion results, the fusion node has to provide proofs from several witnesses. A 

witness is one who also conducts data fusion like a data fusion node, but does not forward 

its result to the base station. Instead, each witness computes the MAC of the result and then 

provides it to the data fusion node, which must forward the proofs to the base station. This 

scheme can defend against attacks on data integrity in WSNs. 

Wagner studied secure data aggregation in sensor networks and proposed a mathematical 

framework for formally evaluating their security (Wagner, 2004). The robustness of an 

aggregation operator against malicious data is quantified. Ye et al. propose a statistical en-

route filtering mechanism to detect any forged data being sent from the sensor nodes to the 

base station of a WSN using multiple MACs along the path from the aggregator to the base 

station (Ye et al., 2004; Ye et al., 2005).    

8. The proposed distributed secure aggregation protocol  

In this section, we propose a distributed estimation algorithm that is secure and resistant to 
insider attack by compromised and faulty nodes. There are essentially two categories of 
aggregation functions (Boulis et al., 2003):   

 Aggregation functions that are dependent on the values of a few nodes (e.g., the max 
result is based on one node). 

 Aggregation functions whose values are determined by all the nodes (e.g., the average 
function).  

However, computation of both these types of functions are adversely affected by wrong 
sensed result sent by even a very few number of compromised nodes. In this chapter, we 
consider only the first case, i.e., aggregation function that find or approximate some kind of 
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boundaries (e.g., maxima, minima), and hence the aggregation result is determined by the 
values of few nodes.  However, the proposed algorithm does not assume any knowledge 
about the underlying physical process. 

8.1 The proposed secure aggregation algorithm 

In the proposed distributed estimation algorithm, a sensor node instead of transmitting a 
partially aggregated result, maintains and if required, transmits an estimation of the global 

aggregated result. The global aggregated description in general will be a vector since it 
represents multi-dimensional parameters sensed by different nodes. A global estimate will 

thus be a probability density function of the vector that is being estimated. However, in 
most of the practical situations, due to lack of sufficient information, complex computational 

requirement or unavailability of sophisticated estimation tools, an estimate is represented 
as: (estimated value, confidence indication), which in computational terms can be represented 

as: (average of estimated vector, covariance matrix of estimated vector). For the sake of 
manipulability with tools of estimation theory, we have chosen to represent estimates in the 

form of (A, PAA) with A being the mean of the aggregated vector and PAA being the 
covariance matrix of vector A. For the max aggregation function, vector A becomes a scalar 

denoting the mean of the estimated max, and PAA becomes simply the variance of A. 

In the snapshot aggregation, a node does not have any control on the rate at which it send 

information to its parents; it has to always follow the rate specified the user application. 

Moreover, every node has little information about the global parameter, as it has no idea 

about what is happening beyond its parent. In proposed approach, a node accepts 

estimations from all of its neighbors, and gradually gains in knowledge about the global 

information. It helps a node to understand whether its own information is useful to its 

neighbors. If a node realizes that its estimate could be useful to its neighbors, it transmits the 

new estimate. Unlike snapshot aggregation where the node transmits its estimate to its 

parent, in the proposed scheme, the node broadcasts its estimate to all its neighbors. 

Moreover, there is no need to establish and maintain a hierarchical relationship among the 

nodes in the network. This makes the algorithm particularly suitable for multiple user, 

mobile users, faulty nodes and transient network partition situations.  

The proposed algorithm has the following steps: 

1. Every node has an estimate of the global aggregated value (global estimate) in the form 
of (mean, covariance matrix). When a node makes a new local measurement, it makes 
an aggregation of the local observation with its current estimate. This is depicted in the 
block Data Aggregation 1 in Fig. 5. The node computes the new global estimate and 
decides whether it should broadcast the new estimate to its neighbors. The decision is 
based on a threshold value as explained in Section 8.4.  

2. When a node receives a global estimate from a neighbor, it first checks whether the 
newly received estimate differs from its current estimate by more than a pre-defined 
threshold. 
a. If the difference does not exceed the threshold, the node makes an aggregation of 

the global estimates (its current value and the received value) and computes a new 
global estimate. This is depicted in the block Data Aggregation 2 in Fig. 5. The node 
then decides whether it should broadcast the new estimate.   
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b. If the difference exceeds the threshold, the node performs the same function as in 
step (a). Additionally, it requests its other neighbors to send their values of the 
global estimate. 

c. If the estimates sent by the majority of the neighbors differ from the estimate sent 
by the first neighbor by a threshold value, then the node is assumed to be 
compromised. Otherwise, it is assumed to be normal. 

3. If a node is identified to be compromised, the global estimate previously sent by it is 
ignored in the computation of the new global estimate and the node is isolated from the 
network by a broadcast message in its neighborhood. 

 

Fig. 5. A Schematic flow diagram of the proposed aggregation algorithm 

8.2 Aggregation of two global estimates 

In Fig. 5, the block Data Aggregation 1 corresponds to this activity. For combining two global 

estimates to produce a single estimate, covariance intersection (CI) algorithm is used. CI 

algorithm is particularly suitable for this purpose, since it has the capability of aggregating 

two estimates without requiring any prior knowledge about their degree of correlation. This 

is more pertinent to WSNs, as we cannot guarantee statistical independence of observed 

data in such networks.  

Given two estimates (A, PAA) and (B, PBB), the combined estimate (C, PCC) by CI is given by 
(23) and (24):  

 1 1 1( * (1 ) )CC AA BBP P P       (23) 

 1 1( * * (1 ) * )CC AA BBC P P A P B      (24) 

Here, PAA, PBB, and PCC represent the covariance matrices associated with the estimates A, B, 
and C respectively. The main computational problem with CI is the computation of ω. The 
value of ω lies between 0 and 1. The optimum value of ω is arrived at when the trace of the 
determinant of PCC is minimized.  
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For max aggregation function, covariance matrices are simple scalars. It can be observed 
from (23) and (24) that in such a case ω can be either 1 or 0. Subsequently, PCC is equal to the 
minimum of PAA and PBB, and C is equal to either A or B depending on the value of PCC. 
Even when the estimates are reasonably small-sized vectors, there are efficient algorithms to 
determine ω. 

8.3 Aggregation of a local observation with a global estimate 

This module corresponds to the block Data Aggregation 2 in Fig. 5. Aggregation of a local 

observation with a global estimate involves a statistical computation with two probability 

distributions.  

Case 1: Mean of the local observation is greater than the mean of the current global estimate: 

In case of max aggregation function, if the mean of the local observation is greater than the 

mean of the current global estimate, the local observation is taken as the new estimate. The 

distribution of the new estimate is arrived at by multiplying the distribution of the current 

global estimate by a positive fraction (w1) and summing it with the distribution of the local 

observation. The fractional value determines the relative weight assigned to the value of the 

global estimate. The weight assigned to the local observation being unity.   

Case 2: Mean of the local observation is smaller than the mean of the current global 

estimate: If a node observes that the mean of the local observation is smaller than its current 

estimate, it combines the two distributions in the same way as in Case 1 above, but this time 

a higher weight (w2) is assigned to the distribution having the higher mean (i.e. the current 

estimate). However, as observed in (Boulis et al., 2003), this case should be handled more 

carefully if there is a sharp fall in the value of the global maximum. We follow the same 

approach as proposed in (Boulis et al., 2003). If the previous local measurement does not 

differ from the global estimate beyond a threshold value, a larger weight is assigned to the 

local measurement as in Case 1. In this case, it is believed that the specific local measurement 

is still the global aggregated value.  

For computation of the weights w1 and w2 in Case 1 and Case 2 respectively, we follow the 

same approach as suggested in (Boulis et al., 2003). Since all the local measurements and 

the global estimates are assumed to follow Gaussian distribution, almost all the 

observations are bounded within the interval [μ ± 3*σ]. When the mean of the local 

measurement is larger than the mean of the global estimate, the computation of the 

weight (w1) is done as follows. Let us suppose that l(x) and g(x) are the probability 

distributions for the local measurement and the global estimate respectively. If l(x) and 

g(x) can take non-zero values in the intervals [x1, x2] and [y1, y2] respectively, then the 

weight w1(x) will be assigned a value of 0 for all x  1 – 3* and w1(x) will be assigned a 

value of 1 for all x  1 – 3*. Here, x1 is equal to μ1 – 3*σ1, where μ1 and σ1 are the mean 

and the standard deviation of l(x) respectively.  

When the mean of the local measurement is smaller than the mean of the global estimate, 

the computation of the weight w2 is carried out as follows. The value of w2(x) is assigned to 

be 0 for all x    max {1 – 3*1, 2 – 3*2}. w2(x) is assigned a value of 1 for all x   max {1 – 

3*1, 2 – 3*2}. Here, y1 is equal to 2 – 3*2, where 2 and 2 represent the mean and the 

standard deviation of g(x) respectively.  
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In all these computations, it assumed that the resultant distribution after combination of two 
bounded Gaussian distributions is also a Gaussian distribution. This is done in order to 
maintain the consistency of the estimates. The mean and the variance of the new Gaussian 
distribution represent the new estimate and the confidence (or certainty) associated with 
this new estimate respectively. 

8.4 Optimization of communication overhead 

Optimization of communication overhead is of prime importance in resource constrained 

and bandwidth-limited WSNs. The block named Decision Making in Fig. 5 is involved in this 

optimization mechanism of the proposed scheme. This module makes a trade-off between 

energy requirement and accuracy of the aggregated results.  

To reduce the communication overhead, each node in the network communicates its 

computed estimate only when the estimate can bring a significant change in the estimates of its 

neighbors. For this purpose, each node stores the most recent value of the estimate it has 

received from each of its neighbors in a table. Every time a node computes its new estimate, it 

checks the difference between its newly computed estimate with the estimates of each of its 

neighbors. If this difference exceeds a pre-set threshold for any of its neighbors, the node 

broadcasts its newly computed estimate. The determination of this threshold is crucial as it has 

a direct impact on the level of accuracy in the global estimate and the energy expenditure in 

the WSN. A higher overhead due to message broadcast is optimized by maintaining two-hop 

neighborhood information in each node in the network (Boulis et al., 2003). This eliminates 

communication of redundant messages. This is illustrated in the following example. 

Suppose that nodes A, B and C are in the neighborhood of each other in a WSN. Let us 

assume that node A makes a local measurement and this changes its global estimate. After 

combining this estimate with the other estimates of its neighbors as maintained in its local 

table, node A decides to broadcast its new estimate. As node A broadcasts its computed 

global estimate, it is received by both nodes B and C. If this broadcast estimate changes the 

global estimate of node B too, then it will further broadcast the estimate to node C, as node B 

is unaware that the broadcast has changed the global estimate of node C also. Thus the same 

information is propagated in the same set of nodes in the network leading to a high 

communication overhead in the network.  

To avoid this message overhead, every node in the network maintains its two-hop 

neighborhood information. When a node receives information from another node, it not 

only checks the estimate values of its immediate neighbors as maintained in its table but 

also it does the same for its two-hop neighbors. Thus in the above example, when node B 

receives information from node A, it does not broadcast as it understands that node C has 

also received the same information from node A, since node C is also a neighbor of node A. 

The two-hop neighborhood information can be collected and maintained by using 

algorithms as proposed in (McGlynn & Borbash, 2001). 

The choice of the threshold value is vital to arrive at an effective trade-off between the 
energy consumed for computation and the accuracy of the result of aggregation. For a 
proper estimation of the threshold value, some idea about the degree of dynamism of the 
physical process being monitored is required. A more dynamic physical process puts a 
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greater load on the estimation algorithm thereby demanding more energy for the same level 
of accuracy (Boulis et al., 2003). If the user has no information about the physical process, he 
can determine the level of accuracy of the aggregation and the amount of energy spent 
dynamically as the process executes.  

8.5 Security in aggregation scheme 

The security module of the proposed scheme assumes that the sensing results for a set of 
sensors in the same neighborhood follows a normal (Gaussian) distribution. Thus, if a node 
receives estimates from one (or more) of its neighbors that deviates from its own local estimate 
by more than three times its standard deviation, then the neighbor node is suspected to have 
been compromised or failed. In such a scenario, the node that first detected such an anomaly 
sends a broadcast message to each of its neighbors requesting for the values of their estimates. 
If the sensing result of the suspected node deviates significantly (i.e., by more than three times 
the standard deviation) from the observation of the majority of the neighbor nodes, then the 
suspected node is detected as malicious. Once a node is identified as malicious, a broadcast 
message is sent in the neighborhood of the node that detected the malicious node and the 
suspected node is isolated from the network activities.  

However, if the observation of the node does not deviate significantly from the observations 
made by the majority of its neighbors, the suspected node is assumed to be not malicious. In 
such a case, the estimate sent by the node is incorporated in the computation of the new 
estimate and a new global estimate is computed in the neighborhood of the node. 

9. Simulation results 

In this section, we describe the simulations that have been performed on the proposed scheme. 

As the proposed algorithm is an extension of the algorithm presented in (Boulis et al., 2003), we 

present here the results that are more relevant to our contribution, i.e., the performance of the 

security module. The results related to the energy consumption of nodes and aggregation 

accuracy for different threshold values (discussed in Section 8.4) are presented in detail in (Boulis 

et al., 2003) and therefore these are not within the scope of this work. 

In the simulated environment, the implemented application accomplishes temperature 

monitoring, based on network simulator (ns-2) and its sensor network extension Mannasim 

(Mannasim, 2002). The nodes sense the temperature continuously and send the maximum 

sensed temperature only when it differs from the last data sent by more than 2%.In order to 

simulate the temperature behaviour of the environment, random numbers are generated 

following a Gaussian distribution, taking into consideration standard deviation of 1C from 

an average temperature of 25C. The simulation parameters are presented in Table 3.  

To evaluate the performance of the security module of the proposed algorithm, two 

different scenarios are simulated. In the first case, the aggregation algorithm is executed in 

the nodes without invoking the security module to estimate the energy consumption of the 

aggregation algorithm. In the second case, the security module is invoked in the nodes and 

some of the nodes in the network are intentionally compromised. This experiment allows us 

to estimate the overhead associated with the security module of the algorithm and its 

detection effectiveness. 
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Parameter Value 

No. of nodes 
Simulation time 
Coverage area 
Initial energy in each node 
MAC protocol 
Routing protocol 
Node distribution 
Transmission power of each node 
Transmission range 
Node capacity 
Energy spent in transmission 
Energy spent in reception 
Energy spent in sensing 
Sampling period 
Node mobility 

160 
200  s 

120 m * 120 m 
5 Joules 

IEEE 802.11 
None 

Uniform random 
12 mW 
15 m 

5 buffers 
0.75 W 

0.25 mW 
10 mW 

0.5 s 
Stationary 

Table 3. Simulation parameters   

 

Fig. 6. Detection effectiveness with 10% of the nodes in the network faulty 

It is observed that delivery ratio (ratio of the packets sent to the packets received by the 
nodes) is not affected by invocation of the security module. This is expected, as the packets 
are transmitted in the same wireless environment, introduction of the security module 
should not have any influence on the delivery ratio. 

Regarding energy consumption, it is observed that the introduction of the security module 
has introduced an average increase of 105.4% energy consumption in the nodes in the 
network. This increase is observed when 20% of the nodes chosen randomly are 
compromised intentionally when the aggregation algorithm was executing. This increase in 
energy consumption is due to additional transmission and reception of messages after the 
security module is invoked. 
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To evaluate the detection effectiveness of the security scheme, further experiments are 
conducted. For this purpose, different percentage of nodes in the network is compromised and 

the detection effectiveness of the security scheme is evaluated. Fig. 6 and Fig. 7 present the 
results for 10% and 20% compromised node in the network respectively. In these diagrams, the 

false positives refer to the cases where the security scheme wrongly identifies a sensor node as 
faulty while it is actually not so. False negatives, on the other hand, are the cases where the 

detection scheme fails to identify a sensor node which is actually faulty. It is observed that even 
when there are 20% compromised nodes in the network the scheme has a very high detection 

rate with very low false positive and false negative rate. The results show that the proposed 
mechanism is quite effective in detection of failed and compromised nodes in the network. 

 

Fig. 7. Detection effectiveness with 20% of the nodes in the network faulty 

10. Conclusion and future research issues 

In-network data aggregation in WSNs is a technique that combines partial results at the 
intermediate nodes en route to the base station (i.e. the node issuing the query), thereby 
reducing the communication overhead and optimizing the bandwidth utilization in the 
wireless links. However, this technique raises privacy and security issues of the sensor 
nodes which need to share their data with the aggregator node. In applications such as 
health care and military surveillance where the sensitivity of the private data of the sensors 
is very high, the aggregation has to be carried out in a privacy-preserving way, so that the 
sensitive data are not revealed to the aggregator. A very popular scheme for this purpose 
exists in the literature which is known as CPDA. Although CPDA is in literature for quite 
some time now, no vulnerability of the protocol has been identified so far. In this chapter, 
we have first demonstrated a security vulnerability in the CPDA protocol, wherein a 
malicious sensor node can exploit the protocol is such a way that it gets access to the private 
values of its neighbors while participating in data aggregation process. A suitable 
modification of the CPDA protocol is further proposed so as to plug the identified 
vulnerability and also to make the protocol computationally more efficient. We have also 
made an analysis of the communication and computational overhead in the original CPDA 
protocol and the proposed modified version of the CPDA protocol. It has been found from 
the analysis that the modified version of the protocol involves appreciably less message 
communication overhead in the network and computational load on the sensor nodes. 
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We have also presented a comprehensive discussion on the existing secure aggregation 
protocols for WSNs and proposed a secure aggregation protocol for defending against 
attacks by malicious insider nodes that may introduce fake messages/data or alter data of 
honest nodes in the network. The performance of the proposed scheme has been evaluated 
on a network simulator and results have shown that the scheme is effective for defending 
attacks launched by malicious insider nodes in a WSN. 

It may be noted that over the past few years, several schemes have been proposed in the 
literature for privacy preserving data aggregation in WSNs. A very popular and elegant 
approach in this direction is homomorphic encryption (Fontaine & Galand, 2007). Westhoff et al. 
have proposed additive privacy homomorphic functions that allow for end-to-end encryption 
between the sensors and the sink node and simultaneously enable aggregators to apply 
aggregation functions directly over the ciphertexts (Westhoff et al., 2006). This has the 
advantage of eliminating the need for intermediate aggregators to carry out decryption and 
encryption operations on the sensitive data. Armknecht et al. have presented a symmetric 
encryption scheme for sensor data aggregation that is homomorphic both for data and the 
keys (Armknecht et al., 2008). This is called bi-homomorphic encryption, which is also essentially 
an additive homomorphic function. Castellucia et al. have proposed an approach that 
combines inexpensive encryption techniques with simple aggregation methods to achieve 
efficient aggregation of encrypted data in WSNs (Castelluccia et al., 2009). The method relies 
on end-to-end encryption of data and hop-by-hop authentication of nodes. Privacy is achieved 
by using additive homomorphic functions. A very simple approach for privacy-preserving 
multi-party computation has been discussed by Chaum (Chaum, 1988). The protocol is known 
as Dining Cryptographers Problem which describes the way a channel is created so that it is 
difficult to trace (i.e. identify) the sender of any message through that channel.    

The approaches based on privacy homomorphic functions are more elegant than CPDA for 
the purpose of carrying out sensor data aggregation in a privacy preserving way. However, 
they involve large computational overhead due to complexities involved in computing the 
homomorphic encryption functions and the associated key management related issues. Most 
of the existing public key cryptography-based privacy homomorphic functions are too 
heavy for resource-constrained battery-operated sensor nodes. Some secure data 
aggregation schemes use elliptic curve cryptography (Westhoff et al., 2006). However, these 
schemes work only for some specific query-based aggregation functions, e.g., sum, average 
etc. A more elegant scheme that works for all types of functions is clearly in demand. In 
(Gentry, 2009), a fully homomorphic function has been presented. However, this scheme is 
too complex and heavy-weight for deployment in WSNs. In addition, in some WSN 
environment, symmetric cryptography-based privacy homomorphic encryption schemes are 
more suitable (Castelluccia, 2005; Castelluccia, 2009; Ozdemir, 2008). However, most of the 
current homomorphic encryption schemes are based on public key encryption. Hence, 
exploration of symmetric key cryptography based privacy homomorphism functions is an 
interesting research problem.  Another emerging research problem is the use of digital 
watermarking schemes in place of privacy homomorphic encryption functions (Zhang et al., 
2008). However, this method allows only one-way authentication of sensor data at the base 
station only. To defend against rogue base station attacks on sensor nodes, this scheme would 
not be applicable. Design of mutual authentication scheme using watermarking techniques 
for secure and privacy-preserving data aggregation protocols is another research problem 
that needs attention of the research community. 
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