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Abstract

Compartmentalisation is a form of defensive software design in which an applica-
tion is broken down into isolated but communicating compartments. Retrofitting
compartmentalisation into existing applications is often thought to be expen-
sive from the engineering effort and performance overhead points of view. ARM
Morello combines a modern ARM processor with an implementation of Capabil-
ity Hardware Enhanced RISC Instructions (CHERI) aiming to provide efficient
and secure compartmentalisation by using CHERI capabilities to isolate portions
code and data. CHERI provides a hybrid mode, where capabilities can be used
alongside standard pointers in software. This promises to reduce the engineering
burden associated with implementing compartmentalisation in legacy software by
eliminating the need to port entire code bases.

This thesis explores possible compartmentalisation schemes available to develop-
ers in a single address space environment with CHERI in hybrid mode, and then
proposes two approaches representing different trade-offs in terms of engineering
effort, security, scalability, and performance impact. These approaches are de-
scribed, implemented and evaluated on a prototype unikernel running bare metal
on the Morello chip, compartmentalising two popular applications, SQLite and
Libsodium. Unikernels feature no memory isolation between the kernel and ap-
plication, with both occupying the same address space for performance reasons,
which raises security concerns. CHERI compartmentalisation in hybrid mode is,
therefore, explored as a way to establish isolation between components within a
unikernel, with a potentially low engineering effort while preserving the perfor-
mance advantages of sharing a single address space.

The evaluation shows that CHERI, in hybrid mode can achieve compartmentali-
sation within a single address space unikernel environment, at a performance over-
head which is comparable to that achieved with Intel MPK and outperforms that
achieved with Intel EPT. Furthermore, it shows that the isolation achieved, out-
performs the user-kernel separation provided by Linux. However, the evaluation
demonstrates that the engineering cost of applying CHERI compartmentalisation
in hybrid mode using fine-grained capabilities for inter-compartment communica-
tion is high, making this approach impractical outside of small-scale scenarios. To
tackle this issue an alternate data sharing method is proposed, which trades off
scalability and security to reduce the engineering effort.
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Lay abstract

Security is often an afterthought in the design of a software system. With the in-
creasing ubiquity of computer systems in critical infrastructure, it is important to
isolate components of a system from each other to reduce the damage which can be
done in the event of a successful attack on any component. Compartmentalisation
offers a way to do this, by splitting software into compartments which have only
the minimum privileges needed to complete their task. Many technologies exist to
do this, including CHERI, a hardware implemented technique which can be used
to restrict the parts of a system accessible to compartments. Splitting software
systems into compartments is often associated with a performance cost and a sig-
nificant engineering challenge. This thesis presents the design, exploration and
evaluation of various methods for implementing CHERI based compartmentalisa-
tion, which trade off performance, engineering effort and scalability for improved
security. In contrast to much of the existing work using CHERI, which is evalu-
ated using simulators or soft cores, the system is implemented and evaluated on
Morello hardware, an extension to a standard 64-bit ARM processor implementing
CHERI.
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Chapter 1

Introduction

Software compartmentalisation is one of the ways to enforce the principle of least
privilege [1]. Compartmentalisation enforces isolation between components of a
software system, granting compartments only the minimal privileges they need to
function. If a component of a compartmentalised system is subverted, the dam-
age the attacker can do is limited to the privileges granted to the compromised
compartment [2], [3]. Contrary to many other protection techniques, compart-
mentalisation allows defending against yet unknown and future vulnerabilities in
existing code bases [4]. Many approaches have been proposed in recent years, util-
ising different hardware and software isolation mechanisms to compartmentalise
libraries [5]–[15] as well as code at other granularities, including functions [16]–[19]
and device drivers [20].

Morello [21] is an extension to the ARMv8-A architecture implementing the Ca-
pability Hardware Enhanced RISC Instructions (CHERI), designed specifically to
enable high-performance and scalable compartmentalisation [4], [22], [23]. This
is achieved by enforcing compartment bounds on most memory loads and stores
in hardware, and letting communicating compartments securely grant memory
access to each other using so-called hardware capabilities, a mechanism similar
to fat pointers [24]–[26] implemented in hardware to restrict accesses to shared
memory at a fine (byte-level) granularity. Compartmentalisation can be achieved
by using CHERI capabilities to isolate the code and data accesses of compart-
ments. To eliminate the need to port entire code bases to use capabilities, CHERI
provides a hybrid mode, where regular pointers can be selectively replaced with
capabilities by the developer. Additionally, all pointer memory accesses are im-
plicitly checked against a set of global architectural capabilities. The promise
of hybrid mode is, therefore, low engineering effort to integrate capabilities and
compartmentalisation into an existing code base.

When retrofitting compartmentalisation to existing code bases, a key challenge is
keeping refactoring costs low [27]. This is crucial not only for reducing the cost
of deployment, but also to reduce the number of errors made during the com-
partmentalisation, which can undermine its efficiency or security guarantees [28].
Work exploring compartmentalisation with CHERI is so far limited mostly to so-
lutions implemented in pure capability mode [4], [6], [29]–[31], where all pointers
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are replaced with capabilities. This presents a need for an exploration of com-
partmentalisation in hybrid mode, especially given the promises of low engineering
effort needed to integrate it into an existing code base. These existing works are
further limited to MIPS/RISC-V emulated or FPGA prototypes, making it hard
to understand the real-world performance one would observe on a hardware pro-
cessor. In that context, the recent availability of Morello raises the following
research questions which will be addressed in this thesis:

RQ1 Which compartment models are possible using Morello, using what program-
ming abstractions, at which refactoring costs, and how do they scale?

RQ2 How does Morello’s compartmentalisation performance compare to other sin-
gle address space compartmentalisation mechanisms, such as Intel Memory
Protection Keys (MPK)?

RQ3 What security properties does CHERI/Morello-based compartmentalisation
offer, versus mechanisms such as MPK?

For this purpose, an existing compartmentalisation-oriented unikernel (libOS),
FlexOS [15] is ported to run bare metal on Morello hardware in hybrid mode.
Unikernels are statically linked and code and data resides in a single address
space, which is done to improve performance. However, the lack of any isolation
between application and kernel components is a security concern. Introducing
compartmentalisation to restore isolation between certain parts of the system is
desirable [18], [32]. Doing this in a way which maintains the performance of
unikernels and does not require significant engineering effort is a requirement. In
addition, exploring compartmentalisation within a single address space unikernel
will allow findings to be applied to other single address space settings such as
processes.

To achieve this, FlexOS is extended by developing compartmentalisation program-
ming abstractions relying on CHERI hardware capabilities, each representing a
particular trade-off in terms of porting costs, security guarantees, and their abil-
ity to be applied to many compartments. These include manual sandboxing as
advocated by CHERI’s designers [4], with every shared buffer protected by fine-
grained capabilities and additionally an approach relying on a single region of
shared memory between pairs of communicating compartments. These abstrac-
tions are used to compartmentalise popular open source software, SQLite [33] and
Libsodium [34], at different isolation granularities: libraries and functions. The
porting costs and degree of security of these solutions are evaluated. Further, their
performance when executing on the Morello chip is analysed, comparing these re-
sults to that of other single address space isolation mechanisms, Intel MPK and
Intel EPT, which have previously been used to introduce compartmentalisation
to FlexOS.
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The performance evaluation shows that the performance achieved by CHERI com-
partmentalisation in hybrid mode when applied to FlexOS using the shared mem-
ory approach is comparable to that achieved with Intel MPK and outperforms
Intel EPT. Additionally, FlexOS with CHERI hybrid mode compartmentalisation
applied still outperforms the same application running under Linux with a similar
model of isolation.

Regarding the engineering cost of integrating compartmentalisation, while it is
possible to make trade-offs to reduce the engineering cost, the challenge of shar-
ing data in a single address space system means that hybrid mode using fine-
grained capabilities presents engineering issues which require design compromises
to overcome.

1.1 Thesis Structure

Chapter 2 of this thesis first takes an in-depth look at the motivation for compart-
mentalising software, as well as the concepts needed to implement it. Further, it
investigates the various compartmentalisation technologies which have been ap-
plied in the literature to give context of where this work stands in the broader field
and finally, describes in detail how CHERI works and how it has been applied to
the problem of compartmentalisation.

Chapter 3 introduces the design of the proposed system from a high level, including
how data can be shared between compartments and considers the performance and
engineering costs, as well as the scalability of the proposed solutions.

Chapter 4 goes on to detail the steps taken to port FlexOS to the Morello plat-
form and how the system is implemented, including the precise programming
abstractions and annotations needed for the different compartment models.

Next, chapter 5 evaluates the implemented system with respect to the performance
cost, the engineering effort needed to port software to use it and the security
guarantees it provides. These are compared to other popular mechanisms: MPK
and EPT.

Chapter 6 presents the conclusion of this thesis, followed by the contributions
made by this thesis and a description of proposed future work.
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Chapter 2

Background

The following chapter considers, first, the motivation for researching compartmen-
talisation and how it is an important technique, as well as defines the important
terms and principles needed to understand compartmentalisation and the avail-
able compartment models. Next, different mechanisms which can be used to
enable compartmentalisation are examined in detail, followed by an in-depth look
at CHERI, which is needed to understand the work presented in the remainder of
this thesis.

2.1 Introduction To Compartmentalisation

Compartmentalisation stems from the principle of least privilege, first defined by
Saltzer et al. [1] in 1975, as “...the least set of privileges necessary to complete the
job”. In practice this means that system failures or malicious activities are limited
to only part of the system and so the damage caused is also limited.

The study of software compartmentalisation focuses on the techniques and mech-
anisms to enable previously monolithic software systems such as applications to
be partitioned into a set of smaller, isolated compartments with limited privileges,
controlled data sharing and isolated private data. With the ubiquity of computer
systems in everything from critical safety systems and the Internet of Things, to
the infrastructure underpinning modern society, it becomes ever more necessary
to protect these systems from malicious activities.

2.1.1 What Is A Compartment?

A compartment can be simply defined as a unit of isolation encompassing part
of the code and data of a larger entity. Compartments are granted the minimum
bounds and permissions which are needed to execute their intended task. In
practice this means that a compartment may contain some code such as a function
or a library as well as data which is intended to be kept private. Limited data
sharing is then established between compartments to allow controlled access to
external resources.

17



2.1.2 The Need For Compartmentalisation

The following section examines the real need for compartmentalisation in modern
computer systems, starting with high level examples of well-known and costly
security vulnerabilities, followed by a closer look at the types of attacks which can
be thwarted by compartmentalisation when it has been applied properly.

It Affects Us All

Well known examples of security vulnerabilities which caused widespread disrup-
tion include: Heartbleed [35] which affected over 50% of all websites and allowed
attackers to read private data from HTTPS encrypted websites by supplying
an invalid length with a heartbeat message. A similarly critical and remotely
exploitable vulnerability was discovered in log4j [36], the popular Java logging
library. Both vulnerabilities resulted in widespread disruption and millions of
vulnerable systems.

Both of these examples demonstrate the need for compartmentalisation to mitigate
such memory safety issues. Such vulnerabilities are ever present in large code
bases [37] and indeed, the number of new vulnerabilities reported is increasing
every year. While problems can be fixed with patches and updates, these can
be time-consuming to apply, and not all systems will receive fixes in a timely
manner [35]. These points are critical, since during this time, vulnerabilities can
be exploited.

When a vulnerability is exploited in an uncompartmentalised system, the ex-
ploited code or module has more privileges than it needs to execute its task,
meaning the rest of the system is also liable to compromise. This presents attack-
ers with the potential to steal sensitive data or perform other malicious tasks, re-
gardless of how seemingly unimportant the compromised code was. Consequently,
a system is only as secure as the weakest component in that system. Large and
complex software systems may use hundreds of libraries.

How Compartmentalisation Can Help

Many different attack scenarios exist. Compartmentalisation research has focused
on many of them. In addition to currently known attacks, compartmentalisation
can be used to defend against yet unknown attacks by limiting the exploitable sur-
face of a vulnerability. Compartmentalisation does this by reducing the privileges
granted to a software component.

Memory safety refers to bugs and attacks which target unsafe memory accesses,
for example buffer overflows and underflows. Such issues are particularly preva-
lent in C code bases because C is not a memory safe language, relying instead on
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manual memory management by the developer, which is prone to bugs. Google
and Microsoft have separately identified that 70% of their bugs stem from memory
safety issues [38], [39]. Compartmentalisation can mitigate the damage caused by
such bugs by limiting the accessible memory given to compartments. Much work
has focused on memory safety [22], [40], [41]. Indeed, capabilities implemented in
both hardware and software [24], [25] such as CHERI [22] specifically target mem-
ory safety vulnerabilities. Additionally, a growing area of interest for researchers
is the use of memory safe languages in domains which have typically used C for
the past decades, such as the inclusion of components written in Rust in the Linux
kernel [42].

Supply chain attacks are possible because large code bases often use many
different libraries and software components from different and untrusted sources.
This is done to ease development by using tried and tested software libraries, for
example cryptographic libraries. Vulnerabilities or malicious code present in such
components can cause damage. Code can be acquired from many sources [43]
including package managers. Compartmentalisation can be applied to separate
application components into distrusted compartments, limiting the scope of such
attacks [44], [45].

Side channel attacks gather additional information such as frequency and tim-
ing information to exploit systems [46]. Compartmentalisation can be used to
protect against some side channel attacks by reducing the oversharing and leak-
age of data and enforcing security boundaries. A growing body of work is focused
on mitigating side channel attacks [47]–[49], including attacks such as Spectre [50]–
[53].

Fault tolerance is important in safety critical systems where continued operation
despite malfunctioning or exploited code is necessary. For example, a denial-of-
service attack on safety critical services, caused by exploiting vulnerable software
or buggy device drivers, can result in a crash which can be very damaging and
difficult to recover from. Consider a real-time safety system at a nuclear facility,
or software controlling the movements of an autonomous vehicle; a crash in such
systems could lead to catastrophic consequences. Protection against attacks and
faults causing crashes can be achieved using compartmentalisation, since code is
unprivileged and limited in its scope for damage and disruption [30], [54].

Protecting secret data such as cryptographic secrets and other highly sensitive
data can be achieved through compartmentalisation. By isolating secret data
and code which manipulates it, the data cannot be stolen via attacks on other
components, for example the heartbeat component of OpenSSL [55] which was
exploited by Heartbleed. A large body of work has focused on protecting private
information [16], [56]–[60].
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2.1.3 What Makes Good Compartmentalisation?

So far the need for compartmentalisation has been examined. Next, the criteria
for a good implementation are detailed. These criteria are critical for producing
compartmentalisation which can be adopted by real software and thus have a
tangible impact.

Low Performance Overhead

Partitioning monolithic applications into smaller components running within their
own isolated compartments can potentially add a significant performance overhead
to an application. This stems from a number of factors. Firstly, compartments can
often no longer communicate as before by de-referencing pointer arguments. In-
stead, communication is frequently done via shared memory regions, inter-process
communication, or using other mechanisms which are costlier due to the additional
data copying which is required. Many isolation mechanisms also rely on additional
checks inserted via instrumentation or traps, to check and catch an illegal code
or data accesses [10], [61], [62]. Switches between compartments are also often
inserted in the form of call gates in place of traditional function calls, which them-
selves can add significant overhead, since gates can be used to perform tasks such
as switching compartment stacks and address space switching [15].

Security can come at a cost. The challenge to design a compartmentalisation
scheme is to balance the performance and security needs to an acceptable degree
to ensure that any performance cost is minimised, while still offering improved
security. Systems with high performance overhead will struggle to find adoption
in real applications, since lower performance will mean a greater hardware and
energy cost to deploy large applications. DARPA CPM defined an acceptable CPU
overhead of <15% for OS level isolation and <5% for application level isolation,
in their call for proposals [27].

Low Engineering Effort

Alongside performance considerations are implementation costs, or the engineer-
ing effort which is required to port or retrofit an application to take advantage of
compartmentalisation technologies and primitives. Legacy applications are often
not designed with compartmentalisation in mind [28], resulting in complex data
dependencies which can be challenging to unpick and isolate from an entangled
system. Consequently, any solutions which require too much effort from a devel-
oper, are unfeasible for a number of reasons. Firstly, code may be decades old
and either poorly maintained, poorly documented or both. Additionally, with
increased complexity comes an increased risk of human error, which leads to poor
compartmentalisation practices. Trying to retrofit compartmentalisation into such
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code bases is costly in terms of both time and effort and can be a significant barrier
to adoption.

Flexible Compartmentalisation Granularity

Flexibility when implementing compartmentalisation is important to reduce both
the performance overhead and engineering effort involved. By enabling fine-
grained compartmentalisation, a developer can choose to isolate large, coarse
components such as libraries, smaller units of code such as functions, or just
a few critical data structures such as cryptographic keys, depending on their per-
formance and engineering budget, as well as the threat model. Some isolation
mechanisms such as page table based approaches only allow coarse compartmen-
talisation down to the granularity of a page, which can be impractical for small
and light implementations due to hardware pressures and inefficient use of memory
pages, if only small quantities of data are shared.

Scalability

Scalability is the ability to create a few or many compartments without the cost
of adding more becoming a burden. This is important because a solution which
does not scale well will force potentially unwanted compromises, for example the
inability to partition an application into the required number of compartments
could lead to weakened security.

Small Trusted Computing Base

The Trusted Computing Base (TCB) is the hardware and software of a system
which is trusted to be error free and correct in order for security properties and
assumptions to hold true. If a flaw or bug exists in the TCB, it can have wide-
ranging and potentially devastating consequences. Since the TCB must be error
free, it is desirable for this portion of the system to be as small and simple as
possible, to enable easier verification and also reduce the possibility for errors.

Secure Compartment Interfaces

Lefeuvre et al. [28] defined compartment interface vulnerabilities (CIVs) and estab-
lished that simply compartmentalising an application is in most cases not enough.
Trust boundaries are introduced where previously there was mutual trust. This
means that compartments can be made to misbehave or share private informa-
tion simply because the exposed interfaces do not sanitise malicious data which is
passed into them, for example through confused deputy attacks [63]. Therefore,
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Figure 2.1. Example of sandboxing. Compartments 1 and 2 are sandboxed.

hand in hand with compartmentalisation must be a re-evaluation and hardening
of the trust boundaries which this exposes.

2.1.4 Trust Models

The different trust models which are available to someone wishing to compart-
mentalise a system are described in the following sections.

Sandboxing

Sandboxing can be thought of as a sandbox a child plays in. It is a place for them
to explore and play, but they are also contained within to avoid them being able
to cause damage to anything outside of the sandbox. In a computing sense, an
untrusted code module is placed into a sandbox to prevent it from accessing the
rest of the system. It is given only what it needs to function and is self-contained
within it. In this trust model, the contents of the sandbox are untrusted and
everything outside the sandbox is kept safe and implicitly trusted. Many popular
applications and libraries such as Chromium [64] and OpenSSH [3] use sandboxing
to contain potentially unsafe execution of components such as the decompression
and decoders, which are frequently the source of exploits. Sandboxing is illustrated
in Figure 2.1.

Safeboxing

In contrast to sandboxing, safeboxing trusts what is inside the box and protects
it from what is outside. This means that access to data within a safebox must be
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Figure 2.2. Example of safeboxing. Compartment 2 is safeboxed.
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Figure 2.3. Example of mutual distrust.

carefully controlled and data entering from outside the safebox must be carefully
sanitised. An example of a use case for safeboxing could be a cryptographic
function which is trusted and is protected from compromise by preventing the
rest of the system from accessing it. Safeboxing is illustrated in Figure 2.2.

Mutual Distrust

Mutual distrust is a middle ground between safeboxing and sandboxing. Here,
entities distrust each other. Private compartment data must be kept isolated
from all other compartments. This model has been used by works including
FlexOS [15]. Mutual distrust can be used between an application and its libraries,
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where each would like to protect itself from the other in case of compromise in
another compartment. Mutual distrust is illustrated in Figure 2.3.

2.2 Mechanisms

Various techniques have been implemented and explored to enforce isolation, these
are examined in the following sections.

2.2.1 Page Tables

Page tables are used by the hardware memory management unit to translate vir-
tual to physical addresses. They are widely implemented in modern processors.
This gives rise to many approaches to page table based isolation, including Ar-
biter [65], which provides isolation between application threads by using a different
page table for each and LwCs [66] which provides page table based isolation within
a process. Page table based isolation is often combined with privilege separation,
such as that between user and kernel.

The following sections explore common page table based approaches to isolation.

Processes

Processes are used to provide isolation between different executing code, by giving
each a distinct virtual address space, through the use of a process specific page
table. Access to system resources is controlled and granted by the kernel via
system calls. A process can be isolated not only from other processes, but also from
critical kernel components. Switching compartment involves the kernel switching
out the page table for that of another process.

Many compartmentalisation works take advantage of processes to implement iso-
lation between different components of a system. Cali [13] and CompARTist [67]
use processes to isolate an application from its libraries, with isolated libraries
running in their own process. PtrSplit [12], Privman [68], Privtrans [57] and
Salus [69] split an application into two differently privileged compartments. These
compartments then run in separate processes. Wedge [59] provides OS primitives
to allow developers to split monolithic applications into process-isolated compart-
ments. ProgramCutter [70] uses dynamic analysis to automatically partition an
application into separate processes at function granularity.

Access Control Bits

Access control bits are implemented as bits within a page table entry [71], [72] and
enable access controls to be enforced for different regions of memory, including
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the setting of read, write and execute permissions. This is an important feature,
since it can prevent a malicious actor from modifying the executable portion of
an application in memory, thereby circumventing protection mechanisms. Addi-
tionally, it can prevent writable portions of memory from being executed, which
could otherwise allow an attacker to execute arbitrary instructions in memory.

Second Level Address Translation

Second Level Address Translation (SLAT), also referred to as nested page tables in
the literature [73] is a type of hardware assisted virtualisation which makes guest
to host address translation more efficient. This means that code can easily be
virtualised. SLAT has been implemented by multiple hardware vendors including
Intel [74], AMD [75] and ARM [71].

SLAT can be used to compartmentalise an application at the function level such
as with SeCage [76] and Virtines [17] all the way to a more coarse grained library
level compartmentalisation such as has been implemented by FlexOS [15] with
two compartments.

Virtual Machines

Virtual Machines were first deployed by IBM with the VM370 time-sharing sys-
tem [77] and then formally defined by Popok and Goldberg in 1973 [78]. They
were introduced as a means to run multiple operating systems or other software
which requires a bare-metal view of the machine [79], on the same hardware. Since
then, they have grown in popularity, and are primarily used by Infrastructure as a
Service (IaaS) providers to run multiple operating systems on server hardware, to
serve the needs of numerous different clients. A hypervisor is used to coordinate
the various virtualised systems.

Whilst useful to isolate operating systems running on the same hardware from
each other, the idea can be extended to isolating applications from each other, by
running applications on small operating systems like unikernels (LibOS) which are
lightweight. Indeed, works such as FlexOS [15] take advantage of virtualisation to
run an application in a unikernel on a host system. NGSCB [80], Proxos [81] and
Minibox [82] focus on OS level virtualisation to improve security. Overshadow [83],
SP3 [84], Inktag [85] and virtual ghost [86] focus on isolating applications from
an untrusted operating system.

Mondrian Memory Protection (MMP)

Witchel et al. proposed Mondrian Memory Protection [87], [88] as a way to aug-
ment traditional page table based memory management with a special permissions
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table for permissions which can be applied to memory regions down to word gran-
ularity. This is supported by a protection lookaside buffer (PLB) [89] and register
sidecars, which contain the permissions associated with the address in the address
registers, used to improve performance.

This allows for multiple compartments within a single address space. Compart-
ment switches are performed by calling addresses or return addresses which are
marked in the permissions table as being cross domain calls. This then triggers a
compartment switch.

Memory Protection Keys (MPK)

Memory protection keys use bits in a page table entry to associate a numeric key
with entries. They target isolation within a singe address space. Upon attempting
to access memory via a load or store instruction, the current key is checked against
the key associated with the page table entry corresponding to the attempted
memory access. If the two do not match, a page fault is triggered. Therefore, a
protection key corresponds to a compartment. MPK has been implemented by a
number of architectures, including x86 [72], [75], RISC-V [11], [90], IBM Power [91]
and ARM (ARM domains) [92]. These implementations allow for between 16 (x86
and ARM) - 1024 (RISC-V) compartments to be implemented. MPK on RISC-
V is not currently widely available in hardware, and support for ARM domains
was dropped in AArch64 meaning that limited work has used the mechanism [58].
This leaves x86 MPK as the only widely proliferated and available implementation
of MPK.

x86 MPK compartment switches can be done from user space, via the unprivileged
PKRU register, which means that compartment switches can be carried out with
low overhead without needing expensive syscalls or other mechanisms to obtain
the correct switching privileges. The downside to unprivileged user space access
is that x86 MPK on its own, is not sufficient for secure isolation and must be
paired with other techniques [11] such as control flow integrity or binary scanning
to ensure that a malicious actor does not arbitrarily switch compartments.

MPK mechanisms have been utilised in a number of compartmentalisation works
in recent years, including Donky [11], FlexOS [15], Hodor [9], CubicleOS [14],
Shreds [58], libMPK [93], Enclosure [44] and by Sung et al. using RustyHer-
mit [18].

Limitations of Page Tables

Page table based isolation mechanisms often suffer from two key limitations, mak-
ing them potentially problematic for compartmentalisation.
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Translation Lookaside Buffer (TLB) Performance The TLB is implemented
in hardware to cache virtual address translations, reducing the cost of perform-
ing these translations. Process context switches will frequently cause the TLB
to be invalidated and flushed. For example, when switching processes, the page
table will be switched out. Although certain modern architectures are compart-
ment aware, it is still likely that the number of TLB misses will increase due to
compartment switching. Refilling the TLB with useful predictions is expensive,
since it involves accessing main memory. MMP may also suffer from a similar
performance penalty to the PLB. Since MPK is used in-process, this does not
apply.

Granularity Since page table based approaches are based on the page table, it
follows that the smallest unit of isolation is a page. However, pages are coarse.
They are typically sized at 4KB, although many modern processors use larger
pages. Most data structures will be smaller than the size of a page and so memory
usage will be inefficient to facilitate isolation, or a significant amount of data may
be overshared.

2.2.2 Software Fault Isolation (SFI)

Software Fault Isolation, introduced by Wahbe et al. [94], is a runtime method
for sandboxing memory accesses to occur only within defined bounds. This is
done by instrumenting a binary with instructions which check the addresses being
used, before they are used. Instrumentation can be inserted by the compiler at
compile time, or retrofitted to a binary using binary rewriting. In order to avoid
SFI instructions being skipped by an attacker, SFI is usually paired with some
form of verification or control flow integrity [95], [96]. SFI normally applies to iso-
lation within a single address space. A large body of research has looked at SFI,
including ARMor [97], NaCl [61], [98], /CONFIDENTIAL [99], PittSFIeld [62],
Rocksalt [100], XFI [101], LXFI [102], Datashield [103], Occulum [104] and RL-
Box [10]. A downside of such a technique being implemented is the performance
penalty imposed by adding additional instructions to the application.

In recent years, WebAssembly [105], [106] has emerged as a way to implement SFI
with lower overhead. WebAssembly is a memory safe binary instruction format
which can be used to run code in sandboxes with high performance. This is
useful in applications, such as browsers, to restrict unsafe and untrusted code
execution. Additionally, it has been explored in numerous works as a mechanism
for compartmentalisation [10], [107]–[110]. RLBox has used Wasm to implement
sandboxing in the production FireFox browser [10], [111].
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2.2.3 Safe Programming Languages

Popular memory safe programming languages such as Java [112] and Ruby [113]
have existed for decades. Memory safe languages have traditionally relied on
runtime checks and memory management, which impose a high performance
penalty. This has typically made such memory safe languages unsuitable for
low-level, performance sensitive systems software. KaffeOS [114], JX OS [115]
and J-Kernel [116] implement OSes using Java, however, they are limited by per-
formance and functionality. Singularity OS [117] uses Sing# to achieve memory
safety. SPIN [118] uses language safety for security within the kernel only. Mira-
geOS [119] uses OCaml [120] for memory safety.

With the arrival of Rust [121], a memory safe language which requires no ex-
pensive memory management, the performance calculus has changed. As a result,
many systems which previously used unsafe languages such as C and C++ started
exploring Rust [122]–[126]. Redleaf [54] demonstrates the use of Rust to isolate
device drivers. Recently, Rust has been added to major OSes including Linux [42],
Android [127] and Windows [128]. Most low level kernel software is old and writ-
ten using C or C++, making the task of porting such software to use memory
safe languages, such as Rust, difficult and time-consuming.

2.2.4 Software Capabilities

Software capabilities represent tokens which grant the holder access to objects
within the system and can be used to isolate different compartments, whilst still
granting bounded and permissions-checked access to certain data. As opposed to
hardware capabilities, discussed in Section 2.2.9, software capabilities exist en-
tirely in software implementation, and rely upon software checks to enforce their
bounds and permissions. This necessarily results in overhead when compared
to implementations which perform the same checks in hardware. Works explor-
ing the use of hardware capabilities to protect within an address space include
Mungi [129], Opal [130] and
LXFI [102].

Capsicum [131] extends UNIX APIs by providing primitives which allow processes
to be placed in a sandbox mode. From there, they may only access system re-
sources such as the file system using capabilities which have been granted to the
process.

2.2.5 Memory Encryption

A less studied but interesting technique is the use of cryptography to secure
pointers or regions of memory to prevent unauthorised access and tampering.
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Cryptographic extensions to architectures are often utilised for this purpose, to
enable more efficient transformation of data. This has been explored by Point-
erGuard [132], CCFI [133] and MemSentry [134]. Whilst usually implemented in
software, memory encryption has also been explored in hardware, for example,
Morpheus [135] and MorepheusII [136]. Trusted Execution Environments (TEEs)
also make use of memory encryption. TEEs are described in Section 2.2.6.

2.2.6 Trusted Execution Environments (TEE)

Trusted Execution Environments describe technologies which offer confidentially
and integrity. In practice, this means that no external, unauthorised access to
data is allowed. Additionally, to ensure integrity, unauthorised entities are unable
to modify or replace code within the TEE. This creates a shielded execution envi-
ronment for code and data, allowing applications to be run in scenarios where the
host systems software including the OS and hypervisor is untrusted, for example
when using cloud providers to run sensitive applications.

TEE was first defined in “Advanced Trusted Environment: OMTP TR1”, pub-
lished in 2009 [137]. Since then there have been numerous commercial imple-
mentations of the technology, including ARM TrustZone [71], Intel SGX [138],
Keystone [139], MultiZone [140] and Sanctum [141] for RISC-V. These enable en-
claves. The most widely used implementation is ARM TrustZone, which divides
the system up into two worlds, secure and normal. This presents a limitation to
fine-grained compartmentalisation, since it results in a maximum of two coarse
protection domains. Work has been done to combine TEEs with hardware capa-
bilities [142], which could be used to extend TrustZone to enable more fine-grained
isolation. Intel SGX allows applications and OSes to create encrypted enclaves to
secure components, applications, or even entire OSes.

The use of Intel SGX for compartmentalisation has been studied extensively.
Haven [143] and Graphene-SGX [144] run applications within SGX to shield them
from the rest of the system. SCONE [145] uses SGX to allow containers to execute
securely. SGXBounds [146] provides memory safety for unmodified applications
leveraging SGX. Glamdring [147] takes developer annotations for sensitive data,
then automatically partitions an application into untrusted and enclave partitions,
with the enclave partition then executed in an SGX enclave containing sensitive
data and code. SecureKeeper [148] builds upon Apache Zookeeper, using mul-
tiple small enclaves to secure user data. Nested Enclaves [149] enable a second
tier of isolation within an enclave, through the use of nested enclaves, which are
shielded from the rest of the main enclave. CHANCEL [150] sandboxes threads
within an enclave to allow an application to securely process requests from differ-
ent users. Occulum [104] allows multitasking within an enclave, using Software
Fault Isolation to isolate between processes.
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More recently, another type of TEE has been researched: Confidential Virtual
Machines [151]. These enhance the popular Virtual Machine abstraction with
the confidentiality and attestability offered by TEEs. Enabled by technologies
such as Intel TDX [152], AMD SEV [153], ARM CCA [154] and IBM PEF [155].
Confidential VMs can be used as a mechanism to secure sensitive workloads which
are typically run in the cloud. Confidential VMs promise to be more compatible
since they are enhanced versions of existing virtual machines and do not require
applications to be rewritten, which is necessary to use TEEs. Whereas enclaves
focus mainly on process level isolation, confidential VMs focus on entire system
isolation. While such technologies offer greater security over traditional virtual
machines, they are still vulnerable to attack [156].

2.2.7 Memory Tagging

Memory tagging associates a tag with a portion of memory, with the tag en-
coded in unused upper bits of pointers. Upon attempted access to memory via a
pointer, this tag is compared to that of the memory being accessed. A mismatch
will cause the access to fail. This can be used to isolate regions of memory. Mod-
ern implementations of memory tagging features include ARM Memory Tagging
Extension (MTE) [157], introduced with ARMv8.5, and ADI [158], introduced
with the Oracle SPARC M7. The use of memory tagging is increasing with works
including Loki [159], Multi-tag [160] and Taxi [161] investigating its use. Fur-
thermore, LLVM provides plugins to accelerate memory tagging using available
hardware features [162]. HAKC [163] uses ARM MTE as part of its approach to
partitioning the Linux kernel.

2.2.8 Bounds Checking

Bounds checking pointers in hardware is a technique used to constrain memory
accesses to within certain bounds allowed for particular pointers. This is often
used to prevent common memory safety issues including buffer over- and under-
flows by preventing such accesses at a potentially low performance cost. These
bounds checks can be used to implement isolation between software components.

The most well known implementation is Intel Memory Protection Extensions
(MPX). MPX bounds checks pointer accesses by providing instructions to do
so. Implementation is optional and relies on a software toolchain to insert checks
rather than being performed by default. A number of works have explored the use
of MPX, including MemSentry [134]. MPX is no longer included in new CPUs due
to numerous performance and security issues identified [164]. Many others have
proposed custom hardware, ISA extensions or repurposing of other mechanisms,
including AOS [165], Heapcheck [166], Watchdog [167], WatchdogLite [168], Hard-
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bound [169] and CHEx86 [170].

2.2.9 Hardware Capabilities

Capabilities can be thought of as a natural evolution of bounds checking mecha-
nisms. They control access to memory not only through bounds, but also setting
permissions on what can be performed by a capability which is held. First defined
in 1966 by Dennis and Van Horn [171], as “locates by means of a pointer some
computing object, and indicates the actions that the computation may perform
with respect to that object”, capabilities have been explored in systems over the
years. Hardware capabilities are examined through the lens of memory protection
in this thesis. However, they are in general a higher level concept which can be
used to protect many different aspects of a system.

Capabilities were first seen on the Burroughs B5000 [171], [172] in 1961. It imple-
mented a Program Reference Table (PRT) containing descriptors which located
code and data segments in memory and values which are scalar data elements.
Since these are contiguous regions of memory, the descriptor provided bounds.
Descriptors also included a bit called a tag, to differentiate between descriptors
and values. All memory references and branches went through the PRT.

The Plessey System 250 [173] implemented capabilities as 48-bit values, held in
special capability registers, which grant the processor access to objects in the
system. A capability consisted of three parts, a base address, a limit and access
rights. This allowed bounding and the enforcement of permissions. A capability
is always held, which points to a Central Capability Block, which defines the exe-
cution domain. Critically, the System 250 also had protected procedures, which
had their own Central Capability Block and were accessed through enter capabil-
ities and arguments were accessed via capabilities. Thus, a protected procedure
executed in its own domain protected from the caller, before returning to the
caller domain. The Cambridge CAP [174], [175] of the same era also implemented
capabilities. Capabilities granted access to objects on the CAP system. Like the
Plessey system, it also featured protected procedures.

The M-Machine [176] introduced a concept called guarded pointers. These 64-bit
pointers, which were used to address a 54-bit virtual address space, encoded a
tag to identify a pointer, permissions, and a length in the remaining upper bits.
Guarded pointers could specify data access, code access, protected entry access or
keys, which were unforgeable tokens, only accessible by a privileged entity.

The PICA system [177], [178] described an extension of a RISC architecture
(MIPS). As well as implementing the well established capability hardware fea-
tures, protection domain crossings were made simple by the provision of pro-
tected procedure calls, which grant access to defined entry points of a protection
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domain. Alongside this, instructions to clear registers efficiently made domain
switches cheap, with the authors noting only 12-15% performance overhead.

Low-fat pointers [24], building upon work done with fat pointers [25], [26] have
been implemented more recently, encoding bounds and a tag to ensure the un-
forgeability of pointers. Bounds checks are implemented in hardware, with the
authors noting a 0% performance penalty and a 3% memory overhead.

More recently, capabilities have been implemented as extensions to architectures
including ARM and RISC-V, in the form of Capability Hardware Enhanced RISC
Instructions (CHERI [179]) and x86 by CHEx86 [170] and
CODOMS [180]. The use of CHERI and its ARM implementation, Morello, is the
focus of this thesis. For this reason, a more in-depth look at CHERI is available
in Section 2.6.

2.3 Automation

Automation of the compartmentalisation process is tightly linked with the amount
of effort required from the developer. Below are described the main methods for
implementing compartmentalisation.

2.3.1 Manual Approaches

Manual approaches rely entirely on developer skill and knowledge to partition an
application and implement compartmentalisation policies. While this approach
can be the most accurate, it is also the most error-prone [16], with compartments
granted too many or too few privileges. In the case of complex applications, some
data may be missed, leading to incomplete compartmentalisation. An example of
this is modifying an application to use CHERI capabilities in hybrid mode [4].

2.3.2 Guided Manual

In a guided manual approach, the developer is still responsible for code annota-
tions or transformations, however an analysis tool such as a compiler provides
hints to a developer by identifying shared data and compartment boundaries,
making the task easier [10], [16]. There is less risk of error compared to a fully
manual approach.

2.3.3 Policy Based

Whereas manual approaches require direct developer intervention to partition a
program correctly, policy based compartmentalisation partitions the application
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based on a compartmentalisation policy which has been provided by the devel-
oper in the form of annotations. While this still requires the developer to reason
about their requirements, the actual work of compartmentalising is done auto-
matically [9], [13].

2.3.4 Automatic

Fully automatic compartmentalisation is challenging to implement well. Inferring
precise data dependencies can be difficult to do accurately [181], which means that
such tools often need to err on the side of caution and often overshare to avoid
breaking applications. However, automated approaches [57], [70] are regarded
as the ‘holy grail’ since they allow compartmentalisation to be applied easily to
applications and so increase adoption. Automation is an active field of research.

2.4 Sharing Data

When a legacy application is compartmentalised, data which was previously acces-
sible to the entire address space now becomes inaccessible to other compartments.
This is by design but necessitates the use of mechanisms to restore limited data
sharing between compartments. This is important to pass function arguments and
return values amongst other data. Data sharing often involves some form of mes-
sage passing between compartments. For example, for applications partitioned
into separate processes, this could take the form of inter-process communication
(IPC) [182].

In addition, some mechanisms provide specific communication methods. For ex-
ample, CHERI capabilities [179] can be used in place of pointers to pass arguments
between compartments.

2.5 Compartmentalisation In Practice

Having described the theoretical principles and practical mechanisms of compart-
mentalisation, the following sections now move on to consider real implementa-
tions of compartmentalisation and answer the question: Why is compartmentali-
sation not mainstream?

2.5.1 Deployed Software

Firefox uses RLBox to isolate itself from its libraries [10]. Libraries are placed
into sandboxes. This has been used in deployed Firefox to sandbox performance
sensitive web page decompression libraries, including libGraphite. RLBox is a
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system which aids in the isolation of applications from their libraries by providing
a simple API. It ensures that data-flows between compartments are sanitised by
flagging such data-flows during compilation, creating a feedback loop for devel-
opers to fix these compile time errors. Isolation is implemented either through
process based isolation, or SFI. In production Firefox, a WebAssembly based SFI
sandbox is implemented. Analysis showed that by sandboxing libGraphite in pro-
duction, an 85% performance penalty was applied that that code, which translated
to a 50% slowdown for the renderer overall [10].

OpenSSH has implemented compartmentalisation techniques for over two decades.
The first privilege separation was introduced in 2002, to separate the privileged
server process from an unprivileged user authentication process [3]. The privileged
server acts as a monitor of the unprivileged user process. OpenSSH also imple-
ments sandboxing of potentially unsafe code such as pre-authentication checks
which could be exploited by an attacker. The sandboxes can use a variety of
mechanisms including SELinux [183] and Capsicum [131] to achieve this.

By implementing privilege separation, two thirds of the source code executes with-
out privileges, including third party libraries such as zlib. Due to the lack of data
copying, privilege separation is found to not impose a performance penalty [3].

2.5.2 What Is The Problem?

Despite having described many different approaches to compartmentalisation and
many different trust models, compartmentalisation is still mostly a toy of academia
and is not widely used in applications. There are a number of reasons for this.
Firstly, many mechanisms impose a performance overhead, which is simply too
high for many [8], [184]. Next, as well as a potential performance penalty, the cost
of retrofitting applications which were not designed with compartmentalisation in
mind, can be prohibitive without effective automation [13], [70]. Finally, certain
mechanisms impose limitations [93], [185], such as a limited number of compart-
ments available with MPK. Such limitations have stopped compartmentalisation
from effectively being integrated into everyday software and can be summarised
as: too slow, too hard and too limited.

2.6 CHERI

Capability Hardware Enhanced RISC Instructions (CHERI) is a set of extensions
for existing RISC architectures including MIPS, RISC-V [179] and later ARMv8
(the implementation is called Morello) [21]. CHERI adds hardware capabilities,
described in Section 2.2.9, to existing architectures. Morello has since been imple-
mented in hardware [186] based on an ARM Neoverse N1 SoC [187]. This section,
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Figure 2.4. The original encoding of a CHERI capability. This image is taken from The
CHERI capability model: Revisiting RISC in an age of risk [22].

Figure 2.5. The CHERI concentrate capability encoding. This image is taken from Capability
Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 8) [179].

a: pointer address, B & T : base and top related to bounds, IE & BE & TE : exponent bits,
otype: object type, p: permissions.

first introduces CHERI concepts before moving on to a detailed study of the state-
of-the-art compartmentalisation works using CHERI, in order to understand how
the contribution described later in this thesis fits in to the existing body of work.

2.6.1 An Introduction To CHERI

CHERI was first introduced by Woodruff et al. [22] in 2014. Originally im-
plemented using MIPS [188], it has since been expanded to cover RISC-V and
ARMv8 [189]. Since its first introduction, the ISA has also been refined. For
example, capabilities were originally encoded using 256-bits on 64-bit architec-
tures, displayed in Figure 2.4. With the introduction of the CHERI concentrate
encoding [190] which is shown in Figure 2.5, capabilities can now be encoded in
128-bits for a 64-bit architecture, by utilising floating point encoding, however,
not all memory bounds can be represented by this meaning that memory padding
could be required.

Capabilities

At a high level, a capability can be thought of as a pointer with additional bounds
and permissions information attached to it. The result is that an attempted
memory access is automatically and atomically checked against these bounds and
permissions in hardware to establish whether it is legal. This can be used to
enable compartmentalisation in a single address space by restricting the bounds
and permissions available to compartment capabilities to a limited portion of the
address space.

35



CHERI capabilities are encoded using 128-bits on 64-bit systems and 64-bits on
32-bit systems. A capability encoding contains a 32- or 64-bit integer base value,
which is equivalent to an integer pointer. This is augmented with bounds infor-
mation in the form of a limit or a length. Bounds information specifies starting
at the base what the allowable range of addresses is. Additionally, each capability
stores an object type, permissions and a tag.

Since capabilities are double the size of regular pointers, special capability registers
must be used to store them. This can either be implemented as a separate register
file (CHERI-MIPS) or can be an extension of current general purpose registers
providing an additional capability view. The latter is the implementation present
on the Morello platform.

In addition to general purpose capability registers, several other registers are
extended to enable capability support. These include the Capability Stack Pointer
(CSP) which can be used to restrict the stack pointer via a capability, and the
Program Counter Capability (PCC) which extends the program counter to bound
instruction fetches, acting as a restriction on the code which can be executed. A
Default Data Capability (DDC) register is also provided to restrict non-capability
memory accesses.

Guarded Manipulation & Monotonicity

CHERI enforces monotonicity upon capabilities, which means that new capabili-
ties may only be derived from existing capabilities via special guarded manipula-
tions which prevent a capability from increasing its bounds, it may only narrow
them, and prevents capabilities from obtaining additional permissions, it may only
reduce permissions. These properties prevent capabilities being manipulated and
undermining the protection they offer.

Capability Tag

Each capability has a tag associated with it. The tag indicates whether a capabil-
ity is valid and can be dereferenced (tag set). If the tag is cleared, which can result
from attempting to modify or use a capability illegally, then the capability cannot
be dereferenced. Capability registers are 129-bits wide to accommodate the tag in
bit 128. However, a capability stored in memory is stored separately from its tag
to prevent forgery. The tag is architecturally invisible to the programmer. Any
attempt to manipulate a capability in memory directly as opposed to using capa-
bility instructions will clear the tag associated with that location. When loaded
into a register, the associated tag bit is automatically loaded alongside.
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Capability Permissions

Capability permissions indicate what a capability can be used to do. This also in-
cludes permissions on the PCC and DDC capabilities. The capability permissions
implemented on Morello are listed in Table 2.1. Restricting capability permissions
can be used to enforce lower privileges for compartments, for example, removing
the ability to access system registers.

Table 2.1. Permissions available in Morello.

Permission Purpose
Global Allow capability to be stored via capabilities that do not have StoreLocalCap

permission set.
Executive Code is executed in executive mode, if this permission is not set, execution

takes place in restricted mode. These modes have different views of the same
global registers (register banking).

Load Allows load via capability.
Store Allows store via capability.
Execute Allows code execution via capability.
LoadCap Allows a capability to be loaded via this capability.
StoreCap Allows a capability to be stored via this capability.
StoreLocalCap Allows a capability to store a capability not marked as Global.
Seal Allows a capability to be used to seal another capability with an object type

set to be equal to the value of this capability.
Unseal Allows this capability to unseal a capability with an object type equal to this

capability value.
System Allows access to system registers.
BranchSealedPair Can be used by a branch sealed pair instruction.
CompartmentID Can be used as a compartment ID.
MutableLoad A capability loaded via a capability without MutableLoad set will have its

Store, StoreCap, StoreLocalCap and MutableLoad permissions cleared.
User Software defined.

Capability Sealing

A sealed capability is immutable and non-dereferenceable meaning that any at-
tempt to use a sealed capability will result in an exception. Sealed capabilities
can be used in compartmentalisation to facilitate compartment switches, which
can be done via sealed entry capabilities, for example granting access to a priv-
ileged compartment switcher, without being able to dereference such a sensitive
capability arbitrarily. A sealed capability can only be modified after it has been
unsealed via a permitted instruction or capability matching its object type.

Capability Object Type

An object type is metadata which is set when a capability is sealed. It identifies
sealed capabilities which can be used together. When unsealing a capability, its
object type is compared to the value of the unsealing capability and unsealing is
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only permitted if they match. In this way, the object type is used as a key to
ensure a capability is unsealed using only the correct capability.

Hybrid Mode Execution

CHERI can be used in two different modes of execution: hybrid mode and pure ca-
pability mode. In pure capability mode, all pointers are replaced by the compiler
with capabilities, hence the name pure capability mode. In hybrid mode, capa-
bilities and capability instructions can be used alongside regular integer address
instructions and integer pointer addresses. This is done to ease the porting of
existing code. For example, a regular operating system can be run and incremen-
tally components can be ported, whilst running alongside un-ported components.
This promises to ease the integration of compartmentalisation using CHERI ca-
pabilities into existing code bases.

In hybrid mode, all regular data load and store instructions are bounds checked
against the DDC, meaning that to enforce compartments in hybrid mode, the
DDC and PCC capabilities are dynamically restricted to cover the code and data
needed for a compartment.

2.6.2 CHERI State Of The Art For Compartmentalisation

The following sections examine the current state-of-the-art compartmentalisation
work using CHERI.

CheriRTOS

CheriRTOS [191] is a port of the real time operating system FreeRTOS for em-
bedded devices. It utilises CHERI-64: 64-bit capabilities, which are suitable for
32-bit devices such as embedded devices. CHERI-64 is propsed as a way to ad-
dress the limitations of typical MPU based approaches. Compartmentalisation
is in hybrid mode, where the DDC and PCC are used to enforce bounds on the
code and data a task can access. The hybrid mode approach is used to enable
greater compatibility, with the paper claiming that only minor modifications were
necessary to run applications. CheriRTOS implements compartmentalisation at
task granularity which is similar to a process on a UNIX-like operating system,
making isolation quite coarse.

Compartments can communicate either via message passing, which has a high
performance cost, or compartment switches, which can be initiated by a compart-
ment. Compartment switches are achieved by making a set of sealed capability
pairs available to a compartment to unseal and install, thus switching compart-
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ments. Additionally, the heap is secured by a separate compartment which handles
memory allocations such as malloc and returns bounded capabilities.

CompartOS

CompartOS [6] is a compartmentalisation framework which is designed for em-
bedded devices, however the authors make the distinction that it is targeted at
high-end embedded devices. CompartOS removes the need for any MMU or MPU
based protection relying entirely on capabilities, much like CheriRTOS. It instead
enforces isolation between linkage modules automatically and compartmentalisa-
tion extends to all aspects of the system, including access to system resources. In
addition, a major emphasis is placed on availability and recovery from failure. To
that end, each compartment has its own software fault handler.

Compartmentalisation granularity is specified at development time, for example,
this could be between individual source code files, compiled into relocatable li-
braries, which are loaded and isolation is enforced between these linkage modules.
Only the secure loader is required to enforce compartmentalisation, disposing of
the need for a UNIX-like process model, and notions such as kernels and syscalls.
All accesses are performed via capabilities. Compartmentalisation is in pure ca-
pability mode.

While the automated linkage based compartmentalisation eases the adoption and
porting effort required, it does not take full advantage of the byte granularity
isolation which is possible with CHERI.

CherIoT

CherIoT [31] is an iteration of the CHERI-64 specification which is optimised
for embedded devices with the purpose of simplifying the implementation and so
saving cost and die area in cost sensitive IoT devices. Implemented using 32-bit
RISC-V, it omits several CHERI features including hybrid mode, opting instead to
support only pure capability mode. This simplification allows for the ommission of
the DDC since this is not needed for pure capability mode. Compartmentalisation
is done in pure capability mode.

CheriOS

CheriOS [30] is a pure capability microkernel which follows the traditional micro-
kernel goal of presenting a small attack surface whilst also granting the microker-
nel itself lower privileges. It does this by implementing a small (<3000 assembly
instructions) ‘nanokernel’ which is responsible for mediating access to the archi-
tecture, memory management and other critical functionality. The report suggests
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that this could be implemented by a CPU vendor as firmware, although it has
been implemented as a hypervisor so far.

The CheriOS microkernel is subsequently left to handle scheduling, interrupts
and message passing between applications. The result is a much reduced trusted
computing base (TCB), since the microkernel is no longer assumed to be trusted.
The use of capabilities enforces strong memory safety and isolation, and CheriOS
operates on a model of mutual distrust, which includes the microkernel but not
the nanokernel. Compartments in CheriOS are at the process level.

CheriOS implements concepts to allow distrust between compartments: reserva-
tions which allow distrust of delegated memory by ensuring that the delegator
cannot access it at the same time, and foundations which enable attestation.

However, CheriOS lacks POSIX compliance, making its usefulness limited. While
abstraction layers do exist to provide compatibility, these hurt the performance
of the system and so are a compromise.

CheriBSD

CheriBSD is a widely used port of FreeBSD which has support for both CHERI
RISC-V and ARM Morello in hybrid and pure capability modes. CheriBSD is a
good showcase for the utility of incremental porting. Watson et al. described a
hybrid capability approach to CheriBSD in 2015 [4]. A hybrid mode OS design
was described in which the kernel runs in hybrid mode, facilitating the execution
of capability unaware, hybrid mode and pure capability applications. In their
implementation, applications compartmentalised using the lib_cheri api, were ex-
plored. lib_cheri enables compartmentalisation in pure capability mode within a
single address space. The kernel was only minimally extended to support capa-
bility register context switching and tagged memory. Since then, the CheriBSD
kernel has been fully ported to use capabilities but still runs in hybrid mode, de-
tailed by Davis et al. [192] in 2019. However, CheriABI pure capability user-space
applications are now supported.

CAP-VMs

CAP-VMs [7] (cVM) introduces a virtual machine-like abstraction which does
not rely on virtualisation and addresses common limitations of container and VM
based approaches to isolation. Hybrid mode global DDC and PCC capability
pairs are used to isolate application components within a single address space.
Running a LibOS within a cVM, it is possible to run multiple application com-
ponents alongside each other. Communication between compartments is enabled
though asynchronous read/write buffers, streams and direct calls to switch be-
tween compartments.
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Hybrid mode is used to improve compatibility, with the only changes needed to
support the proposed system being changes to use the data sharing API. Ap-
plication components communicate remotely via communications APIs already,
making it simple to share data between them in hybrid mode. All isolation and
management of cVMs is handled by an intravisor, which is responsible for func-
tions such as creating and installing capabilities for cVMs. In addition to the
sandboxing enabled by the restricted DDC and PCC bounds, the permissions
granted to cVM capabilities are also heavily restricted. Isolation is provided be-
tween an application component and the LibOS, as well as between the cVM and
the intravisor.

CHERI JNI

CHERI capabilities have also been explored in the context of java native code [29].
Unlike java byte code which is executed by the java virtual machine and is con-
sidered memory safe, java native code is included often as C libraries which are
executed directly and offer no memory safety. Placing these portions of code into
sandboxes isolates a major source of vulnerabilities. Sandboxes are implemented
as pure capability code to ease the implementation of the java native interface
(JNI), however the authors note that where native code cannot be modified, a hy-
brid approach may be considered to improve compatibility. Buffers are accessible
to JNI code via capabilities, which often have only read-only permissions.

Research Opportunities

By examining the current body of research utilising CHERI, a number of patterns
become clear. Firstly, hybrid mode is used where compatibility is desired due
to the ability to run legacy, capability unaware instructions alongside capability
instructions. Hybrid mode compartmentalisation within a single address space is
under-explored in the literature, considering the promises of low engineering effort
and easy compartmentalisation.

Additionally, the arrival of Morello as a hardware implementation opens up the
opportunity to gain performance insights by evaluating on real hardware as op-
posed to the FPGAs and softcores primarily used in the literature. Table 2.2
compares existing work to the investigation proposed in this thesis.

2.7 Unikernels

Unikernels [15], [193]–[204] are a recent model of Operating System (OS) in which
a single application is statically compiled along with its library dependencies as
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Table 2.2. Comparison of compartmentalisation using CHERI. SAS = Single Address Space
Compartmetalisation, EOH = Evaluated On Hardware

Work Mode SAS? ISA EOH?
CheriRTOS Hybrid No CHERI MIPS No
CompartOS Purecap Yes CHERI RISC-V No

CherIoT Purecap Yes CHERI RISC-V Yes
CheriOS Purecap No CHERI MIPS &

CHERI RISC-V
No

CheriBSD Purecap Yes CHERI MIPS,
CHERI RISC-V &
ARM Morello

No

CAP-VMs Hybrid No CHERI RISC-V No
CHERI JNI Purecap No CHERI MIPS No

This Thesis Hybrid Yes ARM Morello Yes

well as a very thin OS layer. Unikernels are typically executed as a small virtual
machine on top of a hypervisor. The resulting executable is a highly specialised
OS, which is both fast and lightweight (low memory and disk footprint and fast
boot times). Additionally, as a result of their specialised nature and their removal
of unnecessary code, unikernels present a reduced attack surface when compared
to traditional monolithic operating systems. To improve performance, all of the
kernel and application code resides in a single address space with no isolation
between the application and the kernel. While beneficial for performance reasons,
this can be a security issue which can be mitigated with compartmentalisation [32].

Using a unikernel allows for the exploration of compartmentalisation with CHERI
in hybrid mode, within a single address space. Additionally, it will also allow
lessons to be drawn which can be applied to other single address space applications
of CHERI in hybrid mode.

2.7.1 FlexOS

FlexOS [15], [205] is a unikernel which is based upon Unikraft [193]. It is de-
signed with flexible security policies in mind. A developer annotates function
calls which cross compartment boundaries and annotates data which should be
shared. At build time, the FlexOS toolchain then transforms these annotations
into mechanism-specific code based on a supplied configuration file. This means
that the precise isolation mechanism can easily be changed in the future. Addi-
tionally, compartment boundaries are easily set and moved simply by supplying
a different compartment configuration file to the toolchain. This makes it an
ideal candidate to implement a CHERI backend on Morello because 1) it is a
lightweight unikernel with a small code base and 2) it is not tied to a specific
isolation mechanism, allowing it to be extended. Isolation backends have been
implemented using Intel MPK and Intel EPT.
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2.8 Summary

This chapter has motivated research into compartmentalisation as an important
technique, which is needed to isolate sensitive components of computer systems,
thus decreasing the damage which can be wrought by an attack or malfunction,
accidental or malicious in nature. Next, the mechanisms which can be used to
implement compartmentalisation were examined and real world examples of com-
partmentalised software were described, observing that despite the plethora of re-
search done, compartmentalisation remains firmly in the realm of academia rather
than commonplace considerations for commercial software deployments. Follow-
ing this, the state-of-the-art research using CHERI was presented, finding that
little work has explored the use of hybrid mode in the context of single address
space application compartmentalisation, despite the potential advantages offered
by such an approach.

The remainder of this thesis explores the use of CHERI capabilities in hybrid
mode, explored in Section 2.6, as a way to trade off the performance and engi-
neering costs and security needs of compartmentalisation, by being compatible
with existing software and enforcing bounds and permissions checking in hard-
ware. FlexOS, a security oriented unikernel is extended with a hybrid mode
CHERI backend to explore different models and approaches to compartmentali-
sation, including data sharing.
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Chapter 3

Design

The following chapter first examines the requirements which must be addressed
with the design for CHERI compartmentalisation in hybrid mode on Morello: low
performance cost, low engineering cost and good scalability. Following this, a
high-level overview of the design of such a system is given. This is followed by the
proposal of five different approaches to data sharing. Based on the requirements,
defined in Section 3.1, the most suitable data sharing mechanisms will be selected
for evaluation. This chapter focuses on RQ1: addressing which compartment
models are possible using Morello in hybrid mode.

3.1 Requirements

The following are requirements which must be carefully evaluated throughout
the rest of this thesis, in relation to the design decisions and implementation of
compartmentalisation using CHERI hardware capabilities in hybrid mode. They
affect how easily the compartmentalisation methods proposed in this thesis can
be applied to real software.

3.1.1 Low Performance Cost

Implementing compartmentalisation will introduce overheads due to the need to
share data in a controlled manner, and also the need to perform compartment
switches where previously standard function calls were. However, different con-
figurations, use-cases and workloads will accept different overheads. In evaluating
potential solutions, it is important to consider the associated performance cost.
The design of the system must also seek to minimise the performance cost of com-
ponents such as the compartment switching mechanism while achieving a high
level of security.

The performance cost will be evaluated against the DARPA CPM requirements
for compartmentalisation [27], which state that an overhead of < 15% for OS level
isolation and < 5% for application level isolation is acceptable.
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3.1.2 Low Engineering Cost

Solutions must make the cost of retrofitting compartmentalisation into legacy soft-
ware as low as possible, and this cost must be weighed up against the performance
requirements and security needed for the system. For example, if high perfor-
mance is critical, it may be possible to implement compartmentalisation which
requires higher engineering effort but affects performance less and still gives the
required security guarantees. The cost of engineering extends not only to the new
programming abstractions or annotations which are implemented and must be
integrated into a complex code base, but also includes the introduction of a trust
model which must be integrated into legacy software.

Returning to DARPA CPM requirements for compartmentalisation [27], the max-
imum engineering effort is deemed to be < 2% of the code base annotated for OS
level compartmentalisation. For the application level, < 0.2% of the code base
annotated is deemed acceptable.

3.1.3 Scalability

Scalability concerns stem from both performance and engineering costs and can
affect how many compartments can be implemented using a particular design, for
example the performance or engineering costs increase with each additional com-
partment. This is particularly important in a unikernel where high performance is
helped by having no isolation between the application and kernel. For this reason,
selecting designs which scale well for their use-cases is important.

3.2 Design Overview

FlexOS [15] has been chosen to implement a prototype system for evaluation.
FlexOS’ design enables the easy compartmentalisation of legacy code, having been
designed with isolation and security as primary concerns. Additionally, FlexOS
is implemented in a way which uncouples the compartmentalisation abstractions,
such as call gates, from the implementation, reducing the burden of implementing
a new CHERI backend.

Unikernels [119], described in Section 2.7, run a single application in the same
address space as the core kernel components, resulting in no isolation between
the application and kernel. Compartmentalisation in this context is intra-address
space, meaning that new trust boundaries must be established within existing
software and between previously mutually trusting components such as functions
or core OS libraries, as well as within the application itself. A unikernel is used
for the prototype because the small code base eases the engineering burden of
integrating compartmentalisation into an OS.
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FlexOS is based upon a POSIX compatible unikernel, Unikraft [193], which will
greatly improve the adoptability of the system, with widely used applications
such as SQLite, available and compatible. This also enables easier comparison
to other isolation mechanisms; FlexOS has previously been evaluated with both
MPK and EPT mechanisms. Since unikernels such as FlexOS and Unikraft are
highly specialised, they also improve performance by minimising the inclusion
of unnecessary code and libraries. This also serves to reduce the attack surface
presented.

Compartments are defined statically at build time in the linker script, using a
configuration file provided to the build tool by the developer [15]. The boot
code initialises global compartment capabilities based on these defined bound-
aries. Once the developer has defined a compartment scheme, gates are inserted
in place of function calls, where these calls now cross compartment boundaries.
Gates are the beginning of the switching process, and are used to invoke the
switcher, which then performs the compartment switching, including switching
the stack and global compartment capabilities. Finally, a trampoline function is
called, which branches to the desired function. The switcher and global compart-
ment capabilities cannot be accessed by compartments directly, instead they must
use a sealed capability. The switching mechanism is kept as lightweight as possi-
ble to minimise overhead while preserving security. The compartment switching
mechanism is described in more detail in Section 4.2. All data is treated as private
compartment data by the build tool, unless it is specifically annotated and thus
shared. Below, the possible solutions for sharing data are examined.

The trusted computing base (TCB) includes the switcher, gates, trampoline, early
boot code including capability initialisation code, memory manager, scheduler and
interrupt handler.

3.3 Approaches To Data Sharing

Most data are private to a compartment because it resides in its region of mem-
ory, which other compartments cannot access. Only explicitly shared data, are
accessible to other compartments. Pointers to data, which are now private to a
compartment, cannot be dereferenced successfully by design. However, this raises
issues for most compartment models: how to selectively share data between com-
partments? Pointers to data are used in many applications and libraries as a
way of avoiding the cost of copying data when arguments are passed, which is
done for performance reasons. The different approaches to restoring data sharing
between compartments are examined, and their merits are evaluated in terms of
performance and engineering costs, as well as their scalability.
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Comp_0 Comp_1

Shared
Data Capability

Comp_0 DDC Comp_1 DDCCall: pass
capability arg

Dereference:
access shared

data

Figure 3.1. Example of data accessed via a capability. Here, the shared data is in compartment
0, which is unreachable from compartment 1. A capability is passed as an argument when

compartment 1 is called. The data is then accessed by dereferencing the capability.

1 struct stat *statbuf; // pointer
2 struct stat *__capability statbuf; // capability

Listing 1. Example of compiler annotation needed to change pointer to capability.

3.3.1 Manual Capability Propagation

Capabilities grant controlled, bounded access to data which is not within bounds
of a compartment DDC. This removes the need to share data through other mech-
anisms, such as shared data regions, and eliminates the potential for oversharing
data when compared to coarse grained shared memory where all shared data may
be accessed. Pointers can be changed to capabilities by using compiler annota-
tions (Listing 1). Figure 3.1 illustrates this in practice. Here, the shared data
is in compartment 0, which is unreachable from compartment 1. A capability is
passed as an argument when compartment 1 is called. The data is then accessed
by dereferencing the capability, with compartment 0 effectively lending the shared
data to compartment 1. This approach could be extended to an unlimited num-
ber of compartments, since capabilities are used in the same way as pointers. In
terms of security, the compartment is isolated by the PCC/DDC, constraining all
non-capability operations made by the compartment, and shared data is tightly
bounded by argument capabilities, resulting in strong isolation.

Trust Model

Here, a compartment represents the code and data of an untrusted function, and
is isolated from the rest of the system by way of a sandbox. Pointer arguments
entering the compartment are replaced with capabilities. The rest of the system
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1 void foo(mystruct *stat, int index) { // Original
2 char *str = stat->str;
3 bar(str);
4 float *element = stat->array[index];
5 float *next = element+1;
6 }
7
8 void foo(mystruct *__capability stat, int index) { // Ported
9 char *__capability str = stat->str;

10 bar((__cheri_fromcap char*)str);
11 float *__capability element = stat->array[index];
12 float *__capability next = stat->array[index+1];
13 }

Listing 2. Example of a simple function annotated to use capabilities.

is trusted and can access any memory within the sandboxed compartment.

Engineering Cost

A developer must identify pointers which cross compartment boundaries and ap-
ply annotations to transform the pointers to capabilities. At this point, functions
called, which previously accepted pointer arguments, must now be modified to
accept capability arguments as shown in Listing 2. Following this, uses of the
new capability argument such as variable assignments much be updated. Addi-
tionally, some code may need to be rewritten to take into consideration capability
monotonicity. This is illustrated in Listing 2.

Capabilities flowing out of the compartment must be changed back into pointers
with a cast (line 10). Capability monotonicity must also be respected. For ex-
ample, a capability cannot extend the bounds of the capability it is derived from:
element+1 (line 5) is forbidden because it refers to memory outside the bounds of
next, and that code must be redesigned. Other types of changes may be needed
depending on the ported code [206].

This solution is only amenable to small scenarios such as compartmentalisation at
the function level because the development cost of mixing pointer and capabilities
can become burdensome. Consider the following scenario which was encountered
when compartmentalising SQLite: Compartment 1: SQLite, Compartment 2:
vfscore + ramfs, Default Compartment: everything else. Now consider the
path of execution shown in Figure 3.2. In this scenario, a struct is allocated on
the stack in compartment 1, a pointer is then passed through compartment 2,
and used in the default compartment (memset). This would require the developer
to modify a libc function to now accept a capability argument. To do so would
also require rewriting all other calls to memset. The example given demonstrates
that this problem is not simply one encountered when attempting to compart-
mentalise libc. Libc is in the default compartment and yet data flows between
compartments can mean that capabilities flow to many functions, which explodes
the engineering effort which is required.
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findInodeInfo (SQLite, Comp1)

↓

fstat (vfscore, Comp2)

↓

sys_fstat (vfscore, Comp2)

↓

vfs_fstat (vfscore, Comp2)

↓

vn_stat (vfscore, Comp2)

↓

memset (libc, Default)

Figure 3.2. Path of execution, demonstrating the difficulty faced when manually annotating
pointers to capabilities. Compartment 1: SQLite, Compartment 2: vfscore + ramfs,

Default Compartment: everything else.

Scalability

Although the increasing use of capabilities alongside regular integer pointers can
increase complexity, this cost does not necessarily increase with the number of
compartments, rather the complexity grows regardless of the number of com-
partments. For this reason, if small or simple compartments are designed, the
engineering burden is lower.

Performance Cost

Replacing pointers with capabilities has minimal overhead when compared to
other methods. No additional data copies are required, such as copying data to
a shared data region of memory or transforming stack data allocations into dy-
namic allocations. It is also cheaper than relying on additional call wrappers to
enable capability access to data as is described in Section 3.3.5, since no additional
instructions are required, only capability aware replacements. The use of capabil-
ities in place of 64-bit pointers can also result in increased cache pressures since
the cache size is unchanged when adding support for capabilities in hardware, but
pointers now occupy twice the cache real-estate.

3.3.2 Overlapping Shared Data Region

This approach is similar to the one used with FlexOS MPK [15]. Here, a region
of memory is reserved by the developer at build time to contain shared data. For
static variables are annotated by the developer to relocate them at link time. The
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Comp 0 Shared Data Comp 1

Low
addresses

High
addresses

Comp 0 DDC
Comp 1 DDC

Figure 3.3. Compartment bounds when a shared memory region is used. The compartment
bounds overlap to encompass shared data. The grey boxes represent compartment private

data.

1 void foo() { // Original
2 int x;
3 bar(&x);
4 }
5
6 void foo() { // Ported
7 int __flexos_shared x;
8 __flexos_gate(bar, &x, compartment1);
9 }

Listing 3. Examples of FlexOS annotations.

developer also annotates dynamic memory allocations to use a shared memory
allocator, which allocates the data into shared memory. Since capability bounds
must cover contiguous memory, the shared data region is located between pairs
of communicating compartments in memory. Their DDC bounds now cover this
region, granting both access to shared data, illustrated in Figure 3.3. Data sharing
is at a much coarser level than when using manual capability propagation, since
those accesses are tightly bounded. In contrast, all data in shared memory is
accessible to a compartment, even if not all data in shared memory is relevant to
a particular compartment.

Trust Model

Mutual distrust is enforced between compartments, with none able to access the
others’ private data. Data must be specifically shared. Shared data is accessible in
shared memory. All compartments can access all data within the shared memory
which they have access to.

Engineering Cost

With this approach, shared data needs to be marked as such with annotations in
the source code. The function calls at compartment boundaries must similarly
be annotated. This is illustrated on Listing 3, where foo and bar are placed

50



in different compartments. Code transformations performed by the build tool,
use these annotations to automatically allocate shared data in memory which is
accessible from all compartments, and to instantiate gates. The engineering cost
of this approach is relatively low because only annotations are required, rather
than source code rewriting. Compared to the manual capability propagation, the
effort is much lower, because the annotations needed to share data are needed only
at declaration, whereas all pointers on the path of shared data using capabilities
must be annotated and source code rewritten.

Scalability

This approach may only work for two compartments due to the contiguous bounds
requirements of capabilities. The specific use case is important in determining if
this approach is limited to two compartments only. As an example to demonstrate
this, a developer may choose to implement three compartments, however in this
model, compartments 1 and 2, and compartments 2 and 3 share data. Such a
scenario could apply an overlapping shared data region to more compartments,
however, it is not a generic solution and would require extensive data flow analysis
to determine its applicability. A scenario where a compartment needs to share
data with multiple other compartments could not work because compartment
bounds will need to encompass other compartments in order to also overlap with
shared memory.

Performance Cost

A performance cost associated with this approach relates to shared stack variables,
which must now be allocated on a heap in the shared memory, with the associated
cost of an allocation.

3.3.3 Shared Data Capability

Access to shared data is limited by the contiguity requirements of compartment
bounds, making the approach only applicable to compartment pairs which share
data only between them, where the exact data flows allow bounds to overlap
safely. However, rather than overlapping a compartment DDC with shared data,
a separate capability granting access only to the shared data could be loaded
into the DDC register or used with a capability aware instruction to temporarily
grant access. Two methods are proposed for using a shared data capability. These
are exception based shared data access and load/store macro based shared data
access, where C macros are used to perform capability loads and stores from
shared memory. The two methods trade off performance and engineering effort.
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To avoid additional memory accesses, the shared data capability is kept in a
compiler reserved register. Since these are shared data methods, the data sharing
is coarser than when using manual capability propagation.

3.3.4 Exception-Based Shared Data Access

Upon attempted access to shared data via a pointer, a capability bound fault is
triggered, at which point the compartment DDC and shared data capability are
swapped, granting access to shared data. When compartment data is accessed,
the same happens. This is illustrated in Figure 3.4.

Trust Model

Mutual distrust is enforced between compartments, as with other shared data
approaches. Data must be shared, otherwise it is private. When exception based
access to shared data is available, all shared memory is accessible to compartments.

Engineering Cost

The engineering cost associated with this approach is lower than that associated
with the overlapping shared data region approach, since the same annotations are
required, but it is not necessary to reason about which compartments pairs share
data. Therefore, it is an approach which requires low effort.

Scalability

Unlike the overlapping shared data region approach, this approach will scale to an
unlimited number of compartments, requiring the same effort for each additional
compartment. This is because the DDC is switched to one which covers the shared
data region, and so it does not matter where this resides.

Performance Cost

Relying on exceptions lowers the porting cost by enabling the use of the same
shared data annotations as are used in the overlapping DDC approach. However,
relying on exceptions is a costly approach [207] and similar approaches such as
the trap and map approach taken by CubicleOS [14] proved expensive.

3.3.5 Load/Store Macro-Based Shared Data Access

In contrast to the automated runtime switching enabled by exception handling, a
developer can manually wrap shared data accesses in special macros which perform
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...... ...Shared comp_n

DDC

High
Addresses

Before
exception

...... ...Shared comp_n

DDC

Low
Addresses

After
exception

High
Addresses

Low
Addresses

Figure 3.4. Exception based shared data access approach. DDC before and after a capability
bounds fault when attempting to access shared data.

loads and stores via the reserved register containing the shared data capability. In
this way, capability loads and stores can be performed in the shared data memory
without needing to overlap the DDC bounds.

Trust Model

Mutual distrust is enforced between compartments, as with other shared data
approaches. Shared data is accessed via capability loads and stores, meaning that
all shared data is accessible to all compartments.

Engineering Cost

The engineering effort required is higher than other shared data approaches as a
result of wrapping all shared data accesses. Where frequent shared data accesses
occur, the engineering cost is higher. This burden could be reduced by imple-
menting automated data flow analysis to flag such accesses to developers. Indeed,
the process could be entirely automated by instrumenting such accesses with the
relevant capability aware load and store instructions.

Scalability

The cost of wrapping shared data accesses does not increase with additional com-
partments, meaning that it can scale to as many compartments as are required.

Performance Cost

This approach does not suffer the performance cost of repeated exception handling
but may require additional instructions, meaning that the performance cost will
be higher than the overlapping shared data region approach.
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...... ...Shared comp_n

DDC_2

High
Addresses

DDC_1

Low
Addresses

Figure 3.5. Multiple DDCs which are initialised to cover different memory regions, thus
avoiding the need to switch.

3.3.6 Shared Data With Multiple DDCs

Finally, an architectural modification to CHERI is considered to allow multiple
DDCs to coexist. This approach has not been implemented. This would involve
adding additional DDC registers, as illustrated in Figure 3.5. During compart-
ment switches, the switcher sets one DDC to cover compartment bounds as before,
while other DDC registers are set to cover shared memory, thus enabling multi-
ple non-contiguous regions to be addressable at once and removing the need to
perform DDC switching or use overlapping DDC bounds.

In terms of hardware cost, this approach would require additional DDC registers,
along with related logic to determine the correct DDC capability to use.

This approach would also incur a low performance penalty since it requires no
additional instrumentation or exceptions, and requires only annotating shared
data as with other shared data approaches.

3.4 Summary

This chapter has detailed the requirements for a successful implementation of a
compartmentalisation mechanism and the overview of the system to be imple-
mented. Additionally, it has proposed five data sharing approaches, each repre-
senting a different point in the performance, engineering, and scalability trade-off
space. These are manual capability annotations and shared data memory, with
different approaches to accessing shared data from within a compartment. While
the granularity of shared data varies, each provides strong guarantees of security,
isolating a compartment to its own portion of the address space.

This chapter has addressed part of RQ1, examining which compartment models
can be achieved in hybrid mode and the two most practical approaches have been
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selected for evaluation based on the stated requirements: the overlapping shared
data region approach, since this implements shared data with the least amount of
engineering effort and performance penalty, at the cost of scalability, and manual
capability propagation. The latter will be used for small scale compartments since
it is not practical to apply to larger code portions, but provides low performance
overhead and tightly bounded data sharing.
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Chapter 4

Implementation

This chapter first details the porting effort of FlexOS to enable execution in hybrid
mode on Morello. Next, the implementation of the CHERI backend, including the
switcher and gates are described, followed by the implementation of data sharing
approaches and the programming annotations and abstractions needed to enable
them. This chapter continues to address RQ1.

4.1 Porting FlexOS To Morello In Hybrid Mode

Implementing a CHERI compartmentalisation backend first required a hybrid
mode port of FlexOS. Unikraft upon which FlexOS is based, supported AArch64
already, meaning that existing AArch64 components could be adapted. The main
steps taken to enable capability support within FlexOS are detailed. The to-
tal porting effort, including implementing the compartmentalisation backend, in-
volved 2200 lines of code.

4.1.1 Booting

Capability features are enabled by the initial boot code. This includes disabling
the trapping of Morello capability features at all exception levels. Additionally, the
behaviour of capability features such as sealing return capabilities is defined at this
stage, and the capabilities needed to locate the exception vectors are initialised.
Return capability sealing is disabled in this implementation.

Capability Memory Access Faulting

The Morello architecture controls access to capabilities in memory, with the ability
to generate a capability fault upon attempts to load or store valid capabilities.
This behaviour can be used to restrict the rights of the system, however this
behaviour needs to be disabled for FlexOS to allow capabilities to be loaded from
and stored to memory.

Store faulting can be enabled and disabled in the block and page descriptors
at stages 1 and 2 of translation. Specifically, 2 registers: TCR_ELx for stage 1
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translation and VTCR_EL2 for stage 2, x corresponds to the relevant exception
level of the processor (EL). If stage 2 translation is disabled, then the latter register
is not relevant. Table 4.1 below lists the registers that need to be considered for
capability store faulting.

Table 4.1. Bits controlling capability store faulting.

Translation
stage

Register Bit Purpose Value

1 TCR_ELx CDBM
(bit 59)

Enables or disables tracking
stores of valid capabilities, 0b1
enables tracking, 0b0 makes the
register have no effect.

0b0

1 TCR_ELx SC (bit
60)

0b0: when CDBM is 0, fault, oth-
erwise no effect. 0b1: has no ef-
fect.

0b1

1 TCR_ELx HPD0
(bit 41)
HPD1
(bit 42)

HPD0 affects TTBR0_EL1 and
HPD1 affects TTBR1_EL1.
These need to be set to 1.

0b1

1 TCR_ELx HWU060
(bit
44) and
HWU160
(bit 48)

Affects TTBR0_EL1 and
TTBR1_EL1 respectively. These
need to be set to 1 depending on
the translation table used.

0b1

2 VTCR_EL2 CDBM
(bit 59)

Enables or disables tracking
stores of valid capabilities, 0b1
enables tracking, 0b0 makes the
register have no effect.

0b0

2 VTCR_EL2 SC (bit
60)

0b0: when CDBM is 0, fault, oth-
erwise no effect. 0b1: has no ef-
fect.

0b1

2 VTCR_EL2 HWU60
(bit 26)

Needs to be set to 1. 0b1

Load faulting similarly prevents the loading of a capability by generating a
capability fault to prevent unauthorised access. Table 4.2 lists the registers and
bits needed to disable faulting. Once again, if stage 2 translation is disabled, then
VTCR_EL2 has no effect.

4.1.2 Exceptions

Handling exceptions in a compartmentalised system requires the use of banked
registers. Through the use of executive and restricted modes, different views of
the DDC are available to the system based on current execution mode. In order
to give the exception handler adequate bounds and permissions in hybrid mode
to perform exception handling, it uses the default capability in the DDC, which
covers the entire address space.
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Table 4.2. Bits controlling capability load faulting.

Translation
stage

Register Bit Purpose Value

1 TCR_ELx LC (bits
61 and
62)

0b00: will zero capability tags,
0b01: will have no effect, 0b10:
if CCTLR_ELx.TGENy is 1,
fault loads of valid capabilities
otherwise no effect, 0b11: if
CCTLR_ELx.TGENy is 0, fault
loads of valid capabilities oth-
erwise no effect. ‘x‘ and ‘y‘
refers to the translation table, i.e.
TTBRy_ELx.

0b01

2 VTCR_EL2 LC (bit
61)

0b00: zero capability tags. 0b01:
has no effect.

0b01

1 CCTLR_ELx TGEN0
and/or
TGEN1

Apply to TTBR0_ELx and
TTBR1_ELx. 0b0: fault when
TCR_ELx.LC is 0b11, 0b1: fault
when TCR_ELx.LC is 0b10.
Only necessary if TCR_ELx.LC
has been set to one of the values

0b0

All compartments operate in the so-called restricted mode. This grants them a
view of the system registers which contain the restricted compartment capabilities.
Upon taking an exception, the exception handler capability is used, which switches
execution to executive mode. In executive mode, a different bank of registers is
visible to the system, and these contain capabilities with wider bounds and greater
permissions.

The exception handler is modified from a standard AArch64 implementation in
two main ways. Firstly, capability registers are pushed to the stack to preserve any
capabilities. Additionally, new capability exceptions such as a capability bounds
fault are added to the handled exceptions.

4.1.3 Allocators

During the boot process, each compartment is assigned a dynamic memory allo-
cator, which is initialised in the compartment heap, which is a region of memory
defined statically in the linker script at build time by the developer, and is used
during execution for dynamic memory allocation. All allocators are initialised at
boot time in their respective heaps. Each compartment can only access allocators
for memory which its DDC bounds cover. When allocating memory, the correct
allocator is selected and returned by reading the compartment ID register.

4.1.4 UART

Universal asynchronous receiver/transmitter (UART) is a protocol used to ex-
change serial data between two devices. Access to UART is needed to output
data from the system and is accessed by reading from and writing to a defined
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Figure 4.1. Memory layout of FlexOS on Morello.

 Caller Switcher1 - Call

Callee3 - Call
4 -ReturnTrampoline

5 - Return 2 - Call

Figure 4.2. Control flow of a compartment switch (call and return paths). Dashed boxes
represent compartments. The trampoline is available in the compartment of the callee

compartment.

set of memory addresses. Default capability bounds allow access to UART since
these cover the entire address space, however once a compartment is entered,
UART is no longer accessible because the memory relating to UART is outside
of the bounds of any compartment. Capabilities are initialised at boot which
grant bounded access to UART addresses, to enable applications to print via se-
rial. Functions which access UART addresses are ported to use the new UART
capabilities.

4.2 Isolation Mechanism Implementation

The main components necessary to implement CHERI compartmentalisation in
hybrid mode on Morello with FlexOS are now described, beginning with an
overview of the system from a high level, then delving deeper, first into the struc-
ture of a compartment, including how isolation between compartments is enforced
at the hardware level. Further, the initialisation of compartments is detailed, as
well as the components of the switching mechanism: the gate, the switcher and
the trampoline. Finally, the annotations required to restore limited data sharing
between compartments are described.

4.2.1 CHERI Isolation Mechanism Overview

Global compartment capabilities are initialised at boot time on the compart-
ment boundaries defined at build time in the linker script. These capabilities are
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known as the Default Data Capability (DDC), which restricts data accesses, and
the Program Counter Capability (PCC) which restricts code execution. Once the
developer has defined their compartment scheme, gates are inserted in place of
function calls by the build tool, where these calls now cross compartment bound-
aries. The flow of execution is visualised in Figure 4.2. Gates are the beginning
of the switching process, which involves storing the data needed for a compart-
ment to resume execution on the compartment stack, as well as loading the data
needed by the switcher and arguments required by the function call. The gate then
loads and unseals a capability granting access to a capability pair for the switcher
and invokes the switcher (step 1 of Figure 4.2). The switcher then performs the
switching, including switching the stack and setting the new compartment PCC
and DDC. It then calls a trampoline function (step 2), which calls the desired
function (step 3). On completion, the callee function returns to the trampoline
(step 4) and the trampoline performs the compartment switch back to the caller
(step 5), where the caller context is then restored by the call gate. The trampoline
acts as the entry and exit point to a compartment.

4.2.2 Compartment Structure

Compartments are defined at build time in a configuration file provided to the
FlexOS build tool by the developer. This generates a separate region in the global
linker script per compartment and a local linker script for libraries. At link time,
isolated data are then placed into their respective, physically separate portion of
the executable. Non-isolated data are placed into a default compartment. This
process places all compartment static data into its respective compartment. If a
shared data region model is used, data must be specifically shared via an anno-
tation applied by the developer. The boot code uses boundaries defined in the
global linker script to define compartments. Compartment code remains in the
default code area, meaning that no isolation is implemented between functions.
Within each compartment linker section, the developer statically reserves space.
This space serves as both the private compartment stack and heap.

The compartment switcher is located in separate memory from all other code.
The switcher memory is outside the bounds of any compartment. This is done
to control access to the switcher. In addition, compartment capability pairs (one
DDC and PCC pair per compartment) are stored by the boot code in memory,
which is not accessible from any compartment. This enables secure compartmen-
talisation, since a compartment cannot arbitrarily grant itself access to another
compartment. This can be seen in Figure 4.1.
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1 ...
2 targets:
3 - architecture: arm64
4 platform: morello
5 compartments:
6 - name: comp1
7 mechanism:
8 driver: morello
9 default: true

10 - name: comp2
11 mechanism:
12 driver: morello
13 - name: comp3
14 mechanism:
15 driver: morello
16 libraries:
17 uktime:
18 is_core: true
19 compartment: comp3
20 vfscore:
21 is_core: true
22 compartment: comp2
23 ramfs:
24 is_core: true
25 compartment: comp2
26 tlsf:
27 version: staging
28 kconfig:
29 - CONFIG_LIBTLSF=y
30 pthread-embedded:
31 version: staging
32 compartment: comp1
33 newlib:
34 version: staging
35 kconfig:
36 - CONFIG_LIBNEWLIBC=y
37 compartment: comp1
38 ...

Listing 4.1. Example of developer supplied configuration.

4.2.3 Initialisation

Based on the compartment boundaries defined in the linker script, compartments
are initialised at boot time. This means that core FlexOS boot code and platform
code is trusted to initialise compartment capabilities correctly and securely. A
compartment is defined by a DDC and a PCC. Since no isolation between code
is present, the PCC of each compartment has the same bounds. The value (the
target address) of each PCC is the trampoline function. The boot code sets com-
partment DDC bounds to cover the compartment memory, which was statically
defined in the linker script. Capability bounds can only cover a contiguous portion
of memory, meaning that all compartment data must be contiguous and separate
from any other compartment, to avoid overlap. Once compartment capabilities
have been created, they are stored in the memory reserved for compartment ca-
pability pairs (the DDC and PCC capabilities used to define a compartment).

During boot time, the system also initialises a capability pair for the switcher.
This pair grants access to the switcher code, and the compartment capability
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pairs. To prevent unauthorised execution of the switcher, the capability pair
granting access to the switcher is also placed in memory which is out of bounds
of any compartment. To access this pair, the boot code gives each compartment
a sealed capability in its private memory during the initialisation process, which
can be unsealed using a lpb (a load pair and branch) instruction. By sealing
the capability, the switcher can only be accessed via the specified entry points.
Finally, each compartment receives a private allocator, which is initialised by the
boot code on the heap which was reserved for the compartment by the developer
in the linker script. Using this allocator, the private stack for each compartment
is initialised within the compartment heap.

At the end of the boot process, the capability pair for the default compartment is
loaded and execution then enters the default compartment. Entering the default
compartment for the first time is not done via the trampoline, so a temporary
capability is used which points directly to the main function.

4.2.4 Compartment ID

During compartment switches, the processor’s compartment ID register is mod-
ified to contain the ID of the callee compartment during the switch. The caller
compartment ID is restored on return. The compartment ID register is a system
register containing a capability which identifies the currently running context of
a compartment. Modification is done via a system register instruction (MSR). The
compartment ID capability is used to select the correct allocator in FlexOS.

4.2.5 Switching

Compartment switch gates are implemented as C macros. This allows compart-
ment switch instructions to be directly inlined at the call site, avoiding the need for
a function call to invoke the switcher. Unlike in other implementations of FlexOS
call gates, such as MPK [15], the compartment switch gate does not perform the
compartment switch, this is done to prevent compartments from accessing the
capability pairs of other compartments. Instead, it loads the parameters needed
by the switcher and invokes the switcher, delegating the switching to the isolated
switcher. When initiating a switch, the compartment switch gate takes the caller
and callee compartment IDs, the callee function pointer, a return variable pointer
(if needed) and arguments to be passed.

The compartment switch gates follow the AArch64 calling convention for argu-
ment registers. Registers 0-7 can be used to pass arguments, which enables 8
arguments as in a regular function call. However, in a departure from the stan-
dard calling convention, arguments which are passed on the stack, and indirect
return values via x8 are not supported in this implementation.
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The procedure used to invoke the compartment switcher is as follows: modified
registers are pushed to the stack, the current sp and fp are saved, the switcher
parameters are loaded and finally, the sealed capability granting access to the
switcher capabilities is loaded, unsealed and the switcher is invoked using a lpb
instruction. Once the switcher has been invoked, the PCC is restricted to only
execute switcher code.

The switcher is an isolated entity which is trusted to perform the compartment
switches. The switcher PCC is only able to execute switcher code, which is
physically separate from all other code. The switcher DDC is the only way to
access compartment capability pairs. Once the switcher is invoked, the following
steps are taken:

1. Upon first entering the switcher, the caller compartment DDC is still in place.
This, along with the return capability generated by the call to the switcher,
is stored on the caller compartment stack. A sealed capability is generated
which grants access to this stored capability pair.

2. The DDC is changed to the switcher DDC

3. Callee compartment capabilities are loaded

4. The callee compartment ID is set

5. Callee compartment DDC is set

6. The new sp and fp are loaded and set

7. The callee compartment PCC is used to leave the switcher and jump to the
trampoline

The trampoline serves as both the entry and exit point for a compartment. Return
to the callee compartment can only be performed via the capability pair stored
on the caller stack, accessed via a sealed capability. Capability unaware code is
unable to do this, so a trampoline is employed to achieve this functionality. The
trampoline first stores the sealed capability created by the switcher, on the callee
stack, then calls the target function. The link register now contains the return
address of the trampoline as a regular 64-bit pointer. Upon, the trampoline
pops the sealed capability from the stack, unseals the capability and performs a
capability return to the caller compartment. The is done in the form of a lpb
instruction, where the caller return PCC and the caller DDC are loaded, the
return is performed, and the caller restores its DDC capability.

Upon return from the callee compartment, the gate also restores the sp and fp
and restores any saved registers. If the function call returned a value, the gate
will store the returned value in a provided variable pointer.
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1 static void
2 store32_le(uint8_t dst[4], uint32_t w)
3 {
4 uint8_t *__capability dstc = cheri_setbounds((uint8_t *__capability)dst, sizeof(dst));
5 __flexos_gate(store32_le_morello, dstc, w, compartment1);
6 }

Listing 4. Example wrapper function needed to call a manually annotated function.

4.3 Data Sharing Methods

For the full evaluation, overlapping DDC shared data compartments have been
implemented using mutual distrust, and manual capability propagation has been
implemented to sandbox individual functions. The following section describes
how these two data sharing methods are implemented and how proof of concept
implementations for exception and load/store macro based shared data access are
implemented.

4.3.1 Manual Capability Propagation

Manual capability propagation involves identifying sensitive functions and mod-
ifying them to replace all pointers with capabilities. To avoid having to rewrite
all calls to the modified function, the developer creates a wrapper function which
accepts pointers as before and converts the pointers to bounded capabilities be-
fore calling the new sandboxed function. The wrapper function uses the existing
function signature. The sandboxed function is a renamed copy of the original
function, which is then modified by the developer to use capabilities. The wrap-
per is shown in Listing 4 where the function is first called before pointer arguments
are converted to bounded capabilities and the new sandboxed function is called.
Sandboxing is used as a way to avoid having to rewrite extensive parts of the
application source code, as would be the case if safeboxing were implemented.
Instead, limited changes to the function itself are needed.

4.3.2 Overlapping Shared Data Region

Here, two compartments are contiguous in memory, interrupted only by a shared
data region. The shared data region acts in the same way as each compartments’
private heap, which is statically defined in the linker script. The developer defines
shared data memory statically in the linker script, and it is then initialised during
the boot process. A shared data allocator is also initialised during boot. In
this model, each compartment retains its own private stack, heap, and allocator.
Static shared data is identified by compiler annotations which were inserted by
the developer, as shown in Listing 5. Shared data, which is dynamically allocated
(including shared stack data), uses the shared allocator as shown in Listing 6.
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1 struct Config config; //private
2 struct Config config __section(".data_shared"); //shared

Listing 5. Example of compiler annotation needed to share static variable needed for shared
data approaches.

1 var = uk_calloc(comp1_allocator, 1, sizeof(struct var)); //private
2 var = uk_calloc(flexos_shared_alloc, 1, sizeof(struct var)); //shared

Listing 6. Example of dynamically allocated shared data for shared data approaches.

Special handling is required for shared string literals. String literals are by default
placed in private memory, for this reason, shared string literals are wrapped in a
macro to force relocation to shared data.

4.3.3 Exception-Based Shared Data Access

This solution requires a shared data capability to be retained in a register to
enable fast swapping. To do this, the compiler is instructed by the developer to
reserve a register, c18 for the implemented proof of concept, since this register is
often reserved for OS use anyway in the calling convention. The capabilities for
shared data access are initialised during the boot process and are stored in the
same reserved memory used to store compartment capabilities.

During a compartment switch, the switcher installs the correct shared data capa-
bility in c18. When a compartment attempts to access shared data, an exception
is triggered and a special capability bounds fault exception handler checks the
fault address register to ensure that the attempted access was within the bounds
of shared data. It then switches the current DDC capability with the shared
data capability. The compartment can now access shared data. When compart-
ment private data is now accessed, the same procedure is followed, except that
the handler checks that the attempted access was within the compartment DDC
bounds.

The decision to permanently maintain the shared data DDC in a register is for
performance reasons, avoiding the need to load it from memory each time. How-
ever, reserving a register can have a negative effect on performance, although this
is minimised by the use of c18 which is often reserved.

4.3.4 Macro-Based Shared Data Access

Similarly to exception-based shared data access, a register (c18) is reserved by
the compiler for the shared data capability, which is initialised during boot and
installed during compartment switching. However, rather than relying on excep-
tions to switch the DDC capabilities, shared data accesses occur directly via the
capability. The developer wraps shared data in a C macro which performs the
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1 var = *shared_data; //original access
2 MORELLO_LOAD_SHARED_DATA(shared_data, var); //wrapped shared data access

Listing 7. Example of macro based shared data access.

capability load or store and, in the case of a load, returns the loaded data in a
register corresponding to a specified variable as shown in Listing 7. The macro
places loaded data in a free register if possible, to avoid the need for an additional
memory access. Where this is not possible, for example when multiple accesses
occur in quick succession, loaded values may need to be pushed to the stack.

4.4 Summary

This chapter has described the porting which was necessary for FlexOS to lever-
age CHERI hybrid mode on Morello. Following this, the implementation of the
CHERI backend was detailed, including the switcher, trampoline, and call gates.
Finally, the implementation of data sharing mechanisms was described. This
chapter addressed RQ1.
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Chapter 5

Evaluation

In this chapter, different applications are compartmentalised using the imple-
mented CHERI backend on FlexOS, and evaluated with overlapping shared mem-
ory and manual capability propagation. First, the engineering cost associated with
SQLite, with two compartments isolated at the library level and five Libsodium
functions which are sandboxed using manual capability propagation. Next, the
performance implications of these approaches are evaluated, followed by an eval-
uation of the cost of a compartment switch, through the use of microbenchmarks,
including the effect of microarchitechtural features such as cache latency on the
switch latency as a whole. Evaluating these different configurations, highlights the
options available within the performance and engineering effort trade-off space.
Finally, the interface security properties achieved by the CHERI backend are com-
pared both with shared data and capability annotations, with the other FlexOS
backends: MPK and EPT.

This evaluation does not compare the implemented CHERI compartmentalisation
backend on FlexOS and associated data sharing methods with other CHERI works
(Section 2.6.2) because these are implemented on other platforms (CHERI-MIPS
and CHERI RISC-V) for which hardware was not available. Further, many exist-
ing CHERI compartmentalisation works target pure capability mode, which is out
of scope for this exploration and evaluation of hybrid mode compartmentalisation
within a single address space.

This chapter focuses on RQ1, RQ2 and RQ3: the performance, engineering and
security implications of compartmentalisation using the CHERI isolation mecha-
nism are evaluated and compared to MPK and EPT.

5.1 Evaluation Setup

All evaluation is conducted using a Morello board, running a Morello SoC [186].
FlexOS is executed running bare metal on the hardware. The results displayed
are an average of 10 runs. Data gathered from Linux on Morello is as a result
of running under a minimal, capability-unaware, AArch64 Debian 11 installation.
The Morello CPU is clocked at 2.5GHz throughout for all experiments, and precise
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timing measurements are taken by the generic 50MHz system clock. The plots
shown do not have error bars because the data collected is stable, making it
unnecessary.

The libsodium library is integrated with a benchmark which is derived from its test
suite, running representative tests (e.g. encrypting a buffer, generating a key) 200
times in a loop. The compartmentalisation scenario and the benchmark for SQLite
are both taken from the FlexOS paper [15]. The baseline used for all comparisons
is FlexOS with no compartments or isolation, running the benchmark.

5.1.1 Rationale For Compartmentalised Components

Below, the compartmentalisation of components is motivated in both the mutual
distrust shared data model and function sandboxing model.

SQLite

vfscore & ramfs Together, these two libraries represent a high value target for
compromise, since the filesystem often has access to sensitive data and critical sys-
tem resources. In addition, compartmentalising the filesystem is roughly similar
to userland execution in Linux where the filesystem is part of the kernel, where the
effective protection compartment switch is a system call. Here, mutual distrust is
used.

Libsodium

sodium_hex2bin & sodium_bin2hex Both functions (sodium_hex2bin &
sodium_bin2hex) handle potentially risky input strings and write output to buffers.
This could be exploited by a malicious actor to perform buffer overflow attacks
on the rest of the system. To prevent this, both functions are sandboxed.

chacha20_encrypt_bytes Encrypt bytes performs encryption on untrusted input
buffers, which can potentially be exploited by external user input. Sandboxing is
used to constrain execution.

store32_le & store64_be Both functions (store32_le & store64_be) store data
in memory. While the functions themselves are simple, they serve as a proof of
concept implementation for frequently used, high value targets for exploitation,
since they are called from numerous places and store data in memory. For this
reason, both functions are sandboxed.
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Table 5.1. Porting effort required to compartmentalise.

Software Sharing
approach Compartments Porting

cost
Changes
(LoC)

libsodium Function
sandboxing

sodium_hex2bin < 1h 9
sodium_bin2hex < 1h 8

chacha20_encrypt_bytes < 2h 73
store32_le < 1h 5
store64_be < 1h 5

SQLite Overlapping DDCs vfscore + ramfs < 2d < 300

5.2 Engineering Cost

Below, the engineering cost associated with the two compartmentalisation models
is considered.

5.2.1 SQLite

Table 5.1 shows the porting effort associated with the compartmentalisation of
SQLite on FlexOS. The configuration chosen (vfscore and ramfs) can be achieved
by an experienced engineer in under 2 days. The effort involved can be broken
down into two main sections, 1) gate insertion and 2) data relocation. Gate
insertion is mostly automated by the FlexOS toolchain, with the programmer only
needing to insert annotations at the desired compartment boundary. The majority
of the work comes from relocating data. The data which must be relocated is
shared data. Data is shared via a shared data region of memory. Static data such
as strings must, therefore, be manually annotated by the developer to place them
in the shared data section if they need to be accessible outside the compartment.
In the same vein, data allocations must be annotated by the developer to now
allocate in the shared data section with a shared allocator.

The engineering cost is higher than that associated with sandboxing individual
functions. However, the isolation achieved is also greater than an individual func-
tion. It instead covers the entire filesystem, with the entire compartment covering
5.8k lines of code. The number of annotations required for porting (<300 out of
a total code base of >900k lines of code) represents 0.0003% of the code base,
which is within the requirements of < 0.2% for the application level. The time
to port is between less than the 1 week allowed for the OS level and greater than
the 1 day allowed for application level.

5.2.2 Libsodium

The engineering cost of isolating functions is lower per function than it is for com-
partmentalising vfscore and ramfs for SQLite (Table 5.1). However, the isolation
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achieved is less sweeping and more granular, and the trust model is different. Here,
a function is sandboxed. Relatively small functions have been chosen to reduce the
complexity of porting, with the largest function being chacha20_encrypt_bytes
with 141 lines of code, requiring 73 changes, which represents >50% of the func-
tion. The type of engineering effort is also different. Whereas to isolate a library,
the effort mostly involves annotations, here an understanding of CheriC and ca-
pabilities is required for successful isolation; the function must be modified by
the developer to accept capabilities in place of pointers. It is also easier to make
mistakes when compartmentalising. This is because the sandboxed function is
granted access to shared data via a capability. If bounds are incorrectly set on
this capability, access may be granted inadvertently to compartment private data.

The amount of code to port, to sandbox functions, can be lower than that needed
for SQLite and so is also within the requirements (Section 3.1). The time to port,
while lower in absolute time, is higher when the scope of isolation is considered
(filesystem versus a single function). However, this is also within the required
time (Section 3.1). Attempting to port vfscore and ramfs in this way would
have presented an engineering challenge due to the need to propagate capabilities
through a much larger part of the code base.

5.2.3 Summary

Overall, sharing data between compartments in hybrid mode presents challenges.
Attempting to propagate capabilities through larger parts of the code base than
individual functions can result in a high engineering burden. This means that
compromises must be made to reduce the engineering effort, which may result
in compromises being made in the design of a system. Overlapping shared data,
applied to SQLite, presents a lower engineering effort when applied to larger parts
of the code base such as the filesystem, but comes at the cost of coarser data
sharing, and it is potentially difficult to apply to more than two compartments.

5.3 Performance

The performance cost of isolating the filesystem from SQLite, and individual
Libsodium functions is evaluated.

Table 5.2. SQLite 2 compartments (vfscore + ramfs isolated) compartment switch metrics.

0 to 1 1 to 0 Total Switches/1k Instructions
185066 585271 770337 2.49
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Table 5.3. Performance counters by for each configuration compared to the
uncompartmentalised baseline.

Configuration L1I Acc L1I Miss L1D Acc L1D Miss Br Ret Br Mispred Mem Acc Inst Ret
sodium_hex2bin
&
sodium_bin2hex

+0.15% +3.95% +0.09% +25.11% +0.29% +10.25% +0.13% +1.74%

chacha20_encrypt
_bytes

+23.58% +209.49% +16.85% +106.00% +23.33% +76.76% +16.69% +4.90%

store32_le &
store64_be

+16.28% -37.47% +13.98% +12.03% +14.29% +91.72% +13.84% +2.90%

libsodium all +16.36% +178.92% +12.44% +189.79% +15.73% +102.34% +12.15% +4.54%
SQLite +99.6% +46.0% +48.1% +18.4% +6.5% +175.2% +48.3% +27.1%

Table 5.4. Libsodium configurations compartment switch metrics.

Configuration 0 to 1 1 to 0 Total Switches/1k Instructions
sodium_hex2bin & sodium_bin2hex 33600 0 33600 0.005

chacha20_encrypt_bytes 93991 4408608 4502599 0.669
store32_le & store64_be 2874836 0 2874836 0.435

all 791041 2206888 2997929 0.447

5.3.1 SQLite

First, the data obtained from the evaluation of SQLite is presented, which has
been compartmentalised into two compartments, with vfscore and ramfs isolated
from the rest of the system. In this scenario, isolation is at the library level, with
compartments mutually distrusting. A benchmark which performs 5000 INSERT
operations on an in memory (ramfs) database was used. SQLite was selected
because it features a large number of system calls and is a widely used applica-
tion. It was also used to evaluate compartmentalisation with MPK and EPT on
FlexOS running on x86 [15]. In the compartmentalisation scenario selected, the
filesystem is isolated. Consequently, this benchmark also features a large number
of compartment transitions (2.49/1k Instructions), as shown in Table 5.2.

CHERI3 (CHERI with 3 compartments) is implemented by combining the over-
lapping DDC shared data approach with an additional compartment isolating
uktime using manual capability propagation, which is possible as uktime is a very
small library. This done to aid comparison with the x86 scenarios presented in
the FlexOS paper [15], but in practice adds negligible overhead since uktime is
called at most 3 times.

The baseline used is uncompartmentalised FlexOS, which represents a standard
unikernel without isolation. Isolating the filesystem adds an overhead of 119.9%
(Figure 5.1). This translates to a runtime of 0.113s compared to 0.051s for the
baseline (Figure 5.2). This slowdown can be attributed to the fact that the isolated
libraries lie on the hot path, meaning that they are frequently called. However, the
runtime of the compartmentalised system still outperforms the same benchmark
running on an unmodified Linux installation (0.158s vs 0.113s compartmentalised).
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Figure 5.1. Overhead relative to uncompartmentalised FlexOS on respective system (Morello
and x86), of SQLite configurations. Uncompartmentalised FlexOS is used as a baseline

because this represents a standard unikernel lacking isolation between the application and
kernel. CHERI3 included with uktime in compartment 3 (manual capability propagation for
comparison with MPK3). Also shown are the overheads of MPK3, EPT2 and Linux taken

from [15].
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Figure 5.2. Execution time in seconds of different configurations of SQLite running on Morello.

Running on Linux is roughly equivalent to a two compartment scenario, due to the
user-kernel separation at the filesystem boundary. This shows adding the hybrid
mode CHERI compartmentalisation backend preserves the performance advantage
of running the benchmark on a unikernel. The relative overheads are also in
line with the relative overheads achieved by other FlexOS isolation mechanisms,
shown in (Figure 5.1). Compared to the overhead of MPK (MPK3), CHERI only
is slightly more expensive. This can be attributed to the switching mechanism,
which using MPK needs only a gate, but with CHERI performs jumps to a switcher
and to a trampoline, as well as utilising a gate. The CHERI backend outperforms
EPT (EPT2).

Performance counter data, displayed in Table 5.3, was collected for SQLite when
running under the baseline and when compartmentalised. It shows that com-
partmentalisation increases the number of instructions executed by 27.1% and
memory accesses by 48.3%. Correspondingly, the number of L1 instruction cache
and L1 data cache accesses increases, while the number of misses for both increases
by a smaller proportion than the increase in accesses. Interestingly, the branch
mis-prediction rate rises by a far greater amount than the number of branches
executed. This may be attributed to the increased number of indirect branches
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Figure 5.3. Execution time in seconds of libsodium configurations running on Morello.

used as a result of the switching process, which are harder for the predictor to
predict.

Overall, evaluated against the DARPA CPM requirements detailed in Section
3.1, the performance cost of this approach is higher than that allowed, however,
the performance is still better than running as a Linux application, similar to
compartmentalisation implemented on FlexOS with MPK and faster than com-
partmentalisation implemented on FlexOS with EPT.

5.3.2 Libsodium

Different configurations of 5 Libsodium functions which have been sandboxed
are analysed. Here, the functions are not trusted and are isolated from the rest
of the application, which has access to their private data. A workload which
runs a number of Libsodium tests 200 times in a loop was used. The perfor-
mance overhead added by isolating the selected Libsodium functions is much
lower than isolating the filesystem when running SQLite. This is due to fewer
compartment switches (Table 5.4); the highest is chacha20_encrypt_bytes with
0.669 compartment switches/1k instructions. The lowest performance overhead
is achieved when sodium_hex2bin and sodium_bin2hex are isolated, adding only
a 0.144% performance overhead. In contrast, the highest performance overhead
comes from compartmentalising chacha20 _encrypt_bytes only, with an over-
head of 12.207%. This is higher than the scenario where all are isolated, because
chacha20_encrypt_bytes makes calls to store32_le. When only
chacha20_encrypt_bytes is isolated, a compartment switch is required for each
call, hence the overhead is higher. Evaluating against the DARPA CPM require-
ments for function granularity isolation [27], these results are in range of the
required 5% overhead, whilst providing the formally verified security guarantees
of CHERI and preventing oversharing of arguments. It also shows that the choice
of function to isolate is also an important consideration.

These results carry over to the performance counter data shown in Table 5.3. The
number of instructions executed, memory accesses performed including cache ac-
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Figure 5.4. Number of cycles per compartment switch (SQLite CHERI3)

cesses and misses and branches executed, all rise in proportion. As with SQLite,
the branch predictor struggles with increased use of indirect branches. The re-
duction in instruction cache misses observed with store32_le & store64_be is
because the new wrapper function is no longer inlined as the original functions
were, resulting in more efficient cache utilisation.

5.3.3 Microbenchmarks

It is important to consider the actual cost of switching between compartments,
since this is often where much of the overhead comes from [208]. To this end,
microbenchmarks are used to obtain a breakdown of the cost in CPU cycles asso-
ciated with a switch. This is illustrated in Figure 5.5. Compartment switches can
be broken down into hot and cold switches, where hot switches are ones which
take <400 cycles. This is a result of cache utilisation. The vast majority of
switches (>99.9%) (Figure 5.4) observed in all configurations fall into the cate-
gory of hot switches. The cold switches represent a worst-case cycle latency for
compartment switches. These can be expected in compartmentalisation scenarios
where compartment switches occur rarely and cache utilisation is worse.

When looking at the components of a switch, it can be seen that a large proportion
of the switching latency is due to the switcher and trampoline. The branches from
the gate to the switcher and from the trampoline to the function depend heavily
on cache utilisation to be efficient. This results in a best switching latency of
<400 cycles and a worst case of 900-1000 cycles.
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Figure 5.5. Hot and cold compartment switch latencies, broken down into component parts.

5.4 Interface Security Properties

The following section considers and compares the interface security properties
offered by both the overlapping shared data region approach implemented with
SQLite (SD) and the manual propagation of capabilities used to sandbox lib-
sodium functions (SF), compared to the FlexOS MPK and EPT backends. In
order to conduct this portion of the evaluation, the 8 compartment interface vul-
nerabilities defined by Lefeuvre et al. [28] will be used. This section considers the
protection offered by these scenarios without modifying or sanitising the compart-
ment interfaces in any way.

5.4.1 Exposure of Addresses

Addresses which are internal to compartments can be exposed for a number of
reasons, including uninitialised data structures. All of the considered isolation
mechanisms are vulnerable. In the case of SF, it is vulnerable by the very nature
of the way it shares data: capabilities contain as their value the data address. A
way to address this would be to use a technique such as pointer swizzling, as used
by RLBox [10].

5.4.2 Exposure of Compartment-Confidential Data

All models are vulnerable to exposure of compartment confidential data. In the
case of SD, MPK and EPT, shared data is used where the potential for oversharing
exists. In addition, uninitialised objects can affect all mechanisms where care is
not taken to avoid this. The risk of exposing confidential data can be reduced by
implementing checks and analysis to ensure that confidential data does not cross
compartment boundaries [16] and uninitialised memory is not used.
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5.4.3 Dereference of Corrupted Pointer

Corrupted pointers can affect all mechanisms. In the case of SD, MPK and EPT,
if an attacking compartment feeds corrupted pointers to a victim compartment,
it could cause either the wrong shared data to be accessed or an denial of service.
SF can be affected if the sandbox returns a corrupted pointer which is derefer-
enced without being sanitised. However, such attacks are also easily mitigated by
implementing checks to verify an expected address range of a pointer.

5.4.4 Usage of Corrupted Indexing Information

SD, SF, MPK and EPT are all susceptible to such an attack, careful checks must
be implemented to mitigate this. While the arguments passed into the sandbox
cannot overflow the capability bounds, corrupted indexing information could still
be used to perform a denial-of-service attack by attempting to access outside
these bounds. Additionally, a sandbox could be tasked with returning indexing
information to be used by unsandboxed code. Here, care must be taken to sanitise
such values to ensure that an expected value is used.

5.4.5 Usage of Corrupted Object

Similarly, all mechanisms are vulnerable to using a corrupted data object. SD,
MPK and EPT may access shared data which has been attacked. SF may use a
data object which a sandbox was granted access to and corrupted, or one which the
sandbox returned and was corrupted. In all cases, checks must be implemented.

5.4.6 Expectation of API Usage Ordering

No guarantees are made by any mechanism about the usage ordering of API
methods. Detecting incorrect API ordering is a challenging task, especially where
there is no clear specification. Tools such as APISan [181] and ARBITRAR [209]
can help to detect API misuses, but cannot detect all such uses.

5.4.7 Usage of Corrupted Synchronisation Primitive

No guarantees are made by any mechanism about synchronisation primitives. Ad-
dressing this class of vulnerabilities requires careful reworking of multi-threading
in applications to ensure that proper checks are in place.
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5.4.8 Shared-Memory Time-of-Check-to-Time-of-Use

SD, MPK and EPT are all vulnerable to this type of attack. SF is less susceptible
to being attacked in this way since functions tend to perform a single task and
so there is less opportunity to corrupt data between the check and use, however
it is still vulnerable. Addressing this can be done by working only on copies of
data [10] or preventing concurrent access to data. Both can result in a reduction
in performance.

5.4.9 Summary Of Security Properties

Concretely, the two compartment models, SD and SF implemented using CHERI
do not improve upon the guarantees offered by the MPK and EPT mechanisms.
The security on offer depends heavily on the precise nature of the implementation
and how well data flows between compartments are sanitised.

5.5 Summary

This chapter presented an evaluation of different compartmentalisation scenarios
using the implemented CHERI backend on FlexOS and data sharing mechanisms.
The evaluation was conducted using two popular applications. SQLite was com-
partmentalised using overlapping shared memory, with compartments mutually
distrusting. Libsodium functions were sandboxed by manually annotating code
to use capabilities. The engineering effort, performance implications and interface
security properties were then evaluated. The evaluation revealed that keeping the
engineering cost low when implementing hybrid mode compartmentalisation in
a single address space unikernel, requires compromises to be made to the size
of the code being isolated or the security of data sharing. However, the per-
formance cost of the CHERI backend is comparable to MPK and outperforms
EPT for the same SQLite scenario on FlexOS, and within the DARPA require-
ments [27] when individual functions are sandboxed. Additionally, FlexOS with
the implemented CHERI backend outperforms the same benchmark on a Linux
system, where both FlexOS and Linux are isolating the filesystem. Finally, the
interface security properties offered by the compartmentalisation scenarios are not
improved when compared to MPK or EPT without additional interface sanitising.

This chapter addressed RQ1, RQ2 and RQ3: the performance, engineering and
security implications of compartmentalisation using the CHERI backend com-
pared to MPK and EPT.
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Chapter 6

Conclusion & Future Work

The appeal of hybrid capability mode was the ability to implement compart-
mentalisation with minimal changes to complex or poorly maintained code bases,
while still benefiting from the strong hardware enforced bounds implemented by
the CHERI architecture.

This thesis set out to answer the following research questions:

RQ1 Which compartment models are possible using Morello, using what program-
ming abstractions, at which refactoring costs, and how do they scale?

RQ2 How does Morello’s compartmentalisation performance compare to other sin-
gle address space compartmentalisation mechanisms, such as Intel Memory
Protection Keys (MPK)?

RQ3 What security properties does CHERI/Morello-based compartmentalisation
offer, versus mechanisms such as MPK?

Addressing RQ1: the design and implementation of hybrid mode compartmental-
isation in FlexOS, using CHERI was presented. Compartmentalising applications
represents a trade-off between the desire for maximum performance and through-
put of a system, and the effort needed by the developer to implement compart-
mentalisation, often in retrospect, to an application and libraries. Achieving this
with low performance overhead and engineering cost requires carefully consider-
ing how data will be shared between compartments. Five different techniques
to achieve this were proposed, ranging from annotations, to manually rewriting
software to use capabilities. FlexOS was ported to the Morello platform, running
bare-metal on the hardware in hybrid mode. Following this, a compartmentali-
sation mechanism was proposed and implemented on top of FlexOS. SQLite and
its filesystem were then partitioned into mutually distrusting compartments using
a shared data approach, where data is shared via annotations and the compart-
ment bounds overlap with the shared data memory. Next, sandboxed Libsodium
functions were implemented, where pointers are annotated and transformed into
capabilities, and code is rewritten to take advantage of capabilities.

Due to the flexibility afforded by CHERI, smaller portions of the system can be
compartmentalised, meaning that depending on the performance budget avail-
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able to the developer, light-weight isolation can be implemented in the form of
sandboxes. Porting functions to use capabilities can result in a large amount of
engineering effort, but for small functions this is reduced and offers strong sandbox
guarantees with tightly bounded access to argument data. For reduced engineer-
ing effort when compartmentalising larger portions of code, it is possible to use an
overlapping shared data approach between pairs of compartments, although here
data sharing is coarser, providing weaker security, and this solution struggles to
be applied to more than two compartments which limits its use.

In answering RQ2, the implemented system on Morello was evaluated. The
CHERI backend is comparable in terms of performance overhead when compared
to the previously implemented MPK backend (119.9% overhead vs 96.3% over-
head), and the performance overhead is lower than the EPT backend (220.4%).
FlexOS with CHERI compartmentalisation in hybrid mode still outperforms the
same benchmark running on a standard Linux system on Morello hardware, mean-
ing that the performance advantage of a unikernel has not been negated due to the
additional isolation added. When functions are selected wisely, the performance
overhead is as low as 0.144%, and within the <5% required by the DARPA CPM
call for proposals [27]. The latency associated with compartment switches was
also evaluated. These can add significant overhead due to the need to securely
switch compartment capabilities and stacks.

Finally, RQ3 was addressed in Section 5.4. Despite the strong hardware bounds
and permissions checking enforced by CHERI, the implemented compartmentali-
sation suffers from the same interface vulnerabilities as MPK and EPT.

Overall, based on the performance figures collected, and the experience gained
from compartmentalising applications using different methods, implementing com-
partmentalisation with CHERI in a single address space unikernel in hybrid mode,
is challenging. Primarily, this stems from the need to share data between isolated
compartments. When applications are fully ported to use capabilities, this can
be done via capability argument passing, however, in hybrid mode, sharing data
securely between capability-unaware compartments results in engineering effort
requiring compromises to scalability and security to keep it low.

6.1 Contributions

The following are the contributions made during this research:

1. An investigation of hybrid mode compartmentalisation in a single address
space unikernel, evaluated on Morello hardware. To achieve this:

• FlexOS was ported to Morello in hybrid mode.
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• A compartmentalisation mechanism utilising CHERI in hybrid mode
was proposed.

• The compartmentalisation mechanism was then designed and imple-
mented, to enable compartmentalisation with CHERI in hybrid mode,
in a single address space, statically linked unikernel.

• Five data sharing methods for hybrid mode compartmentalisation were
proposed.

• Data sharing methods for hybrid mode compartmentalisation were de-
signed and implemented.

2. An evaluation of hybrid mode compartmentalisation and data sharing mech-
anisms, finding that:

• The performance is in line with MPK and outperforms EPT on x86
when applied to compartmentalisation of a unikernel.

• FlexOS with CHERI compartmentalisation applied, outperforms Linux
with the same application.

• The engineering cost can be reduced by making trade-offs.

3. An analysis of the security properties of the implemented hybrid mode CHERI
compartmentalisation mechanism, finding that:

• Compartment interface vulnerabilities are not mitigated through the use
of CHERI, with the system vulnerable to the same classes as MPK and
EPT.

6.2 Future Work

6.2.1 Compiler Propagated Capabilities

A limitation of compartmentalisation works, including this one, is the manual
effort required to port applications. An ideal scenario using hybrid mode would
see all pointers which cross compartment boundaries replaced with capabilities,
eliminating the need for any shared data, which is coarse and prone to oversharing.

To achieve this with lower engineering costs, compiler passes are needed to track
pointers which cross compartment boundaries and then automatically transform
them and variables which make use of them into capabilities. This would ease the
burden of porting and has the potential to truly unlock the promised potential of
hybrid mode to enable highly compatible compartmentalisation.

To help direct the propagation of capabilities within FlexOS, existing compart-
mentalisation annotations marking call gates can be used by the toolchain to
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insert compiler annotations which can be used to identify which function calls
and thus which pointers are relevant to track, reducing the number which must
be modified and to retain more unmodified code. Pointers and their dependencies
will be identified in LLVM IR form, with the necessary modifications carried out
during this stage. However, fully automating this process is not possible because
some code will need to be modified to work with capabilities. Implementing a
compile time feedback system such as RLBox [10] would be a feasible solution.

6.2.2 Pure Capability Compartments

This thesis has investigated the use of hybrid mode in single address space com-
partmentalisation due to the promise of low engineering costs achieved through
compatibility. Future work will consider what pure capability compartments look
like in this context and how they can be applied while needing the minimum
amount of porting work. All data accesses will occur via capabilities and all data
sharing will also occur via capabilities, eliminating the need for the hybrid mode
data sharing approaches explored in this thesis.

Additionally, some of the overhead associated with compartment switches in hy-
brid mode may be eliminated in pure capability mode. For example, it may be
possible to implement a system requiring only a small switcher and no trampoline.

Hybrid mode compartments use a single set of global capabilities to restrict a
compartment, this is no longer possible in pure capability mode with all accesses
performed via capabilities. Any accesses to shared data will also need to sanitise
capabilities which are loaded, to ensure that these do not escape compartment
bounds.
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