
Behind the Last Line of Defense
Surviving SoC Faults and Intrusions

Inês Pinto Gouveia, Marcus Völp and Paulo Esteves-Verissimo
University of Luxembourg

Interdisciplinary Center for Security, Reliability and Trust (SnT) - CritiX group
ines.gouveia@uni.lu, marcus.voelp@uni.lu, paulo.verissimo@uni.lu

Abstract—Today, leveraging the enormous modular power,
diversity and flexibility of manycore systems-on-a-chip (SoCs)
requires careful orchestration of complex resources, a task left
to low-level software, e.g. hypervisors. In current architectures,
this software forms a single point of failure and worthwhile
target for attacks: once compromised, adversaries gain access
to all information and full control over the platform and the
environment it controls. This paper proposes Midir, an enhanced
manycore architecture, effecting a paradigm shift from SoCs to
distributed SoCs. Midir changes the way platform resources are
controlled, by retrofitting tile-based fault containment through
well known mechanisms, while securing low-overhead quorum-
based consensus on all critical operations, in particular privilege
management and, thus, management of containment domains.
Allowing versatile redundancy management, Midir promotes
resilience for all software levels, including at low level. We
explain this architecture, its associated algorithms and hardware
mechanisms and show, for the example of a Byzantine fault
tolerant microhypervisor, that it outperforms the highly efficient
MinBFT by one order of magnitude.

Index Terms—fault and intrusion tolerance, hypervisor, pro-
cessor architecture

I. INTRODUCTION

Practically all activity of modern societies depends on infor-
mation and communication technologies (ICT). Such depen-
dency obviously hinges on the correctness of these systems,
some of them critical, which may fail in a combination of
multiple causes and ways [1]–[6]. Systems have been progres-
sively pushed to extremes of efficiency through modularity in
platform sharing, firstly through virtualization and lately by
leveraging the enormous power growth, functional diversity
and adaptation flexibility offered by multi- and manycore. This
has taken platform sharing to new heights, into the realm of
multi-processor systems-on-a-chip (MPSoCs).

The organization of these complex computing resources
depends on low-level platform management hardware (e.g.,
memory-management units (MMUs)) and software (e.g.,
firmware, hypervisors, management engines). However, cur-
rent MPSoC architectures are such that these management
components, which should form a last line of defense against
severe accidental faults or adversaries intruding the system
(malicious faults), instead constitute a single point of fail-
ure (SPoF), for two main reasons. First, the way platform
privilege-enforcement mechanisms (e.g. MMUs or hardware-
enforced capabilities [7]) are designed allows faults in a
core/tile to propagate through MPSoC components. Second,
faults in this lowest-level management software, e.g., hyper-

visors configuring these privileges, are bound to propagate
across management and managed components, again causing
common-mode failure scenarios.

If these SPoFs are compromised by adversaries, the latter
gain full authority over the platform’s privilege-enforcement
mechanisms and, through them, access to all information and
complete control over all platform resources (e.g., cloud-based
systems), including, in the case of cyber-physical systems,
extended control over the physical environments on which they
act (e.g., nuclear power plants or autonomous cars).

Is this a real risk? It is, if the vulnerability rate of these low-
level platforms is non-negligible. Recent problems, whether in
Intel’s CSME [8], Xen/Critix [9] or concerning Spectre [10]
and Meltdown [11], have been repeatedly reminding us of how
brittle the assumption of “tamperproof and unattackable low-
level platform management assets” is. Even formally verified
kernels (e.g., seL4 [12]) may fail due to model/reality discrep-
ancies or hardware faults violating modeling assumptions [13].

Being the risk real, are there no solutions yet? The solution
design space for contemporary hardware platforms depend-
ability and security has been unfolding in two directions: (i)
application-specific system-level replication (e.g., triple mod-
ular redundancy, mainly in cyber-physical systems (CPS), by
means of multiple electronic control units (ECUs)), where the
lack of flexibility limits the extension to general systems; (ii)
manycore-level replica management and consolidation, which
then, if on bare MPSoCs, reintroduces the SPoF concern, now
for the low-level replication management component.

At this time, we call the reader’s attention to an inter-
esting fact, which will become crucial to our solution. The
current MPSoC architectures’ complexity, modularity and net-
worked interconnectivity, suggests attributes of distributed sys-
tems [14], albeit imperfect such systems (an example of which
is the aforementioned SPoF syndrome). However, distributed
systems have been used to mitigate SPoF syndromes and to
implement fault and intrusion tolerance schemes [15], [16]. In
consequence, the root of the MPSoC problems just presented
may also be an avenue to their solution.

So, in this paper, we start by identifying the gaps from
(MP)SoCs to distributed systems, and propose (MP)SoC
mechanisms to bridge them, which essentially means achiev-
ing: fault independence and fault containment, despite low
software-level compromise and while retaining the flexibility
(MP)SoCs offer. Having a manycore that behaves as a (closely-
coupled) distributed system, should allow us to design a set of

ar
X

iv
:2

00
5.

04
09

6v
1

 [
cs

.D
C

]
 3

 M
ay

 2
02

0
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/322863983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

efficient and low-overhead distributed systems-inspired modu-
lar protection and redundancy management mechanisms, e.g.,
Byzantine fault tolerant state machine replication (BFT-SMR),
for fault and intrusion tolerance (FIT). The remaining problem,
how to implement and where to locate all the mechanisms
above, is addressed by the Midir1 achitecture presented in
this paper, which leverages the computing critical mass and
flexibility of contemporary tile-based manycore architectures.

Midir constrains the connection of all tiles to the network-
on-chip (NoC) through simple and self-contained hardware-
based trusted components, which we call T2H2. Exploring the
concept of architectural hybridization [17], whilst we consider
those components to be ultra-reliable and not fail, we are
agnostic about the reliability of individual tiles, which may
be compromised or fail. The assumption is justified by the
simplicity of the former, promoting verifiability.

The T2H2 components implement the functionality achiev-
ing fault independence, containment, and tolerance mecha-
nisms mentioned above. In consequence, tile-internal software
or hardware faults are contained in the tile and the objects
the tile can access. Furthermore, the baseline mechanisms for
protection and redundancy management provided by T2H2 can
be extended and recursively applied at any software layer,
giving the designer ample latitude for crafting resilience into
systems, both “horizontally” (incremental power of defense
mechanisms) and “vertically” (depth of defense).

Locating T2H2 between the tile and the NoC interconnect
not only provides a clear pathway for integration by chip
manufacturers and integrators, it also allows drawing from
many well-understood building blocks (e.g., region protection,
capabilities [18], and other chip-level resource management
mechanisms [19], capable of isolating tiles and the resources
they can access). The novelty of Midir lies in their arrangement
to avoid SPoFs, even while they are reconfigured.

In a nutshell, contributions of this paper are:
(1) An analysis of the gaps separating current MPSoC

architectures from genuine distributed systems, and gap fixing
through measures promoting fault independence and fault
containment in tile-based architectures, enforced at the level
of the tile-to-NoC interface.

(2) An architecture (Midir) leveraging the resulting dis-
tributed system-on-a-chip (DSoC) to achieve incremental lev-
els of modular fault and intrusion tolerance, through a range
of diverse redundancy management techniques implemented
by simple hardware-based voting/consensus mechanisms.

(3) The design of a simple and ultimately trusted-
trustworthy hardware hybrid, T2H2— the core component of
Midir, staged at the tile-to-NoC interface — providing just two
generic baseline functions: access control (capability registers)
and quorum-based consensus (voters). By configurations and
combinations of these two basic functions, T2H2 is capable
of implementing all the techniques mentioned in (1) and (2).

(4) As a proof of concept, we give and evaluate an imple-
mentation featuring Midir and essential parts of a fault and

1pronounced meedir

intrusion tolerant microhypervisor built on top of it. Though
the architecture serves several reliability strategies, we chose
the most effective, active replication with error masking. Being
the most complex and costlier, we believe to have shown the
performance and practicality of our concept.

Next, we evaluate the challenges for bridging from SoCs
to DSoCs (Sec.II), and present the system and threat model
(Sec.III). Then, we introduce the Midir architecture (Sec.IV)
and the T2H2 component in Sec.V. At this point, we are
able to show Midir in action, discussing the design of a
fault and intrusion tolerant microhypervisor built on top of
it (Sec.VI), as an example of critical low-level management
software. Finally, we discuss some relevant implementation
matters in Sec. VII, and in Sec.VIII, we evaluate Midir on
a Zynq ZC702 board, showing how Midir’s hardware voters
accelerate BFT-SMR protocols, voted execution of system
calls and consensual reconfiguration of T2H2. An analysis of
related work (Sec. IX) follows, and Sec.X concludes the paper,
pointing to further research and innovation opportunities.

II. FROM MPSOCS TO DISTRIBUTED SOCS

Multi- and manycore systems consolidate in a single chip
computing resources that used to reside on multiple chips.
Tiles [20] are placeholders and instantiation points for re-
sources, typically instantiated with cores and private caches
or with slices of shared caches, and connected through the
NoC with each other and with memory controllers (to reach
out to RAM/IO). It is possible as well to cast accelerators,
GPUs and FPGAs, into the tile abstraction.

The modularity and networked interconnection of tiles
already suggests attributes of a distributed system and has
inspired first steps to hardware-enforced fault containment
at tile level, as pioneered by Hive [21], Cap [18], M3 [22]
and others. Hive introduces MAGIC, a bus-level firewall to
confine faults to the individual processors of the Stanford
Flash multiprocessor system. M3 follows the same scheme
with hardware enforced capabilities, originally introduced in
Cap [18] to control resource accesses and, thereby, fault
containment of heterogeneous processors. Configurable isola-
tion [19] leverages dual-mode redundant MMUs to, like M3,
confine faults in on-chip resources. Tiles favour functional and
non-functional diversity since they can host cores from several
makers. This improves fault independence through the implied
low likelihood of experiencing the same fault in different tiles.
Similarly, different versions of the same code can be used at
distinct tiles with the same intent [23]–[25].

Note that, emulating the spacial isolation of distributed
system nodes, we are agnostic about the semantics and inter-
play of tile-internal and/or core-level components, e.g., MMUs
and their virtualization, copy-on-write, memory protection or
recovery functionalities.

A final and subtle gap concerning fault containment and
independence affects all previous systems we know of, includ-
ing those deploying hardware-enforced fault containment [18],
[19], [21], [22]: potentially faulty or compromised low-level
kernels still retain control over platform privilege configuration

2

mechanisms. As we explain in Sec.IV, this is a harmful effect.
Our main contribution is to neutralize this effect by imposing
that critical platform management operations are performed
through consensus of a majority of correct components.

In conclusion, with the enhancements described in this
paper, tiles fail like nodes in a distributed system, faults affect
only the tile itself and the components (e.g., replicas) executing
on it, but they do not propagate to the entire manycore, in
particular other components related to the same application or
subsystem. This interplay between protection and consensus
to achieve fault containment, in particular during platform
reconfiguration, including of the fault containment domains
themselves, allows hypervisor replicas to retain the flexibility
of the MPSoC, even after a minority of hypervisor tiles failed
accidentally or have been compromised by an adversary.

III. SYSTEM AND THREAT MODEL

We now describe the system and threat model educating the
development of our distributed system-on-a-chip (DSoC).

A. System Model

We assume a fully connected system, where on-chip net-
work components offer the abstraction of a correct network,
interconnecting all tiles to one another. Tiles communicate
by messages, and messages sent are eventually delivered,
unchanged, to the destination. Network coding [26], multi-
tenant [27] and adaptive routing techniques [28] substantiate
the coverage of this assumption.

We rely on a partially-synchronous model. At first sight,
manycores might seem the perfect example of a (closely-
coupled) synchronous (distributed) system. However, reality
is a bit different, several possibilities for instability in the
time domain (speed of tiles throttling for thermal control,
cache exceptions, NoC-level bursts, etc.) would prove the strict
synchronous model brittle.

However, being a closely-coupled environment, short-term
liveness is normally guaranteed, barring delay variations. This
has two implications on the design of Midir, for robustness:
(i) we absorb possible inter-tile delays, notably by buffering
messages (e.g., votes) in Midir’s T2H2; (ii) the structure of
the protocols is time-free and, as such, they remain safe in
the presence of delay oscillations, provided that the fault
assumptions hold.

B. Threat Model

Our threat model considers software-level compromise at all
levels, including hypervisors, firmware and, more generally, in
any critical software component. This assumption is consistent
with our aim of tolerating an incremental level of threat on
tiled manycore systems, up to sophisticated and persistent
attacks possibly deployed entirely on-chip. Moreover, we
consider a limited set of hardware-level faults and attacks:
precisely those whose physical effects are confined to a tile
(e.g., trapdoors in a core, but no hardware faults that cause a
chip-wide collapse).

Fig. 1. Example systems showing the Midir architecture: software in tiles
need a capability to authorize access to resources in other tiles (solid lines);
capability modifications in a tile (in fact any critical operation) are subject to
consensus of a majority of other correct tiles (dashed lines), here the three
tiles hosting hypervisor replicas of which one may be faulty.

We consider the tile as a unit of component failure. There
is no guaranteed fault containment inside tiles. That is, ad-
versaries (or accidents) will be capable of compromising the
whole software in any tile (e.g., but not only, a hypervisor
in case the user/supervisor mode isolation failed). Once that
happens, we no longer make any assumptions about the
correctness of any software in that tile. However, we also
consider (and enforce it with the strategy described in Sec.II)
that tiles themselves are fault containment domains, such that
faults inside a tile do not propagate across the manycore.

We enforce the assumption above through architectural
hybridization [17], [29], [30]. Despite the general system fault
model enunciated for tiles, T2H2 (Midir’s trusted-trustworthy
component) follows a more restricted fault model, enforced
by construction and, through its simplicity, amenable to ver-
ification, failing only by crashing, much like USIG [29] or
CASH [30]. Thus, T2H2, residing at the tile-to-NoC interface,
reliably implements its functions despite faulty tiles.

IV. THE Midir ARCHITECTURE

As discussed earlier, Midir is an architectural concept based
on augmenting manycore systems in a minimally intrusive way
through strategically placed, simple and self-contained trusted-
trustworthy components (T2H2). In fact, T2H2 provides just
two generic baseline functions staged in hardware at the
tile-to-NoC interface: access control (capability registers) and
quorum-based consensus (voters).

Fig.1 depicts one possible layout, of a stereotypical
hypervisor-based system, where the hypervisor is replicated
for fault/intrusion tolerance, serving operating system and
applications: hypervisor replicas are distributed across tiles, so
that each replica executes on a different tile, separate from ap-
plications; tiles and software therein interface with each other
through the NoC; and T2H2 are the “blue dots” performing
that interconnection. T2H2 interposes such accesses, validating
that the invoking tile has sufficient privileges, through the
capability registers, which include the logic for privilege
enforcement.

As long as the execution in a tile remains within the
resources associated to this tile (local caches, memories, accel-
erators, etc.) no overhead occurs, since T2H2 is not involved in
authorizing or denying these accesses. In fact, we remind that
it is not the purpose of Midir to provide fault containment
between software components co-located on the same tile.

3

This is like the internal behavior of nodes in a distributed
system, where nodes are the unit of fault containment. Once
software components are spread across tiles, they interact
through external operations (e.g., via a resource in another tile,
via shared on-chip memories or via external memory or IO)
and T2H2 validates that each such access has been authorized
by a capability the tile possesses. Consequently, hardware
faults inside a tile or accidential or malicious faults in any
part of the software it executes, are limited in propagation to
the objects authorized by these capabilities.

Further to capability checking, Midir is capable of subject-
ing these accesses to voting by distributed components in dif-
ferent tiles. This is especially important for critical operations,
be it in application execution or in platform reconfiguration,
in order to achieve some form of fault/intrusion tolerance,
from error detection, or self-checking by comparison, to error
masking by consensus. To vote, tiles must hold a capability
to the corresponding voter, which authorizes this tile to make
proposals as one of these distributed components. Voting is
mandatory to install new or change existing capabilities, in
order to prevent faulty hypervisor replicas from bypassing
the aforementioned fault containment when reconfiguring the
resources a tile can access.

Midir’s concept of controlling the tiles’ lowest-level priv-
ilege enforcement mechanism is agnostic of the mechanism
used. However, the simpler such a mechanism and the closer
it can be implemented to the tile’s NoC interconnect, the more
architecture-level faults Midir will be able to tolerate. Hence
our choice for capabilities.

Simplicity also governs our voter design. Midir’s voters
merely collect and act upon proposals of related operations
from different components, letting the voted-upon operation
proceed. Because tile-external resources are typically memory
mapped, these operations are normally simple writes. The
voters themselves implement no error handling or diagnostics
functionality, but provide information for the components to
perform these tasks. More precisely, voters suspend voting on
disagreement, freeze the proposals made by the components
and expose them for diagnosis. Moreover, they implement
a sequence number seqi for progress tracking, which they
increment after each vote unless the vote gets suspended. A
voted upon voter-reset operation resumes voting and as well
increments seqi . Sec.VI shows how we utilize this error han-
dling support and Sec.VII details our voter implementations.

V. T2H2– MIDIR’S TRUSTED-TRUSTWORTHY
COMPONENT

In this section, we provide further details about T2H2.

A. Voted and non-voted operations

To retain the flexibility of the software in a manycore sys-
tem, allowing it to dynamically adapt resource-to-application
mappings as needed, T2H2 supports direct access to tile-
external resources. This way, applications possessing a ca-
pability can directly invoke operations on external resources
(e.g., to access read-shared or private data in RAM or to

Fig. 2. (a) Non-voted memory access by tile A through capability invocation.
(b) Voted memory access by tiles A-C (tile A faulty) through capability
invocation then voting (orange); reconfiguration of a platform capability
register in tile A through voting (green).

interact with non-critical devices). The scenario in Fig.2(a)
illustrates a non-voted (write) memory access by Tile A,
performed by invoking a capability in this tile’s T2H2. Since
T2H2’s capability registers hold a read-write capability to the
memory region [p, p+ s], the operation to write value val in
variable a is authorized.

However, T2H2 also supports voting, particularly useful
when e.g., platform management software or hypervisor repli-
cas, further have to execute critical operations (e.g., privilege
change or critical device accesses). These operations are voted
upon, within preconfigured detection or tolerance mechanisms,
to prevent compromised components from causing harm. Sev-
eral strategies may be served by Midir, such as self-checking,
recovery blocks, or f-out-of-n error masking by majority voting
in the presence of f faulty components, but they are all
supported by the same baseline voting mechanism. Fig.2(b)
represents a similar operation as in Fig.2(a), but in voted access
form. Tiles B and C vote to write value 1, while Tile A, being
faulty, votes to write value 0. In order to perform these votes,
all tiles invoke a capability on their local T2H2 to access the
designated voter (in this case, residing on Tile A’s T2H2) .
Given that a majority of tiles voted to write 1, value 1 will be
written to variable a.

Midir does not constrain how systems are configured and
hence what faults are tolerated. Instead it provides the means
to tolerate an incremental quality of faults, including for highly
critical systems up to f faults in system management software
(e.g., the hypervisor), by providing n = 2f + 1 hypervisor
replicas and by subjecting all critical operations to voting.

B. Consensual privilege change

One particularly relevant scenario for voted access is con-
sensual reconfiguration of the T2H2 instances themselves.
T2H2’s reconfiguration interface is accessible only through a
voter and cannot ever be invoked directly.

Let us understand why this is a relevant innovation. In
conventional OS design, any single kernel instance can directly
or indirectly enforce modifications on platform resources.
So, even in fault tolerant designs, a faulty or compromised
kernel instance could still be able to threaten the platform
correctness. For example, by manipulating page tables, any

4

low-level OS kernel instance can install virtual-to-physical
address mappings to any resource in the platform’s memory
map and access it through this mapping. Of course, a trusted
underlying layer could solve this issue (e.g., by mediating
page-table access). However, whether this layer is software, as
in the Inktag kernel [31]) or firmware, as in Intel SGX [32]),
it becomes a single point of failure for the platform.

Midir provides a further level of protection, whereby the
designer can constrain access to the platform reconfiguration,
by allowing a particular mechanism, its registers and data
structures to be only effected in a consensual manner, through
a voter. As with general voting, discussed in Sec. V-A, these
voted accesses will normally correspond to the implementation
of detection or tolerance strategies, in this case, directed to the
protection against threats on the platform itself. In Fig.2(b), in
green colour, we represent such a flow of reconfiguration of
a platform capability register in tile A’s T2H2. Exemplifying
with f-out-of-n error masking in a replicated low-level kernel,
several replicas make the reconfiguration request, which is
voted (green voter). The result from the voter is wired through
a special T2H2 capability configuration interface to the con-
cerned capability register, masking the presence of up to f
faulty replicas.

VI. TOWARDS FAULT AND INTRUSION TOLERANT
MICROHYPERVISORS

We now turn our attention to the construction of Midir-
aware FIT microhypervisors, such as suggested in Fig. 1. Hy-
pervisor replicas execute on dedicated tiles, from where they
remotely configure the privileges of applications executing on
other tiles. Most of the other common OS-functionality (e.g.,
context switching, inter-process communication, (non-critical)
device access, etc.) can be left to the application and its kernel-
support libraries.

Midir gives the designer latitude to use incremental levels
of protection for individual operations or sets thereof. On one
extreme, configurations may be allowed where all accesses are
direct, and thus unprotected by voting.

On the other extreme, the highest level of protection, while
retaining the flexibility of a manycore system, eliminates all
software-level single points of failure2 by subjecting all critical
operations to voting. We focus on this facet. The replicated
microhypervisor offers a system-call interface executed by
its replicas, entering a service loop and maintaining data
structures used to handle system call requests, which they
receive from applications, other replicas (e.g., requesting a
privilege they lack for executing a system call) or from
hardware (e.g., triggered by device interrupts).

Remembering that the unit of fault containment in Midir
is the tile (equivalent to a node in a distributed system)
the essential requirement for a fault tolerant microhypervisor
design is that the replicas behind critical operations are placed
in different tiles, such that they communicate by messages, are

2Modulo Midir’s T2H2, which, justified through its simplicity, we assume
will not fail.

subject to T2H2 access control, and converge on the necessary
votes as dictated by the algorithm. In order to fully enjoy
the baseline functionality provided by Midir, a few additional
design principles should be followed:

• P.1 Impersonation prevention: Correct replicas must
deny any operation with a replica identifier that is already
in use (T2H2 voting relies on identifying the individual
replicas through their capability).

• P.2 Bypass prevention Correct replicas must deny any
operation attempting to grant direct write access to a
consensual-update-only object (Sec.V-B).

Let us illustrate the design with the example of reallocat-
ing the tile to a different application. Signaling the tile, an
application-specific library may save the state necessary to
resume execution (e.g., utilizing memory assigned for this
purpose). The actual switch then proceeds by resetting the tile
followed by installing the capabilities the new application’s
library needs, in order to load its state. Obviously, reset (and,
as we have seen, privilege change) is a critical operation,
which must be performed consensually to prevent compro-
mised kernel replicas from prematurely stopping applications.
Channeling such critical operations to voters and confining
access with capabilities prevents faulty replicas from causing
harm, since, as long as no more than f replicas become
compromised, a correct majority out of the n = 2f + 1
replicas will outvote these operations. This turns system-call
execution into updates of replicated state and a sequence
of voted operations, which we shall later call subordinate
votes. This works as well with any other replicated critical
software, even firmware such as in SGX (e.g., preventing
enclave misconfiguration) or device drivers, when interacting
with the physical world. Replies to system calls must also be
voted upon, given that hypervisor replicas, by nature, act on
behalf of multiple applications, possibly storing information
of one that must not be revealed to others.

The above is of course true provided replicas have reached
agreement on the system call to execute and on the parameters
with which the client application has invoked this call. A
further role of the service loop is therefore to reach consensus
on system call execution order and parameters. From our
evaluation (Sec. VIII) we found that Midir’s support for
consensually executing critical operations also provides for
accelerating the BFT protocol that the kernel replicas must
execute to reach this agreement.

A. Consensual System Calls

Fig.3 provides a more detailed picture of how T2H2’s voters
and capability registers contribute to a FIT hypervisor’s service
loop reaching consensus on the system call to execute.

The service loop utilizes two data structures: a consensually
updated ringbuffer — the syscall log — records agreed upon
system calls and its parameters to give kernel replicas the
opportunity to learn about those agreed upon. Otherwise, this
information would only be available to the agreeing quorum
of f + 1 replicas and if faulty replicas participate there, but
refuse to execute the system call later on, too few correct

5

Fig. 3. Read-shared, consensually updated data structures used by the kernel:
system calls are recorded in the syscall log, the error log keeps voting error
information, a capability space holds an application’s capabilities (Sec.VIII).

replicas would have obtained this knowledge to complete the
system call. Similarly, the service loop utilizes an error log to
protect error information from getting lost in premature resets
of the voter. Updates of the syscall and error logs are made
through dedicated voters: vlog and verr , respectively.

Macroscopically, clients place system-call requests in au-
thentic buffers, which the kernel replicas poll3 for new
requests. Consensual privilege change allows creating such
buffers by granting write access to a single client, but to no
kernel replica. The leading kernel replica proposes one such
system call by initiating a vote with vlog , which followers
introspect and agree or deny. Once written to the syscall log,
replicas proceed by executing the system call and the votes
for its critical operations. We call these subordinate votes as
they depend on the main vote, logging the system call. That
is, no correct replica will engage in a subordinate vote unless
the system call has been logged. Subordinate votes include at
least replying to the client and advancing the syscall log to
the next free slot. They are performed utilizing a set of voters
V = {v1, . . .} that is disjoint from {vlog , verr}.

We make no assumptions on the order in which replicas
update their local state (even transactional or speculative
updates are imaginable). However, to simplify tracing the
progress of the system call (and in turn the code that late
or rebooted replicas have to execute to catch up), we require
subordinate votes to be executed in the same order by all
replicas and assume that this order is completely specified by
the system-call parameters.

Our rationale for agreeing on the system call first is to
circumvent a fundamental problem of consensus protocols
without authenticators: the impossibility to diagnose faults if
messages can be altered during multicast operations [33]. In
our setting, cryptographic operations would come at overpro-
portionally high costs relative to the speed of the transport
medium (the NoC). We therefore avoid sending unforgeable
authentication tokens (e.g., HMACs) and instead exploit the
authentication we obtain from a client being the single writer
of its request buffer. Additionally, clients maintain write access

3 Sleep/wake protocols can be used in periods where no requests are
pending.

1 agreement:
2 seqi := vi.seq
3 i f (replica = seqimod n) {
4 // leader
5 vi.propose(op, seqi)
6 } e l s e {
7 // follower
8 wait f o r leader proposal: op
9 validate op
10 i f (valid) vi.confirm(op, seqi)
11 e l s e vi.decline(op, seqi)
12 }
13 // all
14 wait f o r f + 1 replicas to
15 agree/disagree/timeout

Fig. 4. Generic voting pattern used in the service loop and when executing
system calls.

to their request buffers. Thus, they can change the request
after the leader has proposed it, but before followers validate
it, which makes it impossible for followers to distinguish
whether the leader proposed a wrong system call or whether
the leader proposed the client’s original suggestion, but the
client changed it afterwards. In consequence, they cannot dif-
ferentiate faulty clients from faulty leaders to provably identify
the leader as faulty. We omit error diagnosis for the system-
call vote to regain it when we need it: in the subordinate votes
for reaching agreement on critical operations.

The following details the protocols the hypervisor replicas
execute to reach consensus on and execute system calls. Lever-
aging the generic voting pattern in Fig.4, replicas first reach
agreement on the system call (Fig.5) to then consensually
perform critical updates during its execution (Fig.6).

B. Generic Voting Pattern

Fig.4 shows the generic pattern and how replicas interact
with voters. Evaluating the sequence number vi.seq of voter
vi, replicas identify the leader as the replica with identifier
vi.seq mod n in its capability. The leader proposes a request
by invoking its vote capability to write operation op to its voter
buffer, which the voter prevents from being changed once the
leader marks this proposal as complete. Followers wait for the
leader to complete its proposal to then validate the operation
and express their agreement/disagreement (by submitting the
operation they saw or by writing the corresponding value to
the agreement vector (see Sec.VII)).

C. System Call Vote

In Phase 1, replicas first agree on the system call to execute
following the generic pattern above. In Phase 2, they then vote
on critical operations. Fig.5 shows the pseudocode for system-
call agreement. Lines 16–23 illustrate the client invocation
pattern discussed above. The leader selects a pending system
call (Line 26) with valid opcode (Line 27) and prepares the
entry to log. To prevent equivocation during subordinate votes
(e.g., attempts to trick a replica into proposing the next system
call without completing the current one), we enforce some
additional principles:

6

16 client ck:
17 write m := syscall opcode + parameters
18 to ck’s request buffer
19 wait f o r reply in ck’s response buffer

20 hypervisor replica HVi:
21 service loop:
22 poll all client buffers
23 remember new request (m, ck) as pending

24 on pending request:
25 // leader
26 (m, ck) := pending.remove_head
27 i f (m is invalid syscall)
28 skip to next pending request
29 VS := ∅
30 f o r each voter vi used to execute m
31 // collect voter sequence numbers
32 introspect vi to read seqi := vi.seq
33 VS := VS ∪ {(vi, seqi)}
34 // follower
35 i f (pending requests 6= ∅)
36 set timeout
37 // all
38 vlog.agree_on (‘‘write(log, 〈m, ck,VS〉)’’)
39 with validate :=
40 (m 6= request from client ck) ||
41 (vlog .seq 6= seq log) ||
42 (seqv 6= v.seq, where (v, seqv) ∈ VS))
43 i f (at least one replica disagrees)
44 vlog.vote_for_reset()
45 i f (not f + 1 agreement)
46 repeat vote
47 execute m

Fig. 5. Service loop - Phase 1: agree on next system call to execute

• P.3 Coordinated subordinate votes: correct replicas vote
only on subordinate voters (vi ∈ V) to execute the current
system call.

• P.4 Presence of correct replica: no voted operation
succeeds without at least one correct replica.

We enforce P.4 by requiring quorums of at least f+1 matching
votes, while preventing impersonation (c.f., P.1 in Sec.VI). In
combination, these principles ensure that subordinate voters
vi ∈ V will keep their state while in Phase 1 (including
their sequence numbers). By agreeing, alongside the system
call, on the first sequence number of all voters used in this
system call (collected in Lines 29–33 in the set VS and
validated in Line 42), we ensure that all replicas know all
sequence numbers to start with in subordinate votes, even if
they have been lagging behind. In the absence of errors, the jth

subordinate vote on vi will be executed with sequence number
seq i + j, assuming (vi, seq i) ∈ V S was the start sequence
number of vi. This agreement on the initial sequence number
then allows for a simpler progress tracking in Phase 2, when
executing subordinate votes.

Because of the impossibility in Sec.VI-A, system-call votes
operate with reduced error diagnostics: replicas reset vlog if
it got suspended after disagreement (Lines 43, 44) and repeat
votes for pending system calls unless they fail for all client-
leader combinations, in which case they exclude this client.

48 HVi.vote (log, vi, seqi, req, m, dest) {
49 i f (syscall_log.log 6= log)
50 return success
51 i f (vi.seq 6= seqi)
52 i f ((err[vi].log 6= log) ||
53 (err[vi].req 6= req) ||
54 (err[vi].eseq > seqi + 1))
55 return success
56 push_error_and_reset_voter
57 i f (!err[vi].success)
58 repeat vote with seqi + 1
59 // HVi is up to speed with the others
60 vi.agree_on(‘‘write(dest, m)’’) with seqi
61 and validate := (m, dest) is valid
62 i f (at least one replica disagrees)
63 push_error_and_reset_voter
64 initiate recovery
65 i f (f + 1 agreement)
66 return success
67 repeat vote with seqi + 1
68 }
69 push_error_and_reset_voter:
70 error := introspect(vi)
71 verr.agree_on(‘‘write(err[vi], error)’’)
72 with validate :=
73 adjust own error information
74 (proposed error = own error)
75 i f (error vote fails)
76 verr.vote_for_reset(eseq)
77 repeat pushing the error
78 vi.vote_for_reset(seqi)

Fig. 6. System call execution - Phase 2: subordinate votes and error handling

D. Subordinate Votes

The code for executing subordinate votes in Fig.6 has to
solve two problems: (i) preserve determinism despite errors
and (ii) prevent replicas from prematurely resetting voters.
From reaching agreement on the system call, we know that
the first subordinate vote on vi starts with seq i because
(vi, seq i) ∈ VS . As such, without errors, the jth subordinate
vote on vi happens with sequence number seq i+ j. The same
applies to votes with at least one disagreeing replica that
all received f + 1 agreement because, after the voter resets
(Line 62), they are not repeated (Line 66). The key for lagging
replicas to catch up in case of error is to make sure they learn
about all errors, so that they know how many times a vote
was repeated and when it was successful. Assume the kth

subordinate vote (k < j) was the last to fail with seqki , then
k completed with seqki + 1 and the system call progressed to
subordinate request j if vi.seq − seqki = j − k.

Solutions to the second problem address the point that all
replicas must learn about errors. With n = 2f + 1 and |Q| =
f + 1, up to n − |Q| = f replicas may lag behind while
the remaining |Q| progressed to another subordinate request
or even to another system call. In particular, faulty replicas
may fail a subordinate vote but agree to reset the voter, which
erases the error information about the failed vote from the
voter and leaves behind as few as a single correct replica to
know about the error. This scenario occurs if f faulty and
one correct replica resets the voter before others diagnosed it.
Clearly, without costly cryptographic information, the honest
replica cannot convince others about what has happened. The

7

following design principle solves this problem by preventing
premature resets before error information is pushed to the error
log.

• P.5 No reset before error logging: correct replicas reset
subordinate voters only after the error got logged.

This error state contains information about the current system
call, i.e.: the system-call entry log ; the subordinate vote req ;
the sequence number of the voter vi; the point where it failed
eseq and which replicas agreed/disagreed. In consequence,
lagging replicas can validate if the current subordinate vote
succeeded (Lines 52–55) and, if not, who was responsible for
it to fail. Voter vi prevents destructive writes until it is reset,
which P.5 and P.4 ensure happens only after error information
was written to the log. Non-destructive writes are updates of
empty buffers respectively updates of the agreement vector
from timeout to agree/disagree and from empty to any of these
three.

The argument for why the problem does not recur with
the nested vote for logging the error state is as follows: (i)
The state to push is held in the voter vi. Therefore, even if
a replica lags behind, finding vi suspended, it knows what
information to write to the log. (ii) Because of P.5, and because
at least f + 1 replicas are required (P.4) for votes to succeed,
the only way to make progress is by writing correct error
information. Therefore, either faulty replicas agree to writing
correct error information or eventually correct replicas catch
up and write correct information. The exact information seen
by the replicas may differ depending on the time they read
it, i.e., in late reads, more replicas may have expressed their
consent or disagreement. However, it will always contain at
least the consensual result of the vote (i.e., whether f + 1
replicas agree, disagree or timed out) and, in the former two
cases, it identifies at least one replica that diverges from the
majority (the leader, in case of f + 1 disagreement). This
replica is proven faulty. Followers, reading error information
after the leader and finding proposals of additional replicas,
downgrade their own information to that of the leader after
validating it as described above (Line 73). Repeating the vote
while rotating the leader ensures that valid error information
is proposed latest after f retries. It then suffices to reset
verr , whenever it becomes suspended (Line 76). Once error
information is pushed, replicas vote to reset the voter vi for
the subordinate vote (Line 78) and continue executing it.

VII. IMPLEMENTATION

The implementation of capability invocation is standard
(c.f. [18]): T2H2 intercepts external operations, looks up the
capability in the capability register file, and forwards the
operation to the NoC after the privilege check succeeds,
silently dropping the operation otherwise. Replica IDs are
communicated as labels in the capability [34], which T2H2
inserts as additional parameter into the operation.

Our voter implementation is driven by the following con-
siderations and their impact on functional simplicity.

Fig. 7. Internal structure of a voter. One, resp. n buffers hold the message of
replicas to vote upon and size its length. f defines the fault threshold, seq
is a voter maintained sequence number. The agreement and reset vector are
described below.

A. Buffered vs. Unbuffered Votes

Perhaps most impactful is the decision to buffer votes to
allow replicas to make their proposals without first having
to synchronize on the time when the signal for such a vote
must be held. Although buffering increases the complexity
of the voter, it decouples replicas, allowing them to act in a
partially synchronous fashion and, as long as different voters
are used, even partially out-of-order4. Buffering votes is ideal
in a NoC architecture, since votes are transmitted as normal
messages. Tiles can continue executing once the message is
sent. We therefore implement voters to contain buffers for
storing proposals from the different replicas for the current
vote executed with this voter.

B. Immediate vs. Deferred Masking

A similarly impactful decision is whether voters should be
able to mask faults immediately. Alternatively, voting can be
repeated until a valid proposal is made. The consequences,
besides time to agreement, are the amount of memory needed
for buffering votes vs. the complexity of the voter logic.

To mask faults and reach agreement immediately after
|Q| = f + 1 matching proposals arrive, the voter needs to
buffer suggestions from at least f + 1 replicas. Since up to f
such messages may be wrong and because the voter can only
find out after receiving f+1 matches, buffer space for at least
f + 1 messages is needed to not have to repeat the vote.

We implemented two variants of T2H2 voters to evaluate
the resource/performance trade-off at the two extremes of
this spectrum. Our n-buffer variant (Fig.7 a) implements one
message buffer per replica. Each time a message arrives, it is
compared against all other stored messages and the operation
applied once f + 1 buffers match. Our single-buffer variant
(Fig.7 b) trades agreement time for a more resource-efficient
implementation: there is only one buffer; and only the current
leader is granted write access to this buffer. The single-buffer

4 To simplify monitoring of the progress of a system call, we shall later
require that all replicas execute the critical operations of each system call in
the same order. Operations of different system calls need not be constrained in
this way, and, at the cost of a more complex progress tracking, this requirement
can be further relaxed to: same order as far as a single voter is concerned.

8

voter follows a leader-follower voting scheme, with the leader
proposing a vote and followers validating this proposal. To
prevent inconsistency, the voter prevents modification of the
leader proposal once the leader marks the proposal as ready.
This allows follower replicas to introspect the stored message
and express their agreement/disagreement. For this purpose,
the single-buffer voter implements an agreement vector with
one (initially empty: −) tri-state cell for each replica to express
agreement A or disagreement D. Now, one of three things may
happen when replicas propose:

(i) a majority of f + 1 or more replicas disagree with
the leader proposal. In this case, the leader proposal is
considered invalid and the operation is not applied; or

(ii) a majority of at least f+1 replicas agree. In this case, the
proposal is accepted and the voter applies the operation
in its buffer.

(iii) the operation times out without a majority of replicas
agreeing / disagreeing. In this case, the replicas record
this error and repeat the vote after rotating to the next
leader.

The n-buffer version requires logic circuits for pairwise
buffer comparison whereas in the single-buffer version a 2
data-bit majority gate over the agreement vector suffices.

C. Internal vs. External Error Handling

The third question is whether the voter itself should include
provisions for diagnosing errors and for informing replicas
about them. Errors are detected when one replica diverges with
the majority decision. Voter-initiated error handling translates
to the voter tracing back to the voting replicas’ cores to iden-
tify where to deliver error-handling interrupts. The expected
complexity discourages such a solution. We therefore offload
error handling to software and support replicas by a means to
track progress (the sequence number seq) and by suspending
voting after detecting a mismatch. In this situation, seq does
not advance but the voter may still apply the operation (in case
of f+1 agreement). Replicas introspect the voter registers and
buffers to diagnose the error, by looking for divergences.

To resume execution of suspended voters, replicas reset the
voter, which clears all buffers and the agreement and reset
vectors and advances the sequence number by one. Reset itself
is a voted operation over the reset vector, which contains one
bit per replica. The voter resets once f+1 bits in this vector are
set. Although this quorum guarantees that at least one correct
replica agrees to resetting the voter, it does not prevent faulty
replicas from resetting the voter prematurely, that is, before all
correct replicas were able to retrieve the error state. P.5 and
the protocol in Sec.VI-D handles this corner case.

D. Dimensioning Voters

The last question we discuss here is: for how many faults
should the voter hardware be laid out. Since we aim at
implementing voters in silicon, we have to make this choice
at system design time to dimension buffers and vectors large
enough for the maximum number of faults to tolerate (fmax).
However, to not always have to execute at this maximum

replication degree, a fault threshold f ≤ fmax of voters can
be configured at boot time. For instance, if the system should
tolerate up to fmax = 3 faults, it needs to be dimensioned to
have nmax = 2fmax + 1 = 7 fields in the vectors (and nmax

buffers, assuming n-buffer voters). This voter can be operated
at any fault threshold 0 ≤ f ≤ fmax .

The voter design has been kept simple enough, and de-
coupled enough from the surrounding logic. As such, we can
expect with high confidence that T2H2 can be implemented
and shown correct, as well as stay functional even when the
tile it is associated with fails.

VIII. EVALUATION

As an early validation of our proposal, we have implemented
T2H2 in both voter variants in VHDL on a Zynq-7 ZC702
Evaluation Board. We instantiated 3 Microblaze cores as tiles,
running at 50 MHz, each with one T2H2, connecting the
tiles through T2H2 with an AXI interconnect (serving as
the NoC). We measured the performance of the service loop
(Fig. 5) to agree on and execute client-invoked system calls
for granting and priming capabilities. Grant (L4.map [35])
copies capabilities between capability spaces and prepares for
later revocation. Prime consensually copies a capability from
the client’s capability space into a T2H2 capability register,
where it is ready for invocation. We have measured the per-
formance of grant and prime in two different implementations
of capability spaces5: (i) as a private data structure in each
replica, requiring, in the case of prime, only the vote to install
capabilities and two further to reply to the client and mark the
system call as finished; and (ii) as a read-shared, consensually
updated data structure, trading off speed for a smaller memory
footprint by introducing additional votes for track keeping.

As baselines, we compare to a cross-tile invoked singleton
kernel (horizontal line), executing the same system calls on
its private state, with 1637 cycles for grant (1977 cycles for
prime) and to a shared-memory variant of MinBFT6 requiring
242824 cycles to agree on a system call. Our agreement
protocol outperforms MinBFT by one order of magnitude.

1) Per-Replica Capability Space: Figure 8 shows the av-
erage performance of the grant and prime system calls in
a per-replica capability space implementation relative to the
two baselines: null and a singleton kernel instance performing
these system calls in a non-consensual manner. Shown are the
system calls broken down into individual votes and the Q5 /
Q95 percentiles of the overall measurements.

The minimal costs for learning about a system-call request
and executing it are 1571, 1637 and 1977 cycles on average
for null, grant and prime, respectively, which is the baseline of
the singleton kernel. System calls for the single buffer version
have a factor 8.9 – 9.6 increase, which can be explained due to
the voter not benefiting from caching. Whereas the singleton
kernel merely has to copy one request from the memory where
the client core places it, missing in all caches in the process,

5Container object for an application’s capabilities.
6 We omit client signatures in favor of authentic buffers, but implement

UIs with HMACs. USIGs can be accessed without overhead.

9

Fig. 8. Average execution times of the three consensual system calls —
null, grant and prime — when executed on a per-replica capability space
implementation. System calls are broken down into the individual votes for
agreeing on the system call and for performing the critical updates required.
Shown are also the Q5 / Q95 percentile and the average costs of executing
the respective system calls on a singleton-kernel.

Fig. 9. Average execution times of the three system calls for consensually
updated capability spaces.

following replicas have to poll the voter to wait for the leader
to make a proposal and then confirm (or reject) the proposal
made. Each such voter access amounts to costs equivalent to
a cache miss.

As can be seen, reaching agreement on the subordinate votes
is much faster, which is due to the fact that replicas already
align themselves when reaching agreement on the system call
to execute.

In the n-buffer version of the voter, higher costs occur
during the agreement on the system call, which is due to the
writing of the complete request to the voter, not just setting
a bit in its agreement vector. However, subordinate votes are
much faster, since replicas no longer wait for the leader to
make a proposal. Instead, they just propose what should be
written as critical operation.

2) Consensually Updated Capability Space: Figure 9
shows a similar diagram as Figure 8, this time, however, for
consensually updated capability spaces. Granting and priming
capabilities now require additional votes to update the data
structure.

Again, the 6.7 (/ 7.3) times slower performance relative to
the singleton kernel can be explained due to the voter not
benefiting from caching:

Singleton kernel: System call execution is triggered by the
client writing to shared memory on one core and the kernel
(on another core) reading it. From then on, all the operations

N-buffer voter

Fig. 10. System calls broken down into individual votes. Shown are the Q5
and Q95 percentile for the main system call vote and each subordinate vote
for n-buffer voters. The variations for single-buffer voters are similar.

Fig. 11. Code size in lines of C++ / VHDL code (logic/total).

happen locally in the core of the kernel without any interaction
with the outside. Therefore, all memory operations aside from
the invocation and reply hit in the core’s cache, which in
our setting responds within 1 cycle. The cross-core operations
(invocation (1) + reply (2)) dominate these costs.

Replicated kernel: System call execution starts as well with
invocation (1), but then, the leader needs to propose the request
(2), followers validate it and (3) express agreement (4) upon
which the voter updates the memory and all replicas wait
for the vote to reach agreement (5). In (i), we then execute
locally, but for replying (to not introduce storage channels)
we have to repeat at least (4) + (5), assuming n-buffer voters.
As such, even without any delays, we have 7 cache misses
vs. 2 in the singleton kernel execution, hence a factor of 3.5.
Additionally, more voter accesses are performed to read the
sequence number, which we need for flow control.

To confirm that variations in fact originate from the agree-
ment on the system call to execute, we have broken down
system call execution into their individual votes and measured
their Q5 and Q95 percentile. Fig. 10 shows these values.
As expected, subordinate votes remain close to their average
execution times, whereas agreement on the system call varies
significantly.

Fig. 11 lists the code size (excluding initialization) for the
service loop, for consensually executing critical operations and
for interfacing with the capability registers. Also shown are
the VHDL source lines of code for the logic and the overall
design of the voter and capability unit. As can be seen, the
amount of code that each replica executes for the above grant

10

Fig. 12. FPGA resources required by T2H2 (without / with AXI interface).

and prime system call is well below 1000 lines of code. Faults
in this code are masked by the majority of replicas outvoting
faulty replicas in critical operations. Similarly, the hardware
overhead is just above 400 lines of VHDL code for the logic
plus 2411 lines of VHDL for connecting the logic to the AXI
interface and for mapping the corresponding internal signals.

Fig.12 shows the FPGA resources of the (post-synthesis)
implementation of our components. LUTs are units with no
state, used to implement the combinatorial logic; while regis-
ters hold state, e.g, to keep buffer contents, but implement no
logic. Each F7 Mux (wide multiplexer) combines the outputs
of two LUTs together, while F8 Muxes combine the outputs
of two F7 Muxes.

Notice that the absolute resource requirement of T2H2 will
not increase significantly if more complex cores are to be
controlled. Hence, the relative overhead will shrink when more
complex tiles are considered.

IX. RELATED WORK

In this section, we present several classes of works that
motivated Midir: low-level approaches for detection and con-
tainment of errors in low-level support software; analyses of
the evolution of defects in system support software; attempts
at preventing and/or mitigating the resulting errors and po-
tential failures; approaches to replication-based fault/intrusion
tolerance and resilience.

Mitigation measures have been studied for detection and
containment of errors in OS and manycore support soft-
ware [36]–[38] through an underlying, assumed-trustworthy
layer. However, they still have a non-negligible complexity,
and in consequence, even a residual fault or vulnerability
rate in these supposedly trusted components may breach the
platform’s dependability and security goal.

In fact, as confirmed by [39], “simple” components with
at least a few KLOCs have a non-negligible statistical fault
footprint. Other studies [40], [41] reveal between 1–16 bugs
per 1,000 lines of code go undetected before deployment, even
in well-tested software, and operating-system kernels form no
exception [42], [43]. Recent insights [44] reveal that faults
in stateful core subsystems — on which we focus here —
outrank driver bugs in severity. Minotaur introduces a toolkit
to improve the analysis of software vulnerability to hardware
errors by leveraging concepts from software testing [45].

Many approaches target operating systems with the goal
of improving their resilience against faults. However, typ-
ically they protect either applications [46]–[48] or specific

OS subsystems [49]–[52] and only from accidental faults.
Efforts for providing whole-OS fault tolerance include [53]–
[59]. Furthermore, the complexity of these recovery kernels
is comparable to that of a small hypervisor. For example,
OSIRIS [57] directs OS recovery to a 29 KLOC reliable
computing base (RCB) [60], roughly twice the size of modern
microkernels [12], [22], [35], [61]. Again, this makes the
likelihood of residual faults or vulnerabilities non-negligible.

Several other works have given early steps in the direction
of the solutions we advocate in this paper, minimizing the
threat surface, or enforcing isolation. Nohype [62] removes
all but a small kernel substrate from application cores, which
run functionality-rich OSs in virtual machines (VMs), reducing
the threat surface. Cap [18] and M3 [22] exploit hardware
capability units and Hive [21] a bus-level firewall to isolate
VMs at tile granularity. However, although this avoids trusting
tile-local kernel substrates for isolation, their configuration
interface, which is necessary to retain flexible resource sharing,
turns the configuring kernel into a single point of failure. We
address this problem in Midir.

Cheri [7] adds capability protection on top of page-based
protection, but includes the MMU and the OS page-table man-
agement in the reliable computing base (RCB), which means
the former must be trustworthy. The concept behind Midir is
independent of the protection model, not being necessarily tied
to e.g., capabilities. Also, establishing the fault containment
domains at the granularity of tiles, we are agnostic about
the semantics and interplay of tile-internal and/or core-level
components, e.g., MMUs, memory protection or page-table
management. Enforced by T2H2, the protection mechanisms
are crafted at inter-tile level, emulating the spacial isolation of
distributed system nodes.

Replication has been used before in closely-coupled sys-
tems, primarily to tolerate accidental faults in cyber-physical
systems (CPS), by replicating controllers to form triple modu-
lar redundant (TMR) units, or duplicated self-checking units.
An example of the use of TMR in highly critical systems can
be seen in the primary flight computers of Boeing 777’s fly-
by-wire (FBW) system [63]. In a similar context, a form of
passive redundancy can also be seen in Airbus’ dependability-
oriented approach to FBW, where ”hot spares” are used in case
the active computer interrupts its activity [64]. The concept
was extended to multi-phase tightly synchronous message-
passing protocols still in the CPS domain [65], [66]. The so-
called ’Paxos’ [67], and ’Byzantine’ [68] Fault-Tolerant State-
Machine Replication classes of protocols promote resilience
to threats, respectively accidental, and both accidental and
malicious, extending the concept to generic classes of ap-
plications, namely in loosely-coupled systems. For example,
Castro’s seminal BFT-SMR protocol [68] masks the actions
of a minority of up to f compromised replicas, by reaching a
majority voted consensus of |Q| = 2f + 1 out of n = 3f + 1
replicas. Behind all the categories of techniques above is a
baseline voting mechanism amongst the values proposed by
a pre-defined number of replicated fault-independent compo-
nents. Midir offers such baseline mechanism at a low enough

11

level of abstraction to serve essentially any replication-oriented
application.

Architectural hybridization [17] (i.e., the inclusion of
trusted-trustworthy components that follow a differentiated
fault model) allows reducing n and |Q| to 2f + 1 and f + 1,
respectively [30], [69]–[71]. The implementation of T2H2, the
Midir hybrid, draws from these quorum reduction results, and
further accelerates the BFT-SMR protocol that Midir-enabled
FIT microhypervisors use to coordinate system-call execution
(Sec. VI).

Paxos and BFT replication have been attempted as well
inside MPSoCs [38], [72]–[75]. However, all these works were
made under the assumption of a trusted low-level kernel (e.g.,
hypervisor or platform manager), which obviously is a single
point of failure (SPoF). One of the key results of Midir lies
in the realization of the distributed system-on-a-chip (DSoC)
vision, which enables such replication management techniques
in MPSoCs, whilst removing the SPoF syndrome of the low-
level kernel.

X. CONCLUSIONS AND FUTURE WORK

We have introduced Midir, an architectural concept which
breaks new ground and opens promising avenues in the appli-
cability and resilience of manycore architectures (MPSoC).
Through minimalist mechanisms integrated in the MPSoC
architecture, Midir frees MPSoCs from the SPoF syndrome,
fulfilling the vision of distributed systems-on-a-chip (DSoC).

In this paper, we show in particular that Midir-enabled
DSoCs achieve a quantum step towards off-the-shelf chip
resilience, since these mechanisms are generic enough to
support, in-chip and with high reliability, a large variety of the
protection and redundancy management techniques normally
implemented in software at higher layers in ’macro’ systems.
To convincingly prove our point, we exemplified and evaluated
an implementation, over Midir, of the most complex version
of our solution set: a Byzantine fault tolerant microhypervisor.
We have shown the practicality of our concept, as having
quite satisfying performance, since it outperforms the highly
efficient MinBFT protocol by one order of magnitude. The
low overhead of our approach shows as well large promise
for future full hardware solutions.

Furthermore, Midir was intentionally designed as a non-
intrusive extension to current chip architectures, being an-
chored on simple and self-contained hardware extensions.
Taken up by a hardware manufacturer or integrator, it allows
a backward compatible, non-fracturing evolution. We hope
that our findings may be key to enhance general MPSoC
architectures towards distributed DSoCs and amongst other
avenues, lead to next-generation COTS resilient chips.

After this initial work, several questions remain to be
answered, namely on kernel design details, rejuvenation and
diversification for sustainability, and so forth, which leave
ample room for future work.

12

REFERENCES

[1] R. Price, “Facebook says it ’unintentionally uploaded’ 1.5 million
people’s email contacts without their consent,” Businessinsider.com,
April 2019.

[2] N. Yusof, “Personal data of 808,000 blood donors compromised for nine
weeks; hsa lodges police report,” TODAYonline, March 2019.

[3] D. Lee, “Myfitnesspal breach affects millions of under armour users,”
bbc.com, March 2018.

[4] J. Tsidulko, “The 10 biggest cloud outages of 2018,”
https://www.crn.com/slide-shows/cloud/the-10-biggest-cloud-outages-
of-2018, December 2018.

[5] R. M. Lee, M. J. Assante, and T. Conway, “Analysis of the cyber
attack on the ukrainian power grid,” E-ISAC: https://ics.sans.org/media/
E-ISAC SANS Ukraine DUC 5.pdf, month = March, year = 2016,.

[6] “Tesla’s autopilot has had its first deadly crash,” https://www.wired.com/
2016/06/teslas-autopilot-first-deadly-crash/, accessed: 2017-03-12.

[7] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
cheri capability model: Revisiting risc in an age of risk,” in Proceeding
of the 41st Annual International Symposium on Computer Architecuture,
ser. ISCA ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 457–468.

[8] M. Ermolov and M. Goryachy, “How to hack a turned-off
computer – or running unsigned code in intel management
engine,” in Black hat Europe, London, UK, Sept. 2017, avail at
https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-How-
To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-Code-In-Intel-
Management-Engine.pdf.

[9] “Recently reported xen/critix hypervisor vulnerabilities, documented in
cve-2019-18420, cve-2019-18421, cve-2019-18424, cve-2019-18425.”

[10] P. Kocher, D. Genkin, D. Gruss, W. Haar, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” ArXiv e-prints 1801.01203, Tech.
Rep., Jan. 2018, (see also: CVE-2017-5715, -5753, CVE-2018-3693,
-3640, -3639, -3665, -3615, -3620, -3646, -9056).

[11] M. Lipp, M. Schwart, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown (cve-
2017-5754),” ArXiv e-prints 1801.01207, Tech. Rep., Jan. 2018.

[12] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood, “seL4: Formal verification
of an OS kernel,” in SOSP 2009, J. N. Matthews and T. E.
Anderson, Eds. ACM, 2009, pp. 207–220. [Online]. Available:
http://doi.acm.org/10.1145/1629575.1629596

[13] S. Biggs, D. Lee, and G. Heiser, “The jury is in: Monolithic OS design
is flawed,” in Asia-Pacific Workshop on Systems (APSys). Korea: ACM
SIGOPS, Aug. 2018.

[14] S. Mullender, Ed., Distributed Systems (2Nd Ed.). New York, NY,
USA: ACM Press/Addison-Wesley Publishing Co., 1993.

[15] G. B. P. V. F. W. D. Powell, D. Seaton, “The delta-4 approach to
dependability in open distributed computing systems,” in 18th IEEE
International Symposium on Fault-Tolerant Computing (FTCS), June
1988, pp. 246–251.

[16] P. Verissimo, N. Neves, C. Cachin, J. Poritz, D. Powell, Y. Deswarte,
R. Stroud, and I. Welch, “Intrusion-tolerant middleware - the road to
automatic security,” Security and Privacy, IEEE, vol. 4, pp. 54 – 62, 08
2006.

[17] P. E. Verı́ssimo, “Travelling through wormholes: A new look at dis-
tributed systems models,” SIGACT News, vol. 37, no. 1, pp. 66–81,
Mar. 2006.

[18] R. M. Needham and R. D. H. Wilkes, “Domains of protection and the
management of processes,” The Computer Journal, vol. 17, no. 2, 1974.

[19] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith, “Con-
figurable isolation: building high availability systems with commodity
multi-core processors,” in International Symposium on Computer Archi-
tecture (ISCA), 2007, pp. 470–481.

[20] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee,
J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, , and
A. Agarwal, “Baring it all to software: Raw machines,” IEEE Computer,
pp. 86–93, Sept. 1997.

[21] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu,
and A. Gupta, “Hive: Fault containment for shared-memory
multiprocessors,” in Proceedings of the Fifteenth ACM Symposium
on Operating Systems Principles, ser. SOSP ’95. New

York, NY, USA: ACM, 1995, pp. 12–25. [Online]. Available:
http://doi.acm.org/10.1145/224056.224059

[22] N. Asmussen, M. Völp, B. Nöthen, H. Härtig, and G. Fettweis,
“M3: A hardware/operating-system co-design to tame heterogeneous
manycores,” in Architectural Support for Programming Languages and
Operating Systems. Atlanta, GA, USA: ACM, April 2016.

[23] A. Avizienis, L. Chen et al., “On the implementation of n-version
programming for software fault-tolerance during program execution,”
1977.

[24] J. C. Knight and N. G. Leveson, “An experimental evaluation of
the assumption of independence in multiversion programming,” IEEE
Transactions on software engineering, no. 1, pp. 96–109, 1986.

[25] M. K. Joseph and A. Avizienis, “A fault tolerance approach to computer
viruses.” in IEEE Symposium on Security and Privacy. Oakland, CA,
USA, 1988, pp. 52–58.

[26] S. Ogg, B. Al-Hashimi, and A. Yakovlev, “Asynchronous transient
resilient links for noc,” in Proceedings of the 6th IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System
Synthesis, ser. CODES+ISSS ’08. New York, NY, USA: ACM, 2008,
pp. 209–214. [Online]. Available: http://doi.acm.org/10.1145/1450135.
1450182

[27] C. Colman-Meixner, C. Develder, M. Tornatore, and B. Mukherjee, “A
survey on resiliency techniques in cloud computing infrastructures and
applications,” IEEE Communications Surveys Tutorials, vol. 18, no. 3,
pp. 2244–2281, thirdquarter 2016.

[28] P. Yang, Q. Wang, W. Li, Z. Yu, and H. Ye, “A fault tolerance noc
topology and adaptive routing algorithm,” in 2016 13th International
Conference on Embedded Software and Systems (ICESS), Aug 2016,
pp. 42–47.

[29] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and
P. Verissimo, “Efficient Byzantine Fault Tolerance,” IEEE Trans.
Comput., vol. 62, no. 1, pp. 16–30, Jan. 2013. [Online]. Available:
http://dx.doi.org/10.1109/TC.2011.221

[30] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V.
Mohammadi, W. Schröder-Preikschat, and K. Stengel, “CheapBFT:
Resource-efficient byzantine fault tolerance,” in Proceedings of the 7th
ACM European Conference on Computer Systems, ser. EuroSys ’12.
New York, NY, USA: ACM, 2012, pp. 295–308. [Online]. Available:
http://doi.acm.org/10.1145/2168836.2168866

[31] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel,
“Inktag: Secure applications on an untrusted operating system,”
SIGPLAN Not., vol. 48, no. 4, pp. 265–278, Mar. 2013. [Online].
Available: http://doi.acm.org/10.1145/2499368.2451146

[32] V. Costan and S. Devadas, “Intel SGX explained,” Massachusetts Insti-
tute of Technology, Tech. Rep., 2016, https://eprint.iacr.org/2016/086.pdf
(Accessed: 2016-07-22).

[33] L. Lamport, R. E. Shostak, and M. C. Pease, “The byzantine generals
problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401,
1982. [Online]. Available: http://doi.acm.org/10.1145/357172.357176

[34] N. Hardy, “Keykos architecture,” SIGOPS Oper. Syst. Rev., vol. 19, no. 4,
pp. 8–25, Oct. 1985.

[35] J. Liedtke, “On micro-kernel construction,” in SOSP 1995, M. B.
Jones, Ed. ACM, 1995, pp. 237–250. [Online]. Available: http:
//doi.acm.org/10.1145/224056.224075

[36] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig, “Trustvisor: Efficient tcb reduction and attestation,” in 2010
IEEE Symposium on Security and Privacy, May 2010, pp. 143–158.

[37] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “Secvisor: A
tiny hypervisor to provide lifetime kernel code integrity for
commodity oses,” in Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, ser. SOSP ’07. New
York, NY, USA: ACM, 2007, pp. 335–350. [Online]. Available:
http://doi.acm.org/10.1145/1294261.1294294

[38] B. Döbel, “Operating system support for redundant multithreading,”
Ph.D. dissertation, Technische Universität Dresden, Dresden, Germany,
Nov. 2014.

[39] M. Hoffmann, C. Dietrich, and D. Lohmann, “Failure by Design:
Influence of the RTOS Interface on Memory Fault Resilience,” in
Proceedings of the 2nd GI Workshop on Software-Based Methods
for Robust Embedded Systems (SOBRES ’13), G. S. of Informatics,
Ed., 2013. [Online]. Available: http://www4.cs.fau.de/Publications/
2013/hoffmann 13 sobres.pdf

[40] T. J. Ostrand and E. J. Weyuker, “The distribution of faults in a
large industrial software system,” in Proceedings of the 2002 ACM

13

https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://www.wired.com/2016/06/teslas-autopilot-first-deadly-crash/
https://www.wired.com/2016/06/teslas-autopilot-first-deadly-crash/
http://doi.acm.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/224056.224059
http://doi.acm.org/10.1145/1450135.1450182
http://doi.acm.org/10.1145/1450135.1450182
http://dx.doi.org/10.1109/TC.2011.221
http://doi.acm.org/10.1145/2168836.2168866
http://doi.acm.org/10.1145/2499368.2451146
http://doi.acm.org/10.1145/357172.357176
http://doi.acm.org/10.1145/224056.224075
http://doi.acm.org/10.1145/224056.224075
http://doi.acm.org/10.1145/1294261.1294294
http://www4.cs.fau.de/Publications/2013/hoffmann_13_sobres.pdf
http://www4.cs.fau.de/Publications/2013/hoffmann_13_sobres.pdf

SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA ’02. New York, NY, USA: ACM, 2002, pp. 55–64.
[Online]. Available: http://doi.acm.org/10.1145/566172.566181

[41] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Where the bugs
are,” in Proceedings of the 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA ’04.
New York, NY, USA: ACM, 2004, pp. 86–96. [Online]. Available:
http://doi.acm.org/10.1145/1007512.1007524

[42] D. Patterson and A. Ganapathi, “Crash data collection: A windows case
study,” 3D Digital Imaging and Modeling, International Conference on,
pp. 280–285, 2005.

[43] R. Matias, M. Prince, L. Borges, C. Sousa, and L. Henrique,
“An empirical exploratory study on operating system reliability,” in
Proceedings of the 29th Annual ACM Symposium on Applied Computing,
ser. SAC ’14. New York, NY, USA: ACM, 2014, pp. 1523–1528.
[Online]. Available: http://doi.acm.org/10.1145/2554850.2555021

[44] N. Palix, G. Thomas, S. Saha, C. Calvès, G. Muller, and
J. Lawall, “Faults in linux 2.6,” ACM Trans. Comput. Syst.,
vol. 32, no. 2, pp. 4:1–4:40, Jun. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2619090

[45] A. Mahmoud, R. Venkatagiri, K. Ahmed, S. Misailovic, D. Marinov,
C. W. Fletcher, and S. V. Adve, “Minotaur: Adapting software testing
techniques for hardware errors,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2019, pp. 1087–1103.

[46] A. Depoutovitch and M. Stumm, “Otherworld: Giving applications
a chance to survive os kernel crashes,” in Proceedings of the 5th
European Conference on Computer Systems, ser. EuroSys ’10. New
York, NY, USA: ACM, 2010, pp. 181–194. [Online]. Available:
http://doi.acm.org/10.1145/1755913.1755933

[47] C. Bolchini, M. Carminati, and A. Miele, “Self-adaptive fault tolerance
in multi-/many-core systems,” J. Electron. Test., vol. 29, no. 2, pp.
159–175, Apr. 2013. [Online]. Available: http://dx.doi.org/10.1007/
s10836-013-5367-y

[48] D. Kuvaiskii, R. Faqueh, P. Bhatotia, P. Felber, and C. Fetzer, “Haft:
Hardware-assisted fault tolerance,” in 11th European Conference on
Computer Systems (EuroSys), London, UK, April 2016, pp. 1–17.

[49] S. Sundararaman, S. Subramanian, A. Rajimwale, A. C. Arpaci-
Dusseau, R. H. Arpaci-Dusseau, and M. M. Swift, “Membrane:
Operating system support for restartable file systems,” Trans. Storage,
vol. 6, no. 3, pp. 11:1–11:30, Sep. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1837915.1837919

[50] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy,
“Recovering device drivers,” ACM Trans. Comput. Syst., vol. 24, no. 4,
pp. 333–360, Nov. 2006. [Online]. Available: http://doi.acm.org/10.
1145/1189256.1189257

[51] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Harren,
G. Necula, and E. Brewer, “Safedrive: Safe and recoverable
extensions using language-based techniques,” in Proceedings of
the 7th USENIX Symposium on Operating Systems Design and
Implementation - Volume 7, ser. OSDI ’06. Berkeley, CA, USA:
USENIX Association, 2006, pp. 4–4. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1267308.1267312

[52] K. Elphinstone and Y. Shen, “Increasing the trustworthiness of commod-
ity hardware through software,” in 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2013.

[53] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum,
“Construction of a highly dependable operating system,” in Proceedings
of the Sixth European Dependable Computing Conference, ser. EDCC
’06. Washington, DC, USA: IEEE Computer Society, 2006, pp. 3–12.
[Online]. Available: https://doi.org/10.1109/EDCC.2006.7

[54] R. Nikolaev and G. Back, “Virtuos: An operating system with
kernel virtualization,” in Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, ser. SOSP ’13. New
York, NY, USA: ACM, 2013, pp. 116–132. [Online]. Available:
http://doi.acm.org/10.1145/2517349.2522719

[55] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell,
“Curios: Improving reliability through operating system structure,”
in Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 59–72. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855746

[56] A. Lenharth, V. S. Adve, and S. T. King, “Recovery domains: An
organizing principle for recoverable operating systems,” in Proceedings
of the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XIV.
New York, NY, USA: ACM, 2009, pp. 49–60. [Online]. Available:
http://doi.acm.org/10.1145/1508244.1508251

[57] K. Bhat, D. Vogt, E. v. d. Kouwe, B. Gras, L. Sambuc, A. S. Tanenbaum,
H. Bos, and C. Giuffrida, “Osiris: Efficient and consistent recovery of
compartmentalized operating systems,” in 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
June 2016, pp. 25–36.

[58] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum, “Cellular
disco: Resource management using virtual clusters on shared-
memory multiprocessors,” in Proceedings of the Seventeenth ACM
Symposium on Operating Systems Principles, ser. SOSP ’99. New
York, NY, USA: ACM, 1999, pp. 154–169. [Online]. Available:
http://doi.acm.org/10.1145/319151.319162

[59] D. Gens, “Os-level attacks and defenses: From software to hardware-
based exploits,” Ph.D. dissertation, Technische Universitt Darmstadt,
Dec. 2018.

[60] M. Engel and B. Dbel, “The reliable computing base: A paradigm for
software-based reliability,” in Workshop on SOBRES, 2012.

[61] A. Lackorzynski, A. Warg, M. Hohmuth, and H. Härtig, “L4re,”
https://l4re.org/doc/index.html, 2018.

[62] J. Szefer, E. Keller, R. B. Lee, and J. Rexford, “Eliminating the
hypervisor attack surface for a more secure cloud,” in Proceedings of
the 18th ACM Conference on Computer and Communications Security,
ser. CCS ’11. New York, NY, USA: ACM, 2011, pp. 401–412.
[Online]. Available: http://doi.acm.org/10.1145/2046707.2046754

[63] Y. C. Yeh, “Triple-triple redundant 777 primary flight computer,” in 1996
IEEE Aerospace Applications Conference. Proceedings, vol. 1. IEEE,
1998, pp. 293–307.

[64] P. Traverse, I. Lacaze, and J. Souyris, “Airbus fly-by-wire: A total ap-
proach to dependability,” in Building the Information Society. Springer,
2004, pp. 191–212.

[65] L. Mancini, “Modular redundancy in a message passing system,” IEEE
Transactions on Software Engineering, no. 1, pp. 79–86, 1986.

[66] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings
of the IEEE, vol. 91, no. 1, pp. 112–126, 2003.

[67] N. Schiper, V. Rahli, R. Van Renesse, M. Bickford, and R. L. Consta-
ble, “Developing correctly replicated databases using formal tools,” in
2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. IEEE, 2014, pp. 395–406.

[68] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,” in 3rd
Symposium on Operating Systems Design and Implementation. New
Orleans, USA: ACM, Feb. 1999.

[69] M. Correia, N. F. Neves, and P. Verissimo, “How to tolerate half less one
byzantine nodes in practical distributed systems,” in Proceedings of the
23rd IEEE International Symposium on Reliable Distributed Systems,
2004., Oct 2004, pp. 174–183.

[70] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda, “TrInc: Small
trusted hardware for large distributed systems.” in NSDI 2009, vol. 9,
Boston, Massachusetts, USA, 2009, pp. 1–14.

[71] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and
P. Verissimo, “Efficient byzantine fault-tolerance,” IEEE Transactions
on Computers, vol. 62, no. 1, pp. 16–30, Jan. 2013. [Online]. Available:
http://dx.doi.org/10.1109/TC.2011.221

[72] T. C. Bressoud and F. B. Schneider, “Hypervisor-based fault tolerance,”
in 15th ACM Symposium on Operating Systems Principles (SOSP),
Copper Mountain, Colorado, USA, 1995, pp. 1–11.

[73] E. G. Esposito, P. Coelho, and F. Pedone, “Kernel paxos,” in 37th
Symposium on Reliable Distributed Systems (SRDS). IEEE, 2018.

[74] L. Lamport, “The part-time parliament,” Transactions on Computer
Systems, vol. 16, no. 2, pp. 133–169, 1998.

[75] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: A new
os architecture for scalable multicore systems,” in Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating Systems Principles, ser.
SOSP ’09. New York, NY, USA: ACM, 2009, pp. 29–44. [Online].

Available: http://doi.acm.org/10.1145/1629575.1629579

14

http://doi.acm.org/10.1145/566172.566181
http://doi.acm.org/10.1145/1007512.1007524
http://doi.acm.org/10.1145/2554850.2555021
http://doi.acm.org/10.1145/2619090
http://doi.acm.org/10.1145/1755913.1755933
http://dx.doi.org/10.1007/s10836-013-5367-y
http://dx.doi.org/10.1007/s10836-013-5367-y
http://doi.acm.org/10.1145/1837915.1837919
http://doi.acm.org/10.1145/1189256.1189257
http://doi.acm.org/10.1145/1189256.1189257
http://dl.acm.org/citation.cfm?id=1267308.1267312
http://dl.acm.org/citation.cfm?id=1267308.1267312
https://doi.org/10.1109/EDCC.2006.7
http://doi.acm.org/10.1145/2517349.2522719
http://dl.acm.org/citation.cfm?id=1855741.1855746
http://doi.acm.org/10.1145/1508244.1508251
http://doi.acm.org/10.1145/319151.319162
http://doi.acm.org/10.1145/2046707.2046754
http://dx.doi.org/10.1109/TC.2011.221
http://doi.acm.org/10.1145/1629575.1629579

	I Introduction
	II From MPSoCs to Distributed SoCs
	III System and Threat Model
	III-A System Model
	III-B Threat Model

	IV The Midir Architecture
	V T2H2– Midir's Trusted-Trustworthy Component
	V-A Voted and non-voted operations
	V-B Consensual privilege change

	VI Towards Fault and Intrusion Tolerant Microhypervisors
	VI-A Consensual System Calls
	VI-B Generic Voting Pattern
	VI-C System Call Vote
	VI-D Subordinate Votes

	VII Implementation
	VII-A Buffered vs. Unbuffered Votes
	VII-B Immediate vs. Deferred Masking
	VII-C Internal vs. External Error Handling
	VII-D Dimensioning Voters

	VIII Evaluation
	VIII-1 Per-Replica Capability Space
	VIII-2 Consensually Updated Capability Space

	IX Related Work
	X Conclusions and Future Work
	References

