

ABSTRACT

Exploring Superpage Promotion Policies for E�cient Address Translation

by

Weixi Zhu

The growth of modern applications’ memory footprints are rapidly outpacing TLB

coverage. Though hardware manufactures provide TLB entries for superpages (map-

ping much larger areas), existing OS superpage support is either too aggressive and

punished for the accompanying overhead or too conservative to exploit more address

translation e�ciency. This thesis explores the design space of OS superpage promo-

tion policies. A data collection infrastructure is built based on QEMU and works

collaboratively with kernel instrumentation to collect memory traces. By exploiting

the decoupling between superpage allocation and promotion in FreeBSD, changes

of page tables are simulated for di↵erent promotion policies without changing their

memory allocation. A TLB simulator built by reverse-engineering is validated by

empirical results to precisely predict and compare the TLB performance of Intel Sky-

lake processors. Experiments showed that promoting superpages with 1/4 of its con-

stituent 4KB pages utilized can reduce an average of 82% page walk latency compared

to FreeBSD’s original policy, while introducing negligible overhead because many of

such superpages are utilimately mostly utilized. Additionally, the dynamic memory

allocator does not manage the memory in a favorable way for aggressive promotion

policies, causing them to bring too much overhead.

Contents

Abstract ii

List of Illustrations vi

List of Tables x

1 Introduction 1

1.1 Trade-o↵s between Conservative and Aggressive Superpage Policies . 1

1.2 Design Space Exploration . 3

1.3 Contributions . 5

1.4 Organization . 5

2 Background and Related Work 7

2.1 Address Translation in X86-64 . 8

2.2 Hardware Translation Look-aside Bu↵ers (TLBs) 11

2.2.1 TLBs for Multiple Page Sizes 13

2.2.2 TLBs in Intel Skylake Processors 13

2.3 Hardware Designs for Accelerating Address Translation 15

2.3.1 TLBs Supporting Multiple Page Sizes 16

2.3.2 TLB Coalescing . 17

2.3.3 Arbitrary Large Mappings (Segments) 18

2.3.4 Caching and Speculating by Exploiting the Paging Hierarchy . 19

2.4 FreeBSD reservation-based superpage promotion mechanism 20

2.5 OS Supports for Superpages . 23

2.5.1 FreeBSD Reservation-based Superpage Support 23

2.5.2 Linux Huge Page Support . 24

iv

2.5.3 Persistent Superpages in Windows and OS X 26

2.5.4 Profiling-based Online Superpage Promoting 26

2.6 Summary . 27

3 Methodology 29

3.1 FreeBSD Kernel Instrumentation . 30

3.2 Memory Access Tracing by QEMU 30

3.2.1 TCG . 31

3.2.2 QEMU Memory Tracing . 32

3.2.3 QEMU X86 Page Walk Helper 34

3.2.4 On-the-Fly Compressing . 34

3.2.5 Timer . 35

3.3 TLB Simulation . 35

3.4 Benchmarks . 36

4 TLB Simulation 39

4.1 Reverse-engineering Microbenchmarks 39

4.1.1 Replacement Policies . 40

4.1.2 Indexing Functions . 40

4.1.3 Inclusiveness . 42

4.1.4 Skylake TLB Simulation Algorithm 45

4.2 Empirical Validation . 49

4.2.1 Empirical Results . 49

4.2.2 Noise from STLB Code Misses 54

4.2.3 Underestimation of DTLB Misses 60

4.3 Summary . 61

5 Design Space of Superpage Promotion Policies 62

5.1 Capture 2 Types of Promotion Opportunities 62

v

5.2 Promote Frequently-used Reservations 63

6 Evaluation 65

6.1 Metrics . 65

6.2 TLB Performance . 66

6.2.1 DTLB Misses . 66

6.2.2 STLB performance . 68

6.2.3 Prefetching . 71

6.2.4 Overhead from Anonymous Reservations 71

6.2.5 Disk I/O Overhead . 77

6.3 Discussion of Policies . 78

6.3.1 Combination of policies in real OS implementation 78

6.3.2 Malloc Designs Unaware of Superpages 80

6.4 Discussion on TLB designs . 80

7 Conclusion and Future Work 82

7.1 Conclusions . 82

7.2 Future Work . 87

Bibliography 89

Illustrations

2.1 Address translation to a 4KB Page in x86-64 paging (48-bit) for

virtual address 0x5610E65BC7FE . 9

2.2 Formats of CR3 and Paging-Structure Entries for 48-bit X86-64

Paging [9] . 10

2.3 Diagram of TLBs on one core of Intel Skylake CPU, excluding

instruction TLBs. 14

2.4 FreeBSD’s superpage reservation timeline. Bit #54 in PDE is set by

the OS denoting a promoted PDE, which is ignored by the TLB. . . . 21

3.1 A brief flowchart of how QEMU emulates guest with TCG 33

4.1 Set Selection Diagram in Intel Skylake TLBs. The 2 page table

entries are sharing the same 64 bits. This variant assumes that the

STLB look-up is parallel to hit the STLB as both 4KB or 2MB page

sizes. 42

4.2 Set Selection Diagram in Intel Skylake TLBs. The 2 page table

entries are sharing the same 64 bits. This variant assumes that the

STLB look-up is serial to hit the STLB as a 4KB page first. 43

4.3 Set Selection Diagram in Intel Skylake TLBs. The 2 page table

entries are sharing the same 64 bits. This variant assumes that the

STLB look-up is serial to hit the STLB as a 2MB page first. 44

vii

4.4 TLB miss ratio curves between simulation and real-machine. The

benchmark is a full run of 429.mcf in SPEC-CPU2006 [41]. The left

shift value for QEMU record-and-replay feature is tuned to be 1. The

y-axis represents a log-scale sliding-window miss rate, and the x-axis

represents cumulative memory accesses. The real-machine is profiled

with superpage promotion disabled in FreeBSD. The simulation

uses traces collected with superpage promotion enabled but assumes

all user-space page sizes as 4KB. 50

4.5 TLB miss ratio curves between simulation and real-machine. The

benchmark is a full run of 429.mcf in SPEC-CPU2006 [41]. The left

shift value for QEMU record-and-replay feature is tuned to be 1. The

y-axis represents a log-scale sliding-window miss rate, and the x-axis

represents cumulative memory accesses. The real-machine is profiled

with superpage promotion enabled in FreeBSD. The simulation

uses traces collected with superpage promotion enabled and do not

alter the page tables. 51

4.6 TLB miss ratio curves between simulation and real-machine. The

benchmark is a partial run of 605.mcf from SPEC-CPU2017 [42]. The

left shift value for QEMU record-and-replay feature is tuned to be 1.

The y-axis represents a log-scale sliding-window miss rate, and the

x-axis represents cumulative memory accesses. The real-machine is

profiled with superpage promotion disabled in FreeBSD. The

simulation uses traces collected with superpage promotion enabled

but assumes all user-space page sizes as 4KB. 52

viii

4.7 TLB miss ratio curves between simulation and real-machine. The

benchmark is a partial run of 605.mcf from SPEC-CPU2017 [42]. The

left shift value for QEMU record-and-replay feature is tuned to be 1.

The y-axis represents a log-scale sliding-window miss rate, and the

x-axis represents cumulative memory accesses. The real-machine is

profiled with superpage promotion enabled in FreeBSD. The

simulation uses traces collected with superpage promotion enabled

and do not alter the page tables. 53

4.8 STLB code misses dividing number of retired memory accesses per

100 milliseconds. 55

4.9 Comparison of STLB miss ratio curves (excluding code miss

e↵ects) between simulation and real-machine. The benchmark is a

partial run of 605.mcf from SPEC-CPU2017 [42]. The y-axis

represents a log-scale sliding-window miss rate, and the x-axis

represents cumulative memory accesses. The real-machine curve is

profiled with superpage promotion enabled in FreeBSD. It

approximates STLB data misses by subtracting STLB code misses

from data misses, assuming that a code miss will correspond to

another data miss to fetch back the evicted data entry. Both data

STLB misses and code STLB misses are linearly interpolated in order

to perform the subtraction. The simulation uses traces collected with

superpage promotion enabled and do not alter any page size. 56

4.10 Zoom in on the peaks above 10�4 in Figure 4.7. STLB code misses

are not subtracted from the real-machine curve. 57

4.11 Zoom in on the peaks above 10�4 for STLB miss curves in Figure 4.9.

STLB code misses are subtracted. 58

4.12 Smoothed by applying a mean convolution filter, window size = 77 . 59

ix

5.1 Distribution of the number of accesses to all reservations touched by

benchmarks in table 3.2 vs. their population, dirtiness and lifetime.

Each circle denotes a reservation, the darker the more overlapped.

Reservations accessed over 500,000 times are classified as frequently

accessed ones. 63

6.1 DTLB misses dividing FreeBSD policy among policies shown in

table 5.1, excluding policy 4K-user. 67

6.2 STLB misses dividing FreeBSD policy among policies shown in

table 5.1, excluding policy 4K-user. 69

6.3 Estimated page walk latency dividing FreeBSD policy among policies

shown in table 5.1, excluding policy 4K-user. 70

6.4 Saved page faults proportional to total faults (0 for 4K-user or

FreeBSD). 72

6.5 Saved page faults per touched reservation (0 for 4K-user or FreeBSD). 73

6.6 Extra zeroed pages per reservation backing anonymous memory . . . 74

6.7 False dirty pages per reservation backing anonymous memory,

burdening the I/O when being swapped out. 75

Tables

2.1 TLB components on one core of an Intel Skylake processor. TLB

components for instructions or 1GB pages are ignored. 14

3.1 Instrumented Kernel Events in FreeBSD 31

3.2 Details of 17 benchmarks used for evaluation 32

3.3 Summation of 17 benchmarks selected for evaluation. 38

4.1 Indexing functions for 4KB and 2MB pages in Skylake TLBs 41

5.1 Explored design space of superpage promotion policies 64

6.1 Metrics for evaluating di↵erent superpage management policies 66

6.2 Disk I/O overheads for reservations mapping disk files. Policies with

all zero values are excluded. 76

6.3 Reservations backing disk files for each benchmark. Benchmarks

without such reservations are not shown. 77

6.4 Normalized DTLB misses of 3 DTLB designs on 605.mcf 78

6.5 Overall performance of 18 policies. DTLB misses, STLB misses and

page walk latency are the mean number of those normalized to

FreeBSD policy over all benchmarks. Page fault reduction and page

zero overhead are quantified by the average number of 4KB pages per

reservation (512). 79

1

Chapter 1

Introduction

The memory usage of applications has been growing faster than the reach of the

address translations that can be cached in the translation-lookaside bu↵ers (TLBs)

of modern processors. Therefore, it has become increasingly important to e↵ectively

utilize superpages (called huge pages in Linux) in order to increase TLB reach and

minimize address translation overheads.

Modern operating systems typically either take a very aggressive or very conser-

vative approach to allocating superpages. For example, the transparent huge page

(superpage) support in Linux aggressively allocates huge pages during the first page

fault to a 4KB page, if the 2MB huge page containing this 4KB page is avialable.

However, superpage support in FreeBSD gradually populates 4KB pages in each 2MB

region and defers the superpage promotion until all 512 constituent 4KB pages are

populated. While superpages can decrease address translation overheads, they can

also increase I/O and other overheads. Therefore, there are pros and cons to both of

these approaches.

1.1 Trade-o↵s between Conservative and Aggressive Super-

page Policies

The address translation benefits of superpages are somewhat obvious. A single trans-

lation covers a larger region of memory, so the overall reach of the TLB can be

2

increased without needing to increase the number of entries. However, superpages

can also incur other overheads. First, if the entire superpage is not accessed after

being allocated, then memory would need to be initialized unnecessarily (either by

transferring data from disk or zeroing pages). Second, if only part of the super-

page is written and becomes dirty, if the page is evicted, the entire superpage would

need to be written back to disk, instead of just the smaller, constituent dirty pages.

Third, depending on how superpages are managed, they can lead to memory bloat

and fragmentation. This occurs either when the entire superpage is not accessed

and when superpages are not broken/demoted under memory pressure. Moreover,

memory shortage cannot be alleviated by swapping out huge pages, as they are al-

ways pinned in memory by Linux. Linux migrates pages in order to mitigate these

e↵ects, but the migration itself is costly. Due to these drawbacks, huge page support

is frequently disabled on Linux [1, 2, 3].

FreeBSD takes a conservative approach to promoting superpages based on a

reservation-based memory allocator. When a superpage-sized region of memory (2MB

in X86) is allocated, FreeBSD creates a reservation for an aligned region of physical

memory. A reservation is a bookkeeping entry which tracks the utilization of the

512 constituent 4KB pages of the 2MB region. Translations are maintained only for

4KB pages until such time as the page is promoted to a superpage, whereby the 512

translations are replaced by a single 2MB translation.

On the initial page fault to a large enough memory region, FreeBSD will create

a reservation and allocate a single 4KB page within that reservation. Once created,

additional 4KB pages can be populated within the reservation as they are accessed.

Furthermore, the reservation can be broken at any time to reclaim reserved pages

that have not yet been populated. This strategy eliminates page migrations and can

3

reduce memory fragmentation. The reservation is promoted to a superpage only when

all 512 constituent 4KB pages have been populated. This reservation-based strategy

mitigates, or even completely eliminates, the I/O, page-zeroing, and migration over-

heads of superpages. However, some superpage benefits are sacrificed because not all

reservations can be promoted as superpages.

There is a tension between an aggressive approach, such as that taken by Linux,

and a conservative approach, such as that taken by FreeBSD, to superpage man-

agement. The more aggressively superpages are created/promoted, the larger the

address translation benefits are, as the TLB can cache translations for larger regions

of memory. The more conservatively superpages are created/promoted, the fewer ad-

ditional I/O, page-zeroing, memory bloating, fragmentation and migration overheads

are incurred.

1.2 Design Space Exploration

This thesis performs a design space exploration of superpage promotion policies to

better understand these trade-o↵s. Starting with the FreeBSD reservation-based sys-

tem enables a wide range of policy implementations. Reservations could be promoted

immediately, yielding an aggressive policy, or only when fully populated (as done in

FreeBSD) yielding a conservative policy, or any time in between. This thesis consid-

ers policies along several dimensions, including the number of populated pages, the

number of dirty pages, and the lifetime of the reservation.

A trace-driven simulation-based approach is used to compare the trade-o↵s among

di↵erent policies. The simulator was validated against Intel’s Skylake processors, re-

leased in 2015. The validation process itself led to some interesting observations about

how the Skylake TLB operates. Surprisingly, the DTLB (L1 data TLB) performance

4

counter does not necessarily count what one might naively expect. Memory refer-

ences do not block waiting for DTLB misses to resolve, so subsequent accesses to the

same page will incur additional DTLB misses if they occur before the initial miss is

resolved. In other words, these duplicated DTLB misses could be overlapped but still

counted by the performance counter. Furthermore, speculative memory references

also incur DTLB misses, leading to far more DTLB misses than one might expect. In

contrast, the STLB (L2 TLB) behaves much more predictably. As STLB misses will

trigger expensive page walks that are hardly to be overlapped. Speculative executions

and memory prefetching are also unlikely to trigger costly page walks, making the

STLB behavior more predictable.

Surprisingly, promoting superpages upon reaching a small (aggressive) utilization

threshold can achieve competitive performance gain compared with the most aggres-

sive policy, while introducing negligible I/O overheads. The underlying reasons are

that utilization has a very strong correlation with the number of memory accesses to

a reservation and a reservation is usually either sparsely populated or densely popu-

lated. So that a utilization threshold can help target the superpages that cause the

most TLB misses and predict future utilizations to avoid promoting underutilized

superpages. The exploration also finds it not a good choice to promote reservations

by the lifetime of their residency in the memory, as lifetime is shown not to be a good

predictor of superpage utilization.

Further, the DTLB performance is less a↵ected by the aggressiveness of the su-

perpage policy, compared to the STLB. Because the DTLB caches fewer entries than

the STLB, using superpages for Intel Skylake DTLB can only improve its TLB reach

from 128KB to 64MB, which is far smaller than common applications’ memory foot-

prints. In other words, it is easy to reach the limit of exploiting the spatial locality

5

for the smaller DTLB.

1.3 Contributions

This work simulates and evaluates di↵erent superpage promotion policies within the

FreeBSD reservation-based physical memory allocation mechanism. Specifically, we

show that we can gain competitive performance compared to the most aggressive

policy while introducing negligible overheads.

Our contributions are threefold:

1. Building a data collection infrastructure by modifying QEMU to track memory

traces from both kernel space and user space and kernel events collaboratively.

2. Using reverse-engineering to understand and faithfully simulate the TLB per-

formance in Intel Skylake processors. The consistence of our TLB simulation

has been validated by empirical results.

3. Exploring the design space of variant superpage promotion policies between

aggressive and conservative allocations to discuss the trade-o↵s.

1.4 Organization

This thesis is organized in the following way. Chapter 2 introduces the background

information about x86 address translation, TLBs and FreeBSD’s reservation-based

memory allocation as well as their related work. Chapter 3 introduces a data col-

lection infrastructure and the employed benchmarks. Chapter 4 discusses the TLB

characteristics in Intel Skylake processors and the empirical comparisons between

simulation and real-world performance. Chapter 5 introduces the design space of the

explored superpage promotion policies. Chapter 6 shows and discusses the empirical

6

results of the trade-o↵s from the explored policies. Chapter 7 discusses potential

future work and concludes this work.

7

Chapter 2

Background and Related Work

Address translation overhead can seriously slow down modern applications [4, 5, 6],

especially for those that have large memory footprints [7, 8]. So the OS and hardware

collaborate to support superpages to alleviate such overhead. This chapter discusses

both background knowledge and related work that alleviates address translation over-

head. Section 2.1 explains how page-based address translation works in the x86-64

architecture. Section 2.2 then describes the organization of the TLB in Intel Skylake

processors and section 2.4 provides background information of FreeBSD’s reservation-

based superpage promotion policy. Discussion of related work is divided into two

aspects including both hardware and software. Section 2.3 discusses innovations on

hardware designs for accelerating address translation. Section 2.5 discusses how su-

perpages or huge pages are supported on current operating systems. Section 2.3 first

discusses how hardware TLBs support multiple page sizes in response to the nature

of paging hierarchy, then introduces OS-independent page coalescing and clustering.

After that, a segment-based address translation scheme which conceptually employs

arbitrarily large and unaligned pages is reviewed as well as previous work on reducing

the page walk latency by caching the paging hierarchy or moving the page walk to

the non-critical speculative execution path. Section 2.5 reviews how superpages or

huge pages are supported in commonly used operating systems including FreeBSD,

Linux, Windows and OS X, as well as online promoting techniques for superpage

allocations. Section 2.6 summarizes how hardware and software collaborate for faster

8

address translation.

2.1 Address Translation in X86-64

X86 processors store the virtual-to-physical address mappings in hierarchical page

tables with a radix tree data structure. The page walker, the hardware in charge

of address translation, traverses the page table starting from its root in a top-down

manner to find the corresponding page table entry. The top-down traversal is called

a page walk. Current x86-64 paging can translate a 48-bit virtual address to a 52-bit

physical address, supporting up to 256TB virtual address space [9]. The smallest and

most common page size in x86 is 4KB. So, each existing node on the radix tree is

stored in a 4KB-aligned page, containing 512 8-Byte entries; nine bits are required to

index the 512 entries.

An example of a page walk for virtual address 0x5610E65BC7FE is demonstrated

in fig. 2.1. The virtual address contains four 9-bit indexes (0x0AC, 0x043, 0x132,

and 0x1BC) for the four levels of the page table, named PML4 (Page Map Level 4),

PDPT (Page Directory Pointer Table), PD (Page Directory) and PT (Page Table). A

hardware page walker starts the page walk by reading the CR3 register, which points

to a 4KB physical page at the PML4 level. A PML4 page contains 512 entries. The

page walker then uses the upper 9-bit index in the virtual address (0x0AC) to find the

appropriate entry in the PML4 page. The PML4 entry points to another 4KB page

on the next level (PDPT). This process is repeated 4 times until a valid PT entry is

found, which points to a 4KB data page. The physical address is computed by adding

the 12-bit page o↵set (0x7FE) into the 4KB data page.

Invalid entries at any level in the page table will trigger a page fault, while valid

entries can either point to the next level or a physical data page. Physical pages

9

...

PML4

CR3 [47:12]

0AB
0AC
0AD

...

...

131
132
133

...

...
1BB
1BC
1BD

...

...

042
043
044

...

...

0AC

PDPT PD PT Page Offset

043 132 1BC 7FE

7FE

4K data page

...

...

...

pml4 entry

pdpt entry #1

pd entry

pt entry

4K data page

...

...

...

...

invalid

2M data page

...

...

...

...

1G data page

...

...

...

...

invalid

pdpt entry #2

...

...

...

...

0 11 12 20 21 29 30 38 39 47 64

Figure 2.1 : Address translation to a 4KB Page in x86-64 paging (48-bit) for virtual

address 0x5610E65BC7FE

pointed by entries on PT, PD and PDPT levels correspond to 4KB, 2MB or 1GB

data pages. Formats of these entries are shown in fig. 2.2. Both 2MB and 1GB pages

are called superpages. Unless otherwise noted, however, this thesis will use superpages

to mean 2MB pages as currently 1GB pages are infrequently used by applications.

A page walk is expensive because it typically takes 4 memory accesses (3 with

a superpage). Even in modern processors with fast and well-designed data caches,

the average memory access latency can still be hundreds of CPU cycles. This can

seriously slow down programs because the processor is halted to wait for each page

walk to be finished. The next section discusses how the TLB works to accelerate

address translations.

10

0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3 M-1M1... ...

PCID2CR3 Address of PML4 table0

PML4E 1
R
/

W

U
/S

P
W
T

P
C
D

A
I
g
n

Rs
vd Ign.Address of PDPTRsvd.N

X Ignored

PDPTE 1
R
/

W

U
/S

P
W
T

P
C
D

A
I
g
n

0 Ign.Rsvd.N
X Ignored

PDPTE:
1GB
page

1
R
/

W

U
/S

P
W
T

P
C
D

A D 1 Ign.Address of
1GB page frame

Rsvd.N
X Ignored G Reserved

P
A
T

Address of PD

PML4E:
not

present
0Ignored

Prot.
Key3

PDPTE:
not

present
0Ignored

PDE 1
R
/

W

U
/S

P
W
T

P
C
D

A
I
g
n

0 Ign.Rsvd.N
X Ignored

PDE:
2MB
page

1
R
/

W

U
/S

P
W
T

P
C
D

A D 1 Ign.Address of
2MB page frame

Rsvd.N
X Ignored G Reserved

P
A
T

Address of PT

PDE:
not

present
0Ignored

PTE:
4KB
page

1
R
/

W

U
/S

P
W
T

P
C
D

A D Ign.Address of 4KB page frame Rsvd.N
X Ignored G

P
A
T

PTE:
not

present
0Ignored

Prot.
Key3

Prot.
Key3

bit
entry

Figure 2.2 : Formats of CR3 and Paging-Structure Entries for 48-bit X86-64 Paging [9]

1. Maximum Physical Address

2. Enabled when CR4.PCIDE=1

3. Enabled when CR4.PKE=1

11

2.2 Hardware Translation Look-aside Bu↵ers (TLBs)

Translation look-aside bu↵ers (TLBs) cache entire translations, so a hit in the TLB

eliminates the need for a page walk. X86 Processors like recent three Intel micro-

architectures (Sandy Bridge, Haswell and Skylake) or ARM processors like Cortex-A,

all employ a two-level TLB structure. The existence of TLBs changes the procedure

for address translation. Before performing a page walk, the processor will first look

up the virtual address in the TLB. The TLB works like a data cache but stores

virtual address and PTE (leaves of the page table radix tree) pairs. If the TLB has

the PTE covering the queried virtual address, called a TLB hit, the PTE is directly

returned. Otherwise, named a TLB miss, a hardware page walker will perform a

page walk to fetch the corresponding PTE from data caches or the main memory.

The physical address will then be computed by concatenating the physical address of

the page frame and the page o↵set. The more TLB hits, the less overhead is induced

by address translation.

The page table entries contain many controlling bits besides the physical address

of the page frame or next lower-level page table. This work specifically pays attention

to the read/write bit (#1 R/W), the access bit (#5 A) and the dirty bit (#6 D) in

Figure 2.2. A physical page is read-only if the read/write bit is unset and writable if

set. The access bit is always unset when the page is initialized or paged in from disk

during page fault handling. Upon first touch (which must miss in the TLBs), a page

walker will perform a page walk, set the access bit of this entry and insert it into the

TLBs. Dirty bits are maintained by the TLBs. Any modifications on a clean page

(dirty bit unset) will trigger another page walk, even if there is already an entry in

the TLB. The page walker will set the dirty bit in the page table, then either insert

or update the cached entry in the TLBs.

12

Similar to data caches, there are usually multiple levels of TLBs in processors

and each core has its own dedicated TLBs. A TLB may be fully-associative or set-

associative. In a k-way set-associative TLB for example, the input virtual page frame

will be split into tag bits and hash bits (usually the least significant part to benefit

from spatial locality). The hash bits are used to compute the block index. Inside

the selected block, k tags will be compared simultaneously with the input tag bits. If

none of them match, the page walker will do a page walk to insert the (virtual address,

page table entry) pair. The TLB entry with the least priority will be evicted to make

space, if all TLB entries are occupied. This procedure is called a replacement in

the TLB. The most common TLB replacement policy is the least recent used (LRU)

algorithm [10]. By evicting the least recently used tags, the LRU policy holds the

most recently used entries in the cache to take advantage of temporal locality.

To serve as a fast cache, the TLB is usually implemented by content-addressable

memory (CAM). CAM allows searching the entire memory in a single operation at a

very high speed and returns the content if hit. In a fully associative TLB, a search

compares all of its entries in parallel. This requires circuits and logic gates between all

storage bits and the input bits, bringing thermal issues. A TLB must also be located

in the very narrow space between the CPU and its caches in order to translate the

virtual address before it fetches data or instructions from the cache. Both spatial

and thermal issues make hardware vendors judicious and cautious about the TLB

size. The size of TLBs has grown a lot over the decades, e.g. 1,536 second-level TLB

entries in modern CPUs like Intel Skylake. However, the memory capacity has grown

much faster as common workloads consume orders of magnitudes more memory.

Memory virtualization provides address space isolation among processes. A pro-

cess should never be allowed to use the virtual address mappings in other processes’

13

address space. Therefore, a TLB must completely flush all of its entries when a

context switch happens or the CR3 register is loaded. Intuitively, this increases the

TLB misses in the future. The kernel page tables are shared among all processes.

And a global bit (#8 G in Figure 2.2) is used in TLBs to avoid kernel mappings

being flushed when switching between kernel mode and user mode. Process-context

Identifiers (PCIDs in Figure 2.2) were later introduced to allow the isolated virtual

mappings to coexist in the TLBs. They work together with virtual addresses to serve

as the look-up keys. With PCIDs, TLBs do not need to be completely flushed upon

context switch or CR3 loading.

2.2.1 TLBs for Multiple Page Sizes

Modern x86 processors have TLBs supporting multiple page sizes in response to

di↵erent available page sizes in x86-64 paging. There are 2 types of hardware designs.

One uses separate TLBs where each one caches mappings for a dedicated page size.

The other one employs a unified TLB design where each entry can cache mappings

for 2 or more page sizes. Skewed TLBs or TLBs predicting page sizes are explored by

academia but have not been employed by hardware vendors because of either complex

hardware design or energy issues [11, 12, 13, 14]. This thesis assumes that for each

level of the TLBs, the separated TLBs or the unified TLB is queried serially in a

descending order of available page sizes.

2.2.2 TLBs in Intel Skylake Processors

This work focuses on TLB performance of Intel Skylake x86 processors released in

2015. Until 2018, most Intel processors used the Skylake microarchitecture whose

TLBs work in the same way. To isolate the TLB performance of memory accesses,

14

DTLB-4KB
64 entries

4-way

DTLB-2MB/4MB
32 entries

4-way

DTLB-1GB
4 entries

fully-associative

STLB-4KB/2MB
1,536 entries

12-way

STLB-1GB
16 entries

4-way

Page Walker A Page Walker B

Cache
...

Figure 2.3 : Diagram of TLBs on one core of Intel Skylake CPU, excluding instruction

TLBs.

Level 1

DTLB-4KB 64 entries, 4-way set associative

DTLB-2MB/4MB 32 entries, 4-way set associative

Level 2

STLB-4KB/2MB 1536 entries, 12-way set associative

Table 2.1 : TLB components on one core of an Intel Skylake processor. TLB compo-

nents for instructions or 1GB pages are ignored.

15

three of the Skylake TLB components in table 2.1 are considered, including two L1

DTLBs (data TLBs) split for 4KB and 2MB mappings and one second-level STLB

(shared TLB). Note that there are both DTLB and STLB componenets for 1GB

pages, but ignored by this work because 1GB pages are not used frequently in the

user space. The STLB is unified for both 4KB and 2MB mappings. Figure 2.3 depicts

an abstract diagram of Intel Skylake data TLBs (instruction TLBs are ignored) in

one core.

By using superpages, i.e. 2 MB or 1 GB pages, the TLB entry is allowed to cover

a larger memory region. For instance, the STLB in Skylake processors can extend its

TLB reach from 6MB to 3GB.

2.3 Hardware Designs for Accelerating Address Translation

As the TLB locates on the critical path of execution, its size grows slowly overtime [9].

Limited TLB size with page-based address translation restricts TLB reach. TLB

reach, as the name implies, is defined as the memory coverage by summarizing all

its entries. Intuitively, larger TLB reach can lead to less TLB misses. Motivated

by enlarging the TLB reach, people have explored TLBs supporting multiple page

sizes, TLB coalescing and TLBs supporting arbitrary large mappings [11, 15, 16, 17,

12, 18, 19, 20, 7, 21, 22]. Besides enlaring the TLB reach, people have also explored

caching and speculating techniques to reduce page walk latency [9, 8, 23]. Though

these related TLB innovations all contribute to e�cient address translation, this work

mainly focus on TLBs supporting multiple page sizes, which are the most commonly

used hardware in commercial processors.

16

2.3.1 TLBs Supporting Multiple Page Sizes

To serve multiple page sizes in paging, modern TLBs are designed to support various

page sizes. TLBs in commercial processors usually contain several peer-level com-

ponents dedicated to di↵erent page sizes, or use a unified design supporting various

page sizes for each entry. Because a TLB has no idea which page size is used for a

given virtual address, there would be multiple possible page frame numbers. These

page frame numbers must then be compared within all TLB ways.

A naive solution is called hash-rehash [14]. The TLB is probed for all possible

page sizes, with a di↵erent hash function for each time. Concurrent look-ups can be

available as long as the TLB performs probing for di↵erent page sizes simultaneously,

however complicate the port utilization. TLBs supporting 2 page sizes, like the STLBs

in Intel Skylake CPUs, may use this approach [14].

Skewed TLBs reduce comparisons by restricting the {page size, virtual address}

space on each TLB way [11, 15, 16, 17]. For any given virtual address va, it can be

cached on each way E with a unique page size S. In other words, the page size S is

inferred and determined given va and E. Therefore, the total look-ups on a skewed

TLB is reduced by a factor of the number of possible page sizes, compared with a set-

associative TLB. Skewed TLBs are able to concurrently support multiple page sizes.

However, skewed TLBs su↵er from the complex implementation. As indicated above,

there must be multiplexers to select hash functions for each way. This adds di�culties

to the latency management, and costs more energy [14]. The replacement policy would

also be relatively complicated [17]. Meanwhile, the e↵ective ways possible to cache a

certain mapping is reduced by a factor of number of available page sizes, compared

with set-associative TLBs. That is to say, it sacrifices the chip space to achieve

concurrent support. Because of these reasons, no commercial processors are known

17

to employ this design.

Papadopoulou et al. proposed a superpage prediction mechanism for TLBs to

reduce multiple look-ups [12]. This mechanism predicts which page size to be probed

first in the TLB lookup order. Correct prediction which hits the TLBs will stop

the remaining TLB probes, saving both TLB hit latency and look-up energy. They

mainly focused on a binary predictor to distinguish between base page and moderate-

sized superpages, regardless of the page sizes to cater to the TLBs supporting 2 major

page sizes in commercial processors [9]. The prediction mechanism takes advantage

of either PC counters in x86 architecture [9] or source registers which dominate the

virtual address computation in SPARC architecture [12]. Both of them can be avail-

able ahead before the TLB look-up, so that the binary predictor can use such values

to index in a pattern history table to determine which page size to be probed before

the TLB lookups or even in parallel with virtual address computation. Their binary

predictor mimics the design of branch predictors [24]. And the worst misprediction

rate is reported to be 1.2% in Canneal benchmark [12].

This thesis explores how superpages a↵ect the TLB performance with naive hash-

rehash solution, as these TLBs are immediately available on existing commercial

processors. Other innovations on TLBs are not currently available, therefore out of

the exploration.

2.3.2 TLB Coalescing

TLB coalescing has been explored to increase the e↵ective TLB reach without any

OS support [18, 19]. A cache line is usually 64 Bytes which can contain 8 64-bit map-

pings. Before a page walker inserts the page table entries into the TLB, it examines

whether these mappings are contiguous and share identical controlling bits. Once this

18

combination logic satisfies, these entries may be compressed and inserted as one single

TLB entry. Pham et al. observed rich compressing opportunities reported in [18].

By exploiting the abundant address mappings, TLB coalescing can boost the TLB

reach by an order of 10 (8-16) and also provide a subtle form of TLB prefetching [14].

Commercial processors like AMD Ryzen CPUs have employed TLB coalescing [20].

2.3.3 Arbitrary Large Mappings (Segments)

Basu et al. proposed direct segments for large memory server workloads [7]. A direct

segment refers to a virtual mapping between contiguous virtual and physical mem-

ory regions, not necessarily aligned to any page boundary. They specifically focused

on memory intensive big-memory workloads including key-value stores, databases,

graphic computing and HPC (high performance computing) workloads. As studied

in [7], these workloads su↵er heavily from TLB miss penalties while rarely utilize

swapping, copy-on-write or fine-grained memory protections. This motivates a di-

rect segment hardware containing 3 registers: start/end address of the virtual region

and a shift value from the virtual to the physical region. TLB misses can be mostly

eliminated for big-memory server workloads by looking at the 3 direct segment regis-

ters before probing the TLB. The mapped memory region is called a primary region

sharing uniform memory access permissions. However, this approach is not a general

solution for address translation, and requiring software support to assign the primary

region. Except for big-memory workloads, Grandhi et al. applied direct segments on

VMMs to reduce the VMM address translation overhead to near or even better than

native [21].

Karakostas and Gandhi et al. extended direct segments to a more general solution,

called redundant memory mappings [22]. Instead of using a single big direct segment,

19

they break the single large segment into several smaller segments (they call them

ranges) to support workloads other than large-memory server workloads. Meanwhile,

they propose a hardware range TLB and a software range table together as a sup-

plementary address translation scheme besides standard paging. To be transparent

to workloads, they explored modifications on the operating system to exploit ranges

automatically, or use eager paging to pre-populate the holes in order to create ranges.

2.3.4 Caching and Speculating by Exploiting the Paging Hierarchy

Both Intel and AMD use MMU caches to accelerate page walks [9, 8]. The AMD pro-

cessors use a unified page table cache (tagged with physical addresses) while the Intel

processors use a split translation cache (tagged by virtual addresses) [9, 8]. Barr et al.

later explored the full design space of MMU caches including 5 types di↵erentiating

on whether physically or virtually tagged, unified or split and caching the translation

path or not [23]. They reported translation cache, which is defined to cache the virtual

indices from di↵erent levels of page table entries, to be a better design. Specifically,

unified translation cache or translation-path cache are the preferred designs. Despite

of the various design choices, the MMU cache aims at reducing the page walk latency.

Hits in MMU cache can help skip some steps in a page walk (typically contains 4

memory accesses) and therefore accelerate page walks.

In 2011, Barr et al. explored SpecTLB to speculate address translations [4]. This

device can interpolate 4KB address translations for TLB misses and confirm the inter-

polations in parallel with speculative executions. Correct interpolations can remove

the TLB miss handling to the non-critical execution path and hide the expensive page

walk penalties. However, their interpolation depends on a reservation-based physical

memory allocator, as discussed in section 2.4. A 2MB reservation in FreeBSD may

20

not be promoted but contain many 4KB base pages. They exploit this feature to

interpolate 4KB mappings, as long as the reservation exists and the speculated pages

are already faulted. Their simple prediction heuristic, which examines if the 4KB

mapping belongs to a group of contiguous mappings by checking whether (virtual

address)[20:12] equals (physical address)[20:12], resulted in very low misprediction

rate [4].

This work also discusses how the page walk latency is a↵ected by superpages. As

mentioned in section 2.1, page walks fetching a superpage entry will take one less

memory access than normal 4KB page walk. Microbenchmarks estimate the average

page walk latency to be 21 and 35 cycles for 2MB and 4KB pages, both of which are

applied to compare the CPU stall cycles for page walks among di↵erent superpage

promotion policies.

2.4 FreeBSD reservation-based superpage promotion mech-

anism

FreeBSD avoids allocating underutilized superpages by decoupling superpage alloca-

tion from promotion with a reservation system [25]. A reservation is a bookkeeping

entry created to track the utilization of 512 4KB pages in a 2MB-aligned memory

region. The 2MB memory is reserved for some specific virtual memory object which

is able to consume all of it. For example, reservations will not be created for a mem-

ory object mapping a 1MB disk file. Figure 2.4 shows the lifetime of a reservation.

During a page fault, FreeBSD tries to allocate a 4KB page inside an existing reser-

vation, or creates a reservation if not found. 4KB pages can be gradually populated

in a reservation, so reservations can be categorized as either partially or fully pop-

21

...
2MB

aligned

physical
memory

virtual
memory

...

...

...

create

...
2MB

aligned

4KB

4KB
...

...

populate

...
2MB

aligned ...
2MB

aligned

...
...

...

...

2MB

2MB

promote

...
2MB

aligned ...
2MB

aligned

...
...

demote

2MB

...

...

...

...

...

...

...

break

reclaim
2MB

2MB

...
2MB

aligned

...

2MB

2MB

shared

proc B

proc C

proc D

PDE:
bit #54

set

proc A proc A proc A

proc A proc A

fully
populated

partially
populated

depopulate

break

superpage

superpages

normal
4KB

mappings

normal
4KB

mappings

Figure 2.4 : FreeBSD’s superpage reservation timeline. Bit #54 in PDE is set by the

OS denoting a promoted PDE, which is ignored by the TLB.

22

ulated. Free pages in partially populated reservations can be reclaimed by breaking

the reservation.

FreeBSD only promotes fully populated reservations to superpages. This prevents

allocating underutilized superpages. However, to promote a fully populated reserva-

tion, FreeBSD requires the 12 control bits of all 512 constituent translation entries

to be identical. These 12 control bits are the page metadata, including memory

protection, caching and ring privilege, OS-defined management, page reference and

modification. The legitimacy of superpage promotion is guaranteed by the equality

of 10 bits except for the reference bit and the dirty bit. Requiring the equality of

reference and dirty bits helps eliminate extra I/O overhead. The former one avoids

any extra page zeroing or disk reads upon promotion, while the later one prevents

any extra disk writes when the pages are evicted.

However, one can still dirty a superpage by modifying only one internal 4KB page.

To prevent such a situation, FreeBSD additionally write-protects clean but writable

superpages. Any modification to a clean superpage will demote it back to 4KB pages.

The precondition of the dirty bits equality then requires all 4KB pages to get modified

for a second promotion. Therefore, using superpages in FreeBSD incurs no more I/O

overhead than using 4KB pages only.

A dirty superpage may also be strategically demoted by jemalloc(). When a

program wants to free memory via jemalloc(), jemalloc() does not free pages directly

but use MADV DONTNEED via madvise() system calls instead. If a superpage is

involved, FreeBSD will defer the page reclamation by demoting the superpage and

marking the first 4KB page unmodified. Once used again and the first 4KB page is

modified, the superpage can be promoted back quickly. In this work, this feature is

disabled by setting ”lg dirty mult:-1”.

23

2.5 OS Supports for Superpages

Superpages or huge pages are natural results from the hierarchical page tables. The

usage of superpages can increase the TLB reach thus motivating the corresponding

OS supports [26, 27, 28, 29, 25, 30]. However the OS support for superpages is not

trivial because using superpages will introduce problems like memory fragmentation,

long page fault latency or memory bloating [31], which can counter-intuitively degrade

performance. This section discusses the current OS superpage supports on common

operating systems including Linux, FreeBSD, Windows and OS X.

2.5.1 FreeBSD Reservation-based Superpage Support

In 2002, Navarro et al. firstly designed and implemented transparent superpages in

FreeBSD [25], using a reservation-based memory allocation mechanism [26]. It re-

serves an aligned and contiguous superpage (normally 2MB) block in physical mem-

ory, populates internal 4KB pages gradually and tries to promote a fully populated

reservation to a superpage eventually. This conservative approach successfully avoids

any extra I/O cost. It usually gains performance benefit exceeding 30% and intro-

duces negligible overhead in an adversarial benchmark [25]. Their implementation

was later merged into FreeBSD’s mainline. More details have been discussed in Sec-

tion 2.4.

This work explored opportunities to use superpages more aggressively in FreeBSD.

As mentioned in section 2.4, promotions of superpages are deferred until fully pop-

ulation of reservations, leaving space for early promotions. At the same time, most

frequently used reservations are observed to get fully-populated eventually, motivating

the exploration of capturing early promotion opportunities. Since FreeBSD promotes

superpages judiciously to prevent any extra I/O cost, this work explored trade-o↵s

24

between TLB performance benefit and potential I/O cost penalty under di↵erent

superpage promotion policies.

2.5.2 Linux Huge Page Support

Mainline Linux provides both persistent huge pages and transparent huge pages for

anonymous memory [32, 29]. Their details are elaborated as follows.

Linux Persistent Huge Pages

Linux supports “persistent” huge pages [32]. The word “persistent” refers to the

feature that “Huge pages cannot be swapped out under memory pressure” [32]. The

persistent huge pages break the demand paging mechanism. In other words, admin-

istrator must pre-allocate a huge page pool, with a designated number of huge pages.

Users with certain privileges can allocate memory with these persistent huge pages

via mmap system calls, or shared memory system calls. To use mmap system calls,

either a filesystem named hugetlbfs must be mounted or the MAP HUGETLB flag

should be used.

Linux Transparent Huge Pages

Linux also supports transparent huge pages [29]. Unlike the persistent huge pages,

transparent huge pages do not require pre-allocations from users. Linux provides

three modes of the transparency for anonymous memory, including “always”, “mad-

vise” and “never”. The “always” and “never” modes are self-explanatory, while the

“madvise” mode only use huge pages for the memory region mapped by mmap sys-

tem calls with MADV HUGEPAGE advise. Linux tries to allocate huge pages in

page faults if in “always” mode or in MADV HUGEPAGE regions. However, the

25

allocation might not succeed immediately, because the required large aligned and

contiguous free memory may not be available due to memory fragmentation. Linux

has 2 mechanism to deal with the huge page allocation failure. In “always” mode,

Linux will migrate pages and compact the memory in order to reclaim huge pages.

Note that the page migration and memory compaction are happening inside the very

page fault, which will e↵ectively stall the application because of the long page fault

latency. In “defer” mode, such failure will only kick the kswapd in the background

to reclaim pages as well as kcompactd to compact the memory. Another background

daemon called khugepaged will install huge pages later. The “defer” mode avoids

the long page fault latency issues by gracefully falling back to use 4KB pages for

the allocation failure and postpone the allocation of huge pages. However, transpar-

ent huge page support is not aware of whether a huge page will be used frequently.

Thus if a 2MB huge page is only touched with 1 byte, the extra e↵ort of allocating

a huge page can degrade the performance. Real-world benchmarks usually sugguest

disabling Linux transparent huge pages [3, 1, 2, 33]

Ingens explored the tradeo↵s between performance and memory savings as well

as fair promotions for transparent huge pages in Linux [30]. They borrowed the idea

of population bitmaps in FreeBSD’s reservation mechanism to track the spatial uti-

lization of huge pages [25]. Suggested with a 90 percent spatial utilization, Ingens

will only promote a huge page after over 90% 512 4KB pages are faulted. Resulting

in a small performance degradation compared with Linux’s vanilla transparent huge

page support, they achieved good trade-o↵s between performance and memory bloat-

ing [30]. Ingens also exploits the idle page tracking feature [34] in Linux to gather

the temporal utilization of huge pages [30]. It then models the huge page allocation

priority with the “idle huge pages” for each process. Fair performance was reported

26

on Canneal benchmarks [30].

Some policies explored in this work borrowed the design philosophy of both vanilla

Linux transparent huge pages and Ingens. Policy greedy promotes a FreeBSD reser-

vation to a superpage upon the first touch, which corresponds to the “always” mode.

At the same time, policy pop-461 and dirty-461 borrow the 90% spatial utilization

in Ingens, as 461 is 90 percent of 512.

2.5.3 Persistent Superpages in Windows and OS X

Microsoft supports large pages in 64-bit Windows [35]. Similar with Linux persis-

tent huge pages, large pages in Windows are not pageable, i.e. pinned in physical

memory. In addition, they are always read/write. To use large-page support in Win-

dows, administrator should enable the “SeLockMemoryPrivilege” privilege. The users

then need to include the “MEM LARGE PAGES” flag in virtual memory allocators.

Windows do not deal with memory fragmentation, but recommend users allocate all

large-pages on start time [35].

OS X supports 2MB superpages on X86 architecture [36]. Similar with both Linux

persistent huge pages and Windows large-pages, the superpages on OS X are always

wired. Programs can allocate superpages for anonymous memory in OS X by using

the “VM FLAGS SUPERPAGE SIZE 2M” flag in mmap system calls.

2.5.4 Profiling-based Online Superpage Promoting

Online promotion is a profiling-based superpage promoting strategy [27, 28, 37]. The

TLB misses are profiled or sampled to help the OS or agent decide whether or not

to allocate superpages. However, this kind of approach is not hardware independent.

It requires both hardware counters and performance parameters, which may vary on

27

di↵erent hardware, to tune the decision model.

2.6 Summary

One common solution to try to mitigate the overheads of address translation is to use

superpages.

There are several benefits of using superpages. First and intuitively, there will be

fewer TLB misses. The TLB reach, defined by summing the page sizes of all TLB

entries, can be enlarged by a factor of 512 if all TLB entries use superpages instead of

4KB pages. With larger TLB reach, it is less likely for a memory reference to miss in

the TLBs. Second, there will be fewer memory accesses to perform a page walk, e.g.

1 less memory access for a superpage. Third, there will be less work than creating

lower level page table pages. Using a superpage can save both the e↵ort and memory

space of creating 512 PT entries. Last, there will be fewer page faults. Up to 511

page faults can be saved in the ideal case where all 4KB pages are accessed. The last

benefit does not occur in FreeBSD’s superpage support but is possible in Linux [29].

However, the benefits do not come for free. Hardware TLBs e↵ectively support

superpages, but there are pitfalls for the OS virtual memory management system.

First, using superpages loses fine-grained memory controls. Because the TLBs main-

tain dirty bits, a modification on any single byte of a 2MB page will set the dirty bit.

If the dirty 2MB page ultimately has only one internal 4KB page modified, extra I/O

overhead can be incurred, which could easily surpass all address translation benefits.

Second, allocating superpages requires 2MB aligned and contiguous memory blocks.

As workloads keep running, the memory gets more fragmented and such memory

blocks would be more and more scarce. The operating system has to pay extra e↵ort

to create available resources for future superpage allocations, like page migration in

28

Linux [29]. However, the population process in FreeBSD explained in Section 2.4 can

alleviate the memory fragmentation issue without actively migrating pages. Super-

page policies that do not rely on reservation-based physical memory allocators would

also induce page fault latency and memory bloating issues.

While hardware innovations focus on increasing the TLB reach or reducing the

page walk penalty, software innovations explore the OS support for superpages. Novel

hardware designs, like direct segments, also require the OS modifications to adapt to

their new address translation mechanism. Their ultimate goal is to improve address

translation performance. This work, however, focuses on how to make the TLB

performance better on existing hardware by exploring the design space of superpage

promotion policies. By using a data collection infrastructure and a faithful TLB

simulator, it is able to quickly examine a large variety of promotion policies without

implementing them.

29

Chapter 3

Methodology

In order to explore a large number of superpage promotion policies, memory traces

and address translation kernel events were collected from a real system and used

to drive a trace-based address translation simulator. The simulation infrastructure

consists of three components: kernel instrumentation, memory access tracing, and

TLB simulation. Since FreeBSD’s reservation system decouples superpage promotion

from allocation, new promotion policies can easily be simulated upon this flexible

substrate without perturbing the rest of the system. For the duration of a reservation,

it is guaranteed that no other allocation can interfere with that reservation. So,

pages can safely be promoted or demoted at any time during the lifetime of the

reservation. Furthermore, changing the promotion behavior does not induce any

additional memory bloat or fragmentation.

This chapter discusses the methodology applied to simulate di↵erent superpage

promotion policies in FreeBSD. Section 3.1 explains why instrumenting the FreeBSD

kernel is necessary. Section 3.2 discusses how a modified QEMU traces the memory

references as well as kernel instrumentation. Section 3.3 discusses the reservation

status simulation and TLB performance simulation for di↵erent superpage promotion

policies.

30

3.1 FreeBSD Kernel Instrumentation

The kernel events of managing reservations (creating, breaking or freeing) are instru-

mented to acknowledge the simulator of existing reservations. Since new policies can

promote superpages at di↵erent times, the original superpage demotion events are no

longer su�cient to guarantee the safety of using superpages. So changes of memory

protection or mappings are instrumented to detect superpages that must be broken.

Last, TLB invalidations are instrumented to help with the TLB simulation. The

promotion policies are simulated synchronously in order to provide up-to-date page

tables for the TLB simulation, which processes memory access streams.

Instrumented kernel events are encoded with a series of memory accesses, which

will visit certain static variables predefined in the kernel space. Their virtual addresses

can be probed with SYSCTL system calls. Therefore, the TLB simulator can parse

the memory accesses to know which kernel events are happening at the exact time,

so that it can jump to maintain the page table changes or determine superpage

promotions. Table 3.1 describes all of the kernel events instrumented in FreeBSD.

3.2 Memory Access Tracing by QEMU

To simulate di↵erent promotion policies, full-system memory accesses are traced on

a data collection infrastructure built upon QEMU (Quick Emulator) [38]. Load and

store instructions are intercepted so that they can be traced, along with their associ-

ated page table entries. Furthermore, changes to the CR3 register are traced to allow

the TLB simulator to emulate PCIDs. The traces are compressed using LZ4 data

compression to manage their size [39]. Common binary instrumentation tools, like

Intel Pin [40], however do not support kernel space memory reference tracing and are

31

Kernel Events Description

RV CREATE create a reservation

RV BREAK break a reservation

RV FREE free a reservation

VM PROMOTE promote a reservation

VM DEMOTE demote a reservation

VM MAPPING share a superpage mapping

VM UNMAP munmap() system call

VM PROTECT mprotect() system call

VM PAGEOUT page laundering

INVLPG TLB invlpg

INVLTLB TLB flush

INVLTLB G TLB global flush

INVPCID TLB PCID flush

Table 3.1 : Instrumented Kernel Events in FreeBSD

not maintained for FreeBSD platforms.

3.2.1 TCG

QEMU uses TCG (Tiny Code Generator) as a binary translator to emulate the guest

machine. It translates the instructions on target architecture (the emulated processor)

to an intermediate representation called “tcg ops”. The tcg ops are later translated to

instructions on the host architecture, which runs QEMU. The translation is performed

in a batch mode. Each batch is called a translation block (TB), containing several

32

Benchmark 429.mcf gcc 605.mcf lbm omnetpp

Touched reservations 1142 4108 2443 1796 208

Memory accesses (1011) 4.87 3 5 2 2

Benchmark cam4 deepsjeng roms xz canneal

Touched reservations 698 3561 7245 7873 446

Memory accesses (1011) 2 2 2 2 3

Benchmark derby graphchi gups postgresql redis

Touched reservations 528 481 2270 1149 3533

Memory accesses (1011) 1.18 2 0.84 1.74 2.99

Benchmark svm.mnist tradesoap

Touched reservations 359 591

Memory accesses (1011) 3 1.6

Table 3.2 : Details of 17 benchmarks used for evaluation

instructions on the guest architecture. They are translated to instructions on the host

architecture and then executed. Translated TBs will be cached by QEMU so that

duplicate translations can be avoided.

Figure 3.1 demonstrates a flowchart of TCG. TCG always tries to go through the

fast path where a valid TB already exists in the bu↵er. If not found, it then performs

the 2-step translation as discussed above and inserts the generated TB into the bu↵er.

3.2.2 QEMU Memory Tracing

QEMU itself supports memory tracing. The vanilla memory tracing is only available

when it runs in full-system emulation mode, using TCG. The trace event for memory

33

cpu_exec() init translation
buffer tcg_find_fast()

valid
translation block(TB)

in buffer?

alloc TB
translate target insns

(emulated arch) to
intermediate tcg ops

translate intermediate
tcg ops to host insns update buffer

cpu_tb_exec()

main()

Y

N

Figure 3.1 : A brief flowchart of how QEMU emulates guest with TCG

tracing in QEMU is called “trace guest mem before exec()”. The memory trace en-

tries appear in 2 places in figure 3.1, one in the inline software MMU helper functions

used by some CPU emulation code, another in the TCG front-end when it translates

target instructions to intermediate tcg ops.

There are 2 drawbacks for QEMU’s vanilla memory tracing. First, it drops many

memory traces for not stalling the guest emulation. The QEMU tracing mechanism

uses an asynchronous thread to record and flush the traces. The dedicated thread does

not block the main emulation thread so that many memory accesses are ignored. Sec-

ond, it does not provide the guest physical address for each memory reference. QEMU

uses a software TLB to cache the direct address translation from guest virtual address

to machine virtual address, skipping the guest physical address on the intermediate

level. Therefore, the guest physical address may not be fetched directly.

QEMU is thus modified to eliminate the above 2 drawbacks. Memory traces are

collected in a serial manner such that no records are discarded. However, this slows

down the emulation speed. Additionally, each time a memory access is intercepted, a

page walk is finished right before its execution to fetch the PTE from the guest page

34

table given the virtual address.

3.2.3 QEMU X86 Page Walk Helper

QEMU’s own page walk helper function is modified to return a PTE of the page

table rather than computing the physical address for the given virtual address. Ad-

ditionally, for invalid PTEs, “-1” is returned instead denoting a page fault. So the

simulator can not only compute the translated physical address but also know the

privilege bits of this PTE. A PDE may also be returned when using a superpage. To

distinguish the returned entry among PTE, “PDE: 2MB page” and “PDPTE: 1GB

page” in Figure 2.2, the page walker function encodes the page size with bit #57

and bit #58, neither of which involves in x86 address translation nor interferes with

FreeBSD’s OS defined bits.

The page walk function must be called right before each memory access’s execu-

tion. For inline software MMU load and store functions called during the execution,

page walks can be inserted directly inside the inline functions. For memory trace

entries in the vanilla TCG front-end, the load and store are translated but have not

yet been executed. The page walk code is injected into the TCG helper functions.

After being translated, the helper functions are packed together in the translation

block. When this TB is executed, QEMU jumps to resolve the page walk in the

helper function. So the page walk is correctly deferred to the time right before each

memory instruction is executed.

3.2.4 On-the-Fly Compressing

The modified QEMU uses LZ4 compression interface to compress the trace bu↵er on

the fly [39]. Data compression makes it feasible to collect memory accesses (pairs

35

of virtual address and PTE) at an order of 1011. To cover the interesting accessing

patterns of each benchmark, they are profiled with performance counters to determine

the trace length. Table 3.2 shows the number of memory accesses traced for each

benchmark.

3.2.5 Timer

QEMU sends hardware exceptions to the emulated processor driven by host timer.

However, the guest is slowed down by a factor of hundreds running in memory tracing

mode. So the relatively faster host timer will result in much more exceptions in the

guest OS, and the memory accesses will be mostly kernel accesses handling hardware

exceptions.

The modified QEMU exploits its record-and-replay feature to mimic the guest

timer by timing the number of executed TBs with a time coe�cient, which is 27ns by

default. The coe�cient was well tuned to 2ns by 429.mcf and 605.mcf benchmarks.

However, since the translation block size is not uniform, time emulation by executed

TBs cannot provide a perfect solution. On benchmarks with interactions between

host and guest via the network, it is harder to preserve the simulation fidelity by

tuning the coe�cient.

3.3 TLB Simulation

The TLB performance of di↵erent policies are simulated to predict their performance

on three components of Intel Skylake TLBs in table 2.1. With kernel events instru-

mented, the altered page tables are emulated while the memory allocation remains

unchanged, so that each benchmark only requires one memory trace.

Two assumptions allow fair comparisons of di↵erent promotion policies on the

36

same memory trace. First, ignoring changes of the memory accesses from preemptive

populations or additional promotions in the new policies should hardly a↵ect their

TLB performance. It is simply because of the very large number of memory refer-

ences traced (1011) compared to the tiny number of reservations (2278 on average)

for benchmarks in table 3.2. Second, the breaking time of reservations is almost

una↵ected by the new promotion policies. In the real world, partially populated

but additionally promoted reservations by new promotion policies may be broken at

a later time than simulation, because FreeBSD only assumes dirty superpages to be

fully utilized. Reservations in the simulation can only be broken at the same or earlier

time, so it does not exaggerate the superpage benefits. And such superpages (partially

populated when being broken) only account for 8.8% of the total reservations.

Chapter 4 further elaborates how the TLB simulation is validated to be faithful

to Intel Skylake CPUs’ TLB performance.

3.4 Benchmarks

Table 3.3 summarizes the 17 benchmarks selected for evaluation, covering popular

benchmark suites or real-world applications. And table 3.2 shows the number of

touched reservations and traced memory accesses. Each benchmark has been profiled

to configure a long enough tracing length to cover their interesting accessing patterns.

Benchmarks from existing suites include 429.mcf from SPEC CPU2006 [41]; gcc,

605.mcf, lbm, omnetpp, cam4, deepsjeng, roms and xz from the speed variant of

SPEC CPU2017 [42]; canneal from PARSEC [43]; derby from SPEC JVM2008 [44]

and tradesoap from DACAPO [53]. The gups benchmark is configured to randomly

access 4GB memory [48]. Popular real-world applications are also covered. The

graphchi benchmark uses GraphChi library [46] to calculate page ranks of a US patent

37

citation network [47]. The svm.mnist benchmark uses LibSVM library [51] to train a

linear SVM (support vector machine) model on MNIST dataset [52]. Two database

platforms, postgresql [49] and redis [50] are benchmarked by their own tools.

38

Benchmark Suite Benchmark Description

SPEC-CPU2006 [41] 429.mcf Route planning

SPEC-CPU2017 [42]

602.gcc s GNU C compiler

605.mcf s Route planning

619.lbm s Fluid dynamics (floating point)

620.omnetpp s Network event simulation

627.cam4 s Atmosphere modeling (floating point)

631.deepsjeng s AI: alpha-beta tree search (Chess)

654.roms s Ocean modeling (floating point)

657.xz s General data compression

PARSEC [43] Canneal Simulated cache-aware annealing

SPEC-JVM2008 [44] Derby
Java BigDecimal library

stressed on telco benchmark [45].

\ Graphchi [46]
Pagerank computing on

US Patent citation network [47]

\ Gups [48] Random-access (serialized)

\ Postgresql [49] Object-relational database

\ Redis [50] In-memory database

\ Svm.mnist
Libsvm [51] training

MNIST dataset [52]

DACAPO [53] Tradesoap JVM running daytrader benchmark [54]

Table 3.3 : Summation of 17 benchmarks selected for evaluation.

39

Chapter 4

TLB Simulation

The TLB simulator is driven by memory accesses to predict the real-world TLB per-

formance of Intel Skylake processors, which is the microarchitecture released by Intel

in 2015. Processors of subsequent microarchitectures, including Kaby Lake and Co↵ee

Lake, are optimized variants that share an identical TLB structure. The three Skylake

TLB components in table 2.1 are simulated. This chapter discusses how the details

of Skylake TLBs’ characteristics are reverse-engineered. Further, empirical results

show that the TLB simulation algorithm is faithful enough to predict the real-world

performance of Skylake TLBs. Section 4.1 introduces the microbenchmark settings

and implications from reverse engineering. Section 4.2 illustrates the close similarity

between Skylake TLB simulation and its real-world performance. Section 4.3 sum-

marizes this chapter.

4.1 Reverse-engineering Microbenchmarks

Hardware vendors only release the size or set-associativity of TLBs, which is not

enough to precisely model TLB performance. A series of pointer chasing micro-

benchmarks are designed to infer the characteristics of the replacement policy, in-

dexing functions and inclusiveness for Intel Skylake TLBs. Each pointer chasing

micro-benchmark initializes several pointers with configurable memory addresses and

constructs them as a cyclic singly-linked list. Hardware performance counters are

40

used to count TLB misses and reveal the TLB behavior by looping over the cyclic

singly-linked list for a specific number of times on Linux, where it can allocate and

use 2MB pages directly. Three TLB characteristics including replacement policies,

indexing functions and inclusiveness are inferred under di↵erent configurations of the

pointer chasing micro-benchmark. To simplify the following explanations, n denotes

the number of TLB entries and k denotes the set-associativity.

4.1.1 Replacement Policies

To infer replacement policies, the length of the cyclic list is configured to be k and

k + 1 with pointers’ memory addresses varying only on the most significant bits so

they will be mapped into the same TLB set. Then the TLB miss rate of looping over

the cyclic list is proflied. Profiling shows negligible TLB misses in the former case

(length=k) but almost 100% references to the cyclic list miss the TLB on the later

case (length=k + 1). Such behavior holds on all three TLB components in table 2.1.

Therefore, they all use an exact LRU replacement policy [10].

4.1.2 Indexing Functions

Indexing functions are detected by exploiting the LRU policy. The number of indexing

bits are determined by the entry size n and set-associativity k, which must be an

integer log2(n/k). For a k-way set associative TLB, construct a cyclic list with k + 1

pointers varying on the highest
⌃
log2(k + 1)

⌥
� 1 bits and another detection bit. By

shifting the detection bit from the highest bit (Bit #
⌃
log2(k + 1)

⌥
) to the lowest,

references to the cyclic list must either miss the TLB every time or never, depending

on whether the detection bit is involved in set indexing. Because if the k+1 pointers

are mapped to the same set of the set-associative cache, exact LRU replacement

41

4KB page 2MB page

DTLB va[15:12] va[24:22]

STLB va[18:12] xor va[25:19] va[27:21]

Table 4.1 : Indexing functions for 4KB and 2MB pages in Skylake TLBs

policy will make 100% references to the cyclic list miss the TLB. Otherwise, the k+1

pointers will be partitioned into at least 2 sets, where (k+1)/2 is strictly less or equal

than k, resulting in 0% TLB miss rate no matter which replacement policy is used.

The later case denotes a positive detection which implies that the detected bit is

involved in the indexing function.

The detection method found 4 indexing bits for DTLB-4K, 3 indexing bits for

DTLB-2M/4M and 7 indexing bits for 2MB pages in STLB-4K/2M. The three num-

bers exactly fit the formula log2(n/k), so their indexing functions are unique and de-

termined. However, 14 bits are detected in 4KB page indexing of the STLB-4K/2M,

while the formula gives 7 bits. Additional micro-benchmarks are configured to infer

which 7 pairs of 2 bits are used (using 2 detection bits). The logic gates between

each pairs are found to be exclusive-or gates. Table 4.1 summarizes the 4 indexing

functions.

However, the STLB still can have three possible designs, depending on how 4KB

and 2MB page are probed. Figure 4.1 illustrates a parallel STLB probing design that

looks up a virtual address as both 4KB and 2MB pages simultaneously. Another two

possible designs probe the page sizes serially; figure 4.2 probes 4KB pages first and

figure 4.3 probes 2MB pages first. It is hard to determine which of the three is true for

Skylake STLBs, because the hardware performance counters for DTLB-miss/STLB-

42

4KB page offset

11151825

DTLB-2M/4M

STLB-4K/2M

2MB page offset

24 2021

0

0

...

...

27

DTLB-4K4

xor

7

7
7

3

7

63

63

Sharing
64 bits

Figure 4.1 : Set Selection Diagram in Intel Skylake TLBs. The 2 page table entries

are sharing the same 64 bits. This variant assumes that the STLB look-up is parallel

to hit the STLB as both 4KB or 2MB page sizes.

hit do not distinguish STLB hits between 2MB or 4KB pages.

4.1.3 Inclusiveness

The Skylake STLB is inferred to be non-inclusive. An inclusive L2 cache must contain

all entries in L1 caches, so evicting an entry from an inclusive STLB will consequently

invalidate the same entry in the DTLB, called back invalidation. To detect this, a

cyclic list of 16 pointers is constructed. The 16 pointers share identical STLB index,

while each group of four of them are indexed into a di↵erent DTLB set. Negligible

DTLB misses are observed when looping over the cyclic list, but each STLB set has

43

4KB page offset

11151825

DTLB-2M/4M

STLB-4K/2M

2MB page offset

24 2021

0

0

...

...

27

DTLB-4K4

7

xor

7

7
7

3

4KB miss

mux
7

63

Sharing
64 bits

63

Figure 4.2 : Set Selection Diagram in Intel Skylake TLBs. The 2 page table entries

are sharing the same 64 bits. This variant assumes that the STLB look-up is serial

to hit the STLB as a 4KB page first.

only 12 entries and inclusiveness is expected to generate all TLB misses. Therefore,

back invalidation does not happen and the Skylake STLB is non-inclusive of the

DTLB.

The Skylake STLB is also found to be non-exclusive. An exclusive L2 cache would

not contain any entries in L1 caches, so an exclusive STLB would only be populated by

evictions from the DTLB. However, looping over a cyclic list composed of 13 pointers

indexed into the same DTLB and STLB set makes all references to the cyclic list

missed. An exclusive STLB is expected to show negligible STLB misses even if the

length of the cyclic list is increased to 16 (12+4). Thus the Skylake STLB is also not

44

4KB page offset

11151825

DTLB-2M/4M

STLB-4K/2M

2MB page offset

24 2021

0

0

...

...

27

DTLB-4K4

7

xor

7

7
7

3

2MB miss

mux
7

63

Sharing
64 bits

63

Figure 4.3 : Set Selection Diagram in Intel Skylake TLBs. The 2 page table entries

are sharing the same 64 bits. This variant assumes that the STLB look-up is serial

to hit the STLB as a 2MB page first.

exclusive of the DTLB.

The behavior of insertion and eviction in Skylake TLBs is thus determined.

Evicted entries from the DTLB do not get inserted back to the STLB (non-

exclusive), so TLB entries found by the page walker must be inserted into both

DTLB and STLB. At the same time, evicting entries from the STLB brings no side

e↵ects, because they do not back-invalidate entries in the DTLB (non-inclusive).

45

4.1.4 Skylake TLB Simulation Algorithm

The following assumptions are additionally made to build the simulation algorithm

for Skylake TLBs:

1. The CPU always tries to hit with a 2MB mapping first.

2. Di↵erent page sizes are always queried in a serial fashion.

3. If hit with a 2MB mapping, the look-up is terminated so that the 4KB LRU

queue is not a↵ected.

4. All memory references are queried in order.

5. The TLB replacement/update must finish before each memory access.

6. Page walker always inserts the entry into both DTLB and STLB.

However, some assumptions are not necessarily true for Skylake TLBs. They

can either hit 4KB pages first or both page sizes in parallel, so the LRU queue

for replacement could be changed. But this only provides minor side e↵ects for

TLB simulation, because it is very rare for the TLB to have both 4KB pages (not

valid again but correct to use) and valid 2MB pages together. Real-world processors

execute memory loads and stores out of order to overlap some latency, so the DTLB

replacements or updates may not get finished before the next TLB query. This makes

the performance counter counts duplicate DTLB misses (not for STLB misses) when

querying the identical page consequently. Assuming that memory accesses executions

are in-order and the TLB replacement/update is synchronized do not a↵ect simulating

the STLB performance, which e↵ectively dominates the TLB performance. The last

assumption has been validated to be true.

Algorithms 1, 2, 3 and 4 describe the simulation algorithm for Intel Skylake TLBs.

46

Algorithm 1: HIT-TLB
Data: A TLB TLB, Current PCID Pcid, A Virtual Tag Tag, An Index

Index, A Page Size Value Size

Result: A Boolean Value Denoting Hit or Not

if TLB � Set[Index] contains valid entry (Pcid, Tag, Size) then

Increase ages of all entries in TLB � Set[Index] by 1;

Set age of (Pcid, Tag, Size) as 0;

Return True;

Return False;

Algorithm 2: Hit-DTLB
Data: Current PCID Pcid, A Virtual Address V A to Look up

Result: A Boolean Value Denoting Hit or Not

V PN2MB � V A/221;

V PN4KB � V A/212;

IndexDTLB�2MB � V PN2MB/2 mod 23;

if HIT � TLB(DTLB2MB, P cid, V PN2MB, IndexDTLB�2MB, 2MB) then

Return True;

IndexDTLB�4KB � V PN4KB mod 24;

if HIT � TLB(DTLB4KB, P cid, V PN4KB, IndexDTLB�4KB, 4KB) then

Return True;

/* DTLB Miss */

Return False;

47

Algorithm 3: Hit-STLB
Data: Current PCID Pcid, A Virtual Address V A to Look up

Result: A Boolean Value Denoting Hit or Not

V PN2MB � V A/221;

V PN4KB � V A/212;

IndexSTLB�2MB � V PN2MB mod 27;

if HIT � TLB(STLB, Pcid, V PN2MB, IndexSTLB�2MB, 2MB) then
Replace the hit entry with the oldest in

DTLB2MB � Set[IndexDTLB�2MB];

Return True;

R � V PN4KB mod 27; L � V PN4KB/27 mod 27;

IndexSTLB�4KB � (LxorR);

if HIT � TLB(STLB, Pcid, V PN4KB, IndexSTLB�4KB, 4KB) then
Replace the hit entry with the oldest in

DTLB4KB � Set[IndexDTLB�4KB];

Return True;

/* STLB Miss */

Return False;

48

Algorithm 4: Main
Data: Current PCID Pcid, A Virtual Address V A to Look up, A Page Size

Value Size for V A Determined by Page Table

Result: A Boolean Value Denoting Hit or Not

Set all TLB entries invalid with infinite age;

V PN2MB � V A/221;

V PN4KB � V A/212;

if Hit-DTLB returns False then

/* DTLB misses */

if Hit-STLB returns False then

/* STLB misses, Page walk: Found page size to be Size */

Entry � (Pcid, V PNSize, Size) Set age of Entry as 0;

Replace Entry with the oldest in DTLBSize � Set[IndexDTLB�Size];

Increase ages of all other entries in DTLBSize � Set[IndexDTLB�Size];

Replace Entry with the oldest in STLB � Set[IndexSTLB�Size];

Increase ages of all other entries in STLB � Set[IndexSTLB�Size];

Return False;

Return True;

49

4.2 Empirical Validation

Empirical comparison shows that the above TLB algorithms are faithful to simulate

performance of Intel Skylake TLBs. To compare, the real-world TLB performance is

profiled by performance counters for the following three events [9]:

1. Retired memory accesses

2. DTLB misses hit in STLB

3. Retired STLB misses

The above three events are accumulated on each 100 milliseconds. Therefore, both

real-time DTLB and STLB miss rate curves can be plotted.

4.2.1 Empirical Results

Figures 4.4, 4.5, 4.6 and 4.7 compare the TLB performance between simulation and

real world on two deterministic benchmarks, 429.mcf from SPEC-CPU2006 [41] and

605.mcf from SPEC-CPU2017 [42]. The later benchmark di↵ers by using a larger

data set and an updated computing algorithm than 409.mcf. Both benchmarks are

compared on an Intel Xeon E3-1245 V6 processor, an optimized variant of Skylake but

sharing the same TLB design. Specifically, to highlight that both 4KB and 2MB pages

are simulated faithfully in the shared STLB, the superpage promotion is switched

between enabled and disabled. Unless the comparison shows strong performance

prediction in each case, the TLB simulation is faithful.

Three things are learned from the performance comparisons in the four figures

(4.4,4.5, 4.6 and 4.7):

50

Figure 4.4 : TLB miss ratio curves between simulation and real-machine. The bench-

mark is a full run of 429.mcf in SPEC-CPU2006 [41]. The left shift value for QEMU

record-and-replay feature is tuned to be 1. The y-axis represents a log-scale sliding-

window miss rate, and the x-axis represents cumulative memory accesses. The real-

machine is profiled with superpage promotion disabled in FreeBSD. The simu-

lation uses traces collected with superpage promotion enabled but assumes all user-

space page sizes as 4KB.

51

Figure 4.5 : TLB miss ratio curves between simulation and real-machine. The bench-

mark is a full run of 429.mcf in SPEC-CPU2006 [41]. The left shift value for QEMU

record-and-replay feature is tuned to be 1. The y-axis represents a log-scale sliding-

window miss rate, and the x-axis represents cumulative memory accesses. The real-

machine is profiled with superpage promotion enabled in FreeBSD. The simu-

lation uses traces collected with superpage promotion enabled and do not alter the

page tables.

52

Figure 4.6 : TLB miss ratio curves between simulation and real-machine. The bench-

mark is a partial run of 605.mcf from SPEC-CPU2017 [42]. The left shift value

for QEMU record-and-replay feature is tuned to be 1. The y-axis represents a log-

scale sliding-window miss rate, and the x-axis represents cumulative memory accesses.

The real-machine is profiled with superpage promotion disabled in FreeBSD. The

simulation uses traces collected with superpage promotion enabled but assumes all

user-space page sizes as 4KB.

53

Figure 4.7 : TLB miss ratio curves between simulation and real-machine. The bench-

mark is a partial run of 605.mcf from SPEC-CPU2017 [42]. The left shift value for

QEMU record-and-replay feature is tuned to be 1. The y-axis represents a log-scale

sliding-window miss rate, and the x-axis represents cumulative memory accesses. The

real-machine is profiled with superpage promotion enabled in FreeBSD. The sim-

ulation uses traces collected with superpage promotion enabled and do not alter the

page tables.

54

• STLB performance is closely tracked by the simulation when superpages are

disabled

• Simulation mismatches the STLB performance when superpages are enabled

• DTLB performance is tracked but constantly underestimated

The next section further elaborates why the STLB data misses are actually well

predicted and why the DTLB is underestimated but can help evaluate the promotion

policies.

4.2.2 Noise from STLB Code Misses

This section elaborates how the misses from ignored instructions are interfering with

the STLB simulation when superpages are enabled exemplified on 605.mcf benchmark.

Remember that the Skylake STLB is shared between instructions and data. When

superpages are enabled on 605.mcf, the STLB data misses drop significantly and no

longer dominate the STLB performance.

Figure 4.8 shows the code misses in STLB causing page walks profiled by hard-

ware performance counter “ITLB MISSES.WALK COMPLETED”. Despite 2 peaks

exceeding 10�3, the STLB miss rate of code misses, the number of code misses dividing

the number of memory accesses, is mostly negligible.

With code misses profiled, it is able to decouple the code misses and data misses

for STLB. Figure 4.9 subtracts the code misses from the total number of STLB misses

to approximate the STLB behavior when only memory accesses query the STLB. To

elaborate the comparison between the TLB simulation and the subtracted real-world

profiling, both zoom-in and smoothing are applied on this figure (4.9).

55

Figure 4.8 : STLB code misses dividing number of retired memory accesses per 100

milliseconds.

56

Figure 4.9 : Comparison of STLB miss ratio curves (excluding code miss e↵ects)

between simulation and real-machine. The benchmark is a partial run of 605.mcf

from SPEC-CPU2017 [42]. The y-axis represents a log-scale sliding-window miss

rate, and the x-axis represents cumulative memory accesses. The real-machine curve

is profiled with superpage promotion enabled in FreeBSD. It approximates STLB

data misses by subtracting STLB code misses from data misses, assuming that a

code miss will correspond to another data miss to fetch back the evicted data entry.

Both data STLB misses and code STLB misses are linearly interpolated in order

to perform the subtraction. The simulation uses traces collected with superpage

promotion enabled and do not alter any page size.

57

Figure 4.10 : Zoom in on the peaks above 10�4 in Figure 4.7. STLB code misses are

not subtracted from the real-machine curve.

58

Figure 4.11 : Zoom in on the peaks above 10�4 for STLB miss curves in Figure 4.9.

STLB code misses are subtracted.

59

Figure 4.12 : Smoothed by applying a mean convolution filter, window size = 77

60

Figures 4.10 and 4.11 zoom in the area of figure 4.7 where the STLB miss rate

is high. The strong correlation between STLB (real) and STLB (simulation) curves

shows how STLB performance is closely tracked when data misses dominate. Ad-

ditionally, figure 4.12 subtracts the code misses from STLB (real) and compares it

again with STLB (simulation) by smoothing both curves into a longer time scale.

Again, strong correlation between simulation and the real world is shown on areas

where data misses do not dominate the STLB performance. Combine with the closely

tracked STLB performance when superpage is disabled (figure 4.6 and figure 4.4) and

the fact that applications’ data dominate the memory footprints, the simulation is

able to closely predict the Skylake STLB performance.

4.2.3 Underestimation of DTLB Misses

Intel tries to overlap the DTLB miss penalty with out-of-order execution [9]. So the

DTLB miss performance counter is found to count duplicate misses when a memory

access misses in the DTLB but hits the STLB and a subsequent accesses is to the

same page before the STLB hit is resolved. In other words, DTLB updates do not

stall succeeding memory accesses. Therefore, all figures 4.4, 4.5 4.6 and 4.7 show

that the TLB simulator can track the trend of DTLB miss rates but underestimates

their magnitudes. While the DTLB miss performance counter can also be a↵ected

by speculative executions and prefetching, ignoring these e↵ect does not substantially

hurt the simulation.

The aforementioned DTLB underestimation is independent of the page size, so

that DTLB performance of di↵erent promotion policies should be consistently under-

estimated on the same benchmark. Together with the closely tracked STLB perfor-

mance, the simulator can fairly predict and compare the TLB performance among

61

di↵erent superpage promotion policies.

4.3 Summary

Empirical comparisons show a strong correlation of the TLB performance between the

TLB simulation and real world profiling. Though not perfectly simulated, the STLB,

which dominates the TLB performance, is tracked closely to indicate what TLB

performance will be given superpage promotion policies. Furthermore, their DTLB

performance can also be fairly compared. The faithfulness of the TLB simulation

provides the foundation to fairly evaluate di↵erent superpage promotion policies.

62

Chapter 5

Design Space of Superpage Promotion Policies

This chapter explores 16 new promotion policies in addition to FreeBSD’s policies.

As mentioned before, they share FreeBSD’s reservation system, but have di↵erent

criteria for promoting superpages. As a point of comparison, two existing policies,

FreeBSD and 4K-user are also shown. FreeBSD denotes the vanilla promotion policy

in FreeBSD and 4K-user denotes a policy that disables all superpage promotions in

the user space.

5.1 Capture 2 Types of Promotion Opportunities

FreeBSD’s promotion policy misses two types of promotion opportunities. First, it

takes a long time for a reservation to satisfy the strict promotion conditions. During

that time, the constituent 4KB pages can consume up to one third of the TLB entries

in a Skylake STLB. Second, some reservations come close to satisfying the promotion

conditions, but never do. For example, a reservation in which only 511 pages become

populated would never be promoted.

The new promotion policies form a design space of more aggressive promotion

policies that can promote more reservations and can promote reservations earlier.

Specifically, 2 policies are first considered as the extreme cases. Greedy promotes

every reservation to a superpage upon its first touch, catching all promotion oppor-

tunities. Foresight also promotes upon first touch, but only for those reservations

63

Figure 5.1 : Distribution of the number of accesses to all reservations touched by

benchmarks in table 3.2 vs. their population, dirtiness and lifetime. Each circle

denotes a reservation, the darker the more overlapped. Reservations accessed over

500,000 times are classified as frequently accessed ones.

that FreeBSD would ultimately promote. The foresight policy captures all of the

possible address translation benefits for pages that FreeBSD would promote without

incurring any additional overhead. However, foresight would require an oracle, so is

not an implementable policy (whereas all other policies could be implemented).

5.2 Promote Frequently-used Reservations

The remainder of the policies focus on promoting frequently-accessed reservations.

However, monitoring all accesses to each reservation is not possible. Therefore, three

types of available thresholds are used as proxies, including population, dirtiness (num-

ber of dirty 4KB pages) and lifetime (number of total memory accesses to any page

since creation). Figure 5.1 shows the distribution of the number of memory accesses

to all reservations ever touched by the benchmarks in table 3.2 against the three

64

Policy Description

4K-user disable superpage promotions

FreeBSD vanilla policy in FreeBSD

foresight partially-ideal

greedy most aggressive

pop-x x = 64, 128, 256, 461, 509

dirty-x x = 64, 128, 256, 461, 509

life-x x = 106, 107, 108, 109

Table 5.1 : Explored design space of superpage promotion policies

types of thresholds. By classifying the reservations accessed over 5 · 104 as frequently

accessed ones, a binary classifier which identifies reservations with no less than 64

populated pages as frequently accessed can achieve 82.8% precision. Similarly, the

dirty distribution is similar to the population distribution. However, the lifetime dis-

tribution is not as amenable to such a simple classifier. Chapter 6 further elaborates

that desirable lifetime thresholds vary from benchmark to benchmark.

Table 5.1 summarizes the policies explored including FreeBSD’s original policies

(4K-user and FreeBSD) and the 16 new policies. The population and dirtiness policies

use 5 thresholds including 64, 128, 256, 461 and 509. Threshold 461 corresponds to

the 90% utilization as suggested in Ingens [30]. Threshold 509 denotes a non-overhead

promotion, because superpage promotion releases 3 pages that are used to store the

meta data of over 500 4KB pages. Note that greedy is equivalent to pop-1. The

lifetime policies use four thresholds from 106 to 109.

65

Chapter 6

Evaluation

This chapter discusses the empirial evaluation results of the 18 policies in table 5.1 on

17 benchmarks in table 3.2. Section 6.1 introduces di↵erent metrics to measure their

performance. Section 6.2 shows the empirical results under these measurements.

6.1 Metrics

Table 6.1 summarizes the used metrics, including DTLB misses, STLB misses and

average page walk latency for evaluating TLB performance. The page walk latency

uses 35 cycles for 4KB-page STLB misses and 21 cycles for 2MB-page STLB misses,

determined by microbenchmarks.

The page fault savings and I/O overheads are all quantified by the number of

corresponding 4KB pages. If a reservation is promoted earlier than it would be in

policy FreeBSD, then the pre-population from the early promotion is likely to save

some future page faults. Additionally, such promoted reservations may not get fully

utilized. So, extra e↵ort is wasted for pre-populating them, called extra zeroed pages.

The overhead is further separate for reservations backing anonymous memory and

disk files, distinguishing page zeroing and disk-in overhead. Similarly, as extra write-

protection no longer exists in the new policies, modified superpages will falsely contain

clean 4KB pages. These pages are quantified as false dirty pages to denote disk-out

overhead. For anonymous memory, it only shows the potential burden to swap the

66

Metric Unit

DTLB miss Number of misses

STLB miss Number of misses

Page walk latency Number of CPU stall cycles

Page fault savings Number of prefaulted 4KB pages

Extra zeroed pages Number of extra zeroed 4KB pages

False dirty pages Number of clean 4KB pages in modified superpages

Table 6.1 : Metrics for evaluating di↵erent superpage management policies

superpages.

6.2 TLB Performance

The TLB performance including DTLB misses, STLB misses and estimated page

walk latency is compared by normalizing to the performance of policy FreeBSD in

figures 6.1, 6.2 and 6.3. Specifically, policy 4K-user is excluded from the TLB per-

formance comparison because it is too bad to be meaningful. Note that there are no

page fault savings nor I/O overhead for policies 4K-user and FreeBSD either.

6.2.1 DTLB Misses

Figure 6.1 compares the DTLB misses. While greedy usually eliminates the most

DTLB misses, foresight is not as aggressive as it is expected. So, there is a con-

siderable room to benefit the DTLB by promoting partially populated reservations.

However, DTLB thrashing happens for greedy on benchmarks like canneal. It is

more likely to result from the smaller size of DTLB-2M, which is half the size of the

67

Figure 6.1 : DTLB misses dividing FreeBSD policy among policies shown in table 5.1,

excluding policy 4K-user.

68

DTLB-4K (64 entries). When greedy promotes all reservations that occupy the most

memory, the DTLB gets overwhelmed by queries for 2MB pages.

Policy dirty-64 and pop-64 can get competitive DTLB performance to greedy.

When switching to another threshold 128, the dirty and population predictors are as

good. They can be better than greedy on benchmark omnetpp, possibly because of

less DTLB thrashing. However, on postgresql benchmark, the dirty predictor brings

more DTLB misses than the population predictor. It is because postgresql would

fault anonymous pages in advance to avoid future page faults, who might not get

a chance to be modified. So that reservations are promoted earlier under the same

threshold of population.

Performance of the life-x policies is unstable. They can be better than greedy

on benchmarks like postgresql but much worse on benchmarks like xz. The unstable

DTLB performance shows the di�culty of choosing a good threshold for lifetime based

promotion policies.

6.2.2 STLB performance

Figure 6.2 compares the STLB performance and figure 6.3 measures the CPU stall

cycles for their page walks. Unsurprisingly, both foresight and greedy can save more

percentage of STLB misses than DTLB misses because mainly using 2MB pages do

not e↵ectively reduce the available TLB entries, except for benchmarks deepsjeng

and gups, whose memory access patterns do not let the TLB benefit much from

their locality. Again, policy greedy advances foresight a lot, showing the necessity of

promoting partially populated reservations. Thresholds like 64 or 128 all work well on

policy pop-x and dirty-x, bringing competitive performance with the most aggressive

one, greedy. Policy life-106 shows close TLB performance with greedy except for

69

Figure 6.2 : STLB misses dividing FreeBSD policy among policies shown in table 5.1,

excluding policy 4K-user.

70

Figure 6.3 : Estimated page walk latency dividing FreeBSD policy among policies

shown in table 5.1, excluding policy 4K-user.

71

benchmarks lbm and xz, suggesting that a good lifetime threshold is benchmark-

specific.

6.2.3 Prefetching

Figure 6.4 and figure 6.5 evaluate the level of prefetching the 4KB pages inside existing

reservations by measuring how many page faults can be avoided as a positive side e↵ect

of early promotion. Unsurprisingly, the aggressive policies can always save more page

faults, denoting a more aggressive level of prefetching memory.

6.2.4 Overhead from Anonymous Reservations

Figure 6.6 shows the page zeroing overhead of promoting superpages for anonymous

memory. Though policies greedy and life-106 usually zero more than 50 4KB pages for

each reservation, policies pop-64 and dirty-64 shows negligible page zeroing overhead

on most benchmarks. Even on benchmarks that the two policies have considerable

overheads, they do better than greedy. On cam4 and redis, greedy zeros extra 175

and 246 pages per reservation but dirty-64 or pop-64 zeros extra 95 and 189 pages

per reservation.

Figure 6.7 shows the false dirty pages created in reservations backing anonymous

memory. Since anonymous memory is usually modified, as it is a waste to allo-

cate anonymous memory without future modification, the figure is very similar with

figure 6.6. Though users usually try to avoid memory swapping, real OS implemen-

tation must consider this as a potential burden for swapping aggressively promoted

superpages. Both pop-64 and dirty-64 still give good results.

72

Figure 6.4 : Saved page faults proportional to total faults (0 for 4K-user or FreeBSD).

73

Figure 6.5 : Saved page faults per touched reservation (0 for 4K-user or FreeBSD).

74

Figure 6.6 : Extra zeroed pages per reservation backing anonymous memory

75

Figure 6.7 : False dirty pages per reservation backing anonymous memory, burdening

the I/O when being swapped out.

76

P
ol
ic
y

gr
ee
dy

di
rt
y-
x

po
p-
x

li
fe
-x

64
12

8
64

12
8

25
6

46
1

10
6

10
7

10
8

10
9

A
ve
ra
ge

nu
m
b
er

of
ex
tr
a
d
is
k-
re
ad

p
ag
es

gc
c

44
3.
5

0
0

71
71

0
0

44
3.
5

31
7.
75

31
7.
75

31
7.
75

om
n
et
p
p

43
7

0
0

26
7

12
0.
67

0
0

26
7

26
7

26
7

26
7

ca
m
4

47
6.
25

0
0

10
9

0
0

0
47
6.
25

47
6.
25

47
6.
25

47
6.
25

ro
m
s

48
8.
5

0
0

0
0

0
0

48
8.
5

48
8.
5

48
8.
5

48
8.
5

d
er
by

26
4.
8

67
.6

67
.6

16
2.
6

80
.8

13
.2

2.
2

26
4.
8

19
7.
2

95
95

gr
ap

h
ch
i

43
3

0
0

18
1.
5

18
1.
5

0
0

43
3

43
3

43
3

43
3

tr
ad

es
oa
p

26
4

67
.6

67
.6

16
1.
8

80
.8

13
.2

2.
2

26
4

19
6.
4

94
.2

94
.2

A
ve
ra
ge

nu
m
b
er

of
fa
ls
e
d
ir
ty

p
ag
es

gc
c

50
9.
75

0
0

12
8

12
8

0
0

50
9.
75

38
4

38
4

38
4

om
n
et
p
p

50
7.
67

0
0

33
7.
67

16
7

0
0

33
7.
67

33
7.
67

33
7.
67

33
7.
67

ca
m
4

50
7

0
0

12
8

0
0

0
50
7

50
7

50
7

50
7

ro
m
s

51
1

0
0

0
0

0
0

51
1

51
1

51
1

51
1

d
er
by

47
7.
2

67
.6

67
.6

37
4.
8

27
2.
4

20
4.
8

10
2.
4

47
7.
2

40
9.
6

30
7.
2

30
7.
2

gr
ap

h
ch
i

50
7

0
0

25
1

25
1

0
0

50
7

50
7

50
7

50
7

tr
ad

es
oa
p

47
7.
2

67
.6

67
.6

37
4.
8

27
2.
4

20
4.
8

10
2.
4

47
7.
2

40
9.
6

30
7.
2

30
7.
2

Table 6.2 : Disk I/O overheads for reservations mapping disk files. Policies with all

zero values are excluded.

77

Benchmark Reservations backing disk files

gcc 4

omnetpp 3

cam4 4

roms 2

derby 5

graphchi 2

tradesoap 5

Table 6.3 : Reservations backing disk files for each benchmark. Benchmarks without

such reservations are not shown.

6.2.5 Disk I/O Overhead

Table 6.2 summarizes the disk I/O overhead for benchmarks who have reservations

mapping disk files. Unfortunately, applications tend not to process disk I/O via direct

allocation (mmap), but rather use file operations (such as read and write). Table 6.3

summarizes the number of such reservations for each benchmark. Among the 17

benchmarks, the maximum number of reservations mapping disk files is 5. While

inconclusive, this sparse data suggests that using a threshold of dirty pages could be

a desirable choice.

78

DTLB design FreeBSD pop-64

64(4KB)+32(2MB) 1.00 0.25

64(4KB/2MB) 0.99 0.15

96(4KB/2MB) 0.71 0.10

Table 6.4 : Normalized DTLB misses of 3 DTLB designs on 605.mcf

6.3 Discussion of Policies

6.3.1 Combination of policies in real OS implementation

The operating system should consider using an aggressive population or dirtiness

threshold, such as 64, to promote superpages for anonymous memory. The overall

comparison in table 6.5 shows that pop-64 and dirty-64 achieve performance benefits

close to greedy while introducing far less page-zeroing overheads. The lifetime policies

are not as good at limiting page-zeroing overheads, but the reductions in address

translation overheads may still justify the additional overhead.

It is advisable to separate the promotion threshold for reservations mapping disk

files, because disk I/O is much more expensive. Besides, the write-protection strategy

should be utilized as files are sometimes mapped in memory without further modifi-

cations. For example, the OS can promote a clean file reservation with a population

threshold of 256. When it is demoted upon modification, the second promotion can

require a dirtiness threshold of 256. For derby, such a strategy would only incur

an extra disk-in overhead of 13.2 4KB pages per reservation, without any disk-out

overhead.

79

P
ol
ic
y

4K
-u
se
r

F
re
eB

S
D

gr
ee
dy

fo
re
si
gh
t

di
rt
y-
x

64
12

8
25

6
46

1
50

9

D
T
L
B

m
is
se
s

28
.4
3

1.
00

0.
53

0.
92

0.
55

0.
56

0.
67

0.
77

0.
94

S
T
L
B

m
is
se
s

13
47
.8
5

1.
00

0.
15

0.
65

0.
22

0.
25

0.
36

0.
52

0.
79

P
ag
e
w
al
k
la
te
n
cy

13
81
.7
6

1.
00

0.
14

0.
64

0.
21

0.
24

0.
36

0.
52

0.
79

P
ag
e
fa
u
lt
re
d
u
ct
io
n

0.
00

0.
00

34
7.
89

31
5.
42

29
8.
57

25
4.
07

16
6.
65

23
.9
4

2.
73

P
ag
e
ze
ro

ov
er
h
ea
d

0.
00

0.
00

12
8.
48

0.
00

23
.8
1

16
.0
6

5.
16

0.
43

0.
01

P
ol
ic
y

li
fe
-x

po
p-
x

10
6

10
7

10
8

10
9

64
12

8
25

6
46

1
50

9

D
T
L
B

m
is
se
s

0.
57

0.
57

0.
58

0.
59

0.
53

0.
53

0.
67

0.
77

0.
94

S
T
L
B

m
is
se
s

0.
29

0.
37

0.
42

0.
46

0.
19

0.
23

0.
36

0.
52

0.
79

P
ag
e
w
al
k
la
te
n
cy

0.
29

0.
37

0.
42

0.
46

0.
18

0.
22

0.
35

0.
52

0.
79

P
ag
e
fa
u
lt
re
d
u
ct
io
n

20
2.
07

90
.6
8

54
.1
8

19
.6
4

30
2.
53

25
7.
72

16
9.
49

24
.8
4

2.
84

P
ag
e
ze
ro

ov
er
h
ea
d

74
.4
2

52
.0
2

47
.1
1

45
.3
4

23
.8
9

16
.0
9

5.
23

0.
43

0.
01

Table 6.5 : Overall performance of 18 policies. DTLB misses, STLB misses and

page walk latency are the mean number of those normalized to FreeBSD policy over

all benchmarks. Page fault reduction and page zero overhead are quantified by the

average number of 4KB pages per reservation (512).

80

6.3.2 Malloc Designs Unaware of Superpages

Additionally, the fact that greedy incurs so much page zeroing overhead indicates

that the design of system memory allocator is not aware of superpages. There are

two issues with malloc. First, while recent implementations consider fragmentation

issues [55, 56, 57], they are not aware of superpage alignment issues. Second, malloc

frequently overallocates anonymous memory (via mmap), resulting in many reser-

vations that are created but hardly utilized. Therefore, the former issue fragments

the memory at the reservation level and the later issue introduces extra overhead of

using superpages. Future malloc implementations should consider the existence of

the reservation system, thus serving superpage promotions better.

6.4 Discussion on TLB designs

Among the 17 benchmarks, the TLB simulation shows that policy FreeBSD has an

overall STLB miss rate of 3.6 ·10�4, but a higher overall DTLB miss rate of 8.5 ·10�3.

And the higher DTLB miss rate is even underestimated as explained in chapter 4.

However, table 6.5 shows that the DTLB performance is less a↵ected than the STLB

performance by changing superpage promotion policies. For example, policy pop-64

can reduce STLB misses by 81% but DTLB misses by only 47%.

Table 6.4 explores how TLB performance is a↵ected by di↵erent combinations

of TLB designs and superpage promotion policies. The Skylake TLB uses a split

DTLB with 64 entries for 4KB pages and another 32 entries for 2MB pages. Addi-

tionally, a unified DTLB with 64 entries and another unified DTLB with 96 entries

are simulated. The DTLB designs are combined with policies FreeBSD and pop-64

on 605.mcf benchmark. This shows that, as would be expected, more aggressive su-

81

perpage promotion policies benefit more from unified TLB designs, as there are more

entries available to cache superpage translations.

82

Chapter 7

Conclusion and Future Work

7.1 Conclusions

Modern applications process more and more data. Meanwhile, DRAMs are becoming

larger and cheaper, allowing applications to e�ciently use more memory. Conse-

quently, the growing memory usage requires faster and more e�cient address trans-

lation, which is heavily dependent on how many translation entries can be cached by

the TLB hardware. However, the TLB look-up is on the critical path of instruction

executions, so the number of TLB entries cannot grow as fast as DRAM capacity.

This work focuses on superpages which can provide e�cient address translation by

largely increasing the TLB coverage without requiring more chip space. Because ex-

isting superpage support is falling behind applications’ demands. The transparent

huge page (superpage) support in Linux is too aggressive to introduce more I/O over-

head, making it impractical; the reservation-based superpage support in FreeBSD is

too conservative to capture all benefits of TLB performance.

This work focuses on exploring the design space of superpage promotion policies

to provide a faster address translation for modern applications running on existing

hardware. A data collection infrastructure is built to precisely trace the memory

accesses. With the memory trace, a simulator is able to simulate di↵erent super-

page promotion policies in the design space. Moreover, the TLB characteristics are

reverse-engineered so the simulator can accurately evaluate the TLB performance

83

of commercial processors under di↵erent promotion policies. The simulation based

approach allows fast evaluation of a wide variety of di↵erent promotion policies with-

out implementing them in real OSes. Among the design space, promotion policies

considering the population (number of faulted 4KB pages), dirtiness (number of mod-

ified 4KB pages) and lifetime (number of executed memory accesses since creation)

of reservations are evaluated. As a result, population-based promotion policies can

e�ciently promote superpages covering the dominant 4KB pages causing TLB misses,

while these superpages incur negligible overheads.

This work provides a data collection infrastructure which can collect a large num-

ber of memory accesses to be representative to reflect modern applications’ perfor-

mance, because it is well implemented for collecting memory accesses at an order of

1012. Besides, this data collection infrastructure built on QEMU can accurately col-

lect memory references from both kernel space and user space and compress them on

the fly. In the meantime, corresponding page table entries are fetched accompanied

with the virtual addresses by page walk code in QEMU. Unlike common memory

tracing tools which can only collect accesses for applications running in seconds, it

allows tracing modern applications for 10 minutes or more (their running progress in

real world) such that the memory trace can cover a large enough interesting mem-

ory access patterns for simulating the TLB behavior. Such feature is important for

simulating TLB performance, because modern applications use and access far more

memory. And this work used profiling to observe that a window of at least 1011

memory accesses is required to represent the TLB behavior for modern applications,

which length is not well supported by previous tools but easily by the data collection

infrastructure from this work.

Previous memory tracing tools are usually maintained for specific OS platforms

84

and hardware architecture, like Linux and x86. They also require complicated kernel

instrumentations to know the page table information, because these tools cannot

collect memory accesses in the kernel space. And it is hard to guarantee that the

page table entry is simultaneously fetched for each memory access. In the data

collection infrastructure provided by this work, the above restrictions or limitations

do not exist. The memory tracing happens in QEMU’s emulation time, where it does

not care about which operating system is running. At the same time, it can be easily

extended to trace all kinds of architecture that QEMU supports, with collecting the

page table information simultaneously.

It is also essential to use accurate TLB simulation algorithm to evaluate TLB

performance for commercial processors with the collected trace. This work finds that

the TLB in commercial processors, like the Intel Skylake processors, behaves very

di↵erently from what people would expect. By reverse engineering the TLB behavior

with dependency chain benchmarks, the indexing functions, inclusiveness (how entries

are inserted and evicted) and replacement policies of Intel Skylake TLBs are figured

out. Moreover, this work is the first to compare the simulated TLB performance

with the real-world case with the plotted TLB miss rate curves. Previous work

using simulation methods only provides the total number of TLB misses without

validating that the TLB performance is consistently faithfully simulated. This work

guarantees that the simulation-based evaluation can well predict TLB performance

under di↵erent superpage promotion policies.

The design space is quickly explored replying on the support from the data col-

lection infrastructure and the faithful TLB simulation, where algorithms di↵erent

promotion policies are implemented easily in the simulator. Three dimensions of

each reservation are mainly considered for deciding their promotion, including popu-

85

lation (number of faulted 4KB pages), dirtiness (number of modified 4KB pages) and

lifetime (number of executed memory accesses since creation). Though population

and dirtiness can be directly monitored, the lifetime is measured by an approximation

from the number of memory accesses because time is not accurate in QEMU emulated

guests.

Among 17 benchmarks, it is found easy to determine a good population or dirti-

ness threshold for most benchmarks, where the threshold is good because the promo-

tion policy can gain most TLB performance benefits (performance close to the most

aggressive promotion policy) while incurring negligible I/O overheads. Such good

thresholds could be either 64 or 128, meaning that 64 or 128 4KB pages are faulted

or modified in a reservation containing 512 4KB pages.

The underlying reason that these good threshold could exist is because real-world

applications share some common memory accessing behaviors. This work found a

ubiquitous memory access pattern in various real-world applications that frequently

accessed reservations happen to be the mostly populated/modified ones. In other

words, real-world applications do not access memory randomly, providing an impor-

tant insight for the design of superpage promotion policy in general-purpose operating

systems. Therefore, it is possible to precisely predict (over 80%) that a reservation

will be fully or mostly populated in the future upon reaching a population/dirtiness

threshold of 64, promoting which will result in negligible I/O overheads and save

many future 4KB page faults. Larger population/dirtiness threshold like 128 will

make the prediction even more precise and further reduce the I/O overheads from

superpage promotion. At the same time, promoting such reservations can gain dom-

inant address translation benefits, because these heavily used reservations can easily

overwhelm the TLBs with many 4KB pages (3 such reservations can almost fulfill

86

one Skylake STLB). Using superpages for them not only avoids the flooding issue but

also enjoys the fact that they dominate most memory accesses. Therefore, utilization-

aware superpage promotion policies, like pop-64 or pop-128, and dirty-64 or dirty-128

can bring near-ideal trade-o↵s.

Additionally, the lifetime based promotion policies do not constantly perform well.

The lifetime threshold denotes how long the reservation stay in the memory since its

creation, so lifetime-based promotion is considering promoting long-lived reservations

to superpages. However, di↵erent benchmarks have di↵erent ways of using reserva-

tions. Reservations may be quickly used just after its creation, or much later after

some processing. Thus it is hard to determine a uniformly good lifetime threshold for

di↵erent benchmarks. Furthermore, the lifetime-based promotion cannot e↵ectively

avoid I/O overheads, indicating that long-lived reservations are not necessarily the

ones mostly populated or modified. This is not surprising because applications do

not usually free memory immediately, but let the OS free it when all computation is

finished.

The above exploration of superpage promotion policies shows that there is still

room to improve the TLB performance. The reservation-based superpage policy in

FreeBSD should be encouraged to be more aggressive and gain better TLB perfor-

mance. Though Linux does not provide a reservation mechanism, the developers

should be able to realize why its transparent huge page policy is treated as impracti-

cal thus usually suggested to be disabled.

This work also found that the hardware TLB should make changes for supporting

superpages when OSes choose wiser superpage promotion policies. As superpages are

becoming more practical in Linux and more aggressively promoted in FreeBSD, there

will be more 2MB TLB entries. Hardware vendors should consider not limiting the

87

number of entries for 2MB pages by either increasing the number of 2MB entries or

making the TLB entries shared for both 4KB and 2MB page sizes.

7.2 Future Work

The dynamic system allocator malloc was not well designed for supporting reserva-

tions superpages. Because many reservations are found to be hardly populated, caus-

ing aggressive superpage promotion policies to incur I/O huge overheads. However,

the performance of superpage management system in FreeBSD is very dependent on

how well the 4KB pages are allocated in reservations. There are two considerations

for designing malloc to support better superpage management. First, though previ-

ous malloc designs consider avoiding memory fragmentation, it is unaware of 2MB

boundaries. Memory tend to fragment when applications keep running, which makes

it even worse for 2MB bounded reservations. Considering reducing fragmentations

in 2MB boundaries should allow more reservations to be available to be promoted.

Second, malloc makes unnecessary mmap calls. Reservations are created in response

to these mmap calls, where only a small amount of the mapped memory is really

needed by applications. The side e↵ect is that these unnecessarily created reserva-

tions never get a chance to be promoted under a wise policy, but heavily hurt the

overall performance under aggressive policies, like greedy in this work. Making the

malloc design aware of superpages may make OSes without reservation systems have

a better superpage allocation policy.

The implementation of superpage policies in real-world OSes should also consider

other aspects. First, the overhead of both initialization or disk writing can be over-

lapped. For example, Linux is already able to asynchronously allocate transparent

huge pages to overlap the higher page fault latency for 2MB pages [29]. Second, the

88

early promoted superpages should be carefully swapped out or flushed to disks, as the

OS can no longer track the utilization of these superpages. Memory bloating issues

may also happen if reservations are promoted too aggressively. Therefore, the OS

should be able to dynamically adjust the promotion thresholds to carefully determine

the degree of being aggressive depending on the memory pressure, preventing the

worst case from being worse. The superpage management may also consider using

a combination of promotion thresholds or policies on di↵erent applications and on

di↵erent types of reservations between anonymous memory and those mapping disk

files.

On ARM architecture where 16KB superpages are supported, two-stage promotion

may be considered because both 16KB and 2MB can be frequently used by modern

applications. As suggested by the desirable performance of pop-64, a conservative

promotion on 16KB superpages and a threshold-based more aggressive promotion for

2MB superpages could be reasonable, since applications tend to have either more

than 64 pages or few pages.

The data collection infrastructure may be extended to support accurate simulation

of more benchmarks. It would be interesting to simulate parallel computing bench-

marks with multiple CPU cores under unbiased scheduling, and also interesting to

simulate time-accurate, unbiased server-client interactions from network benchmarks.

Finally, new hardware innovations may help eliminate the disk writing or swap-

ping overheads of using superpages by marking the dirty bits from cache write-backs

instead of TLB page walks. The TLB marks dirty bits on the granularity of the page

size, while a cache-line is commonly 64 Byte independent of page sizes. Marking dirty

bits with cache-line may eliminate the overhead issue of using superpages once for

all, but requires cycle-accurate simulations to validate the feasibility.

89

Bibliography

[1] “Redis suggests disabling Linux kernel feature transparent huge pages. .” https:

//redis.io/topics/admin. [Online; accessed October-2018].

[2] “MongoDB suggests disabling Linux kernel feature transparent huge pages. .”

https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/.

[Online; accessed October-2018].

[3] “IBM suggests disabling Linux kernel feature transparent huge pages. .” http://

www-01.ibm.com/support/docview.wss?uid=swg21664088. [Online; accessed

October-2018].

[4] T. W. Barr, A. L. Cox, and S. Rixner, “Spectlb: a mechanism for speculative

address translation,” in 38th International Symposium on Computer Architecture

(ISCA 2011), June 4-8, 2011, San Jose, CA, USA, pp. 307–318, 2011.

[5] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared last-level tlbs for chip

multiprocessors,” in 17th International Conference on High-Performance Com-

puter Architecture (HPCA-17 2011), February 12-16 2011, San Antonio, Texas,

USA, pp. 62–63, 2011.

[6] A. Bhattacharjee and M. Martonosi, “Inter-core cooperative TLB for chip multi-

processors,” in Proceedings of the 15th International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS 2010,

Pittsburgh, Pennsylvania, USA, March 13-17, 2010, pp. 359–370, 2010.

90

[7] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “E�cient virtual

memory for big memory servers,” in The 40th Annual International Symposium

on Computer Architecture, ISCA’13, Tel-Aviv, Israel, June 23-27, 2013, pp. 237–

248, 2013.

[8] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne, “Accelerating two-

dimensional page walks for virtualized systems,” in Proceedings of the 13th Inter-

national Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS 2008, Seattle, WA, USA, March 1-5, 2008, pp. 26–

35, 2008.

[9] Intel Corporation, “Intel 64 and IA-32 Architectures

Software Developer’s Manual. .” https://www.intel.

com/content/dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-software-developer-manual-325462.pdf. [On-

line; accessed October-2018].

[10] T. Johnson, D. Shasha, et al., “2q: a low overhead high performance bu er

management replacement algorithm,” in Proceedings of the 20th International

Conference on Very Large Data Bases, pp. 439–450, 1994.

[11] A. Seznec, “A case for two-way skewed-associative caches,” in ACM SIGARCH

computer architecture news, pp. 169–178, ACM, 1993.

[12] M.-M. Papadopoulou, X. Tong, A. Seznec, and A. Moshovos, “Prediction-based

superpage-friendly tlb designs,” in High Performance Computer Architecture

(HPCA), 2015 IEEE 21st International Symposium on, pp. 210–222, IEEE, 2015.

[13] G. Cox and A. Bhattacharjee, “E�cient address translation for architectures

91

with multiple page sizes,” ACM SIGOPS Operating Systems Review, vol. 51,

no. 2, pp. 435–448, 2017.

[14] A. Bhattacharjee and D. Lustig, “Architectural and operating system support

for virtual memory,” Synthesis Lectures on Computer Architecture, vol. 12, no. 5,

pp. 1–175, 2017.

[15] F. Bodin and A. Seznec, Skewed associativity enhances performance predictabil-

ity. ACM, 1995.

[16] D. Sanchez and C. Kozyrakis, “The zcache: Decoupling ways and associativ-

ity,” in Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM Interna-

tional Symposium on, pp. 187–198, IEEE, 2010.

[17] A. Seznec, “Concurrent support of multiple page sizes on a skewed associative

tlb,” IEEE Transactions on Computers, vol. 53, no. 7, pp. 924–927, 2004.

[18] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “Colt: Coalesced

large-reach tlbs,” in 45th Annual IEEE/ACM International Symposium on Mi-

croarchitecture, MICRO 2012, Vancouver, BC, Canada, December 1-5, 2012,

pp. 258–269, 2012.

[19] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh, “Increasing TLB reach by

exploiting clustering in page translations,” in 20th IEEE International Sympo-

sium on High Performance Computer Architecture, HPCA 2014, Orlando, FL,

USA, February 15-19, 2014, pp. 558–567, 2014.

[20] M. Clark, “A new⇥ 86 core architecture for the next generation of computing,”

in Hot Chips 28 Symposium (HCS), 2016 IEEE, pp. 1–19, IEEE, 2016.

92

[21] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift, “E�cient memory vir-

tualization: Reducing dimensionality of nested page walks,” in 47th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 2014, Cam-

bridge, United Kingdom, December 13-17, 2014, pp. 178–189, 2014.

[22] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S. McKinley,

M. Nemirovsky, M. M. Swift, and O. S. Unsal, “Redundant memory mappings for

fast access to large memories,” in Proceedings of the 42nd Annual International

Symposium on Computer Architecture, Portland, OR, USA, June 13-17, 2015,

pp. 66–78, 2015.

[23] T. W. Barr, A. L. Cox, and S. Rixner, “Translation caching: skip, don’t walk

(the page table),” in 37th International Symposium on Computer Architecture

(ISCA 2010), June 19-23, 2010, Saint-Malo, France, pp. 48–59, 2010.

[24] T.-Y. Yeh and Y. N. Patt, “Two-level adaptive training branch prediction,” in

Proceedings of the 24th annual international symposium on Microarchitecture,

pp. 51–61, ACM, 1991.

[25] J. Navarro, S. Iyer, P. Druschel, and A. L. Cox, “Practical, transparent operating

system support for superpages,” in 5th Symposium on Operating System Design

and Implementation (OSDI 2002), Boston, Massachusetts, USA, December 9-11,

2002, 2002.

[26] M. Talluri and M. D. Hill, “Surpassing the TLB performance of superpages with

less operating system support,” in ASPLOS-VI Proceedings - Sixth International

Conference on Architectural Support for Programming Languages and Operating

Systems, San Jose, California, USA, October 4-7, 1994., pp. 171–182, 1994.

93

[27] T. H. Romer, W. H. Ohlrich, A. R. Karlin, and B. N. Bershad, “Reducing TLB

and memory overhead using online superpage promotion,” in Proceedings of the

22nd Annual International Symposium on Computer Architecture, ISCA ’95,

Santa Margherita Ligure, Italy, June 22-24, 1995, pp. 176–187, 1995.

[28] Z. Fang, L. Zhang, J. B. Carter, W. C. Hsieh, and S. A. McKee, “Reevaluat-

ing online superpage promotion with hardware support,” in Proceedings of the

Seventh International Symposium on High-Performance Computer Architecture

(HPCA’01), Nuevo Leone, Mexico, January 20-24, 2001, pp. 63–72, 2001.

[29] “Transparent huge pages. .” https://www.kernel.org/doc/Documentation/

vm/transhuge.txt. [Online; accessed October-2018].

[30] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel, “Coordinated and ef-

ficient huge page management with ingens,” in 12th USENIX Symposium on Op-

erating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,

November 2-4, 2016., pp. 705–721, 2016.

[31] N. Ganapathy and C. Schimmel, “General purpose operating system support

for multiple page sizes,” in 1998 USENIX Annual Technical Conference, New

Orleans, Louisiana, USA, June 15-19, 1998, 1998.

[32] “Persistent huge pages. .” https://www.kernel.org/doc/Documentation/vm/

hugetlbpage.txt. [Online; accessed October-2018].

[33] A. Arcangeli, “Transparent Hugepage Support. .” https://www.linux-kvm.

org/images/9/9e/2010-forum-thp.pdf. [Online; accessed October-2018].

[34] “Idle Page Tracking. .” https://www.kernel.org/doc/html/latest/

94

admin-guide/mm/idle_page_tracking.html. [Online; accessed October-

2018].

[35] “Windows Large Page Support. .” https://docs.microsoft.com/en-us/

windows/desktop/memory/large-page-support. [Online; accessed October-

2018].

[36] “OS X Superpage Support. .” https://www.unix.com/man-page/osx/2/mmap/.

[Online; accessed October-2018].

[37] C. Cascaval, E. Duesterwald, P. F. Sweeney, and R. W. Wisniewski, “Multiple

page size modeling and optimization,” in 14th International Conference on Par-

allel Architecture and Compilation Techniques (PACT 2005), 17-21 September

2005, St. Louis, MO, USA, pp. 339–349, 2005.

[38] F. Bellard, “Qemu, a fast and portable dynamic translator.,” in USENIX Annual

Technical Conference, FREENIX Track, vol. 41, p. 46, 2005.

[39] Y. Collet et al., “Lz4: Extremely fast compression algorithm,” code. google. com,

2013.

[40] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.

Reddi, and K. Hazelwood, “Pin: building customized program analysis tools with

dynamic instrumentation,” in Acm sigplan notices, vol. 40, pp. 190–200, ACM,

2005.

[41] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH Com-

puter Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

95

[42] J. Bucek, K.-D. Lange, et al., “Spec cpu2017: Next-generation compute bench-

mark,” in Companion of the 2018 ACM/SPEC International Conference on Per-

formance Engineering, pp. 41–42, ACM, 2018.

[43] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite: Char-

acterization and architectural implications,” in Proceedings of the 17th interna-

tional conference on Parallel architectures and compilation techniques, pp. 72–81,

ACM, 2008.

[44] K. Shiv, K. Chow, Y. Wang, and D. Petrochenko, “Specjvm2008 performance

characterization,” in SPEC Benchmark Workshop, pp. 17–35, Springer, 2009.

[45] M. F. Cowlishaw, “The ‘telco’benchmark,” URL: http://www2. hursley. ibm.

com/decimal, 3pp, IBM Hursley Laboratory, 2002.

[46] A. Kyrola, G. E. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph com-

putation on just a PC,” in 10th USENIX Symposium on Operating Systems

Design and Implementation, OSDI 2012, Hollywood, CA, USA, October 8-10,

2012, pp. 31–46, 2012.

[47] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: densifica-

tion laws, shrinking diameters and possible explanations,” in Proceedings of the

eleventh ACM SIGKDD international conference on Knowledge discovery in data

mining, pp. 177–187, ACM, 2005.

[48] I. Earl Joseph, “Gups (giga-updates per second) benchmark,” URL http://www.

dgate. org/˜ brg/files/dis/gups, 2000.

[49] B. Momjian, PostgreSQL: introduction and concepts, vol. 192. Addison-Wesley

New York, 2001.

96

[50] J. L. Carlson, Redis in action. Manning Publications Co., 2013.

[51] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector machines,”

ACM transactions on intelligent systems and technology (TIST), vol. 2, no. 3,

p. 27, 2011.

[52] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.

com/exdb/mnist/, 1998.

[53] S. M. Blackburn, R. Garner, C. Ho↵mann, A. M. Khan, K. S. McKinley,

R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. L.

Hosking, M. Jump, H. B. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovic,

T. VanDrunen, D. von Dincklage, and B. Wiedermann, “The dacapo bench-

marks: java benchmarking development and analysis,” in Proceedings of the 21th

Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications, OOPSLA 2006, October 22-26, 2006, Portland,

Oregon, USA, pp. 169–190, 2006.

[54] “Apache DayTrader Benchmark Sample.” http://geronimo.apache.org/

GMOxDOC20/daytrader.html/. [Online; accessed October-2018].

[55] C. Lever and D. Boreham, “Malloc () performancein amultithreadedlinuxen vi-

ronment,” 2000.

[56] A. Bohra and E. Gabber, “Are mallocs free of fragmentation?,” in USENIX

Annual Technical Conference, FREENIX Track, pp. 105–117, 2001.

[57] J. Evans, “A scalable concurrent malloc (3) implementation for freebsd,” in Proc.

of the bsdcan conference, ottawa, canada, 2006.

